COMMUTATIVE ALGEBRA

NEIL STRICKLAND

1. RINGS

Definition 1.1. [defn-ring]
A commutative ring is a set A equipped with elements 0,1 € A and operations of addition and multipli-
cation such that the following axioms be satisfied:

) For all a,b € A we have a + b,ab € A.

(b) For all a € A we have 0 4+ a = a and la = a.

(c) For all a,b € A we have a4+ b = b+ a and ab = ba.

(d) For all a,b,c € A we have a+ (b+¢) = (a+b) + ¢ and a(bc) = (ab)c.
) For all a,b,c € A we have a(b+ c¢) = ab + ac.

(f) For all a € A there is an element —a € A with a + (—a) = 0.

In other words, addition and multiplication should be commutative and associative with 0 and 1 as neutral
elements, and multiplication should distribute over addition.

Remark 1.2. We will not consider noncommutative rings in this course, so we will just use the word “ring”
to mean “commutative ring”. We will use without comment various standard consequences of the axioms,
such as the facts that —(—a) = a, 0.a = 0 and (—1).a = —a.

Remark 1.3. If we have two rings A and B and we need to distinguish between the additive identity
elements in A and B, then we will call them 04 and Op rather than just 0. Similarly, we may write 14 and
1p for the multiplicative identity elements.

Example 1.4. [eg-numbers]

The sets Z (of integers), Q (of rational numbers), R (of real numbers) and C (of complex numbers) are
all rings. Here of course we are using the standard definitions of addition and multiplication, and of the
elements 0 and 1. The set N (of nonnegative integers) satisfies all the axioms except for axiom (f).

Example 1.5. [eg-two-local]

There are also various other rings of numbers that are slightly less obvious. For example, let Z,) denote
the set of rational numbers of the form a/b, where a and b are integers and b is odd. Using the equations
T+ o= adbfibc and 3 ¢ = 77 we see that Z) is closed under addition and multiplication. It also contains
0=0/1and 1 =1/1, so it is a ring. For another example, consider the set Z[i] of complex numbers of the
form a 4+ ib, with a,b € Z. It is not hard to check that this is also a ring.

In the above example, we define addition and multiplication on Z) by restricting the corresponding
operations on Q, and we define addition and multiplication on Z[i] by restricting the corresponding operations
on C. It will be convenient to consider this construction more generally:

Definition 1.6. [defn-subring]
Let A be a ring. A subring of A is a subset B C A such that
(a) 04,14 € B
(b) Whenever b € B we have —b € B
(¢c) Whenever b,c € B we have b+ ¢ € B and bc € B.

It is clear that any subring of A can be considered as a ring in its own right, using the restricted operations.

Example 1.7. [eg-subrings]
7 and Z) are subrings of Q, and Q is a subring of R, and R and Z[i] are subrings of C.
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Example 1.8. [eg-modular]

Now consider an integer n > 0. We will define a ring Z/n to serve as a home for modular arithmetic.
The most conceptual way to do this is to use the framework of quotient rings, which we will introduce in
Section 5. For the moment we take a more pedestrian approach. We first define Z/n = {0,1,...,n — 1}.
Any integer a € Z then has a unique representation a = ng + r with ¢ € Z and r € Z/n; we define 7(a) to
be 7, giving a function 7: Z — Z/n. Given a,b € Z/n we define a ® b = w(a + b) and a ® b = w(ab); this
defines binary operations @ and ® on Z/n. We also define a unary operation ©a = 7(—a). Standard ideas
about modular arithmetic show that these operations make Z/n into a commutative ring. We will usually
just write @ + b and ab and —a instead of @ © b and a ® b and ©a, relying on the context to distinguish
between operations in Z/n and operations in Z.

Example 1.9. [eg-trivial-ring]

Consider a set T with one element, say T' = {t}. We can make this into a ring by defining 07 = ¢ and
lpr =t and t +t =t and ¢t = ¢. A ring of this form is called trivial. Note here that 17 = 0p. Conversely, if
A is any ring in which 14 = 04, then for any element a € A we have a = 14a = 04a =04, 50 A= {04}, so
A is trivial.

Example 1.10. [eg-square-matrices]

Consider the set A = M,,(Z) of n x n matrices with integer entries. Let 04 denote the zero matrix, and let
14 denote the identity matrix. With these elements and the standard definition of matrix multiplication, A
satisfies all axioms except that multiplication is not commutative (provided that n > 2). The same applies
to M, (B) for any commutative ring B.

Example 1.11. [eg-F-four]
Let F,4 denote the following set of matrices over Z/2:

{6 L TR

We will allow ourselves to write 0 for the zero matrix [ §] and 1 for the identity matrix [§ 9]. We also write
a =[91]. Note that o = [} 1], which is the same as [} ] because we are working with matrices over Z/2.
We thus have Fy = {0, 1, a, a?}. One can check that o® = 1 and thus a* = «, and also that 1+ a + a? = 0.
From this it follows that F, is closed under the operations of addition and multiplication, which can be
tabulated as follows:

+1 0] 1] al|a? 0] 1] a|a?
0 01| a|a? 0100
1 110 |a?| a 10| 1| a|a?
al ala?2] 0] 1 a 0] al|a?]| 1
a?lla®|a|1]0 a?l0la?2| 1|

We see that in this context matrix multiplication is commutative, so we have a commutative ring with just
four elements.

Example 1.12. [eg-boolean]
Let S be any set, and let Sub(S) be the set of all subsets of S. Put Ogp,(s)y = 0 and lgups) = S. Given
a,b € Sub(S) (so a C S and b C S) we put

a+b=(aUb)\(anb)=(a\b)U(\a)
ab=anb.



One can check that this gives a ring, in which —a = a for all a. All the axioms are straightforward except
for the associativity of addition. For that, consider three elements a,b, ¢ € Sub(S). Put

a' =a\ (bUc)={s]| s lies in a but not b or c}

b =0\ (aUc) ={s| s lies in b but not a or c}

d =c\ (aUb) = {s| s lies in ¢ but not a or b}

u=d Ut UdU(anbne).

bl

By a check of cases, we find that
a+(b+c)=u=(a+b)+c
as required.

Definition 1.13. [defn-binary-product]
Let A and B be commutative rings. As usual, we write A x B for the cartesian product, so the elements
of A x B are pairs (a,b) with a € A and b € B. We define

0axB = (04,05)
laxp = (1a,1p)
(a,b) + (a',b)) = (a+a',b+b)
(a,b)(a’,b") = (aa’,bb")
—(a,b) = (—a, —=b).
It is easy to see that this makes A x B into a commutative ring.

Remark 1.14. [rem-axis-not-subring]

The set A’ = {(a,05) | a € A} C A x B is naturally identified with the ring A, but it is not a subring
of A x B because it does not contain the element 145 = (14,1p) (unless B is trivial). Similarly, the set
B’ ={(04,b) | b € B} is not a subring unless A is trivial.

Remark 1.15. [rem-infinite-product]

If we have rings A4, ..., A,, we can make the product A; X---x A,, into a ring by an obvious generalisation
of the above definition. We can even define the product of infinitely many factors, but we choose to postpone
this until we have discussed rings of functions.

Definition 1.16. [defn-map]
For any sets S and T, we write Map(S,T) for the set of all functions from S to 7.

Definition 1.17. [defn-map-ring]
Now suppose we have a set S and a ring A, and we put M = Map(S, A).

(a) We let 0ps denote the constant function S — A with value 04, so 0p7(s) =04 for all s € S.
(b) Similarly, we define 15;: S — A by 1p(s) =14 forall s € S.
(c) Given elements a,b € M (soa: S — A and b: S — A) we define a+b € M by (a+b)(s) = a(s)+b(s)
forall s € S.
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(d) Similarly, we define ab € M by (ab)(s) = a(s)b(s) for all s € S.
(e) We also define (—a)(s) = —af(s).
It is clear that these operations make M into a ring.

Remark 1.18. [rem-function-rings]

We rarely want to work with the full ring Map(.S, A); instead, we consider various subrings. For example,
the ring Map(R, R) is too unstructured to be interesting, but it is useful to study the subring of continuous
functions, or the subring of smooth (= infinitely differentiable) functions, or the subring of polynomial
functions. Similarly, if X is any compact hausdorff space X then we can consider the ring C'(X) of continuous
functions from X to R. It can be shown that the topology of X is very closely related to the ring structure
of C(X). This is just the first of many different contexts where we can study spaces via suitable rings of
functions.



Example 1.19. [eg-sunset]
We often want to consider subsets of R™ defined by polynomial equations, such as the set

X ={(z,y) eR*| (" +4* - 1)y = 0}.

We can let A denote the ring of polynomial functions on X. If we have a system of coefficients ¢;; € R for
0<i< N and 0<j < M, we get an element f € A given by

N—-1M-1

flay) =Y Y cya'y’.

i=0 j=0

The defining equation for X can be written as y> = y(1 — 22?). This in turn gives y* = y*(1 — 2?) and
y® = y3(1 —2?) = y(1 — 2?)? and so on. This shows that we do not really need powers of y beyond y?: every
element f € A can be expressed in the form f(z,y) = ZZ-L:_Ol Z?:o di;x'y? for some system of coefficients
di;.

There is an extensive theory of the geometry of sets defined by polynomial equations, and its relationship
with the structure of the corresponding rings of polynomial functions. This is called algebraic geometry.

Note that an element of Map(S, A) can be thought of as a family of elements a(s) € A parametrised by
the elements s € S. Sometimes it is more natural to use the notation as rather than a(s). Moreover, we
sometimes want to assume that as is an element of a ring A, that depends on s, rather than having all the
elements a, lie in the same ring A. This leads us to the following construction:

Definition 1.20. [defn-general-product]

Suppose we have a set S and a ring A, for each element s € S. We define a new ring P =[] .q A, as
follows. An element of P is a family of elements (as)scs with as € Ay for all s. The zero element is the
family 0p = (04, )ses, and similarly 1p = (14, )ses. Given elements a,b € P we put (a +b)s = as + bs and
(ab)s = asbs and (—a)s = —ag, which defines elements a + b,ab, —a € P. It is clear that these operations
make P into a commutative ring.

Remark 1.21. [rem-product-subring]
It is easiest to understand this definition in the case where there is a single ring A* such that A is a

subring of A* for all s. It is then easy to identify [, g4 As with the ring

P’ ={a € Map(S, A*) | a(s) € A; for all s},

which is a subring of Map(S, A*). In particular, if A; = A* for all s then we just have [[,.g As = [[,cg A" =
Map(S, A*).

Example 1.22. [eg-padic]

Fix a prime number p, and consider the ring P = [[,-, Z/p". We have defined Z/p" to be a subset (but
not a subring) of N, so P can be regarded as a subset (but not a subring) of Map(N \ 0, N). Specifically, P
is the set of sequences a = (a1, as,...) of integers with 0 < a;, < p* for all k. Now consider the subset

»=1{a € P|ay=arsy1 (mod pF) for all k}.
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One can check that this is a subring of P; it is called the ring of p-adic integers, and is important in algebraic
number theory. For example, the sequences
a=(1,1+p, 1+p+p* 1L+p+p*+p° ...)
b=(p-1,p—-1,p—1,p—1,...)
are elements of Z, with ab+ 1 = 0.

We now turn to polynomial rings and formal power series rings. We will first define them using notation
that is rigorous but somewhat cumbersome, then we will introduce the more traditional notation.

Definition 1.23. [defn-poly-initial]
Let A be a ring. We write F'(A) for the set of sequences a = (ag, a1, as,...) € Map(N, 4), considered as
a ring with the following operations:

OF(A) =(0,0,0,0,...)
1F(A) = (1,0,0,0,...)
(a—i—b)i:ai—i—bi

(ab); = Zajbi—j'
j=0

(Verification of the ring axioms is left to the reader.) We then put
P.y(A)={a€ F(A)|a; =0 for i >d}

P(A) = | P<a(A) = {a € F(A) | a; =0 for i >> 0}.
d>0
This is easily seen to be a subring of F(A). We call F(A) a formal power series ring, and P(A) a polynomial
ring. For a € P(A), we define the degree deg(a) to be the largest d such that aq # 0, or deg(a) = —oo if
a; = 0 for all i.

The subset P<o(A) C P(A) consists of sequences of the form (a,0,0,0,...); it is a subring, which can be
identified with A itself.

We now introduce a symbol, say z, for the sequence (0,1,0,0,...) € P(A). It is easy to see by induction
that z* is the sequence with 1 in position k and 0 elsewhere. More generally, if u € A = P<¢(A) then uz*®
has u in position k£ and 0 elsewhere. This means that any element

a:(ao,al,...,ad,0,0,0,...) Epgd(A)

can be expressed as a = Z?:o a;z'. More generally, for any a € F(A) it is natural to write a = >~ a;a’,
with the understanding that this is just a notational convention, because we do not have any independent
definition for sums of infinitely many terms.

The traditional notation is to write A[z] for P(A) if we want to use the symbol x for the sequence
(0,1,0,0,...), or Aft] if we want to use the symbol ¢, and so on. We can then use the notation A[z,y] for
Alz][y] = P(P(A)). We find that any element of Afz,y] can be expressed as 3¢ Z;‘i:o a;;x'y’ for some
d € N and some system of coefficients a;; € A. More generally, we can define multivariable polynomial rings
Alz1,...,zy] in essentially the same way. For formal power series rings we use double brackets like A[t] or
Alu, v, w]. We also write A[z|<q for P<4(A).

We conclude by discussing division of polynomials, which is central to many of the special properties of
polynomial rings.

Definition 1.24. [defn-monic]
A polynomial f(¢) € A[t] is monic if it has the form f(t) = Z?:o a;t* for some d € N and some sequence
of coefficients ag,...,aq € A with ag =1 (so f has degree d).

Proposition 1.25. [prop-poly-div]
Let f € At] be a monic polynomial of degree d over A, and define u: A[t] x Alt|<q — Alt] by

wlg,r) = fq+r.
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Then p is a bijection. (In other words, for any g € A[t] there is a unique pair of polynomials g and r such
that g = qf +r and r has degree less than d.)

Proof. First, our hypothesis is that

d
f=)
i=0

where a4 = 1. It follows that fq has degree d+deg(q), and in particular, it has degree at least d unless ¢ = 0.
Now, if p(g,7) = 0 then deg(fq) = deg(—r) < d so ¢ = 0, and substituting this in the relation u(g,r) =0
gives 7 = 0 as well. More generally, if 1(qo,70) = (g1, 71) then u(go — q1,70 — 1) = 0, and we conclude that
(go,7m0) = (q1,71). Thus, u is injective.

Now consider a polynomial g € Aft]<r. We will show by induction on & that g lies in the image of u. This
is clear if k < d, because we then have g = 1(0, g). Suppose instead that k > d. Let u be the coefficient of
t* in g, and put o = upt* % and g; = g — qof. Then g; € A[t|<y, so by induction we can find q;,r with
g1 = u(q1,m) =q1f +r. We now put ¢ = qop + ¢1 and observe that g = ¢f + r as required. |

2. RING HOMOMORPHISMS

Definition 2.1. [defn-ring-hon)]
Let A and B be rings. A homomorphism from A to B is a function ¢: A — B such that

(a) For all a,a’ € A we have ¢(a + a’) = ¢(a) + ¢(a’), and ¢p(aa’) = P(a)p(a’).
(b) ¢(14) =15p.

An isomorphism is a ring homomorphism that is also a bijection.

Remark 2.2. [rem-inv-hon|
If ¢: A — B is an isomorphism, it is straightforward to check that the inverse map ¢~': B — A is also a
ring homomorphism (and therefore an isomorphism).

Remark 2.3. [rem-ring-hom|

As a special case of (a) we have ¢(04) = ¢(04) + #(04), and we can add —¢(04) to both sides to get
¢(04) = 0p. However, axiom (b) does not follow from (a) in the same way, as we see by considering the
function n + (n,0) from Z to Z x Z. (The same line of argument gives ¢(14)? = #(14), which would be
enough if we knew that ¢(14) had a multiplicative inverse, but that might not be the case.)

Another special case of (a) gives ¢(a) + ¢(—a) = ¢(a —a) = $(04) = 0p, so ¢p(—a) = —d(a).

Example 2.4. [eg-inc-homn]
The obvious inclusion maps Z — Q — R — C are ring homomorphisms.

Example 2.5. [eg-mod-homn]
The function 7: Z — Z/n (as in Example 1.8) is a ring homomorphism.

Example 2.6. [eg-boolean-iso]

Let S be a set, so we have a ring A = Sub(S) as in Example 1.12 and a ring B = Map(S5,Z/2) as in
Definition 1.17. We would like to define homomorphisms ¢: A — B and v: B — A. Suppose that a € A,
so a is a subset of S. Then ¢(a) should be a function from S to Z/2 = {0, 1}, so for each s € S we should
have an element ¢(a)(s) € {0,1}. We define

1 ifse€a

$la)(s) = {O if s & a.

In the opposite direction, suppose that b € B, so b: S — Z/2, and ¢ (b) should be a subset of S. We put
P(b) ={s e S|b(s) =1}.

We leave it to the reader to check that ¢ and v are ring homomorphisms. It is also easy to see that
Y(p(a)) = a and ¢(1p(b)) = b, so ¢ and 1 are inverse to each other, so they are isomorphisms.
7



Example 2.7. [eg-Z-initial]

Let A be any ring. For n € N we define n(n) € A inductively by the rules n(0) = 04 and n(n+1) = n(n)+14
(son(4) =1a+14+14+14, for example). We then define n(—n) = —n(n), which gives a function n: Z — A.
One can check that this is a homomorphism, and that it is the only possible homomorphism from Z to A.
(In the language of category theory, this means that Z is an initial object in the category of rings.)

Example 2.8. [eg-eval]
Let A be any ring, and let u be an element of A. We can define a homomorphism ¢, : Alz] — A by

d d
€y g a;x" :5 a;u’,
i=0 i=0

or more briefly €, (f) = f(u). This is called an evaluation homomorphism. Note in particular that €,(z) = u.
More generally, given a vector u = (uy,...,uq) € A%, we can define a homomorphism

€u: Alzy,. ..., xq) > A

by

i1yeeeria >0 i1yeeeria >0
or more briefly €,(f) = f(u1,...,uq).

Example 2.9. [eg-gelfand]

Let X and Y be topological spaces, and let f: X — Y be a continuous map. Let C(X) be the ring of
continuous real-valued functions on X, and similarly for C(Y"). Note that if u: ¥ — R is continuous, then
so is the composite v o f: X — R. We can thus define a function f*: C(Y) — C(X) by f*(u) = uo f. If
v: Y — Ris another continuous function, it is clear that (u+v)of = (uof)+(vof), and (uv)of = (uof)(vof).
Using this, we see that f* is a ring homomorphism.

If X and Y are compact hausdorff spaces, it can be shown that every ring homomorphism C(Y) — C(X)
arises in this way from a unique continuous map X — Y.

For our final example, we need the following well-known congruence:

Lemma 2.10. [lem-frobenius]

Let p be a prime number, and suppose that 0 < k < p. Then the binomial coefficient ( i ) is divistble

by p.

Proof. Let X be the set of subsets K C Z/p with |K| =k, so | X| = < 1]2 > We can let Z/p act on X by

the rule
a+{uy,...,ux} ={a+us,...,a+u}

We claim that if a # 0 then a 4+ K can never be equal to K. Indeed, if a + K = K then ab+ K = K for all b,
but we can choose b so that ab=1 (mod p), so 1+ K = K. Thus, ifu € K thenu+1 € K, then u+2 € K
and so on, so K = Z/p, which contradicts the fact that |K| = k. Thus all orbits for the action of Z/p on X
are free, so | X| is p times the number of orbits, as required. |

Example 2.11. [eg-frobenius]

Let A be a ring in which 14 +14 = 04 (or more briefly 2 = 0). For example, A could be the ring Fy from
Example 1.11, or the polynomial ring Z/2[z]. Define ¢: A — A by ¢(u) = u?. This clearly sends 1 to 1 and
preserves multiplication. Less obviously, it preserves addition, because ¢(u + v) — ¢(u) — ¢(v) = 2uv = 0.
Thus, ¢ is a ring homomorphism, called the frobenius map.

More generally, if p is a prime number and B is a ring with p = 0 one can check using Lemma 2.10 that
(u+v)? =uP +vP in B, so we have a frobenius map ¢: B — B given by ¢(u) = uP.

8



3. PROPERTIES OF ELEMENTS

Definition 3.1. [defn-el-props]
Let a be an element in a ring A.
(a) We say that a is invertible if there is an element b such that ab = 1. Such an element is called an
inverse for a, and we write a~! for b. We write A* for the set of invertible elements in A.
(b) We say that a is a zero-divisor if there is an element x # 0 such that az = 0. Otherwise, we say
that a is regular.
(c) We say that a is nilpotent if a™ = 0 for some n € N.
(d) We say that a is idempotent if a®> = a, or equivalently a(1 — a) = 0.

1

The following result shows that the notation ¢~" is unambiguous.

Proposition 3.2. [prop-inv-unique]
If an element a € A is invertible, then it has a unique inverse.

Proof. Suppose that b and ¢ are both inverses for a. Then
b=0b1=b(ac) = (ba)c=1lc=c.
a

Example 3.3. [eg-C-el-props]
In C, every nonzero element is regular and invertible, 0 is the only nilpotent element, and 0 and 1 are the
only idempotent elements.

Proposition 3.4. [prop-Zn-el-props]
Consider an element a € Z/n ={0,1,...,n —1}.
(a) a is invertible iff it is reqular iff a and n are coprime, or equivalently a is not divisible by any prime
that divides n.
(b) a is nilpotent iff it is divisible by every prime that divides n.

Proof. The proof will rely on various facts from elementary number theory, which can also be recovered as
a special case of the results that will will be discussed in Section 16.

(a) a is invertible iff there is another integer b such that ab = 1 (mod n), or equivalently there exist
integers b and m such that ab + nm = 1, or equivalently a and n are coprime. Moreover, we can
define a map u: Z/n — Z/n by u(x) = ax. It is clear that p is injective iff a is regular, and p is
bijective iff as a is invertible. However, if p is injective then |u(Z/n)| = |Z/n| = n so p(Z/n) is all
of Z/n so p is automatically bijective. Thus a is invertible iff it is regular.

(b) Let the prime factorisation of n be pi*---p?, with p; < --- < p,. Put v = max(vy,...,v,). If a
is divisible by p1, ..., p:, then a¥ will be divisible by n in Z, so ¢¥ = 0 in Z/n, so a is nilpotent in
Z/n. Conversely, if a is not divisible by p; for some 4, then a* will never be divisible by p; and so
will never be divisible by n, so a* will always be nonzero in Z/n, so a will not be nilpotent in Z/n.

]

Proposition 3.5. [prop-inv-prod]
For any two elements a,b € A, the product ab is invertible iff a and b are both invertible.

Proof. Put ¢ = ab. If a and b are both invertible, then a~'b~! is an inverse for ¢. Conversely, if ¢ is invertible
then bc~! is an inverse for a, and ac™! is an inverse for b. O

Proposition 3.6. [prop-regular-prod]
For any two elements a,b € A, the product ab is reqular iff a and b are both reqular. Moreover, every
invertible element is regular.

Proof. Put ¢ = ab. Suppose that a and b are both regular. Consider an element x such that cx = abx = 0.
As a is regular we must have bz = 0, and as b is also regular we see that = 0. Thus ¢ is regular.

Conversely, suppose that c is regular. Consider an element = with bz = 0. It follows that cx = abxr = 0,
but ¢ is regular so x = 0. This proves that b is regular, and essentially the same argument also shows that
a is regular.



Finally, suppose that a is invertible. If axz = 0 we can multiply by a~! to get = 0; so a is regular. O

Proposition 3.7. [prop-finite-regular]
Let A be a ring with only finitely many elements. Then every reqular element of A is invertible.

Proof. This is a straightforward generalisation of Proposition 3.4(a). We can enumerate the distinct elements

as ai,...,a, say. Suppose that u € A is a regular element, so all the elements u(a; — a;) are nonzero, so the
elements uai, ..., ua, are distinct. As there are n elements in this list, every element of A must appear. In
particular, we have uai = 1 for some k, so a; is an inverse for u. O

Proposition 3.8. [prop-nilpotent-sum]
If a and b are nilpotent, then so is a +b. More precisely, if a®™t = ™+ =0 then (a + b)" ™+ = 0.

Proof. If a’b? # 0 then we must have i < nand j < m,s0i+j <n+m. Thus, ifi+j=n+m+1
we must have a’¥’ = 0. In other words, all terms in the binomial expansion of (a + b)"*™*! are zero, so
(@ +b)" ™+ =0 as claimed. O

Proposition 3.9. [prop-nilp-inv]
If a is nilpotent then 1+ a is invertible.

Proof. For some n we have a"*! = 0. Put u = Y_7_(—a)’; we then find that (1 +a)u =1—a"*' =1,50 u
is the required inverse for 1 + a. O

Proposition 3.10. [cor-nilp-inv]
If u is invertible and a is nilpotent then u + a is invertible.

1 1

Proof. We can write u + a as u(l + au™'). Here au™! is nilpotent so 1 + au™?! is invertible so u + a is
invertible. .

Proposition 3.11. [prop-idempotent-ops]
The elements 0 and 1 are idempotent. Moreover, if a and b are idempotent then so are the elements 1 —a
and 1 —0 and a + b — ab.

Proof. Straightforward, especially if we note that the condition a® = a is equivalent to a(1 —a) = 0 and that

a+b—ab=1—-(1—-a)(1—0). O

Proposition 3.12. [prop-root-one]
If e is idempotent then the element uw =1 — 2e has u®> = 1 and so is invertible.

Proof. By expanding everything out and recalling that e(1 — ) = 0 we see that u? =1 —4e(1—e)=1. O

Proposition 3.13. [prop-lifting]

(a) If e and €' are idempotent and e’ — e is nilpotent then e’ = e.

(b) Let e be an element of A such that the element x = e(1 — e) is nilpotent. Then there is an element
a € A such that e + ax is idempotent. Moreover, this is the unique idempotent €' such that ¢’ — e is
nilpotent.

Proof.
(a) Put x = ¢ — e and u = 1 — 2e. If we expand out x(1 — zu) using €2 = e and (¢')? = €’ repeatedly,
we get zero. As x is nilpotent we see that 1 — zu is invertible, so we can multiply by the inverse to
get z = 0.
(b) Suppose that ™ = 0, and consider the element

y=1l—e"—(1-¢)".

It is clear from the binomial expansion that (e + f)™ — e™ — f™ is always divisible by ef. Taking

f = 1— e, we see that y is divisible by z, say y = vx for some v. It follows that the element

u = e" + (1 — e)” can be written as 1 — vz, and so is invertible. We put ¢/ = e"u™!, s0 1 —¢' =
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(1—e)"ut soe(l—¢)=a"u"2=0,so e isidempotent. Note also that if we put b = Zz;g ek

we have e — €™ = bz and ™' — 1 = u oz so

d—e=cwt—e=c"(ut—-1)— (e —e") = ("u" v — b)z.

Thus, if we put a = e"u"'v — b we have €/ = e + az as required. Uniqueness follows from part (a)
together with Proposition 3.8.

O

Remark 3.14. [rem-lifting]

One can give an interesting alternative formula for the idempotent in part (b). Put x = e(1 — e) and
b=> 100 ( lej 1 > 2" (noting that this is really only a finite sum, because x is nilpotent). Using some
standard combinatorics one can check that (1 — 4z)(b%z —b) = 1. Now put a = (2¢ — 1)b and ¢’ = e + az.
We find that (1 —4z)e’(1 —€’) =e(l —e) —x = 0 but 1 — 4z is invertible so €’ is idempotent.

The following result is a nice illustration of all the above concepts.

Proposition 3.15. Let A be a ring with only finitely many elements, and suppose that the only idempotents
in A are 0 and 1. Then every element of A is either nilpotent or invertible.

Proof. Let a be an element of A. As A is finite, the powers of a cannot all be different. It follows that
there exist integers p,q > 0 with a?t? = a?. We then see by induction that a?**¢ = a? for all k > 0. In
particular, we have a?t?? = a?. Multiplying both sides by a(?=1? gives a?P? = aP?, so a?? is idempotent, so
either aP? = 0 or aP? = 1. In the first case, a is nilpotent. In the second case, a??~! is an inverse for a, so a
is invertible. O

Proposition 3.16. [prop-poly-el-props]
Let A be a ring, and let f =Y, apz® € Afz] be a polynomial over A.

(a) If ag is invertible in A, and a; is nilpotent in A for alli > 0, then f is invertible in Alx]. Conversely,
if [ is invertible in Alz] then ag is invertible in A.

(b) If the first nonzero coefficient in f is reqular in A, then [ is reqular in Alz]. Similarly, if the last
nonzero coefficient in f is reqular in A, then f is regular in Alzx].

(c) f is nilpotent in Alz] iff all coefficients a; are nilpotent in A.

(d) f is idempotent in Alz] iff ag is idempotent in A and a; =0 for i > 0.

Remark 3.17. In fact, claim (a) is fully reversible: if f is invertible in Alz|, then the coefficients a; are
automatically nilpotent for i > 0. However, we will defer the proof, as it will become much easier when we
have more theory available.

Proof. (c) If all the coefficients a; are nilpotent, then all the individual terms a;x’ are nilpotent, so
f is nilpotent by Proposition 3.8. Conversely, suppose that f is nilpotent, say f™ = 0. If f =
aqz® + lower terms then f" = ag:ﬂ"d + lower terms , so we must have a}; = 0, so aq is nilpotent.
It follows using Proposition 3.8 again that the polynomial

d—1
9= Zaiﬂfi = [+ (—aqz")
=0

is again nilpotent in A[z], so by induction on d we can conclude that the coefficients ag, . .., aq—1 are
also nilpotent in A.

(a) First suppose that ag is invertible and that a; is nilpotent for ¢ > 0. Then the polynomial g =
Yo a;x" is nilpotent by (c), so the polynomial f = ag+g is invertible by Proposition 3.9. Conversely,
if f is invertible with inverse g =), b;zt, we find that agbg = 1, so ag is invertible.

(b) Suppose that f has lowest term a,z™ and highest term a,,2™, whereas g has lowest term b,2? and
highest term b,z%. Then

fg = anbpyz" P + intermediate terms + @bz,

so fg can only be zero if a,b, = 0 and a,,by = 0. (All this is still valid even if n = m or p = ¢.) The
claim follows easily.
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(d) If ap is idempotent and a; = 0 for ¢ > 0 then it is clear that f is idempotent. Conversely, suppose
that f is idempotent, so f2 = f. By looking at the constant term, we see that ag is idempotent. It
follows that the poynomial g = (1 —ap)f is also idempotent, and is divisible by z. Now for all n > 0
we have g = ¢” and so g is divisible by z™; this makes it clear that g = 0. It follows that f = agf,
so a; = aga; for i > 0. Suppose that a; = 0 for 0 < i < m; then the coefficient of ™ in f? — f is
2000 — Qm = G, SO Ay, = 0 as well. We deduce by induction that a; = 0 for all ¢ > 0, as claimed.

|

If A = B x C then the element e = (15,0) is clearly idempotent, with 14 — e = (0,1¢). The following
proposition shows that all idempotents arise in essentially this way.

Proposition 3.18. [prop-idempotent-splitting]
Let A be a ring, and let e € A be idempotent. Put

B={be A|be=10} C={ceAlc(l—e)=c}.

Then B can be regarded as a ring with 1g = e, and C can be regarded as a ring with 1o = 14 —e. Moreover,
there is a ring isomorphism ¢: A — B x C given by ¢(a) = (ae,a(l — €)) with $~1(b,c) = b+ c.

Proof. Tt is clear that B contains 0 and is closed under addition, subtraction and multiplication. If we define
1p = e then we have 1gb = b by the definition of B. All other ring axioms for B follow immediately from
the corresponding axioms for A. We can thus regard B as a ring, and the same argument works for C.
Next, we have 2 = e, so for any a € A we have (ae)e = ae, so ae € B. Similarly a(l —e) € C, so
the formula ¢(a) = (ae,a(l — e)) defines a function A — B x C. This clearly respects addition and sends
0 to 0. We also have ¢(14) = (e,1 —¢) = (1p,1¢) = lpxc, and using e = e and (1 —¢)? =1 —¢
we see that ¢(aa’) = ¢(a)p(a’). Thus, ¢ is a ring homomorphism. In the opposite direction, we define
Y(b,¢) = b+ ¢, which clearly respects addition and sends 0 to 0. Note that if b € B and ¢ € C we
have bc = bec(1 — e) = be(e — e?) = 0. Using this, we find that (bb,cc’) = (b, c)p(b,c’). We also
have ¥(1pxc) = ¥(e,1 —e) = 14, so ¥ is a ring homomorphism. It is also straightforward to check that
o A — A and Y¢: B x C' — B x C are identity maps, so ¢ and v are isomorphisms and are inverse to
each other. ]

4. PROPERTIES OF RINGS

Definition 4.1. [defn-ring-props]
Let A be a nontrivial ring.

(a) We say that A is a field if every nonzero element is invertible.

(b) We say that A is local if for every element a € A, either a is invertible or 1 — a is invertible.

(c) We say that A is a domain if all nonzero elements are regular, or equivalently, the product of any
two nonzero elements is nonzero.

(d) We say that A is irreducible if whenever a and b are nonzero elements of A, there are elements x
and y with axz = by # 0.

(e) We say that A is a predomain if all non-nilpotent elements are regular.

(f) We say that A is reduced if the only nilpotent element in A is 0.

By definition, the trivial ring is considered to be reduced, but not to have any of the other properties listed
above.

Remark 4.2. [rem-ring-props|

It is clear that every field is a local domain, and that every domain is a reduced predomain. Moreover,
every domain is also irreducible, because we can take x = b and y = a in the definition. Also, every
irreducible noetherian ring is a predomain; the noetherian condition will be introduced in Section 18, where
we will show that it is satisfied by many of the most commonly studied rings.

Proposition 4.3. [prop-Zn-props]
Consider a ring A = Z/n with n > 0.
(a) A is a field iff it is a domain iff n is prime.
(b) A is local iff n = p* for some prime number p and some k > 0.
12



(c) A is reduced iff there is no prime p such that n is divisible by p>.

Proof. Recall from Proposition 3.4 that a € Z/n is regular iff invertible iff « and n are coprime, and that
a is nilpotent iff it is divisible by every prime that divides n. Claims (a) and (c) are clear from this. For
claim (b), we first suppose that n = p* for some prime p and some k > 0. If a € Z/n then a and 1 —a cannot
both be divisible by p, so one of them is coprime to n, so one of them is invertible in Z/n; this proves that
7Z/n is local. Convesely, suppose that n is not of the form p*. If n = 1 then Z/n is the trivial ring, which by
definition is not local. If n > 1 then we can write n = uv, where u and v are coprime integers that are both
larger than one. As they are coprime, we have ux + vy = 1 for some integers z,y. Take a = 7(ux) € Z/n,
so 1 —a=m(vy). As ged(uz,n) = u > 1 and ged(vy,n) = v > 1 we see that neither a nor 1 — a is invertible
in Z/n, so Z/n is not local. O

Example 4.4. [eg-Zpl-local]

Let p be a prime number, and let Z,) denote the set of rational numbers of the form u/v with v € Z and
v € Z \ pZ. This is easily seen to be a subring of Q (and thus a domain). It is not a field, because p is a
nonzero element of Z,) that has no inverse in Z,). However, we claim that it is a local ring. To see this,
consider an element a € Z,, say a = u/v in lowest terms, so v is not divisible by p. It follows that u and
v —wu cannot both be divisible by p. If u is not divisible by p then v/u is an inverse for a in Z,), and if v —u
is not divisible by p then v/(v — u) is an inverse for 1 —a in Z,).

Proposition 4.5. Let A be a nontrivial ring.

(a) Alz] is never a field or a local ring.
(b) Alx] is a domain iff A is a domain.
(c) Alz] is reduced iff A is reduced.
Proof. Recall from Proposition 3.16 that a polynomial f € A[x] is nilpotent iff it has nilpotent coefficients,

and that f is regular if either the lowest or the highest nonzero coefficient is regular. Claims (b) and (c)
follow easily from this. Next note that if f = az? + lower terms then xf = az?t! + lower terms and

(1 —2)f = —ax®™! + lower terms , so neither zf nor (1 —x)f can be equal to 1. It follows that neither z
nor 1 — z is invertible, so A[z] is not a field or a local ring. ]
5. IDEALS

Definition 5.1. An ideal in a ring A is a subset I C A such that
e el
o Ifa,belthena+bel
e Ifac Aand b e I then ab e 1.

Example 5.2. [eg-degenerate-ideals]
The sets {0} and A are ideals in A. We will usually write 0 rather than {0}.

Example 5.3. [defn-principal-ideal]
For any element € A the set Az = {ax | a € A} is an ideal. Ideals of this type are called principal
ideals.

Example 5.4. [eg-annihilator]
For any subset S C A we put

anng(S) ={a € A|as =0 for all s € S}.

This is called the annihilator of S in Aj; it is easily seen to be an ideal. Important special cases are where S
consists of a single element (in which case we write ann(s) rather than ann({s})) or where S itself is also an
ideal.

Definition 5.5. [defn-lin-comb]

Consider again a subset S C A. We say that an element a € A is an A-linear combination of S if there
exists a finite list s1,..., s, of elements of S and a finite list c1, ..., ¢, of elements of A such that a =), ¢;s;.
We write span 4 (.5) for the set of all linear combinations of S. It is easy to see that this is an ideal, and that
any ideal containing S also contains span 4(S)
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Proposition 5.6. [prop-ker-ideal]
Let ¢: A — B be a ring homomorphism. Then the kernel ker(¢p) = {a € A | ¢p(a) = 0} is an ideal in A.
Moreover, we have ker(¢) = 0 if and only if ¢ is injective.

Proof. Tt is clear that 0 € ker(¢). Suppose that a,b € ker(¢) and r € A, so ¢(a) = ¢(b) = 0. It follows that
dla+b) =d(a) + d(b) =04+ 0= 0 and ¢(ra) = ¢(r)d(a) = ¢(r)0 = 0, so a + b, ra € ker(p).

Now suppose that ker(¢) = 0. If a,b € A with ¢(a) = ¢(b) then we have ¢(a — b) = ¢(a) — ¢(b) =0
so a — b € ker(¢) = 0 so a = b; this proves that ¢ is injective. Conversely, suppose that ¢ is injective. For
a € ker(¢) we have ¢(a) = 0 = ¢(0), so injectivity means that a = 0; thus ker(¢) = 0. O

Proposition 5.7. [prop-eval-ker]
Consider a vector u € A and the evaluation homomorphism

€y: Alzy,...,xq] > A

as in Example 2.8. Then
ker(e,) = spang,, (@1 — U1, ..., Ta — Ug).

Proof. Put B = Alxy,...,x4] and K,, = ker(e,: B — A) and L, = spang(z; —u; | 1 <i < d). By definition
we have €,(z; — u;) = u; —u; = 0, so x; —u; € K for all ¢, so L, < K,. For the reverse inclusion, we
first consider the special case where u; = 0 for all 4, so €, just sends every polynomial to its constant term.
It follows that if o(f) = 0, then f is an A-linear combination of monomials z}' ---z’{ where at least one
exponent has i > 0, so the monomial is a multiple of . From this it is clear that Ky = Ly. For the general
case, note that we can define homomorphisms

BB B

by
af(z1,...,xq)) = f(z1 +u1,. .., 24+ uq)
B(f(z1,...,zq)) = f(x1 —u1,...,Tq — ug)-
These satisfy a8 = fa = 1, so they are isomorphisms. We have €, = ¢y 0 a, so
K, =ker(egoa) =a ' (Ky) = B(Ko) = B(Lo),
but it is clear that S(Lg) = Ly, so K, = L, as claimed. a

Remark 5.8. [rem-congruence]

Ideals do not usually contain 1 and so are usually not subrings. However, they can be related to subrings
as follows. Given an ideal I C A, we put Ef = {(a,b) € Ax A|a—be€ I}. As with any subset of A x A,
this can be regarded as a relation on the set A, with a related to b iff (a,b) € Er. We find that Ey is both a
subring of A x A and an equivalence relation. Conversely, if F' is a subring of A x A that is an equivalence
relation, then there is a unique ideal I such that F' = Ey, namely I = {a € A | (a,0) € F'}. We will not need
this, so we leave the proof as an exercise.

Definition 5.9. [defn-ideal-ops]
Let I and J be ideals in A.

e We write I N J for the intersection, soa € INJ iff a € I and a € J.

o We write I + J for the set of all elements a € A that can be expressed in the form a = b + ¢ with
belandceJ.

e We write I.J for the set of elements a € A that can be expressed in the form a = Zle b;c;, with
bijel and c¢; € J.

e We write (I : J) for the set of elements a € A such that aJ C I.

Remark 5.10. [rem-ideal-ops]
It is easy to see that all the above sets are ideals. Moreover, we have IJ C INJ C I C I+ J and
IJCINnJCJCI+J.

We can apply the operations in Definition 5.9 repeatedly to define Iy N---Nl; and [y +---4+1; and I - - - I
for any finite list of ideals I, ..., I;. There are also versions of the first two operations for infinite families:
14



Definition 5.11. [defn-infinite-ideal-ops]
Suppose we have a family of ideals I for s in some index set S. We put

ﬂ[s:{a€A|aeIsforallseS}

ZS:IS = span 4 <U IS> .

These are again easily seen to be ideals.
The union of a family of ideals is not generally an ideal, but there are some important special cases where
it is an ideal.

Proposition 5.12. [prop-chain-union]
Suppose we have a family of ideals I,, for n € N such that I, C I,,41 for all n. Then the set I =J,, I
is also an ideal.

Proof. Suppose that a,b € I, so a € I, and b € I,,, for some n,m € N. Put p = max(n,m), so both a and
b lie in the ideal I, so a + b lies in I, C I,. Thus I is closed under addition, and it is clear that it also
contains zero and is closed under multiplication by elements of R. O

Example 5.13. [eg-torsion]
Fix an element a € A, and put
I={x e Ala"z =0 for some n € N}.
We find that I is the union of the chain
anny(a) C anny(a?) C anny(a®) C anng(a®) C - |
and so I is an ideal.

Lemma 5.14. [lem-unit-ideal]
Let I be an ideal in a ring A. Then I = A iff 1 € I iff I contains an invertible element.

Proof. If I contains an invertible element u then it contains u~'u = 1, and so for every element a € A it

contains a.1 = a, so I = A. Conversely, if I = A then I contains the element 1 which is invertible. O

Corollary 5.15. [cor-field-ideals]
If A is a field then the only ideals in A are 0 and A.

Proof. Any nonzero ideal contains an invertible element and so is all of A. O

Definition 5.16. [defn-radical]
For any ideal I in A we put

VI={aecAl|a" eI for some n > 0},

and we call this the radical of I. We also use the notation Nil(A) for /0 = { nilpotent elements in A}, and
call this the nilradical of A. We say that A is reduced if Nil(A) = 0.

Proposition 5.17. [prop-radical]
If I is an ideal in A then /T is also an ideal and I C /1. In particular, Nil(A) is an ideal in A.

Proof. Suppose that a,b € VT, so a® 1,6+ € I for some n,m € N. We then have a’b/ € I whenever i > n
or j >m, so (a+b)" ™+ € I by the same logic as in Proposition 3.8, so a+b € V1. The other two axioms
are easy, so VI is an ideal as claimed. It is also clear that I C V1. O

Definition 5.18. [defn-jacobson]
We put
Rad(A4) = {a € A | 1+ ax is invertible for all x € A},
and call this the Jacobson radical of A.
15



Proposition 5.19. [prop-nil-rad]
Rad(A) is an ideal in A, and Nil(A) C Rad(A).

Proof. Suppose that a,b € Rad(A). For any 2 € A we see that 1+ bx is invertible, and then that 1+ az(1+
bx)~! is invertible, so the product (1 + ax(1 + bx)~1)(1 + bx) is invertible, but that product is 1 + (a + b)z.
Using this we see that Rad(A) is closed under addition. The other two axioms are easy, so Rad(A4) is an
ideal. If a is nilpotent then so is ax for all x, so 1 + az is invertible by Proposition 3.9. This proves that

Nil(4) € Rad(A). O

Proposition 5.20. [prop-local-max]
Let A be a local ring, and let I be the set of elements that are not invertible. Then I is an ideal in A, and
in fact is equal to Rad(A). Moreover, if J is any other ideal then either J = A or J C I.

Proof. Suppose that a+b is invertible. We claim that either a or b is invertible. To see this, put z = a(a+b)~1,
so 1 —x =b(a+b)"t. As Ais local, either  or 1 —z must be invertible. If x is invertible then a = x(a + b)
is invertible, and if 1 — « is invertible then b = (1 — z)(a + b) is invertible, which proves the claim. By the
contrapositive, if @ and b are non-invertible then a + b is non-invertible, so I is closed under addition. The
other two axioms are easy, so I is an ideal. Any ideal not contained in I must contain an invertible element
and so must be equal to A. Thus every ideal is either contained in I or is equal to A, as claimed.

As A is local we have 1 # 0, so 0 is not invertible, so 1 ¢ Rad(A). We must therefore have Rad(A) C TI.
On the other hand, if @ € I then —ax is non-invertible for all x (by Proposition 3.5), so 1 4+ ax must be
invertible by the locality condition. This shows that I C Rad(A), so I = Rad(A) as claimed. O

Definition 5.21. [defn-quotient-ring]

Let I be an ideal in a ring A. A coset of I in A is a subset u C A of the form u = a + I for some a € A.
We write A/ for the set of all cosets, and we define 7: A — A/I by 7(a) = a+ I. Given cosets u,v € A/I
we put

utv={a+blacu bev} CA
w={ab+z|acu, bev, zel}

Proposition 5.22. [prop-quotient-ring]

In the above context, the sets u + v and uv are cosets. More specifically, if u = w(a) and v = w(b) then
u+v =7(a+b) and uv = w(ab). Moreover, with the above definition of addition and multiplication, the
set A/I becomes a ring, with 04,7 = 7(0) = I and 14/ = (1) = 1+ 1. The map n: A — A/I is a ring
homomorphism with ker(n) = I.

Proof. First, if x € w(a) + 7(b) then z = (a + u) + (b + v) for some u,v € I. This can be rewritten as
x=(a+b)+ (u+v) with u+v € I, so we see that 7(a) + 7(b) C 7w(a + b). Conversely, if x € m(a + b) then
= a+b+ v for some v € I, and this is the sum of elements a € 7(a) and b+ v € 7(b), so we see that
m(a 4+ b) C w(a) + 7(b), so w(a) + 7w(b) = w(a + b) as claimed. In particular, the sum of any two cosets is
again a coset.

Now suppose instead that x € w(a)7(b), so z = (a + u)(b + v) + w for some w,v,w € I. This can be
rewritten as = ab + (av + ub + uv + w), with av + ub + wv +w € I, so we see that w(a)mw(b) C w(ab). The
reverse inclusion is clear, so we have 7(a)7(b) = 7(ab); in particular, the product of any two cosets is again
a coset.

The set A/T now has well-defined operations of addition and multiplication. We claim that for all cosets u,
v and w we have u(v+w) = uvtuw. Equivalently, for all elements a, b, ¢ € A we claim that 7(a)(7(b)+7(c)) =
m(a)m(b) + 7(a)m(c). Indeed, we have

m(a)(mw(b) + w(c)) = w(a)w(b+ ¢) = w(a(b + ¢)) = w(ab + ac) = w(ab) + 7w(ac) = 7w(a)w(b) + w(a)7(c)

as claimed. The other ring axioms follow in a similar way. The identities m(a + b) = 7(a) + 7(b) and
m(ab) = m(a)m(b) and 7(14) = 14,7 show that 7 is a ring homomorphism.

If a € ker(m) then 7(a) = 04,7, or in other words a + I = I, so in particular a € I. Conversely, if a € I
then any other element b € I can be expressed as b = a + (b —a) with b —a € I, so w(a) = I = 04,;. This
proves that ker(w) = I. O
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Example 5.23. [eg-modular-quotient]
Let n be a positive integer. The set nZ is then an ideal in Z, and we have a + nZ = b + nZ if and only if
a =b (mod n). Using this, we can identify the quotient Z/nZ with the ring Z/n as defined in Example 1.8.

In keeping with the above example, we adopt the following convention:

Definition 5.24. [defn-principal-quotient]
Given a principal ideal I = Aa, we write A/a for A/I.

Proposition 5.25. [prop-monic-quotient]
Let A be a ring, and let f be a monic polynomial of degree d over A. Put T =z + Alz|f € Alz]/f. Then
every element u € Alz]/f can be expressed in a unique way as

d—1
_ —i
u = E a;T
i=0

with ag,...,aq_1 € A.

Proof. By definition, u is a coset 7(g) say. Proposition 1.25 shows that ¢ = ¢f + r for some polynomial
r(z) = Zf:_ol a;x', with a; € A. This gives u = w(qf + 1) = 7(r) = Zf;ol a;7'. Uniqueness can be proved

similarly. O

Example 5.26. [eg-C-as-quotient]
Consider the quotient K = R[z]/(x? + 1). Every element can be expressed uniquely as a + bZ, with
a,b € R. We also have 72 + 1 = (22 + 1) = 0. Using this, we can identify K with C.

Proposition 5.27. [prop-quotient-ring-map)
Let ¢: A — B be a ring homomorphism, and let I be an ideal in A such that ¢(I) = 0, or equivalently
I C ker(¢). Then there is a unique homomorphism ¢: A/I — B such that ¢ o™ = ¢. Moreover:
(a) @ is injective iff ker(¢) = I.
(b) ¢ is surjective iff ¢ is surjective.
(c) ¢ is an isomorphism iff ker(¢) = I and ¢ is surjective.

Proof. Consider a coset u C A. We claim that the set ¢(u) = {¢(z) | € u} consists of a single element.
Indeed, we can write v = 7(a) = {a+t | t € I} for some a, and then we find that
¢(u) = {d(a) + o(t) | t € I} = ¢(a) + ¢(I) = ¢(a) + {0} = {¢(a)}
as claimed. We define @(u) to be the unique element of ¢(u). The above calculation shows that o(m(a)) =
o(a) fgr all a, so g om = ¢, and it is clear that ¢ is the only furiction with this property. In particular, we
have ¢(14/7) = ¢(7(1a)) = ¢(1a) = 1p. We next claim that ¢p(u +v) = ¢(u) + ¢(v) for all u,v € A/I.
Indeed, we can choose elements a,b with u = 7(a) and v = 7(b), and we find that
d(u+v) = ¢(r(a) + (b)) = d(m(a +b)) = ¢(a+b) = ¢(a) + ¢(b) = ¢(u) + d(v)
as claimed. The same argument gives ¢(uv) = ¢(u)p(v), so ¢ is a ring homomorphism.
(a) Suppose that ker(¢) = I. We then have o(m(a)) = 0 iff p(a) = 0iff a € I iff w(a) = 0, so ker(¢) = 0,
so ¢ is injective. The converse is similar and is left to the reader. B
(b) Suppose that ¢ is surjective. Then for each b € B we can choose u € A/T with ¢(u) = b, then we
can choose a € A with u = 7(a), and we find that ¢(a) = b. This proves that ¢ is surjective. The

converse is similar and is left to the reader.
(¢) This follows from (a) and (b).

Definition 5.28. [defn-ideal-props]
Let I be an ideal in a ring A.

(a) We say that I is mazimal iff A/I is a field.

(b) We say that I is prime iff A/I is a domain.

(¢c) We say that I is coirreducible if A/T is irreducible.
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(d) We say that I is primary iff A/I is a predomain.
(e) We say that I is a radical ideal if A/T is reduced.

Remark 5.29. [rem-ideal-props|

It follows from Remark 4.2 that maximal ideals are prime, and that prime ideals are are coirreducible and
primary and radical. In the noetherian setting (to be discussed later) we will see that all coirreducible ideals
are primary.

Example 5.30. [prop-Z-ideal-props]

Consider an ideal I = Z.n in Z. If n = 0 then Z/I = Z, which is a domain but not a field; so I is prime
but not maximal. If n = 1 then Z/I is the trivial ring, so I is radical but not maximal, prime, coirreducible
or primary. Suppose instead that n > 1, so Z/I = Z/n. Using Proposition 3.4, we see that I is maximal iff
I is prime iff n is a prime number. We also see that I is radical iff there is no prime p such that p? divides n.

Example 5.31. [eg-poly-max]
Let F be a field, and put B = F|xy,...,24]. For any u € F? we have a an evaluation homomorphism
€y: B — F, and we saw in Proposition 5.7 that ker(e,) is the same as the ideal

L, = spang(x1 —uy,- -+ ,Tq — Uq)-

It is clear that ¢, is surjective (because it is just the identity on the subring F' C B) so it induces an
isomorphism B/L, — F. This shows that L, is a maximal ideal. We will see in Section 23 that every
maximal ideal in C[zy,...,z4] has the form L, for some u € C%. On the other hand, Example 5.26 shows
that R[z].(2? + 1) is a maximal ideal in R[z], and it does not have the form L,.

Proposition 5.32. [prop-local-max-ii]
Let A be a local ring, and let M be the set of non-invertible elements. Then M is the unique maximal
ideal in A.

Proof. We saw in Proposition 5.20 that M is an ideal. It clearly does not contain 1, so A/M is a nontrivial
ring. If u is a nontrivial element of A/M then it has the form u = a + M for some a € A\ M. This means
that a is invertible in A, and a~! + M is an inverse for u, so u is invertible in A/M. This proves that A/M
is a field, so M is a maximal ideal.

Now let N be any maximal ideal in A. Then A/N is a field, so it must be nontrivial, so N cannot be
all of A, so N cannot contain any invertible element of A, so N C M. Conversely, suppose that a ¢ N. As
A/N is a field, there is another element b € A with ab € 1+ N. Now N C M so 1+ N C 1+ M, which is
disjoint from M and so consists of invertible elements. This means that ab is invertible, so a is invertible, so
a & M. We conclude that N = M as required. (]

Proposition 5.33. [prop-max-ideal]
An ideal I C A is mazimal iff [ # A, and the only ideal J with I < J is J = A.

Proof. First suppose that I is maximal, so A/T is a field. Then A/I is by definition nontrivial, so I # A.
Consider another ideal J with I < J, so we can choose a € J\ I. As a ¢ I the element 7(a) is nonzero in
the field A/I, so it has an inverse. This means that there exists an element b € A with ab+1 =141, so
1=ab+ c for some c € I C J. As a,c € J we deduce that 1 € J, so J = A as required.

Conversely, suppose that the only ideal J with I < J is J = A. Any nontrivial element of A/I has the
form m(a) = a + I for some a ¢ I. This means that the ideal J = Ra + I is strictly larger than I and so
must be all of A. In particular we see that 1 = ab+ ¢ for some b € A and ¢ € I. We can now apply 7 to see
that 7m(a) has an inverse 7(b), as required. O

Proposition 5.34. [prop-prime-complement)]
An ideal I C A is prime iff the complement A\ I contains 1 and is closed under multiplication.

Proof. Suppose that I is prime, so A/I is a domain. In particular, A/ is nontrivial, so 1 € A\ I. If

a,b € A\ I then w(a) and 7(b) are nontrivial elements of the domain A/I, so w(ab) = 7w(a)w(b) is also

nontrivial, as ab € A\ I as required. The converse is essentially the same. O
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Corollary 5.35. [cor-prime-for-ideals]
Suppose that I, J and P are ideals and that P is prime and IJ < P or INJ < P; then either I < P or
J<P.

Proof. f I £ P and J £ P then we can choose a € I \ P and b € J\ P. We then have ab € IJ <IN .J and
ab¢g P,so1J £ Pand I NJ £ P. The claim follows by taking the contrapositive. O

The next result is called prime avoidance.

Proposition 5.36. [prop-prime-avoidance]
Let I, Py,..., P, be ideals in A such that I C |J, P; and P; is prime fori > 2. Then I < P; for some i.

Proof. We argue by induction on n. The case n = 0 is vacuous and the case n = 1 is trivial. Now suppose
that n > 2. For 1 < k < n put S = Ui;,é,C P;. We claim that I C Sj for some k (so that the desired
conclusion follows immediately from the induction hypoothesis). If not, we can choose ay, € I\ S for all k.
As I C |J, P; we see that ar € Py. Now put b =[],_,a; € I and ¢ = b+ a,. As a; € P, for i <n we see
that b € P,. (If n = 2 then b = a; so this is trivial, and if n > 2 then if follows from the primality of P,.)
As b ¢ P, and a,, € P,, we have ¢ € P,. As ¢ € I we therefore have ¢ € P; for some j < n. As a; € P; we
also have b € P; and so a,, = ¢ — b € P}, contrary to our choice of a,. This contradiction shows that we
must have I C S, for some k after all. O

Proposition 5.37. If A is a predomain, then A/ Nil(A) is a domain.

Proof. First, as A is a predomain it must be nontrivial, so 1 # 0, so 1 &€ Nil(A), so A/ Nil(A) is nontrivial.
Now let w and v be nontrivial elements of A/ Nil(A). This means that v = 7(a) and v = 7(b) for some

elements a, b € A that are not nilpotent. As A is a predomain, it follows that a and b are regular, and thus ab

is also regular. In a nontrivial ring a regular element cannot be nilpotent, so ab € Nil(A), so uv = w(ab) # 0.

This proves that A/ Nil(A) is a domain. O

Definition 5.38. [defn-idl-functor]
We write idl(A) for the set of all ideals in A, and zar(A) for the subset of prime ideals, and max(A) for

the subset of maximal ideals.
For any ring homomorphism ¢: A — B, we define maps ¢.: idl(A) — idl(B) and ¢*: idl(B) — idl(A) by

¢+ (I) = spanp(¢(1))
" (J)={ac A| ¢la) € J} =ker(A S B X B/J).
Example 5.39. [eg-ideals-in-product]
Consider a product ring C = A x B, and let a: C' — A and 8: C' — B be the projections, so we
have a map ¢: idl(C) — idl(A4) x idl(B) sending K to (a.(K), 8«(K)). On the other hand, we can define

¥ idl(A) x idl(B) — idl(C) by ¢ (I, J) = I x J. It is not hard to see that ¢ and v are inverse to each other,
so both are bijections.

Remark 5.40. Consider the case where A is a subring of B and ¢ is just the inclusion map. We then have
¢« (I) = spang(I), and we may also write BI for this. We also have ¢*(J) = AN J.

Remark 5.41. [rem-idl-triangle]

It is easy to see that for all I € idl(A) and J € idl(B) we have ¢.(I) C J iff I C ¢*(J). In particular,
we have I C ¢*(p.(I)) and ¢.(¢*(J)) C J. Later we will see various special cases where I = ¢*(¢.(I)) or
0+ (¢*(J)) = J, but neither of these holds in general.

Remark 5.42. [rem-idl-functor]

If we have homomorphisms A %BY% o , then it is easy to see that
(10)w = hutps: idl(A) — id1(C)
(o)™ = ¢*p*: 1d1(C) — idl(A).

In other words, these constructions are functorial.
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Proposition 5.43. [prop-zar-functor]
Consider a homomorphism ¢: A — B. If J is a prime ideal in B, then ¢*(J) is a prime ideal in A; so
¢* restricts to give a map zar(B) — zar(A).

Proof. Suppose that z,y € A\¢*(J). Then ¢(x), ¢(y) € B\J, but J is prime so the element ¢(zy) = ¢(z)o(y)
also lies in B\ J, so ay € A\ ¢*(J). It follows that ¢*(J) is prime as claimed.

Alternatively, we can say that ¢ induces an injective homomorphism A/¢*(J) — B/J, so A/¢p*(J) is
isomorphic to a subring of the domain B/J, so it is itself a domain. |
-

Remark 5.44. It is not true in general that ¢*(max(B)) C max(A) or ¢, (zar(A)) C zar(B) or ¢.(max(A))
max(B). Indeed, none of these things is true when ¢ is the inclusion Z — Q.

Proposition 5.45. [prop-quotient-ideals]
Let ¢: A — B be a surjective homomorphism, with kernel K. Then the ideals in B are essentially the
same as the ideals in A that contain K. More precisely:

(a) For all I € idl(A), the set ¢(I) C B is an ideal, and is the same as ¢.(I).

(b) Moreover, we have ¢*(p.(I)) =1+ K, so ¢*(¢.(I)) = I if and only if K C 1.
(¢) For all J € idl(B) we have K C ¢*(J) and ¢.(¢*(J)) = J

(d) Thus, we have maps

idl(B) 25 {1 e idl(A) | K C I} 2= idl(B)

which are inverse to each other and so are bijections.

(e) Moreover, if I € idl(A) corresponds to J € idl(B) under the above bijection, then ¢ induces an
isomorphism AJI — B/J. Thus, I is mazimal, prime, coirreducible, primary or radical iff J has
the same property.

Proof.

(a) Consider elements u € B and v,w € ¢(I). As ¢ is surjective we can choose r € A with ¢(r) = wu,
and by the definition of ¢(I) we can choose s,t € I with ¢(s) = v and ¢(t) = w. As I is an ideal we
have 0,rs,s+t € I. This gives 0 = ¢(0) € ¢(I) and wv = ¢(rs) € ¢(I) and v +w = ¢(s+1t) € ¢(I).
It follows that ¢(I) is an ideal as claimed. Now ¢, ([) is by definition the ideal spanned by ¢(I), and
as ¢(I) is already an ideal it follows that ¢.(I) = ¢(I).

(b) Ifr e I+ K then r = s+t for some s € [ and t € K. Now ¢(t) = 0, so ¢(r) = ¢(s) € ¢(I) = ¢« (I),
so 7 € ¢*(¢«(I)). Conversely, suppose that r € ¢*(¢(I)), so ¢(r ) o(I), so ¢(r) = ¢(s) for some
element s € I. This means that the element ¢t = r — s has ¢(t) = 0 and so t € K. We therefore have
r=s+t¢c I+ K as claimed.

(c) First, for t € K we have ¢(t) =0 € J, so t € ¢*(J); this shows that K C ¢*(J). As in Remark 5.41,
we have ¢, (¢*(J)) C J for trivial reasons. Conversely, suppose that u € J. As ¢ is surjective there
exists 7 € R with ¢(r) = u. As ¢(r) € J, we have r € ¢*(J). Thus, the equation ¢(r) = u shows
that u € ¢.(¢*(J)) as required.

(d) This follows from (a), (b) and (c).

(e) C0n51der an ideal J C B and the corresponding ideal I = ¢*(J) C B. Let 9 be the composite

AL BT —% B/J, and note that this is surjective. We have ¢(a) = 0 iff ¢(a) € J iff a € ¢*(J) = I,
SO ker(w) = I. Proposition 5.27 therefore gives us an isomorphism ¢: A/I — B/J.

|
Corollary 5.46. [cor-quotient-ideals]
Let K be an ideal in A. Then there is a bijection
{I€idl(A) | K C I} —idl(4A/K)
given by I — I /K.
Proof. Just apply the proposition to the standard quotient homomorphism 7: A — A/K. a

Definition 5.47. A multiplicative set in a ring A is a subset U C A that contains 1 and is closed under
multiplication.
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Remark 5.48. If P C A is a prime ideal, then A \ P is a multiplicative set by Proposition 5.34.

Proposition 5.49. [prop-primes-exist]
Let A be a ring, let I be an ideal in A, and let U be a multiplicative set with U NI = (). Let £ be the set
of all ideals J C A such that I C J and JNU = 0. Then:

()
(b)
()

Proof.
(a)

()

& has a maximal element.
Every mazimal element in € is a prime ideal.
If U = {1} then every mazimal element in £ is a maximal ideal.

A chain in £ means a subset C C & such that for all K, L € £ we have either K C L or L C K. Let
C be a nonempty chain, and put

J:UC:{a€A| there exists K € C with a € K}.

We claim that J € £. Indeed, as C # () we can choose an ideal K with K € C, and certainly 0 € K,
so0€ J. Ifu e Aandv,w € J then we can choose ideals K, L € C with v € K and w € L. We then
have wv € K C J. Moreover, as C is a chain we have either K C L (sov+w e L CJ)or L C K
(sou+wv € K CJ). Either way we have v + w € J, so we see that J is an ideal. As every ideal in
C C & is contained in A\ U it is clear that J is also contained in A\ U, so J € C as claimed. Note
also that & is nonempty, because I € £. We have now verified the conditions of the principle known
as Zorn’s Lemma, which guarantees that £ has a maximal element.

As Zorn’s Lemma is often considered to be somewhat mysterious, we will outline a proof (for this
particular application).

For each maximal element K € &£ (if any) we define ¢(K) = K. For each element K € £ that is not
maximal, we choose an element K’ € £ that strictly contains K, and we define ¢(K) = K’. (Note
that in general we need the Axiom of Choice to make all these choices simultaneously, although
for particular rings it my be possible to specify a choice explicitly. For example, if we are given
a surjective function f: N — A, we can let n be the smallest integer such that f(n) ¢ K and
K+ Af(n) € &, and then put ¢(K) = K + Af(n).) It will also be convenient to put ¢(K) = A for
any subset K C A that is not an element of £.

Now define K, recursively for « € N by Ky = I and K,+1 = ¢(K,). It may be that K, is
maximal for some «, in which case Kg = K, for all § > « and we can take J = K,. If not, we
put K, = UQGN K., and note that this is again an element of £. We then put K,+1 = ¢(K, ), and
K12 = ¢(K,4+1) and so on, and then Ky, = UQGN K +q. To organise this, we need some theory
of the “numbers” that we are using a subscripts. These are called ordinals, and the relevant theory
can be found in any text on axiomatic set theory. In particular, it is possible to make inductive
definitions and arguments, as one does for the integers. Using this, we can define subsets K, C A
for all ordinals a, with Kgi1 = ¢(Kp) for all 3, and Ky = |J,., Ko whenever A does not have the
form B+ 1 for any 5. One can then check using the chain condition that K, € £ for all «, and that
if K, is not maximal then all the ideals Kz with 8 < a are distinct. Some further theory of ordinals
provides an ordinal « that is so large that this last condition is impossible, so K, must be maximal,
as required. (There are also proofs of Zorn’s Lemma that avoid the use of ordinals, but they are less
easy to explain.)

Let P be a maximal element in &£, and let @ and b be elements of A\ P. As P+ Aa is strictly larger
than P, and P is maximal in £, we see that P + Aa & &, so (P + Aa) NU # (. Thus, there are
elements p € P and x € A and v € U with p + ax = u. Similarly, there are elements ¢ € P and
y € Aand v € U with ¢ + by = v. This gives uv = (pq + pby + qax) + abxy € P + Aab, so P + Aab
meets U and thus cannot be equal to P, so ab € A\ P. Thus, P is prime.

Now consider the case where U = {1}. Lemma 5.14 tells us that £ is just the set of proper ideals in
A. Thus, Proposition 5.33 tells us that the maximal elements in £ are precisely the maximal ideals.

O

Proposition 5.50. [prop-radical-intersection]
Let a be an element in a ring A. Then
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(a) a lies in Nil(A) iff a is nilpotent iff a lies in every prime ideal. In other words, Nil(A) is the
intersection of all prime ideals.

(b) a lies in Rad(A) iff 1 + aR C R* iff a lies in every maximal ideal. In other words, Rad(A) is the
intersection of all mazximal ideals.

Proof. The first claim, that a lies in Nil(A) iff a is nilpotent, is simply a reminder of the definition. Similarly,
the first part of (b) is simply a reminder of the definition of Rad(A).

Suppose that there is a prime P such that a € P. Then the complement A\ P is a multiplicative set that
contains a but not 0, so no power of a can be 0, so a is not nilpotent. Conversely, if ¢ is not nilpotent then
the set U = {a™ | n > 0} is multiplicative and disjoint from the ideal I = 0, so we can use Proposition 5.49
to see that there is a prime P with PN U = (. In particular, a ¢ P. This proves (a).

Now suppose that there is a maximal ideal M with a € M. We then see that a corresponds to an element
in the field A/M that is nonzero and therefore invertible. It follows that there is an element b € A such that
1 —ab € M. Recall also that M cannot be equal to A and so cannot contain any invertible elements. Thus
1 — ab is not invertible, so a is not in Rad(A).

Conversely, suppose that a is not in Rad(A), so there exists b € A such that 1 — ab is not invertible, or
equivalently the ideal I = A(1 — ab) is not equal to A. It follows by Proposition 5.49 (with U = {1}) that
there is a maximal ideal M that contains 1 —ab. If we also had a € M then we would have 1 € M so M = A,
which is false. We therefore see that M is a maximal ideal not containing a, as claimed. O

6. BASICS OF ALGEBRAIC GEOMETRY

Let K be a field. We will typically draw pictures corresponding to the case K = R, but some of the theory
will be valid for all fields. Some aspects work better if we assume that K is algebraically closed, which means
that for every nonconstant polynomial f(t) € KJt] there is a root « € K with f(«) = 0. For example, it is
well known that C is algebraically closed, but Q and R are not (consider f(t) =2+ 1).

Definition 6.1. [defn-algebraic-set]
Consider the ring P, = K|z1,...,x,]. Note that given f € P, and u € K™ we can evaluate f at u to get
f(u) € K.

(a) For any ideal J < P,,, we put

V(IJ)={ue K" | f(u)=0for all f e J}.
(b) For any set X C K", we put

I(X)={f€eP,| f(u)=0for all u € X}.

(c) We say that a subset X C K" is algebraic if X = V(J) for some ideal J.
(d) We say that an ideal J < P, is geometric if J = I(X) for some subset X C K™.

Remark 6.2. [rem-hilbert]
Suppose we have polynomials f1,..., f., and we put

X ={ueK"| fi(u) == f(u) = 0}.

It is easy to see that this is the same as V(J), where J = Af;+---4+ Af,. Thus, X is algebraic. For example,
the set
X ={(z,y) e R* | y(a® +y* — 1) = 0}
(from Example 1.19) is algebraic.
Much later (in Theorem 18.10) we will show that any ideal J < P, can be expressed as J = P, fi+- - -+P, f»
for some finite list fi,..., fr, so every algebraic set can be described by a finite system of polynomial
equations, as above.

Example 6.3. We have V(P,) = 0 and V(0) = K™ and I(() = P,, so the sets ) and K™ are algebraic, and
the ideal P, is geometric. However, if K = F,, then u? = u for all u € K, so the elements 2! — z; lie in I(X)
for any X. Thus, there is no set X with I(X) = 0, and the ideal 0 is not geometric. However, we will show
later than whenever K is infinite we have T(K™) = 0, so the ideal 0 is geometric.
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Example 6.4. [eg-affine-1line]
Consider the case where K = C and n = 1. Here it is well-known that every nonzero ideal J can be
written as J = Af, for some polynomial

fla) =@ -2,
i=1
where we may assume that the roots \; are distinct and the exponents n; are strictly positive. This gives
V(J) ={A1,..., A+ }. Using this, we see that the algebraic subsets of C are just the finite subsets, together
with the subset C itself. If X is an infinite subset of C, then I(X) =0, but if X = {Aq,..., A} (with all the
A; distinct) then I(X) = Pi.[[,(x — A;); this determines the geometric ideals. (Note here that we allow the
case r = 0 where X = {J); the product of no terms is equal to 1, so I((}) = P; as before.

Lemma 6.5.

( ) Ile C X2 then I(Xl) > I(XQ)

( ) If Jl < J2 then V(Jl) :) V(JQ)

(¢) I, X;) = N, I(X))

(d) VO, Ji) = M V(i)

(f) V(I1Ix) = V(L N 1y) = V(1) UV (I).

Proof. Parts (a) to (e) are immediate from the definitions. For part (f), note that I1Io < I) N Iy < Iy,
SO V(Illg) :_) V(Il n 12) :_> V(Il) Slmllarly V(Illg) :_) V(Il N IQ) :_) V(IQ), SO V(Ilfg) 2 V(Il ﬂ]g) :_>

V(I1) UV (I2). On the other hand, if u ¢ V(I;) UV (I3), then we can choose f; € I; and fo € Iy with
fi(u) #0 and fa(u) # 0in K. As K is a field, this means that fi(u)fa(u) # 0, so u € V(I113). The claim
follows. O

Corollary 6.6.

(a) The intersection of any family of algebraic sets is again algebraic.
(b) The union of any two algebraic sets is again algebraic.
(¢) The intersection of any family of geometric ideals is again geometric. |

Proposition 6.7.
(a) Given a set X C K™ and an ideal J < P,,, we have X C V(J) iff J < I(X).

We have J = 1(V(J)) iff J is geometric.

) < <
(¢c) For every subset X C K™, we have X C V(I(X)).
)
) We have X =V (I(X)) iff X is algebraic.

(a) Both conditions are equivalent to the condition that f(u) =0 for all w € X and f € J.

(b) Take X = V(J) in part (a). The condition V(J) C V(J) is certainly true, so the condition J <
I(V(J)) is also true.

(c¢) Take J = I(X) in part (a). The condition I(X) < I(X) is certainly true, so the condition X C
V(I(X)) is also true.

(d) If J = I(V(J)) then J = I(something) so J is geometric. Conversely, suppose that J is geometric,
so J = I(X) for some set X. This gives V(J) = V(I(X)) 2 X, but the I(—) operator reverses order,
so I(V(J)) < I(X). We have I(X) = J by assumption, so I(V(J)) < J. The reverse inequality is
given by (b), so J = I(V(J)).

(e) f X =V (I(X)), then X = V(something), so X is algebraic. Conversely, suppose that X is algebraic,
so X = V/(J) for some J. This gives I(X) = I(V(J)) > J, but the V(—) operator reverses order, so
V(I(X)) C V(J). We have V(J) = X by assumption, so V(I(X)) C X. The reverse inequality is
given by (c), so X = V(I(X)).

|
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Remark 6.8. The above argument is obviously very abstract, and not really specific to the present situation.
For a more general version, you can look up the theory of Galois connections.

Proposition 6.9. [prop-IKn]
If K is infinite, then I(K™) = 0.

Proof. First consider the case n = 1. If f € KJz] \ {0} and f(u) = 0, then deg(f) > 0 and we have
f(x) = (x—u)g(x) for some nonzero polynomial g with deg(g) = deg(f)—1. By a straightforward induction,
we see that |V (P f)] < deg(f) < oo. In particular, Vi(f) # K, so f € I(K). This completes the proof for
n=1.

In general, if f is a nonzero element of P,, we can write f = Z?:o c;ixt, where cg,...,cq € P,_1 with
ca # 0. By induction, we can find u € K™~ with cq(u) # 0. Now f(u,,) is a nonzero polynomial in K[z,,],
so by the n =1 case, we can find v € K with f(u,v) # 0, as required. (]

7. PRODUCT SPLITTINGS

Definition 7.1. we say that ideals I, J < R are comazimal if [ + J = R, or equivalently there exists a € I
with 1 —a € J.

The following result (or a result closely related to it) is often called the Chinese Remainder Theorem.
Proposition 7.2. Suppose that I, ...,1I, are ideals in R such that I; +1; = R for all i # j. Then
Ll I,=hLNlbNn---NlI,

and there is a natural isomorphism
R/ L = [[ B/L:-
i i=1

Proof. Put J = (), I; and K =[], I;. It is easy to see that K < I; for all 7, and thus that K < J.

Next, we can define a homomorphism 7: R — [[, R/I; by w(z) = (x + I1,...,2 + I,,). Note that w(z) is
zero iff x + I; = 04 I, for all ¢ iff x € I; for all 4 iff x € J. In other words, we have ker(7) = J, so there is
an induced homomorphism 7: R/J — [[, R/I; given by @(x 4+ J) = w(x), and this is injective.

Next, for i # j we have I; + I; = R, so we can choose a;; € I; with 1 —a;; € I;. Put

b; = H(l —aij) S HIj < mlj.
J#i J#i J#i
As all the elements a;; lie in I; we see that 1 —a;; =1 (mod I;) and so b; =1 (mod I;).

Suppose we have an element y = (y1 + I1,...,yn + I5,) € [[; R/Li. Put z =3, y;b; € R. If we fix i then
for j # i we have b; € I;, so y;b; does not contribute to x + I;; it follows that x + I; = y;b; + I;. On the other
hand, we have b, = 1 (mod I;) so y;b; + I; = y; + I;. It follows that 7(xz + J) = 7(x) = y; so T is surjective,
and thus an isomorphism.

Now put ¢ = [[,(1 —b;). As 1 —b; € I; we have ¢ € K. Now suppose that z € J. For each ¢ we have
z € I; and b; € [[,;4; Ij so ab; € K so x = z(1 —b;) (mod K). As this holds for all 4, we see that zc = x
(mod K). However, ¢ € K so z¢ =0 (mod K) so € K. This proves that J = K. O

The following result is often useful when checking the hypotheses of the Chinese Remainder Theorem.

Proposition 7.3. [prop-comaximal-powers|
If I and J are comazimal, then I™ and J™ are also comaximal, for any natural numbers n and m.

Proof. By hypothesis, we can choose a € I and b € J such that a + b = 1. Now consider the quotient ring

B = A/(I" +J™), and let @ and b be the images of @ and b in B. It is clear that a” =5 = 0in B, so @

and b are nilpotent. By Proposition 3.8, it follows that (@ + b)"*™ ! =0, but a+b=1,s0 1 =0 in B, so

B is the trivial ring, so I"™ + J™ = A as required. (]
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8. RINGS OF FRACTIONS

Let A be a ring, and let U C A be a multiplicative set. We will define (in several stages) a new ring
A[U™1], whose elements can be regarded as fractions a/u with a € A and u € U.

Definition 8.1. [defn-fraction-ops]
We define addition and multiplication operations on the set A x U by the rules

(a,u) + (b,v) = (av + bu,uv)
(a,u)(b,v) = (ab, uv).

We also define ng: A — A x U by ng(a) = (a,1), and we write (a,u) ~ (b,v) iff there exists x € U with
avr = buzx.

Lemma 8.2. [lem-fraction-ops]

The above addition rule is commutative and associative, with 19(0) as an identity element, and (a,u) +
(—a,u) = (0,u?). Similarly, the multiplication rule is commutative and associative, with no(1) as an identity
element. The map ng respects addition and multiplication. We also have

(a,u).((b,v) + (¢, w)) = (abw + acv, vvw)
(a,u).(b,v) + (a,u).(c,w) = (u(abw + acv), v’vw).
Proof. Straightforward expansion of the definitions. |

Lemma 8.3. [lem-fraction-equiv]
The relation ~ is an equivalence relation. Moreover, if we have elements p,p’,q,q € A x U with p ~ p'
and g ~ ¢ then we also have p+q ~p +¢ and pqg ~ p'q’.

Proof. The definition of our relation is visibly symmetric, and we can take x = 1 to see that (a,u) ~ (a,u),
so the relation is also reflexive. Now suppose that (a,u) ~ (b,v) and (b,v) ~ (¢,w). We can then choose
x,y € U such that avz = buxr and bwy = cvy. After multiplying the first of these equations by wy and the
second by ux we see that avwzry = buwzry = cuvxy, so the element ¢t = vy € U satisfies awt = cut, so
(a,u) ~ (¢, w). Thus, the relation is also transitive, and so is an equivalence relation.

Now suppose we have elements p = (a,u) and p’ = (a’,u') and ¢ = (b,v) and ¢’ = (b',v’) such that p ~ p’
and g ~ ¢’. This means that there is an element x € U with au’z = a’ux, and an element y € U with
bv'y = b'vy. Note that pq = (ab,uv) and p'q’ = (a'b’,vw'v"). After multiplying the equation au'z = a’ux by
bv’'y and multiplying the equation bv'y = b'vy by a’ux we see that

abu'v'zy = a'buv’zy = o'V uvzy,
which shows that pg ~ p’¢’. Similarly, we have p 4+ ¢ = (av + bu, uv) and p’ + ¢’ = (a’v' + '/, v'v'). If we
add vv'y times the equation au'z = a’uz to uu'z times the equation bv'y = bvy’ we get
(av + bu)u'v'zy = (a'v' + b'u)uvzry,
which proves that p+qg~p +¢ O
Definition 8.4. We write A[U!] for the quotient set (A x U)/ ~, and a/u for the equivalence class of the
pair (a,u). We also define (a) = a/1, which gives a map n: A — A[U~1].

Proposition 8.5. The operations in Definition 8.1 induce well-defined operations on A[U'], which make
A[UT1Y] into a ring. The map n: A — A[U™Y] is a ring homomorphism. For any element u € U, the
corresponding element n(u) = u/1 € A[U™Y] is invertible, with inverse 1/u.

Proof. Lemma 8.3 shows that we have well-defined addition and multiplication operations on A[{U~!] with
a/u+b/v = (av + bu)/(uww) and (a/u)(b/v) = (ab)/(uv). As the operations on A x U are commutative,
associative and unital, the same is true of the induced operations on A[U~!]. In Lemma 8.2, it is clear that

(abw + acv, uvw) ~ (u(abw + acv), u*vw);

using this, we deduce that 2(2 + £) = 48 4 ac iy A[U~1]. Thus, we have a ring structure on A[U~!]. The

rest is clear. 0
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Remark 8.6. [rem-fraction-field]
If A is an integral domain, then the set U = A\ {0} is multiplicative, so we can form the ring K = A[U™].
This is easily seen to be a field, called the field of fractions of A. For example:

e The field of fractions of Z is Q

e The field of fractions of Z3) is also Q

e If A is the ring of holomorphic functions on C, then the field of fractions of A is the ring of mero-
morphic functions (but some nontrivial complex analysis is needed to prove this).

e Any field is its own field of fractions.

Proposition 8.7. [prop-trivial-fractions]
The kernel of the homomorphism n: A — A[U~1] is

{a € A| there exists uw € U with au =0} = U ann4(u).
uelU

In particular, we have A[lU~] = 0 if and only if 1 € ker(n) if and only if 0 € U.

Proof. It is clear that n(a) = 0 if and only if ng(a) ~ 19(0), or in other words (a,1) ~ (0,1). From the
definition of the equivalence relation, this happens if and only if au = 0 for some u, as claimed.

Next, it is true in general that a ring B is trivial if and only if 0 = 1. Taking B = A[U 1], we see that B
is trivial if and only if 1 € ker(n), and by the previous paragraph that can only happen if 0 € U. O

Corollary 8.8. [cor-domain-fractions]
If A is a domain and 0 ¢ U then A[U™1] is also a domain and the map n: A — A[U™Y] is injective.

Proof. Clear. O

Proposition 8.9. [prop-fractions-universal]
Let ¢: A — B be a ring homomorphism, and let U be a multiplicative subset of A such that ¢(U) C B*.
Then there is a unique homomorphism ¢: A[U~'] — B such that ¢ on = ¢.

Proof. We can define ¢y: A x U — B by ¢y(a,u) = ¢(a)p(u)~t. Tt is straightforward to check that this
respects addition and multiplication (as defined in Definition 8.1), and that it satisfies ¢yno = ¢.

Now suppose we have pairs (a,u) and (b,v) in A x U with (a,u) ~ (b,v), so there is an element x € U
with avz = bux. Applying ¢ gives ¢(a)d(v)d(x) = d(b)d(u)g(x), but ¢(u ) (b( ) and ¢(z) are invertible by
assumption, so we can multiply by é(u) " to(v)"te(z) ! to get ¢(a)d ( )71 = ¢(b)g(v) 1, or in other words
do(a,u) = ¢go(b,v). We therefore have a well-defined map ¢: A[U~ '] = B given by gb(a/u) = ¢gla,u) =
#(a)p(u)~t. It is now easy to see that this is a homomorphism with ¢ on = ¢.

On the other hand, if 1: A[U~!] — B is any homomorphism with ¢n = ¢, we can apply v to the identity

(a/u)n(u) = n(a) to get P(a/u)p(u) = ¢(a), so P(a/u) = ¢(a)dp(u)™" = ¢(a/u). Thus, ¢ is the unique

homomorphism with the stated properties. O

Definition 8.10. [defn-P-loc]
Let A be a ring, and let P be a prime ideal in A, so A\ P is a multiplicative set. We write Ap for
A[(A\ P)7'], and call this the localisation of A at P.

Proposition 8.11. [prop-loc-local]
If P is a prime ideal in a ring A, then the localisation Ap is a local ring, with maximal ideal

M = Pp ={a/u|a€ P,u¢gP}.

Proof. Write U = A\ P,so Ap = A[U™!]. Wehave 0 € Pso0 & U so Ap # 0. Consider an element = € Ap,
so ¢ = a/u for some a € A and u &€ P. Note that 1 — 2 = (v — a)/u. As the element u = a + (u — a) is not
in P, at least one of the elements a and u — a must be outside P. If a is outside P then z is invertible with
inverse u/a, and if u — a is outside P then 1 — z is invertible with inverse u/(u — a). Thus Ap is local as
claimed. In any local ring the unique maximal ideal is the set of elements that are not invertible, which is
easily seen to be the set M described above. O

Now consider a ring A and a multiplicative set U C A. We next discuss the relationship between ideals
in A and ideals in A[U1].
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Lemma 8.12. [lem-eta-star]
If I is an ideal in A then

ne(I) ={a/u|acl, ucU}C AU

Proof. Put I' = {a/u | a € I, uw € U}. It is straightforward to check that this is an ideal in A[U™!]
containing 7(I). On the other hand, if I” is any other ideal that contains n(a) = a/1 for all a € I, it must
also contain the elements (a/1).(1/u) = a/u, so I' C I". Thus, I’ is the smallest ideal in A[U~?!] containing
n(I), so it must be equal to 7. (I). O

Definition 8.13. [defn-saturated]
For any ideal I € idl(A) we put

I* = {a € A| there exists u € U with au € I}.

It is clear that I C I, and we say that I is U-saturated if I = I. We write saty(A) for the set of all
U-saturated ideals.

Remark 8.14. [rem-saturated]
For any ideal I we have I## = [#. Indeed, if a € I*## then au € I for some u € U, so auv € I for some
v e U, but uwv € U so a € I#. Thus, I# is always U-saturated.

Proposition 8.15. [prop-saturated)]
There is a natural bijection between ideals in A[U~] and U-saturated ideals in A. In more detail:
(a) For any ideal J C A[U™Y], the ideal n*(J) C A is U-saturated. Thus, n* gives a map idl(A[U1]) —
saty (A).
(b) Moreover, we have n.(n*(J)) = J, so the composite

idI(A[U™Y) 55 saty (A) 2 idI(A[U 1)

1$ the identity.
(c) For any ideal I C A we have n*(n.(I)) = I*. In particular if I is U-saturated then n*(n.(I)) = I.
Thus, the composite

saty (4) 2 idl(A[U™Y]) s saty (A)
s the identity.

Proof.

(a) Suppose that a € (n*(J))#, so for some u € U we have ua € n*(J), which means that the element
n(u)n(a) = n(ua) lies in J. As n(u) is invertible we can multiply by the inverse to see that n(a) € J,
or equivalently a € n*(J).

(b) Any element x € J can be written as z = a/u for some a € A and u € U. It follows that the element
n(a) = xn(u) also lies in J, so a € n*(J), so n(a) € n.(n*(J)), so the element x = n(u)~1n(a) also
lies in 7. (n*(J)). This proves that J C n.(n*(J)), and we mentioned in Remark 5.41 that the reverse
inclusion is automatic.

(c) If a € I** then we can choose u € U such that au € I, so n(au) € n.(I), so the element 7(a) =
n(au).n(u)~t also lies in n.(I), so a € n*(n.(I)).

Conversely, if a € n*(n.(I)) then n(a) € n.(I), so a/1 = b/v for some b € I and v € U. This
means that au = bvu for some u € U, but bvu € I, so a € I#.

O

Now suppose we have a ring A, a multiplicative set U C A and an ideal I C A. We have various ways to
construct new rings from these. We can form the quotient ring A/I, which has a multiplicative set 7(U).
We can invert this to get a ring (A/I)[r(U)~!] (which we will often denote more briefly by (A/I)[U~1]).
Alternatively, we can form A[U~!] and then the quotient A[U!]/n.(I) (which we will often denote more
briefly by A[U~Y]/I). It turns out that A[U~!]/I is the same as (A/I)[U~!]. A more careful statement is
as follows:
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Proposition 8.16. [prop-fraction-quotient]
There is a unique natural isomorphism ¢ making the diagram below commute:

AlU—1] <2 A T AJT

AU /n.(T) 5 (A/Dx(U)~1].

Proof. The basic definition is just that ¢(a/u+ n.(I)) = (a+ I)/(u+ I). To check that this is well-defined
we note that 71 sends elements of U to invertible elements of (A/I)[r(U)~!], so Proposition 8.9 gives a
unique homomorphism 6: A[U™] — (A/I)[r(U)~!] with 0(a/u) = nr(a)pmr(u)~t = (a + I)/(u +I). If
x € n.(I) then we can write = a/u with a € I and so 6(z) = 0. Thus, Proposition 5.27 gives us
a unique homomorphism ¢: A[U~Y/n.(I) — (A/I)[r(U)~] with ¢(z + n.(I)) = 6(z), or equivalently
dla/u+n.(I)) = (a+1I)/(u+1I) as before. Similarly, we can use Proposition 5.27 followed by Proposition 8.9
to get a well-defined homomorphism ¢ : (A/I)[x(U)™] — AU /n;(I) with ¢ ((a+1)/(u+1)) = a/u+n.(I),
and then it is clear that v is an inverse for ¢. (|

Example 8.17. [eg-residue-field]

Let P be a prime ideal in A, and take I = P and U = A\ P. We obtain an isomorphism Ap/Pp = (4/P)p.
This ring is just the field of fractions of the integral domain A/P. We call it the residue field of P and use
the notation K (P).

Proposition 8.18. [prop-sat-prime]
Let P be a prime ideal in A.

(a) If PNU # 0 then n.(P) = A[U™Y] and P¥ = A. In particular, neither n.(P) nor P# is prime.

(b) Suppose instead that PNU = (). Then an element x € A[U 1] lies in n.(P) iff for some representation
x = a/u we have a € P, iff for every representation v = a/v we have a € P. Moreover, n.(P) is a
prime ideal in A[lU™Y] and P# = P (so P is U-saturated).

Thus, the maps n. and n* give a bijection
{ prime ideals P C A with PN U = 0} ~ { prime ideals in A[U']}.

Proof. (a) If PNU # ( then we can choose u € P NU, so the element 1 = u/u lies in 7,(P), so
n(P) = AU and P* — " (n.(P)) = A.

(b) Suppose instead that PNU = (), so U is contained in the set A\ P, which is closed under multiplication
by Proposition 5.34. Consider an element z = a/u € A[U~!]. By Lemma 8.12 we see that = € 7. (P)
iff there is a representation z = a/u with @ € P. Now suppose we have another representation
x = b/v, so avw = buw for some w € U. The left hand side lies in P, but on the right hand side
wand w are in A\ P. As A\ P is closed under multiplication we must have b € P as claimed. In
particular we have a/1 € 1, (P) iff a € P, so P* = n*(n.(P)) = P.

We also see from Proposition 8.16 that A[U~1]/n.(P) can be identified with (A/P)[r(U)~1]. Here
A/P is a domain, and 7(U) does not contain zero, so (A/P)[x(U)~1] is a domain, so A[U~!]/n.(P)
is a domain, so 7,(P) is prime. Alternatively, we can use the previous paragraph to see that
AU\ n.(P) contains 1 and is closed under multiplication, which again proves that n,.(P) is
prime.
Now put

P = { prime ideals P C A with PNU = 0}

Q = { prime ideals in A[U']} = zar(A[U™]).
If Q € Q then n*(Q) is prime by Proposition 5.43 and saturated by Proposition 8.15, so it lies in P. Thus
we have a map n*: @ — P. On the other hand, points (a) and (b) above show that 7, gives a map P — Q.

Proposition 8.15 shows that these maps are inverse to each other. O
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9. MATRICES AND DETERMINANTS

Many things involving vectors, matrices and determinants can be generalised from the traditional context
where the entries are real numbers; we can instead allow entries in any ring. Normally we consider matrices
M with entries M;; for 0 < ¢ < n and 0 < j < m say. However, we will find it convenient to allow the indices
7 and j to come from an arbitrary finite set. The most basic definitions are as follows.

Definition 9.1. [defn-matrix]

Let A be a ring, and let I and J be finite sets. We write Freey(A) for the set of vectors with entries in A
indexed by I, so Freer(A) = [[,c; A. We also write Mat;;(A) for the set of matrices with entries in A indexed
by I xJ. For M € Maty;(A) and v € Free,;(A) we define Mv € Free;(A) by (Mv); = >_; ; M;jv;. Similarly,
given M € Mat;;(A) and N € Matjx(A) we define MN € Matyx(A) by (MN)y = > . ; Mi;jNj. We
write Mat;(A) for Mat;;(A), and define 1; € Mat;(A) by

1 ifi=jy
(1) = { J

jeJ

0 otherwise;

this is called the identity matriz. Finally, given M € Mat;;(A) we define MT € Mat j;(A) by (MT);; = M;;,
and we call this the transpose of A.

Various familiar properties, such as (M N)P = M(NP), M(u+v) = Mu + Mv, (MN)T = NTMT and
so on, are easily generalised to this new context. We leave details to the reader.

Definition 9.2. [defn-trace]
For a matrix M € Mat;(A) we put trace(A) = >, ; M;;.

Proposition 9.3. [prop-trace]
For M € Maty;(A) and N € Mat j;(A) we have

trace(MN) = trace(NM) = Z Z MZJNJZ
i€l jeJ

Proof. Just unwind the definitions. |

Definition 9.4. Let I and J be finite, totally ordered sets with |I| = |J|. (The most common case is where
I'=J={0,...,n—1}, but it is convenient to allow a little more flexibility.) We write ©(I, J) for the set of
all maps from I to J, and X(I,J) for the subset of bijective maps. We also write ©(I) = ©(1,I) and X(I)
for X(1,1).

Definition 9.5. [defn-sgn]

Let P(I) be the set of pairs in I, or in other words subsets p C I with |p| = 2. If 0 € X(I,J) and
p={i,j} € P(I) then the set o.(p) = {o(4),0(j)} is an element of P(.J). This construction gives a bijection
ox: P(I) — P(J). We also let L(o) denote the set of pairs p € P(I) for which the map o: p — o.(p)
is order-reversing. Thus, if p = {i,j} with ¢ < j, then we have p € L(o) iff 0(i) > o(j). We define
sgn(o) = (—=1)F@l ¢ {1, -1}, and call this the signature of 0. We also put sgn(c) = 0 if o: I — J is a map
that is not a permutation.

Example 9.6. [eg-transposition]
Suppose that p,q € I with p < ¢, and let 7: I — I be the transposition defined by
q ifi=p
7(i)=<Kp ifi=gq
i otherwise

Put J={i|p<i<gq}. Wefind that

L(m) ={p. s} |7 e T3 0{{j,q} |5 € T} T {{p,4}},

so |L(7)| = 2|J| + 1 so sgn(r) = —1.
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Proposition 9.7. [prop-signature]

For all maps I = J 5 K (with |I| = |J| = |K|) we have sgn(o7) = sgn(c)sgn(r). Moreover, if o is a
bijection then sgn(o) = sgn(o1).
Proof. First, it is easy to see that o7 is a permutation iff both ¢ and 7 are both permutations. We can
restrict attention to this case, because in all other cases both sgn(o7) and sgn(o)sgn(r) are zero. Consider
a pair p € P(I). Note that the composite p = 7.(p) = (07).(p) is order-reversing iff precisely one of the
maps p — 7.(p) and 7.(p) = (07).(p) is order-reversing, so p lies in L(o7) iff it lies in precisely one of the
two sets L(7) and 77 'L(c). It follows that

[L(0)| + |L(7)| = |77 L(o)| + |L(7)| 2 |L(oT)|  (mod 2),

so sgn(o7) = sgn(o) sgn(r). It is clear that the signature of any identity map is one, so we can take 7 = o
to get sgn(o1) = sgn(o). O

-1

Definition 9.8. [defn-det]
For any matrix M € Maty;(A) with |I| = |J| we put

det(M) = Z sgn(o I_IM7 o) € A.
cex(I,J) i€l
Proposition 9.9. [prop-det-triangle]
Suppose that M € Matr(A) and M;; = 0 whenever i < j. Then det(M) =[], M;;. In particular, we have
det(l;) =1.

Proof. If o: I — I is not the identity, then let i be the smallest element of ¢ where o (i) # i. For j < i we
have o(j) = j so we cannot have o (i) = j; it therefore follows that i < o(i), and so M; ,(;y = 0. Thus, the
term in det(M) corresponding to o is zero. The only remaining term is where o is the identity, which gives
I1; M. (|

Proposition 9.10. [prop-det-transpose]

Suppose that M € Maty;(A) with |I| = |J|. Then det(AT) = det(A).
Proof. By unwinding the definitions we have det(M7) = >resrn Seu(T) [ e; Mr(j),- We can reindex
this in terms of 0 = 77! and i = 7(i) to get det(M7T) = >oesr,y) $80(0) [Ler Mi o) = det(M). O

Proposition 9.11. [prop-det-repeated]
Suppose that there are indices p,q € I with p < q such that My; = My; for all j € J. Then det(M) = 0.

Proof. Let 7 € X(I) be the transposition that exchanges p and ¢, so 7= = 7 and M. 7(i),j = Mij for all 7 and
J. For any o € X(I,J) put m(c) = sgn(o) [[; M; o), so det(M) = >~ _m(c). In m(o7) we can reindex the
product in terms of j = 7(4) to get

m(o7) = sgu(o7) | [ Miore) = - senlo HMrm ) = —sgn(o H j.o() = —m(0).

Now put Xy = {0 € X(I,J) | o(p) < o(q)}. We ﬁnd that the maps in X \ Yo are precisely those of the
form o7 with o € X, so the terms m(o) for o € Xy cancel the terms m(o) for o € X and we are left with
det(M) = 0 as claimed. O

Proposition 9.12. [prop-prod-det]
Suppose we have matrices M € Matr;(A) and N € Matjx (A) with |I| = |K| =n say. Then if |J| =n
we have det(MN) = det(M) det(N), but if |J| < n then det(MN) = 0.

The proof relies on the following observation:
Lemma 9.13. For any U € Mat;;(A) we have
1> = > [Twiso:
icl jeJ 0: I—»Jicl

Proof. This is just a codification of the usual process of expanding a product of sums as a sum of products. [
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Proof of Proposition 9.12. From the definitions, we have

det(MN) = > sgn(o) [[ D Mi;Nj o

c€S(I,K) i€l jeJ

Using the lemma, this becomes

det(MN) = > >~ sen(o) [[ MioyNoyoty-= >, > sen(o) [[ Moy [[ Now)or)-

cEX(I,K) 0: I—J iel ceX(I)0: I iel irel

We write A for the sum of terms where 6 is injective, and A’ for the sum of all other terms. If |J| < n then
clearly A = 0. If |J| = n then any injective map 6: I — J is a bijection and we can reindex everything in
A using 7 =007 € X(J,K) and j = 0(i') (so o = 76 and i’ = 071(j)). This gives

A= Z Z sgn(76) HMZQ(Z H () = det(M) det(N).

0eX(1,J) TEX(J,K) i€l jed

To complete the proof, it will therefore suffice to show that A’ = 0.

Consider a function 6: I — J that is not injective, so 8(p) = 6(q) for some p < ¢. Next, for any
o€ X(I,K) we put

T(0,0) = sgn(o) [T No) o
iel

Let 7 € 3(I) be the transposition that exchanges p and ¢, and note that 7 = 6 and sgn(r) = —1. Using
these facts, we can reindex the above product in terms of j = 7(4) to get I'(#,0) = —T'(§,007). Now consider
the sum I'(0) = > I'(§,0). We can divide the permutations into two groups: those for which o(p) < o(q),
and those for which o(p) > o(q). If o is in the first group then o o7 is in the second group and vice-versa. It
follows that the terms I'(f, o) from the first group cancel the terms I'(6,¢) from the second group, leaving
r'(#) = 0.

Finally, from our earlier expansion of det(M N) we have

Z (H M; 9<z)>

el

where the sum runs over all functions 6: I — J that are not permutations. We have seen that I'(§) = 0, so
A’ = 0 as required. O

Definition 9.14. [defn-adj]

Suppose that M € Mat;j(A), where |I| = |J|. For p € I and g € J we let pi,q(M) be the evident matrix
in Matp\ {p},.\{q} (A) obtained by forgetting some of the entries in M. We also define p(p) = [{i € I | i < p}|,
and similarly for p(g). We define adj(M) € Mat ;7 (A) by

adj(M)gp = (*l)p(p)er(Q) det(ppq(M)).
Proposition 9.15. [prop-adjugate]
M adj(M) = det(M).1; and adj(M)M = det(M).1,

Proof. 1t will be harmless to assume that [ = J = {0,...,n—1}. Put N = adj(M), so Nj; = (—1)"7 det(p;;(M)).
Then put P = MN, so

Ppp = Z(_l)pﬂMpq det(ptpqg(M)).

For any p € I and ¢ € J, put S(p,q) = Z(I\ {p}, J\{q}). For any 7 € S(p, q), let 7+ denote the unique map
I — J extending 7 with 77 (p) = ¢. If we fix p then this construction gives a bijection I, S(p,q) = (1, J).
We claim that sgn(7) = (=1)PT9sgn(7). This is clear when p = ¢ = 0, because we then have L(7) = L(7).
For the general case, we define p, € ¥(I) by

r ifi=0
pr(@)={i—1 if0<i<r
i ifi>r
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We also write A, for the map I\ {0} — I\ {r} obtained by restricting p,. As A, is an order-preserving
bijection we have sgn(A,) = 1, but one can also check directly that sgn(p,) = (—1)".

If 7 € S(p,q) we find that the map 79 = A7), lies in S(0,0) and that 7 = quJpgl. From this it
follows that sgn(rg) = sgn(7) and sgn(7%) = (—1)PTsgn(7) as claimed.

We can now use the decomposition (1) ~ [, S(p, q) to get

det(M) = Z Z sgn(r™) H M 7+iy = (—1)PHIM,, Z sgn(7) H M; +(iy = Ppp.

qa 7€S(p,q) q,T i#£p

Now consider instead an entry

Ptp = Z(—l)p+thq det(,upq(M)),
q
where ¢ # p. Define a new matrix M* by M, = M;; when i # p, and M, = M;;. Put P* = M* adj(M™).
Replacing M by M* in the previous paragraphs, we get P;; = det(M™*), and this is zero by Proposition 9.11.
On the other hand, we have ji,,(M*) = ppe(M), and using this we see that Py, = Py, = 0. This completes
the proof that M adj(M) = P = det(M).1; as claimed.

We can now replace M by M7 in the above argument to get M7T adj(MT) = det(MT).1;. We have seen
that det(M7T) = det(M), and after applying this to the matrices pi,,(M) we see that adj(M7T) = adj(MT).
We can also see from the definitions that 17; =17 and (XY)T = YTXT. By combining these ingredients,
we deduce that adj(M)M = det(M).1;. O

Definition 9.16. Consider finite ordered sets I and J, and a matrix M € Matr;(A). For any I’ C I
and J' C J we form a matrix M|y« € Matp v (A) in the obvious way. If |I’| = |J| we can then take
the determinant to get an element of A. We let Dy (M) denote the ideal generated by all determinants
det<M|p><J/) with |I/| = ‘J/| =k.

Remark 9.17. The determinant of the empty matrix is taken to be one, so Do(M) = A. Tt is also clear
that D;1(M) is the ideal generated by all the elements M;;. On the other hand, if |I| = |J| = n then
D, (M) = A.det(M), and if n > min(|I|,|J|) then D, (M) = 0.
Proposition 9.18. [prop-inj-mat]

Consider a matrizx M € Matyj(A) and the corresponding map v Freej(A) — Freer(A) given by pu(u) =
Mu. Then p is injective iff anna (D) (M)) = 0. In particular, if A # 0 and |J| > |I| then p cannot be
injective.

The proof will be given after some preparatory results.

Lemma 9.19. [lem-minor-ideal]
For all k > 0 we have Dy(M) C Dy_1(M).

Proof. Suppose we have I’ C T and J' C I with |I'| = |J'| =k, and put N = M|« ;. It is then clear from
the definitions that the entries in adj(IV) lie in Dg_1(M), so the identity adj(IN).N = det(N).1,: shows that
det(N) € Dy_1(M). As Dy (M) is generated by determinants of this form, we have Dy (M) C Dy_1(M). O

Lemma 9.20. [lem-minor-kernel]
Suppose we have k > 0 and I' C I and J C J with |I'| = k-1 and |J'| = k. For j € J put
p(j) = K" € J" | 5" < j}|, Define v € Free,;(A) by

Y (—1)PD det(Mpyngy)  ifj €T
770 otherwise.
Then

el
(Mv); = 0 ifi € |
+det(M|pugiyxg)  otherwise.

Proof. If i ¢ I' then we put N = M|pyg3x . We then note that (Mwv); = 3
up to sign as (N.adj(N));; = det(N).

jeg Mijv;, which is the same
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Similarly, if ¢ € I’ we choose an element z ¢ I and define N € Mat /.y, (A) by

N, — Mtj iftel
K Mz ift = z.

We again find that (Mv); = £(N.adj(N));; = £det(N), but N;; = N,; for all j so det(N) = 0. O

Proof of Proposition 9.18. Put n = |J|.

First suppose that anna (D, (M)) = 0. Consider a vector v € Free;(A) with Mv = pu(v) = 0. For any
I' C I with [I’| = n we then have (M|« j)v = (Mwv)|; = 0, and we can multiply on the left by adj(M | x.s)
to get det(M | x.s)v = 0. This implies that D,,(M)v = 0, so each component of v lies in ann4 (D, (M)) = 0,
so v = 0. Thus p is injective as claimed.

Conversely, suppose that p is injective. Consider an element a € anny(Dy(M)) with k£ > 0. For each
I' CTand J' C Jwith |[I'| =k — 1 and |J'| = k, we define v € Free;(A4) as in Lemma 9.20. We find that
the entries in Mwv lie in Dy (M), and thus that p(av) = aMv = 0. As p is injective, it follows that av = 0.
Every generator of Dy_1(M) appears (up to sign) as an entry in some such vector v, so it follows that
a € ann(Dy_1(M)). Extending this inductively, we see that ann(D, (M)) C ann(Dy(M)), but Do(M) = A
so ann(D,(M)) = 0.

Note in particular that if |I| < n then D, (M) =0 so 1 € ann(D, (M)). Thus, M can only be injective if
1 =0, or equivalently A is the trivial ring. O

10. THE CAYLEY-HAMILTON THEOREM

Definition 10.1. For M € Mat;(A) we define x(t) = det(¢t.1; — M) € A[t]. We call this the characteristic
polynomial of M.

Proposition 10.2. If |I| = n then xa(t) is a monic polynomial of degree n in t.

Proof. In the definition of det(t.1; — M), the identity permutation contributes [[;.;(t —my;), and all other
permutations contribute terms of degree lower than n. The claim is clear from this. O

The following result is called the Cayley-Hamilton Theorem.
Proposition 10.3. If xa(t) = Y., a;t’, then the matriz xpr (M) =Y, a;M" € Mat;(A) is zero.
Proof. Given P € Mat;(A[t]) and Q € Mat;(A) we can expand P as ZZ:O Py tF with P, € Mat(A), and
we can then define PxQ =), P,QM % One can check that this satisfies some obvious rules:
(P+P)+«(Q+Q)=P*xQ+P+xQ +P' xQ+ P xQ
(PPYxQ=Px (P xQ)
17 xQ = Q.
We also have (t.1; — M)« 1 = M — M = 0. Now consider the characteristic polynomial

Xar(t) = det(t.1; — M) = " ait’ € A[t].
1=0

Proposition 9.15 gives
adj(t.1; — M)(t.1; — M) = xa(t).17 = Y _a;t".1; € Mat (A[t]).
i=0
It follows that

ZaiMi = <Zaiti.11> * 17
i =0
=adj(t.1; — M) = ((¢.1; — M) x 1) = adj(t.11 — M) 0 = 0,

as claimed. 0
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One interesting application of the characteristic polynomial is that it gives a way to convert idempotent
matrices to idempotent elements.

Definition 10.4. Let E be a matrix in M;(A) such that E? = E. Put
Ppu)=1;+@uw—-1)E=(1-u)((1—u)"'1; — E) € M;(Alu])
¢p(u) = det(®p(u) = (1 —u)"xp((1 —u)~") € Alul.

Proposition 10.5. The polynomial ¢ (u) can be expanded as Y -, e;u’ where €2 = e; (so e; is idempotent)
and ), e; =1 and e;e; =0 when i # j.

Proof. Using E? = F it is straightforward to check that ®x(1) = 1; and
Op(u)Pr(v) =17 + (ww — 1)E = Pg(uv).

Taking determinants gives ¢p(1) = 1 and ¢ (u)¢r(v) = ¢p(uv), or equivalently >, e; = 1and , eiejutul =
2

>k exufv¥®. Comparing coefficients gives 2 = e;, and ejej = 0 for j # 1. O

11. MODULES

Definition 11.1. [defn-module]
Let A be a ring. An A-module is a set M equipped with an element 0 € M, an addition operation
M x M — M and a multiplication operation A x M — M such that:

(a) M is an abelian group under addition, with 0 as the identity element.
(b) For all m € M and a,b € A we have 1m = m, and a(bm) = (ab)m.
(c) For all a,b € A and m,n € M we have (a + b)m = am + bm and a(m + n) = am + an.

It is an exercise to check that Om = 0 for all m and that (—1)m = —m.

Example 11.2. For any finite sets I and J, the sets Free;(A4) and Mat;;(A) are A-modules in an obvious
way. In the case I = {0,...,n — 1} we also write R" for Freer(R).

Definition 11.3. [defn-algebra]

An A-algebra is just a ring B equipped with a specified ring homomorphism ¢: A — B (which may be
called the unit map or the A-algebra structure map). For example, if B is any ring and A is a subring of B,
then we can use the inclusion map A — B to regard B as an A-algebra. In particular, C and Q[t] can both
be regarded as Q-algebras.

Example 11.4. [eg-algebra-as-module]

Any A-algebra can be regarded as an A-module. Indeed, if B is an A-algebra with structure map ¢: A —
B, then we can use the rule ab = ¢(a)b to define multiplication of elements of B by elements of A, and it is
straightforward to check that this satisfies the axioms in Definition 11.1.

Example 11.5. [eg-group-as-module]

If M is any abelian group then we can regard it as a Z-module in an obvious way. More explicitly, for
a >0 and m € M we define am recursively by Om = 0 and (a + 1)m = am + m. We then define (—a)m to
be the additive inverse of am. It is tedious but essentially straightforward to check all the axioms.

Example 11.6. [eg-module-sum]

If M and N are A-modules, we can define a new A-module M @ N as follows. The elements are pairs (m, n)
with m € M and n € N, and the addition and multiplication rules are (m,n) + (m/,n') = (m +m’,n +n’)
and a.(m,n) = (am,an). We call M @ N the direct sum of M and N. This generalises in an obvious way
to define My & - -+ ® M,,_; for any finite list of modules M;.

Definition 11.7. [defn-module-hom]

If M and N are A-modules, an A-module homomorphism (or A-linear map) from M to N is a function
a: M — N that satisfies a(m + m') = a(m) + a(m’) for all m,m’ € M, and a(am) = aa(m) for all a € A
and m € M. We write Hom 4 (M, N) for the set of all A-module homomorphisms (or just Hom(M, N) if A
is clear from the context).
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Remark 11.8. [rem-hom-module]

If M and N are A-modules, then the set Hom(M, N) is itself an A-module in a natural way. Indeed, if «
and 3 are two elements of Hom(M, N), then we can define a new map « + 8: M — N by the obvious rule
(a4 8)(m) = a(m) + B(m). This satisfies

(a+ B)(am +a'm’) = alam + a'm') + B(am + a'm’)
= aa(m) + a'a(m’) + af(m) + a'B(m’)
=a(a+pB)(m)+a (a+p)(m),

so it is a homomorphism. Similarly, given a« € Hom(M,N) and ¢t € A we can define ta: M — N by
(ta)(m) = ta(m). This is again a homomorphism, so we have addition and scalar multiplication rules for
the set Hom (M, N). To see that this makes Hom(M, N) into an A-module, we need to check various axioms,
for example that a4 8 = B+«. This is clear because (a+3)(m) = a(m)+8(m) and (8+«)(m) = B(m)+a(n),
and the right hand sides are the same because addition in N is commutative. The other axioms are equally
easy.

Example 11.9. [eg-matrix-hom]
Given finite sets I and J, and a matrix M € Mat;;(A), we can define a homomorphism /57 : Free;(A) —
Freer(A) by par(u) = Mu.

Definition 11.10. Let I be any set, and let Map(l, A) denote the set of all functions from I to A. For
m,n € Map(I, A) and a € A we define m + n,am € Map(I, A) by (m +n)(i) = m(i) + n(:) and (am)(i) =
am(i). It is easy to see that this makes Map(Z, A) into an A-module.

Next, define the support of an element u € Map(I, A) to be the set supp(u) = {i € I | u(i) # 0}. We say
that w is finitely supported if supp(u) is a finite set. For example, for each ¢ € I we can define e;: I — A by

0 otherwise.

We then have supp(e;) = {i}. We write Free;(A) or Map (I, A) for the set of all finitely supported functions.
(Previously we defined Free;(A) = Map(/, A) for finite sets I; our new definition is clearly compatible with
that.) It is clear that supp(u + v) C supp(u) U supp(v), and supp(au) supp(u), so Freer(A) is a submodule
of Map(I, A). We say that a module M is free if it is isomorphic to Freer(A) for some set I.

Definition 11.11. [defn-free-universal]
Suppose we have a ring A, an A-module M and a set I. For any map m: I — M we define ¢,,,: Freer(A) —
M by

Om(u) = Z u(i)m(i) = Zu(z) m(4).

i1€supp(u) i€l

Proposition 11.12. [prop-free-universal]

For any map m: I — M, the resulting map ¢, : Free;(A) — M is a homomorphism, with ¢,,(e;) = m(7)
for all i. Conversely, if we start with any homomorphism ¢ : Freer(A) — M and define m(i) = v(e;), then
we have Y = ¢p,. Thus, these constructions give a natural bijection Hom 4 (Freer(A), M) ~ Map(I, M).

Proof. Straightforward. The key point is that any element u € Free;(A) can be expressed as u = ZiEsupp(u) u(i) e,
so if ¢: Freer(A) — M is a homomorphism we have t(u) = 3=, 00 w(@) ¥(e;). O

Remark 11.13. Definition 11.11 and Proposition 11.12 are formulated in terms of maps I — M. Often we
have a list my, ..., my—1 of elements of M and we consider the map from the set N ={0,...,n — 1} to M
given by i — m;; this gives a homomorphism ¢,,: A™ ~ Freey(A) — M. It is also common to have a subset
S C M and to consider the inclusion map S — M, giving a homomorphism ¢g: Freeg(A) — M. We will
need some straightforward translations between these contexts, most of which we leave to the reader.

The following result is essentially a special case of Proposition 11.12; but written in slightly different
notation.
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Proposition 11.14. [prop-matrix-hon|
Let I and J be finite sets. Then any A-module homomorphism Free;(A) — Freer(A) has the form apy
for a unique matriz M € Mat;;(A), so Hom 4 (Free;(A), Freer(A)) can be identified with Maty;(A).

Proof. Let ¢: Free;(A) — Free;(A) be an A-module homomorphism. For each j € J we have an element
¢(ej) € Freer(A). We write M;; for the i’th coefficient of ¢(e;), so that ¢(e;) = Y. M;je;. An arbitrary
element v € Free;(A) can be expressed as v = Zj v;e;, giving

d(v) =D vidle;) =Y Myvje;,
J ]
or in other words ¢(v); = >_; M;;v;. This shows that ¢ = an. O

Definition 11.15. Consider a map m: I — M, and the corresponding homomorphism ¢,,,: Free;(A) — M.
(a) We say that a map m is A-linearly independent if ¢,, is injective.
(b) We say that m spans M if ¢, is surjective.
(c) We say that m is a basis for M if ¢, is an isomorphism. (Thus, M is free iff it has a basis.)

Remark 11.16. If m: I — M is A-linearly independent, or spans, or is a basis, then the inclusion map
m(I) — M has the same property. Conversely, if m(I) — M spans then so does m: I — M. However, the
corresponding statements for (a) and (c) are not true.

Definition 11.17. We say that a module M is finitely generated if there is a surjective homomorphism
A™ — M, or equivalently there is a map I — M that spans M with I finite.

Proposition 11.18. If A # 0 and n > m then there is no injective A-algebra homomorphism from
Alzo, ..., xn-1] to Alzo,...,Tm—-1].

Proof. Write P,, = Alxog, . ..,x,—1] for brevity, and let FyP,, denote the span of the monomials of total degree
at most d. This is a free module over A of rank ( d : " ), which is a polynomial in d with leading term
d"/nl. Let ¢: P, — P, be an R-algebra homomorphism, where m < n. Choose t such that ¢(x;) € FyPp,
for all i, and note that ¢(FyP,) C FiqPp. As m < n we will have < d—;n ) > ( td;;m ) for large d,

and it follows from Proposition 9.18 that ¢ cannot be injective.

Proposition 11.19. [prop-rank-unique]
If A is a nontrivial ring and n < m then there is no surjective homomorphism from A™ to A™. In
particular, A™ and A™ are not isomorphic.

Proof. Suppose we have a surjective homomorphism ¢: A™ — A"™. We can then choose u; € A" with
d(u;) = e; for 0 < i < m. Using these, we define ¢: A™ — A™ by ¢(t) = Z?i_ol t;u;; we find that
o((e;)) = e; for all 4, and thus that ¢ is the identity.

Next, by Proposition 11.14, there are matrices M € Mat,, ,(A) and N € Mat,, ,(A) with ¢ = ay and
Y = ayn. As ¢ is the identity we see that M N = 1,, and in particular det(MN) = 1. As A is nontrivial
we have det(MN) # 0, and using Proposition 9.12 it follows that n > m. O

Corollary 11.20. [cor-rank-unique]
Suppose we have a finite set I and a possibly infinite set J with |J| > |I|. Then there is no surjective
homomorphism from Free;(A) to Free;(A).

Proof. We can put n = |I| and choose K C J with |K| = n 4+ 1. We can then define a surjective homo-
morphism 7: Free;(A) — Freey (A) ~ R by 7(ey) = e, when k € K, and w(e;) =0 for j € J\ K. If
¢: Freer(A) — Free;(A) is surjective, then the same is true of the composite

n¢: Freer(A) ~ R™ — Freey (A) ~ R,
but that is impossible by Proposition 11.19. O

This allows us to make the following definition.
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Definition 11.21. If M is isomorphic to Freer(A) for some finite set I, then we define the rank of M to be
the cardinality of I, which is well-defined by Proposition 11.19.

Definition 11.22. Let M be an A-module. A submodule of M is a subset N C M such that
(a) 0e N
(b) For all n,n’ € N we have n+n' € N
(c) Foralla € A and n € N we have an € N.

Remark 11.23. If N is a submodule of M, then we can regard N itself as an A-module by restricting the
addition and multiplication operations on M.

Example 11.24. [eg-ideal-submodule]
We can regard A itself as an A-module; then submodules of A are just the same as ideals in A.

Example 11.25. [eg-ker-img]
If @: M — N is any homomorphism of A-modules, we put

ker(a) = {m € M | a(m) = 0}
image(a) = {n € N | n = a(m) for some m € M}.
It is straightforward to check that ker(«) is a submodule of M and image(«) is a submodule of N.

Example 11.26. [eg-submodule-ops]
If P and @ are submodules of M, then so are the subsets PNQ and P+ Q ={p+q|p€ P, ¢ € Q}.

Example 11.27. [eg-ann-submodule]
If T is an ideal in A, then the set

anny () ={meM|am=0foral a €I}

is a submodule of M.
We also write IM for the set of elements m € M that can be expressed in the form m = aymi+---+apmy
with a; € I and m; € M. This is again a submodule of M.

Example 11.28. [eg-submodule-span]

Let M be an A-module, and let G be any subset of M. We say that an element m € M is an A-linear
combination of G if there exist elements ao, ..., an—1 € A and go, ..., gn—1 € G such that m =", a;g;. (The
case n = 0 is permitted, so 0 is always a linear combination even if G = ().) We write span 4(G) for the set
of all possible linear combinations. This is easily seen to be a submodule of M, and in fact it is the smallest
submodule that contains G. We call it the span of G, or the submodule generated by G.

Definition 11.29. [prop-infinite-product]

Suppose we have a set I (which may be infinite) and a family of modules M; for i € I. We define ], M;
to be the set of all indexed families (m;);c; where m; € M; for all i. We can define addition of such families
termwise, and similarly for multiplication by elements of A; this makes [], M; into an A-module. For j € I
we define a homomorphism 7;: [[, M; — M; by m;((m;)icr) = m;.

Example 11.30. [eg-map-as-prod]
If all the modules M; are equal to the same module M, then ], M; is just the same as Map(I, M). More
generally, if all the modules M; are submodules of a fixed module P, then we have

H M; = {u € Map(I, P) | u(i) € M; for all ¢}.

Example 11.31. [eg-finite-prod]
If I ={0,...,n— 1} then [], M; is the same as My @ --- & M,,_1.

Remark 11.32. [rem-prod-categorical]

If we have another module N and homomorphisms f;: N — M; for all i, we can combine them to get a
single homomorphism f: N — [[, M; given by f(n) = (fi(n))icr. This is the unique homomorphism that
satisfies m; o f = f; for all i. It follows that [], M; is the product of the modules M; in the sense of category
theory.
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Definition 11.33. [defn-infinite-sum|

For an element m € [[, M;, we put supp(m) = {i | m; # 0}. We say that m is finitely supported if
supp(m) is a finite set. We write @, M; for the set of all finitely supported elements. It is not hard to see
that supp(am + a’m’) C supp(m) Usupp(m’) and thus that &, M; is a submodule of [, M;.

We define homomorphisms ¢;: M; — @, M; by

m ifi=j
Lj(m)iZ{

0 otherwise.

Remark 11.34. [rem-infinite-sum-elements]
Note that an arbitrary element m € €; M; can be expressed as m =3, 00y i (M)

Example 11.35. [eg-free-as-sumn]
In the case where M; = A for all i, we have @@, A = Freer(A).

Example 11.36. [eg-sum-as-product]
If I is finite it is clear that €, M; =[], M;.

Remark 11.37. [rem-coproduct-categorical]
If we have another module P and homomorphisms g;: M; — P for all ¢, we can combine them to get a
single homomorphism g: @, M; — P defined by

g(m) = Z gi(m;) = Zgi(mi)-
i€supp(m) el
This is the unique homomorphism such that g o 1; = g; for all i. It follows that @, M; is the coproduct of
the modules M; in the sense of category theory.

Remark 11.38. [rem-submodule-sum]

Suppose we have a module M and a family of submodules N; C M for ¢ in some set I. It is then easy
to check that the set (|, N; = {m € M | m € N; for all i} is again a submodule. Note that a submodule
P C M satisfies P C (), N; iff we have P C N; for all 1.

Next, we define o €, N; — M by 0(n) = >, cqupp(n) > and we put 3, N; = image(o), which is another
submodule of M. Given a submodule P C M, it is not hard to check that P O ZZ N; iff we have P DO N;
for all 4.

Remark 11.39. [rem-chain-union]
The union of a family of submodules is not generally a submodule. However, if we have a nested chain of
submodules
NoC N1 C N, C---C M,

then [ J; V; is a submodule of M, by the argument that we gave in Proposition 5.12.

Definition 11.40. [defn-quotient-module]

Let M be an A-module, and let IV be a submodule. A coset of N is a subset v C N that can be expressed
in the form u = m 4+ N for some m € M. We write M/N for the set of all cosets. Given cosets u,v € M/N
and an element a € A we put

utv={r+ylzeu, yev}CM
au={az+n|z€u,ye N} C M.

One can check that u + v and au are cosets, and that these operations make M /N into another A-module.
There is an A-module homomorphism 7: M — M/N given by m(m) = m + N.

Proposition 11.41. [prop-quotient-module-map]

Let a: M — P be a homomorphism of A-modules, and let N C M be a submodule such that a(N) = 0,
or equivalently N C ker(a)). Then there is a unique homomorphism @: M/N — P such that @om = «, or
equivalently @(m + N) = a(m) for all m € M. Moreover:

(a) @ is injective iff ker(a) = N.
(b) @ is surjective iff « is surjective.
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(¢c) @ is an isomorphism iff a is surjective with ker(a) = N.

Proof. This is very similar to Proposition 5.27. If w € M/N and m,m’ € u then u — v’ € N < ker(a) so
a(m—m’) = 0 so a(m) = a(m’). We define @(u) to be the common value of a(m) for all m € w. This
gives a well-defined map @: M/N — P with @(m + N) = a(m) for all m, so@onm = a. If u=m+ N and
u' =m’+ N and a,a’ € A then we can choose m € u and m’ € v’ and we find that

a(au+ a'v') = alam +a'm' + N) = a(am + a'm’) = aa(m) + d'a(m’) = aal(v) + a’al(v'),
so @ is a module homomorphism.

(a) Suppose that ker(a)) = N, and that @(u) = @(u'). We can choose m € u and m’ € v/, and we deduce
that a(m) = a(m’), so m —m’ € ker(a) = N, so m + N =m’ + N, or in other words v = u’. This
shows that @ is injective as claimed. The converse is similar and is left to the reader.

(b) For any m € M we have a(m) = al(m + N), and for any u € M/N we can choose m € u and we
have @(u) = a(m). This shows that a and @ have the same image, so in particular « is surjective iff
@ is surjective.

(c) This is clear from (a) and (b).

Proposition 11.42. [prop-quotient-submodules]
Consider a module M, a submodule N and the quotient map w: M — M/N.

(a) For any submodule P C M, the image w(P) is the same as (P+ N)/N and is a submodule of M/N.
If P D N then w(P) is just P/N.

(b) For any submodule Q@ C M/N, the preimage 7=1(Q) = {m € M | 7(m) € Q} is a submodule of M
that contains N.

(c) For any submodule P C M we have 1= (n(P)) = P + N, which is the same as P iff P D N.

(d) For any submodule Q@ C M/N we have m(7~1(Q)) = Q.

(e) Thus, we have a natural bijection

{ submodules of M containing N} ~ { submodules of M/N}.

Proof. (a) For any p € P and n € N we have w(p) = n(p+n). It follows that 7(P) = (P + N). This is
the set of all cosets of the form x + N with € P+ N, and by definition this is (P + N)/N, which
is clearly a submodule of M/N. If PO N then P=P+0C P+ NCP+P=P,soP+N=P,
so m(P) = P/N.

(b) First, as m(N) = Opr/n € Q, we see that N C 7-1Q), and in particular 0y, € 7~1(Q). Now suppose
that u,v € 771(Q) and a € A. Then 7(u+v) = 7(u) + 7(v) € Q+ Q = Q, so u+v € 7 Q).
Similarly 7(au) = an(u) € aQ C Q, so au € 7~ 1(Q). This shows that 7~1(Q) is a submodule of M.

(c) Suppose we start with a submodule P C M. If u € P+ N then n(u) € n(P + N) = #n(P), so
u € 71 (m(P)). Conversely, suppose that u € 7~ 1(7(P)), so (u) € w(P), so there exists v € P such
that m(u) = w(v). This means that 7(u—v) =0, 80 u—v € ker(r) = N,sou=v+(u—v) € P+ N.
We conclude that 7= (7(P)) = P+ N, and we have already seen that this is the same as P if N C P.

(d) Consider a submodule Q@ C M/N. If u € 7~ 1(Q) then 7(u) € Q; it follows that 7(7~1(Q)) C Q.
Conversely, suppose that v € Q. As Q C M/N, we have v = u+ N = 7(u) for some element v € M.
As 7(u) = v € Q, we actually have u € 771(Q). This means that v = 7(u) € 7(7~1(Q)) as required.
We conclude that Q = (7~ 1(Q)).

(e) Put

Sub(M, N) = { submodules of M containing N}

Sub(M/N) = { submodules of M/N}.
Part (a) shows that we can define a map a: Sub(M, N) — Sub(M/N) by a(P) = (P+N)/N = =n(P).
Part (b) shows that we can define a map 8: Sub(M/N) — Sub(M, N) by B(Q) = 7~ 1(Q). Part (c)
shows that S« is the identity, and part (d) shows that «f is the identity. Thus, o and § are bijections.

|
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The name Nakayama’s Lemma is often attached to the following result, or to one of several special cases
or closely related statements.

Proposition 11.43. [prop-nakayama]
Let M be a finitely generated A-module, and let I be an ideal such that M = IM. Then there is an
element a € I such that (1 —a)M = 0.

Proof. By hypothesis, there is a finite list (mq, ..., m,—_1) € M™ such that the corresponding map ¢,,: A™ —
M is surjective. We also have M = IM, so m; € IM = ¢,,(I"), so we can choose elements u;; € I such that
m; = Zj uzjmy for all 7. If we form a matrix U with entries u;; we find that m = Um in A", or equivalently
(1, = U)m = 0. We can multiply by adj(1, — U) to deduce that det(1,, — U)m = 0, but the elements m;
generate M, so det(1,, —U)M = 0. On the other hand, as the entries in U are all elements of I, we find that
det(1,, —U) =det(1,) =1 (mod I), so det(1,, —U) =1 — a for some a € I. O

Corollary 11.44. [cor-nakayama)]
Let M be a finitely generated A-module, let N be a submodule, and let I be an ideal such that M = IM+N.
Then there is an element a € I such that (1 —a)M < N. Moreover, if I < Rad(A) then M = N.

Proof. For the first statement, we note that the quotient L = M/N is finitely generated and has IL = L, so
there exists a € I with (1 —a)L = 0, or equivalently (1 —a)M < N. If I < Rad(A) then 1 — ¢ is invertible
and so M < N. O

Definition 11.45. [defn-fraction-module]

Let A be a ring and let U be a multiplicative subset of A. For any A-module M, we define M[U~!] =
(M xU)/ ~, where (m,u) ~ (m/,u) iff there is an element v € U with mu'v = m’uv. We write m/u for
the equivalence class of (m,u), and n(m) for m/1.

If U = A\ P for some prime ideal P, we also use the notation Mp for M[U~!] (generalising Definition 8.10).

By essentially the same arguments as those given in Section 8, we see that M[U~!] has a natural structure
as a module over A[U~!], with (a/u).(m/v) = (am)/(uv) and m/v + n/w = (wm + vn)/(vw).

Example 11.46. Recall that we have a ring homomorphism n: A — A[U~!], and for any ideal I C A
we define 7.(I) = span 4;y-17(n(I)). We can also regard I as an A-module and thus define I[U1]. Using
Lemma 8.12 one can identify 7, () with I[U~1].

Remark 11.47. [rem-fraction-functor]

Given an A-module homomorphism ¢: M — N, we can define an A[U ~!]-module homomorphism ¢[U~1]: M[U~!] —
N[UY] by ¢[UY](m/u) = ¢(m)/u. A little work is required to show that this is well-defined and is a ho-
momorphism, but we leave that to the reader. We will often just write ¢ instead of ¢[U1].

Proposition 11.48. [prop-stalks-zero]

(a) Let M be an A-module such that Mp = 0 for all mazimal ideals P; then M = 0.
(b) Let M be a finitely generated A-module such that M/PM = 0 for all mazimal ideals P; then M = 0.

Proof. In both cases we assume that we have a nonzero element m € M, and derive a contradiction. As
m # 0 we see that ann(m) # A. By Proposition 5.49, there exists a maximal ideal P > ann(m). This
means that for s € A\ P we have s € ann(m) and so sm # 0. It follows that m/1 is a nonzero element of
Mp, so Mp # 0. This provides the required contradiction for (a). For (b) we instead use Proposition 11.43,
which gives us an element a € P with 1 —a € ann(M). As ann(M) < P this gives 1 € P, which is again
impossible. (]

Remark 11.49. To guard against over-optimistic generalisations, we can consider the following example.
Take A = Z and M = Q/Z (which is not finitely generated). We find that M ® 4 K(P) = 0 for all prime
ideals P, but M # 0. (Here K(P) is the residue field as in Example 8.17, so M ®4 K(P) = M/PM when
M is maximal. Thus for A = Z we have M ® 4 K(Zp) = M /pM and M ® 4 K(0) = M ®z Q.)
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12. EXACT SEQUENCES

Definition 12.1. [defn-exact]

Consider a sequence of A-module homomorphisms L 2 M ¥ N. We then have submodules image(¢), ker(v) C
M, and it is not hard to see that image(¢) C ker(t)) if and only if the composite ¢ is zero. We say that
this sequence is ezact if in fact image(¢) = ker(¢).

More generally, we say that a sequence

Mo 2% by 25 o M,y 225 M,

is ezxact if each of the sequences M; — M; 1 — M; o is exact. We make the same definition for sequences
that extend infinitely to the left or to the right or both.

Remark 12.2. [rem-exact]
Some special cases are as follows.

(a) A sequence of the form L 2 M % N s exact iff ¢ is surjective. In particular, a sequence of the
form L % M — 0 is exact iff ¢ is surjective.
(b) A sequence of the form L % M % N is exact iff 1) is injective. In particular, a sequence of the form
0— MY N is exact iff 1 is surjective.
(¢) A sequence of the form K 5 102% MY N is exact iff ¢ is an isomorphism.
(d) A sequence of the form L % M 2 N s exact iff M = 0.
Definition 12.3. [defn-ses]
A short exact sequence is an exact sequence of the form
0 LS M5 N0
Exactness here means that ¢ is injective, ¢ is surjective, and image(¢) = ker(1)).

Example 12.4. [eg-standard-ses]
Suppose we have a module M and a submodule L. We let j: L — M be the inclusion map, and we let
qg: M — M/L be the projection, so j(z) = z and ¢(y) = y + L. We then find that the sequence

0=LL ML M/N—0
is short exact.

Example 12.5. [eg-sum-ses]
Suppose we have modules L and N, and we define maps

0-LLLoN% N0
by j(z) = (x,0) and g(z,z) = z. It is then clear that the sequence is short exact.

Example 12.6. [eg-nm-ses]
For any integers n, m > 0 we can define maps

O%Z/n&Z/nm&Z/m—)O
by ¢(a+nZ) = ma+nmZ and (b+nmZ) = b+mZ. One can check that these give a short exact sequence.
In fact, every short exact sequence is essentially the same as one coming from example 12.4. More formally:

Proposition 12.7. [prop-ses]

Let0 = L% MY N =0 be a short ezact sequence. Then there is a commutative diagram as follows,
in which the vertical maps are isomorphisms.




Proof. As the given sequence is short exact, we see that ¢ is injective, so it restricts to give an isomorphism
L — ¢(L) which we call «. By definition we have j o & = ¢ so the left square commutes. Next, using
Proposition 11.41 we see that there is a unique homomorphism

¥ M/ ker(y) = M/image(¢) — N

such that ¥ = q o). As the original sequence is exact we see that 1) is surjective and thus that 1 is an
— 1 —

isomorphism. We put § =4 , so the equation ) = g o ¥ gives ¢ = 1 o 5. Thus, the right hand square

commutes. ]

We next discuss some ideas which help us decide whether an arbitrary short exact sequence is essentially
the same as one coming from Example 12.5.

Definition 12.8. [defn-splitting]
Suppose we have a short exact sequence

0L MY N o

(a) A left splitting is a homomorphism p: M — L such that p¢ = 1p.
(b) A right splitting is a homomorphism o: N — M such that o = 1.
(¢) A full splitting is a pair of homomorphisms (p, o) such that p is a left splitting and o is a right
splitting and poc =0: N — L and ¢p+ oy = 1.
We say that the sequence is split if it admits a full splitting.

Example 12.9. [eg-nm-split]

Take n = m in Example 12.6 to get a short exact sequence Z/n — Z/n? — Z/n. If this is split then
Z/n* ~7Z/n & Z/n, so every element x € Z/n? satisfies nz = 0. In particular we can take z = 1 + n?Z to
see that n? divides n, so n = 1. Thus, when n > 1 the sequence does not split. A similar argument shows
more generally that the sequence in Example 12.6 splits iff n and m are coprime.

Proposition 12.10. [prop-splitting]

(a) For every left splitting p there is a unique o such that (p, o) is a full splitting.

(b) For every right splitting o there is a unique p such that (p,o) is a full splitting.

(¢) For every full splitting (p, o) we have an isomorphism a: M — L ® N given by a(y) = (p(y),¥(y)),
with inverse a~1(x, z) = ¢(x) + o(2). Moreover, the diagram

@ @b

L M N
ll al: \Ll
L—j>L@Nq—>N

commutes.

Proof.

(a) Let p be a left splitting. For z € L we can choose y € M with ¥(y) = z. We would like to define
o(z) =y — ¢p(y). To check that this is well-defined, suppose we have another element 3’ € M with
¥(y') = z. Then y' — y € ker(v)) = image(¢), so vy’ = y + ¢(x) for some x € L. This gives

Y —op(y') =y — op(y) + d(x) — Pppi(x),

but p¢ is the identity so the last two terms cancel and y' — ¢p(y’) = y — dp(y). We thus have a
well-defined function o as claimed.

Now consider elements zg, 21 € N and ag, a; € A. Choose y; with ¥(y;) = 2;, so 0(z;) = yi—op(y;)-
The element y = agyo + a1y; is mapped by ¥ to the element z = agzy + a121, SO we can use y when
calculating o(z), and we find that o(z) = ago(z9) + a10(21). This shows that o is an A-module
homomorphism.
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As the given sequence is exact we have Yo = 0, so Yo(z) = ¥(y) — vop(y) = ¥(y) = z. Thus
to = 1x, which means that o is a right splitting. We also have po(z) = p(y) — ppp(z), which is zero
because pp = 1.

For any y € M we can use y to calculate o¢)(y), and we get o1(y) = y — ¢p(y). This shows that
op + o1 = 1), so we have a full splitting as claimed.

(b) Now suppose instead that we have a right splitting o, so ¥o = 1y. For y € M the element y — o)(y)
lies in the kernel of v, which is the same as the image of ¢, so there is an element x € L with
¢(x) = y — otp(y). This element is unique because ¢ is injective, so we can define p: M — L by
p(y) = x. Now suppose that y = agyo + a1y; for some ag,a; € A and yg,y; € M. We find that
the element x = agp(yo) + a1p(y1) satisfies ¢(x) = y — o(y), so © = p(y); this proves that p is a
homomorphism.

Now suppose instead that y = ¢(z) for some x. We then have 9(y) = 0 so ¢(z) =y =y — oo(y),
so = p(y). This proves that p¢ = 1r.

Now suppose instead that y = o(z) for some z € N. Using ¢y = 1y we see that y — otp(y) =0
and thus that p(y) = 0. This proves that po = 0.

Finally, for any y € M it is built into the definition of p that y— o (y) = ¢p(y), so dp+o1p = 1y,
so we again have a full splitting.

(c) Now let (p,o) be any full splitting. We can certainly define maps M < L & N LN Vs by a(y) =
(p(y), ¥(y)) and B(z,z) = ¢(2) + o(z). The axioms for a full splitting, together with the identity
Yo =0, give Ba(y) =y and af(x, z) = (z,2), so « is an isomorphism with inverse 3. We also have
ad(z) = (pp(x),vo(x)) = (x,0) = j(x) and qa(y) = q(p(y), ¥(y)) = 1(y), so the diagram commutes
as claimed.

([l

Proposition 12.11. [prop-free-projective]

Suppose we have homomorphisms F <> N ﬁ M where 8 is surjective and F is a free module. Then there
is a homomorphism v: F — M with By = «.

Proof. By hypothesis F is isomorphic to Freey(A) for some set I, and it will be harmless to assume that
F is actually equal to Free;(A). Proposition 11.12 then tells us that a = ¢,, for some map n: I — N.
As f is surjective, we can choose an element m(i) € M with S(m(i)) = n(i) for all i. We can then put
Y = ¢m: F — M, and it is straightforward to check that Sy(e;) = B(m(i)) = n(i) = ale;) for all 4, so
By = a. |

Corollary 12.12. [cor-split-projective]
Suppose we have a short exact sequence

0L ME N0

in which N is a free module. Then the sequence is split.

Proof. Apply the proposition to the maps N L N & M. This gives a homomorphism o: N — M with
1o = 1y, or in other words a right splitting. Using Proposition 12.10 we can extend this to a full splitting,
so the sequence is split. O

Proposition 12.13. [prop-fractions-exact]

Let U be a multiplicative set in A, and let L 2 M ¥ N be an exact sequence of A-modules. Then the
sequence

—1 -1
olU”7] YU

LU MU~ N[O

is also exact.

Proof. For any element z/u € L[U~!] we have

VU @U(@/w) = U (6(2)/u) = (6(2))/u.
As the original sequence is exact we see that ¢ = 0, so the above element is zero. This proves that
image(a[U1]) C ker(v[U~1]).
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Conversely, suppose we have an element y/v € ker(4[U~1]). This means that 1 (y)/v = 0 in N[U™1], so
P(y)w = 0 in N for some element w € U. This in turn means that yw € ker(y)) = image(¢), so we can
choose z € L with ¢(x) = yw. It follows that y/v = ¢[U~1](z/(vw)) € image(p[U1]) as required. O

Remark 12.14. [rem-fractions-exact]
If we have a longer exact sequence
M0—>M1—>"'—>Mn
we can apply the above to all the subsequences M; — M;1 — M, 2 and deduce that the resulting sequence
MU' = Mi[U] = -+ = M, U™

is also exact.

Remark 12.15. Suppose we have a module M and a submodule L. This gives an exact sequence
0—-L—+M-—>M/L—0
and thus an exact sequence
0— LU= MU = (L/M)[U =0

This means that we can regard L[U '] as a submodule of M[U~!] and that M[U~]/L[U~Y] = (M/L)[U~1].
We can use this to give another proof of Proposition 8.16.

13. SIMPLE MODULES

Definition 13.1. [defn-simple]
A module M is simple if it is nontrivial, and the only submodules of M are 0 and M itself.

Proposition 13.2. [prop-simple-max]

If M is simple then the ideal P = anny(M) = {a € A | aM = 0} is mazimal, and M is isomorphic to
A/P.
Proof. Choose a nontrivial element m € M, and define ¢: A — M by ¢(a) = am. The image ¢p(A) = Am
is a nontrivial submodule of M, so it must be all of M, so ¢ is surjective. It follows that an element a € A
satisfies am = 0 iff aAm = 0 iff aM = 0 iff a € P, so the kernel of ¢ is P. We therefore have an induced
isomorphism ¢: A/P — M. Next, if a € A\ P then ¢(Aa) is a nontrivial submodule of M so it must be all

of M, and so must contain m = ¢(1). It follows that there exists b € A with ¢(ab) = ¢(1) or ¢(ab—1) =0, so
ab—1 € P, so a becomes invertible in A/P. This proves that A/P is a field, or equivalently P is maximal. O

Definition 13.3. Let M be an A-module. A composition series for M is a chain of submodules
O=MycMyC---CM,=M

for some n > 0, such that M;/M;_; is simple for 1 < i < n. We call n the length of the series. We say that
a module M has finite length if there exists a composition series.

Lemma 13.4. [lem-ses-series]
Suppose we have a short exact sequence

0=LE MY NSO,
and a composition series (M;)1_, for M. Put L; = ¢~ 1(M;) C L and N; = (M;) C N, so L;_y C L; and
N;_1 C N;. Then there are natural short exact sequences
Li o, M; p_ N;
— =
LZ‘71 Mi—l Nifl

0—

Moreover, for each i we have either
(a) L; = L;—1 and N;/N;_1 is isomorphic to M;/M;_1; or
(b) N; =N;_1 and L;/L;_1 is isomorphic to M;/M;_1.
Thus, after eliminating repetitions the submodules L; give a composition series for L of some length n, and

the submodules N; give a composition series for N of some length m, where n +m = p.
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Proof. We define a;: L;/L;—1 — M;/M;_1 by a;(x + L;—1) = ¢(x) + M;_1. This is zero iff ¢(z) € M;_; iff
r €L, iff t 4+ L;—1 =0, so a; is injective.

Next, we define Bi: Mi/Mi—l — Ni/Ni—l by /Bl(y + Mi—l) = w(y) + Ni—1~ As Ni is ¢(Ml) by deﬁnition,
we see that f; is surjective. As ¢ = 0 we have 5;o; = 0, so image(«;) C ker(5;).

Now suppose that y + M;_1 € ker(8;). This means that ¥ (y) € N;—1 = ¥(M;—1), so we can find
u € M;_1 with ¥(y — u) = 0. This in turn means that y — u = ¢(x) for some x € L. More precisely, as
¢(x) =y—u € M)i we have x € L;_;. We also have a;(x+L;—1) = ¢p(x)+ M;—1 =y—u+M;_1 = y+M,;_1,
so y + M;_1 € image(«;) as required. We thus have a short exact sequence as claimed.

Moreover, the set image(a;) = ker(/3;) is a submodule of the simple module M;/M;_1, so it must be zero
or the whole of M;_. If it is zero then a; = 0 and f; is an isomorphism, but if it is all of M;/M;_; then «;
is an isomorphism and 8; = 0. Note also that «; is injective, so if o; = 0 then L;/L;_1 =0so L; = L;_1.
Similarly, §; is surjective so if 5; = 0 then N; = N;_;. O

Proposition 13.5. [prop-unique-length]
Any two composition series for M have the same length.

Proof. We will prove by induction on n that if M admits a composition of length n then every composition
series has length n. This is clear if n = 0 (in which case M = 0) or if n = 1 (in which case M is simple). Now
suppose that M has a composition series of length n > 1. This means that there exists a simple submodule
S < M such that M /S admits a composition series of length n—1. Now suppose we have another composition
series, of length m say. We can apply the lemma to the short exact sequence S — M — M/S; this gives
composition series for S and M/S of length 7 and j say, where i+ j = m. As S is simple we must have i = 1,
so j = m — 1. On the other hand, M/S admits a composition series of length n — 1, so by the induction
hypothesis we must have m — 1 =n — 1, so m = n as required. O

Definition 13.6. If M has finite length, we define len(M) to be the length of any composition series, which
is well-defined by Proposition 13.5.

Proposition 13.7. [prop-len-additive]
Suppose we have a short exact sequence

0 LS M5 N0
Then M has finite length iff both L and N have finite length, and if so, we have len(M) = len(L) + len(N).

Proof. First, if we have composition series 0 = Ly C -+ C L, = Land 0 = Ny C --- C N,, = N then we
can put

o(Li) ifo<i<n
M; = < ¢(L,) = image(¢) = ker(¢p) = =1 (Ng) ifi=n
Y HN;—p) ifn<i<n+m.

For 0 < ¢ < n we find that ¢ gives an isomorphism L;/L; 1 — M;/M;_1, and for n < i < n + m we find
that 1 gives an isomorphism M;/M; 1 — N;_,/N;_p_1. Thus, all quotients M;/M;_; are simple, and we
have a composition series of length n + m as claimed. The converse follows easily from Lemma 13.4. (]

Corollary 13.8. [cor-len-additive]

If M has finite length, then every submodule L C M and every quotient module M /L also have finite
length, with len(M) = len(L) + len(M/L). Moreover, if P and @Q have finite length then so does P ® Q, and
len(P @ Q) = len(P) + len(Q) d.

Remark 13.9. For a more refined invariant, we can fix a maximal ideal P € max(A) and define multp (M)
to be the number of composition factors M;/M;_; that are isomorphic to A/P. Arguments very similar to
Propositions 13.5 and 13.7 show that multp(M) is independent of the choice of composition series, and the
multp (M) = mult p(L) + mult p(N) whenever we have a short exact sequence L — M — N.
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14. TENSOR PRODUCTS

The tensor product is a construction that combines two A-modules M and N to form a new A-module
denoted by M ®4 N (or just M ® N, if there is no danger of confusion). The most basic examples are that
A" @ A" ~ A™ and AJI @ A/J ~ A/(I+ J).

Construction 14.1. [cons-tensor]

Let M and N be modules over a ring A. Let MON denote the module Freeprx n(A4) = Map(M x N, A).
Given m € M and n € N we write mCn for the basis element e(p, ,,y € MON. Next, let G(M, N) denote
the subset of MUN consisting of all elements of the following forms:

(m +m/)On — mOn — m'On (with m,m’ € M and n € N)
mO(n +n') — mOn — mOn' (with m € M and n,n’ € N)
(am)On — a(mOn) (with a € A and m € M and n € N)
mO(an) — a(mOn) (with a € A and m € M and n € N).

Put M @ N = (MON)/span,(G(M,N)), and let m ® n denote the coset corresponding to mCn. Thus
m®n € M ® N, and by construction we have

(m+m)@n=men+m'®@n m@n+n)=men+men
(am)®n =a.(m®n) m® (an) = a.(m ®@n).

Definition 14.2. [defn-bilinear]

Let M, N and T be A-modules, and let ¢: M x N — T be a function. We say that ¢ is bilinear if we
have

d(m+m',n) = ¢(m,n)+ ¢(m',n) d(m,n+n') = ¢(m,n) + ¢(m,n’)
¢(am,n) = a¢(m,n) ¢(m,an) = a¢(m,n)

for all m,m’ € M and n,n’ € N and a € A.

Note that we have amap u: M XN — MQN given by pu(m,n) = m®n, and this is bilinear by construction.
Thus, for any A-module homomorphism ¢: M @ N — T, we have a bilinear map ¢: M x N — T given by

#d(m,n) = ¢(m@n), or equivalently ¢ = ¢ o . In fact, this construction gives all possible bilinear maps out
of M x N:

Proposition 14.3. [prop-tensor-universal]
If p: M x N — Z is A-bilinear, then there is a unique A-linear map ¢: M @ N — Z such that ¢(m,n) =

dp(m @ n) for all m and n.
Proof. Proposition 11.12 shows that there is a unique homomorphism

’g/}: MUON = FreeMxN(A) — Z
with ¢ (mOn) = ¢(m,n) for all m and n. Using the bilinearity of ¢, we see that

P((m +m)On —mOn —m/On) = (m +m/,n) —(m,n) —(m’,n) = 0.
Similarly, all other elements of G(M, N) lie in the kernel of 1, so span,(G(M,N)) C ker(¢), so Proposi-
tion 11.41 gives a unique homomorphism
¢: M ® N = (MON)/span 4 (G(M,N)) = Z

with ¢(m ® n) = ¥ (mOn) = ¢(m,n) as required. O
Example 14.4. [eg-tensor-universal]

Define ¢: R?® x R® — R3 by é(u,v) = u x v (the traditional cross product of 3-dimensional vectors).
This is clearly bilinear, so Proposition 14.3 guarantees that there is a unique R-module homomorphism
¢: R3®@R3 — R3 satisfying ¢(u ® @ =u x v for all w and v. Rather than spelling this out in full detail, we
will usually just say that we define ¢: R® @ R?® — R3 by ¢(u®v) = u x v, leaving to the reader the definition

of ¢, the check of bilinearity, and the appeal to Proposition 14.3.
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Example 14.5. [eg-tensor-functor]
Suppose we have modules M, M', N and N’, and A-linear maps a: M — M’ and 3: N — N’. We then
define a® 8: M @ N — M’ @ N’ by

(@@ p)(m@n) =a(m) @ a(n).

(As discussed above, we are implicitly applying Proposition 14.3 to the bilinear map (m,n) — a(m)® f(n).)
It is easy to see that this fits into the following commutative diagram:

MaN-L meN

1®5l s i1®ﬁ
M®NI?®1M/®N/

It is convenient to rephrase Proposition 14.3 in terms of the following definition:

Definition 14.6. Let v: M x N — T be a bilinear map. We say that v is universal if for every other
bilinear map ¢: M x N — Z, there is a unique A-module homomorphism ¢: T'— Z with ¢ = ¢ ov.

The proposition says that the bilinear map p: M x N — M ® N is universal. In fact, this characterises
M ® N up to isomorphism:

Corollary 14.7. [cor-tensor-unique]
Let v: M x N — T be a bilinear map, giving a homomorphism 7: M @ N — T with v =Tu. Then U is
an isomorphism iff v is universal.

Proof. Suppose that v is universal. There is then a unique homomorphism z: ' — M ® N with p = pr =
. Now v and 1j;gn are both homomorphisms out of M ® N that become the same when composed
with p. By the uniqueness clause in Proposition 14.3, they must be the same. A similar argument (using
the universality of v) shows that g = 1p, so [ is the required inverse for 7. ([l

Example 14.8. [eg-free-tensor]
We claim that Free;(A) ® Frees(A) is naturally isomorphic to Freery j(A). To prove this, define
v: Freer(A) x Free;(A) — Freesx s (A)

by v(u,v)(i,j) = u(i)v(j). This is clearly bilinear. Consider another bilinear map ¢: Free;(A) x Frees(A) —
T. Define ¢pg: I x J — T by ¢o(i,j) = ¢(ei,ej), then let ¢: Freery s(A) — T be the unique homomorphism
satisfying ¢(eq; jy) = ¢o(i,j) = d(ei, ;). It is straightforward to check that ¢v = ¢, and that ¢ is uniquely
characterised by this property. This means that v is universal, so the map

v: Freel(A) X F‘reeJ(A) — FreeIXJ(A)
is an isomorphism as required.
Remark 14.9. As a special case of the above example, we have A™ @ A™ ~ A™",

Proposition 14.10. There are natural isomorphisms
A M~ M
MN~NM
LOM@N)~(LeM)®N
L(MadN)~(LOM)®d (L N).
Proof. First, we define a: A® M — M to be the unique A-module map satisfying a(a ® m) = am for all
a € Aand me M. We also define : M — A® M by S(m) =1® m. After recalling that
a@m=(al)®@m=a(1®m)=1® (am)
we see that g is also an A-module homomorphism, and that it is inverse to «.
Next, define homomorphisms

MeNSNoMS MeN
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by 7(m®n) = n®m and o(n®m) = m®n. (As usual, these definitions implicitly appeal to Proposition 14.3.)
It is clear that 7 and o are inverse to each other, so they are isomorphisms.
Next, for any [ € L we can define a bilinear map

Ao(): M x N = (Lo M)® N

by Ao(l)(m,n) = (I ® m) @ n. It follows that there is a unique linear map A(1): M @ N - (L® M) ® N
satisfying A()(m®@n) = (@ m)®@n. We next clam that A(I+1") = A({) + A(!') in Hom(M @ N, (L M)R®@ N).
Equivalently, we claim that A(I4+1")(z) = A({)(x) + A(!')(x) for all z € M ® N. This is clear by construction
if  has the form m ® n for some m and n, and M ® N is generated by terms of that form, so the claim
holds in general. Similarly, we have A(al) = aA(l) for all « € A and | € L. We can now define a map

Yo:Lx (M@N) = (Lo M)® N

by vo(l, ) = A(1)(x), so yo(l,m®@n) = (I®m)@n. Using the above properties of A, we see that 7 is bilinear,
so there is a unique homomorphism

v LM@N)—=> (LeM)® N

satisfying v(I ® ) = v0(l, x), and in particular y(I® (m®n)) = (I @ m) ® n. A similar argument constructs
a homomorphism 0: (L@ M) N — L ® (M ® N) satistying §(({ @ m) ®@n) =1® (m®n). Now dy(z) =z
whenever z has the form | ® (m®mn), and it is not hard to see that terms of that form generate L ® (M ®@ N),
so 0+ is the identity. A similar argument shows that vd is also the identity, completing the proof that
LO(MRN)~(LM)®N.

Finally, we can define a map

C:LO(MDN)—= (LoM)® (L®N)
by ((I® (m,n)) = (l ®m,l ®n). We can also define maps

LoMSLeMaN) L LeN
by p(I®@m) =1® (m,0) and (Il ® n) =1 ® (0,n). We can then combine these to define
E(LoM)e(LON)—>L®(MeN)
by &(z,y) = ¢(x) + ¥ (y). It is straightforward to check that £ is inverse to (. a

The above proof that L ® (M ® N) ~ (L ® M) ® N can be reorganised and generalised as follows. We
say that a map

¢: LxMxN—Z
is trilinear if
e For fixed m € M and n € N, the map | — ¢(I,m,n) gives an A-module homomorphism L — Z.

e For fixed | € L and n € N, the map m — ¢(I,m,n) gives an A-module homomorphism M — Z.
e For fixed | € L and m € M, the map n — ¢(l, m,n) gives an A-module homomorphism N — Z.

We can generalise this in an obvious way to define the notion of an n-linear map from H?;Ol M; — Z, for
any list of modules M;. Suppose we have a trilinear map ¢ as above. If we fix [ then we have a bilinear map
do(l): M x N — Z, defined by ¢¢(1)(m,n) = ¢(l,m,n). It follows that there is a module homomorphism
$1(1): M @ N — Z satisfying ¢1(1)(m ® n) = ¢(I,m,n). Using this, we define ¢o: L x (M ® N) — Z by
d2(l,2) = ¢1(1)(x). One can check that ¢- is bilinear, so it gives rise to a homomorphism L ® (M ® N) —
Z. A slight elaboration shows that this gives a bijection between trilinear maps L x M x N — Z, and
homomorphisms L ® (M ® N) — Z. A similar procedure gives a bijection between trilinear maps and
homomorphisms (L ® M) ® N — Z. By considering Zyp = (L@ M)® N and Z; = L® (M ® N) we
can produce maps Zy — 41 — Zp and check that they are inverse to each other. The whole argument
can be extended inductively to show that n-linear maps from My X ... x M,,_1 to Z biject with A-module
homomorphisms My ® --- ® M,,_1 — Z, where the tensor product can be bracketed in any way we choose.

Proposition 14.11. For any ideal I and module M there is a natural isomorphism A/T @4 M ~ M/IM.
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Proof. We define v: A/I x M — M/IM by v(a+ I,m) =am+ IM. This is easily seen to be well-defined
and bilinear, so it gives rise to a homomorphism 7: A/I @ M — M/IM. In the opposite direction, we can
define ¢: M — A/IT®@ M by ¢(m)=(1+1)®@m. If a € I and m € M we see that

dlam)= 1+ @am=a.(1+1HH@m)=(a+I)@m=00m =0.
It follows that ¢(IM) = 0, so there is an induced homomorphism ¢: M/IM — A/I ® M with ¢(m+1M) =
(1+1)®@m. It is easy to see that ¢ is inverse to 7. O

Remark 14.12. [rem-quot-tensor]
One can check that I.(A/J) = (I + J)/J, so as a special case we have A/T @ A/J ~ A/(I+ J).

Proposition 14.13. For any multiplicative set U and any module M there is a natural isomorphism
AU Y ®a M ~ M[U™Y.

Proof. We define v: A[lU™'] x M — M[U~!] by v(a/u,m) = (am)/u. This is easily seen to be well-defined
and bilinear, so it gives rise to a homomorphism 7: A[U~!]® M — M[U~!]. In the opposite direction, we
can define ¢p: M[U1] — A[U '] ® M by ¢(m/u) = 1/u ® m. To see that this is well-defined, suppose that
m/u=m’/u, so there exists v € U with u'vm = uvom’. It follows that

1 u'v , 1 1 , 1 , 1 ,
—®m = ®m =uw. @m | = Q@ u'vm = Quuvm = — @m
U uu'v uu'v uu'v uu'v u’
as required. It is now easy to check that ¢ is inverse to 7. O

Proposition 14.14. [prop-tensor-exact]
Suppose we have a module P and an exact sequence

LY M2 NSo.

Then the resulting sequence

POL2YNpom 2% poN 0

is also exact.

Proof. By hypothesis we have Sa = 0, and it follows easily that (1 ® 8)(1 ® @) = 0. This proves that
ker(1 ® 8) D image(1 ® «). Now put

Q= (P® M)/image(1 ® a),

and observe that there is an induced homomorphism ¢: @ — P®N given by ¢(z+image(1®«)) = (185)(x).
We claim that ¢ is actually an isomorphism. To see this, suppose that p € P and n € N. We can choose
m € M with 8(m) = n, and then put

Yo(p,n) = p®@m +image(1 ® a) € Q.
This is not obviously well-defined, because m is not unique. However, as ker(3) = image(«), any other choice
will have the form m’ = m + «a(l) for some [, giving p@m’ = p@m+ (1 ® a)(p ®1), and this shows that
is well-defined after all. It is easily seen to be bilinear, so there is an induced map ¢: P ® N — Q. We find

that v is inverse to ¢. From this in turn it follows that 1 ® 3 is surjective, with kernel equal to the image of
1 ® a. In other words, the sequence is exact as claimed. O

Remark 14.15. If a: L — M is injective, it does not follow that the map 1® a: P® L — P ® M is
injective. For example, we can take

A=7 P=17/2 L=7Z M=Q,

and let a: Z — Q be the inclusion map. Then P® L = Z/2 and P ® M = 0, so 1 ® o cannot be injective.
The following terminology is often used: Proposition 14.14 says that the functor P ® (—) is right exact,
but the above example shows that it is not left exact, and therefore not exact.

So far we have discussed tensor products of modules; we now consider tensor products of algebras (as in
Definition 11.3).
49



Remark 14.16. [defn-algebra-mult]

Suppose that B is an A-algebra, with structure map ¢: A — B. We can use this to consider B as an
A-module, and thus form the tensor product B ® 4 B. We can define an A-bilinear map ug: B x B — B by
1o (b, ') = bb'. Proposition 14.3 therefore gives us an A-module homomorphism p: B ® 4 B — B satisfying
uw(b® ') = bb'. Either ug or u may be referred to as the multiplication map for B.

Proposition 14.17. [prop-algebra-tensor]
If B and C are A-algebras, then B ®4 C also has a structure as an A-algebra, such that for all b,b’ € B
and ¢, € C we have

bec)b @cd)=(b)® (c).
Proof. We can define a 4-linear map
¢p: BxCxBxC—-B&C
by ¢(b,c, b, ') = bl @ cc’. As discussed above, this gives rise to an A-module homomorphism
¢:(BeC)®(B®C)— BeC

satisfying ¢'(b®@ c®@ b ® ') = bb’ @ ec’. For u,v € B® C we then define uv = ¢’'(u ® v). Alternatively, we
can define 7: C ® B — B ® C to be the unique homomorphism with 7(¢ ® b) = b ® ¢, then we can consider
the composite

BeCoBoC 2L BeBeCeC X122 B C.

It is not hard to see that this is the same as ¢’.

We have now defined a multiplication rule on B® C', but we still need to check that it satisfies the axioms.
For example, we must show that (uv)w = u(vw) for all u,v,w € B ® C. This is clear from the definitions
(and the associativity of B and C) in the case where u,v and w all have the form b ® ¢ for some b € B and
¢ € C. Every element of B ® C can be expressed as an A-linear combination of terms of that form, so the
general case follows easily. (|

Remark 14.18. [rem-ring-pushout]

We can define ring maps B X BeaC L Cby A(b) =b®1land p(c) =1®c. If 5: A—» Bandy: A= C
are the given structure maps, we find that

ABa) = Bla) ©1 =a.(1®1) =1@~(a) = py(a),

so the following diagram commutes:

Cﬁ-B@AC.

Now suppose we have another commutative square of rings:
A B
’Yl l(
Using the homomorphism (5 = &v: A — Z we can regard Z as an A-algebra, and thus as an A-module. We
can define a module map ¢: B C — Z by ¢(b® ¢) = ((b)¢(c). It is not hard to see that this is actually a
ring map, and that it is the unique ring map that satisfies o\ = ( and ¢p = £. In the language of category

theory, this means that our first square is actually a pushout in the category of rings.
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15. MODULES OVER FIELDS

Let K be a field. Modules over K are traditionally called vector spaces. Although we expect that most
readers will be familiar with the theory of vector spaces, we will give a rapid treatment here to explain the
relationship with our more general theory of modules.

Proposition 15.1. [prop-basis-test]
Let M be a K-module, and let S be a subset of M, giving a homomorphism ¢g: Freeg(K) — M. Then
the following are equivalent:

(a) S is mazimal among linearly independent subsets of M.
(b) S is minimal among sets that span M.
(c) S is a basis for M.

Proof.

(a)=(c) Suppose that S is maximal among linearly independent sets, and consider an element x € M. If
z € S then = = ¢s(e,) € image(¢s). Suppose instead that = & S, so the set T'= S U {z} is strictly
larger than S and so cannot be linearly independent. This means that there is a nonzero element
m € Freep(K) with ¢r(m) = 0. If m(z) were zero we would have ¢g(m|s) = ér(m) = 0 and so
m|s = 0 because S is linearly independent, but that would give m = 0, contrary to assumption.

We therefore have m(x) # 0, and it follows that the element n = —m(z) 'm|s € Freeg(K) has
¢s(n) =z, so x € image(¢g) again. This proves that ¢g is surjective as well as injective, so it is a
basis.

(b)=(c) Suppose that S is minimal among sets that span M. We will assume that we have a nonzero element
m € Freeg(M) with ¢g(m) = 0, and derive a contradiction. As m # 0 we can choose x € S with
m(z) # 0 and put T = S\ {}. Put n = —m(z) " 'm|r, and note that ¢g(n) = z. Thus, for any
u € Freeg(K) we have ¢g(u) = ¢ (u|T+u(z)n), so image(¢r) = image(ps) = M, so T is a spanning
set. This contradicts the assumed minimality of S.

(¢c)=(a) Suppose that S is a basis, and let T be a strictly larger set. Choose © € T'\ S. As S is a basis, there
exists m € Freeg(K) with ¢s(m) = z. Let n € Freer(K) be given by

m(z) ifzeS
n(z) =4 -1 ifz=x
0 otherwise.
Then n is a nontrivial element of ker(¢r), so T is linearly dependent. This proves that S is maximal
among linearly independent sets.

(c)=(b) Suppose again that S is a basis, and let U be a proper subset of S. Choose z € S\ U. We claim
that = ¢ image(¢y ). Indeed, if @ = ¢y(m) then we can define n € Freeg(K) by

m(z) ifzeU
n(z) = ¢ —1 ifz=ux
0 otherwise.

We find that n is a nontrivial element in ker(¢g), contradicting the assumption that S is a basis.
We conclude that = ¢ image(¢y ), so ¢y is not surjective, so S is minimal among spanning sets.

]

Corollary 15.2. FEvery K-module has a basis, and so is free.

Proof. Let M be a K-module, and let £ be the set of all linearly independent subsets of M. Note that () € L,
so L # (. We will apply Zorn’s Lemma to £. Let C be a chain in £, or in other words a subset of £ such
that for all C, D € C we have either C' C D or D C C'. Let S be the union of all the sets in C. We claim that
S is linearly independent (or equivalently, S € £). To see this, consider a nonzero m € Freeg(K). For each
element x in the finite set supp(m), we have x € S, so we can choose C, € C such that x € C,. The chain
condition implies that the family {C, | z € supp(m)} is linearly ordered by inclusion, so there is an element
z € supp(m) such that C, C C, for all z, and therefore supp(m) C C,. As C, € L we deduce that the
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element ¢gs(m) = ¢, (m|c.) is nonzero. This implies that S is linearly independent as claimed. This verifies
the key condition in Zorn’s Lemma, so £ has a maximal element, which is a basis by Proposition 15.1. [

Corollary 15.3. FEvery short exact sequence of K-modules is split.

Proof. This now follows from Corollary 12.12. (]

Proposition 15.4. [prop-field-simple]
FEvery simple K-module is isomorphic to K.

Proof. Proposition 13.2 implies that every simple module is isomorphic to K/P for some maximal ideal P,
but as K is a field, the only maximal ideal is 0. ]

Proposition 15.5. [prop-fin-dim]
For a K-module M, the following are equivalent.
(a) M has a finite basis
(b) M is finitely generated
(¢c) M has finite length.

Moreover, if these conditions hold then the rank of M is the same as the length.

Proof. It is clear that (a) implies (b). Moreover, if (b) holds then M ~ K™ /L for some integer n and some
submodule L, but K" clearly has finite length, so M has finite length by Corollary 13.8.

Now suppose we assume that M has finite length, say len(M) = n. This implies that there is a submodule
L C M such that len(L) =n — 1 and M/L is simple, which means that M/L ~ K. As M/L ~ K is free the
short exact sequence L — M — M /L must split, so M ~ L @ K. By induction on n we may assume that L
is free of rank n — 1, and it follows that M is free of rank n. All remaining claims are now clear. |

Remark 15.6. In this context it is traditional to say that M is finite-dimensional if it satisfies the above
conditions, and to define the dimension of M to be the rank or length. Note that Corollary 13.8 shows that
submodules, quotients and direct sums of finite-dimensional modules are finite-dimensional, with dim(M) =
dim(L) + dim(M/L) and dim(P & Q) = dim(P) 4+ dim(Q).

16. PRINCIPAL IDEAL DOMAINS

Definition 16.1. [defn-pid]
Recall that an ideal I C A is principal if it has the form I = Aa for some a € A. A principal ideal domain
(or PID) is a domain in which every ideal is principal.

The simplest way to prove that a ring is a PID is to use the following notion:

Definition 16.2. [defn-ev]
Let A be a domain. A euclidean valuation on A is a function v: A — N with the following properties:
(a) v(a) =01if and only if a =0
(b) Whenever a,b € A with a # 0 there are elements ¢,r € A with b = ga + r and v(r) < v(a)

(Some other sources handle the case a = 0 differently, taking v(0) to be —oco or leaving it undefined. Our
convention is very natural for Examples 16.3, 16.4 and 16.7, but less natural for Examples 16.5 and 16.6.)

Example 16.3. [eg-Z-ev]
The map v(n) = |n| is a euclidean valuation on Z.

Example 16.4. [eg-field-ev]
If K is a field, then we can define a euclidean valuation on K by v(0) =0 and v(a) =1 for all a # 0. In
axiom (b) we simply take ¢ = b/a and r = 0.

Example 16.5. [eg-poly-ev]
Let K be a field, and define v: K[z] = N by v(f) = deg(f) + 1 when f # 0, and v(0) = 0. It follows
easily from Proposition 1.25 that this is a euclidean valuation.
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Example 16.6. [eg-Zpl-ev]

Let p be a prime number. Recall that Z,) is the set of rational numbers of the form a = x/u, where
xz,u € Z and u is not divisible by p. If 2 = 0 we define v(z/u) = 0. Otherwise, we let d be the largest
integer such that x is divisible by p¢, and we put v(z/u) = d+ 1. We claim that this is a euclidean valuation.
Indeed, suppose we have a,b € Z,y with a # 0. If v(b) < v(a) then we just take ¢ = 0 and » = b. On the
other hand, if v(b) > v(a) we find that b/a € Z,) and we just take ¢ = b/a and r = 0. Either way we have
b = qa + r with v(r) < v(a) as required.

Example 16.7. [eg-C-ev]
Let A be a subring of C such that
(a) For all a € A we have |a? € N
(b) For all z € C there exists ¢ € A with |z — ¢| < 1.
We then claim that the map v(a) = |a|? is a euclidean valuation. Indeed, if a,b € A with a # 0 then we can
choose ¢ € A with |b/a —¢q| < 1, then put r = b —aq = a(b/a—q) € Aso b =aq+r and |r]? < |a]? as
required.
The most obvious example of this type is the ring Z[i] = {a + ib | a,b € Z} of gaussian integers. Given
z = x+1iy € C we can choose integers n,m with [n—z| < 1/2 and |[m—y| < 1/2. The element ¢ = n+im € A
then has |z — q| < 1/4/2 < 1 as required. For another example, we can take w = €2™/3 = (iv/3 — 1)/2, so
wl=w=w?=-1-w,and put A = {n+mw | n,m € Z}. One can check that |n+mw|? = n? + m? —nm,
so condition (a) holds. We leave (b) to the reader.
Proposition 16.8. [prop-ev-pid]
If A is a domain with a euclidean valuation v: A — N, then it is a PID.
Proof. Consider an ideal I C A. If I = 0 then I = A0 and so [ is principal. Suppose instead that I # 0, and
choose an element a € I\ {0} for which v(a) is as small as possible. Let b be any other element of I. We

then have b = ga + r for some ¢,r € A with v(r) < v(a). Now r = b — ga with a,b € I so r € I. However,
a was chosen to have minimal valuation among nontrivial elements of I, so we must have r = 0, and thus

b = qa. This proves that I = Aa, so I is principal as required. (Il
Corollary 16.9. The rings Z, L, Zli] and Z[e*™/3] are all PIDs. Moreover, for every field K, both K
and K|[z] are PIDs. O

We next discuss some domains that are not principal ideal domains.

Example 16.10. [eg-not-pid]

Consider a maximal ideal P in a domain A. For any A-module M we can regard M/PM as a module
over the field A/P, so we have a well-defined dimension dim4,p(M/PM). In particular, we can take M = P
and consider dim 4, p(P/P?). If P = Ap then P/P? is spanned by the coset p + P2, so dim4,p(P/P?) < 1.
Thus, if we can find a maximal ideal P with dim,p(P/P?) > 1, then A cannot be a principal ideal domain.
There are many examples where this is easy. For example, if A = C[z,y] and P = Az + Ay then A/P =C
and P/P? has basis {z + P2,y + P?}, so P is not principal.

Example 16.11. [eg-not-pid-dedekind]
For a more subtle example, consider the ring
A=7[V=5]={a+b/=5]|a,bcZ} CC.
Note that |a + by/—5|?> = a® + 5b* € N, so the first condition in Example 16.7 is satisfied, but the example
z = v/—5/2 shows that the second condition is not satisfied.

Now define ¢: A — Z/3 by ¢(a + by/=5) = a — b+ 3Z. It is straightforward to check that this is a
surjective homomorphism, and that the kernel is the ideal M generated by 3 and 1 + v/—5.

We claim that M is not principal. One can check that dim,,p(M/PM) = 1 for all maximal ideals P,
so the method in the previous example is not useful here. Instead, suppose that M = Ax for some element
7. We must then have 3 = ar and 1 + /=5 = B for some elements «, 3 € A. This gives 9 = |a|?|7|? and
6 = |B8)%|7|?, so |7|*(|a|? — |B8]?) = 3. As |n|? and |a|? — |B|* are positive integers, we must have |7|? € {1, 3}.
However, it is clear that 3 cannot be represented as a? + 5b%, and that 1 can only be represented as a? 4 5b2
if (a,b) = (£1,0). We must therefore have m = +1, which is impossible as +1 & M.
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For the rest of this section, we let A be a PID.

Definition 16.12. We put
Idl(A) = idl(A) \ {0} = {nontrivial ideals}.
We also put A* = A\ {0} and A* = {invertible elements}.

Lemma 16.13. If I € Idl(A) then I = Aa for some a € A®. Moreover, for a,b € A®* we have Aa = Ab iff
b= ua for some u € A%, so Idl(A) can be identified with A®/A*.

Proof. The first claim is clear from the definitions. If Aa = Ab then b € Aa and a € Ab, so there are elements
u,v € A with b = ua and a = vb. It follows that a = uva, so a(uv —1) = 0. If a # 0 then (as A is a domain)
we have uv = 1so u € A*. |

We now discuss various structures on Idl(A). Recall that in a general ring we defined I.J to be the ideal
generated by the set U = {ay |z € I, y € J}. However, if I = Aa and J = Ab then it is straightforward to
check that U itself is an ideal and in fact IJ = U = Aab. Note that this is contained in I N .J, so if I and
J are nonzero then I N J is also nonzero. We now see that when I,J € Idl(A) we have ideals T + J, INJ
and I.J, all of which again lie in Id1(A). We also put (I : J) = {a € A | aJ C I}, which contains I and so is
again in Idl(A).

We also consider Idl(A) as an ordered set using the inclusion relation. The order is related to the above
operations, because we have I C J iff INJ =1 iff [ + J = J; this follows directly from the definitions. The
following is a little less obvious:

Proposition 16.14. For I, K € 1dl(A), the following are equivalent:
(a) KCI

(b) For some J € Idl(A) we have K = I.J
() K=1I1(K:1I)
(d) For some a,b € A® we have I = Aa and K = Aab.
Proof. First, we can choose a,c € A such that I = Aa and K = Ac.

Note that if K C I then Ac C Aa so ¢ € Aa so ¢ = ab for some b. Thus if we put J = Ab we have K = IJ.
These arguments show that (a)=-(d)=-(b).

Now suppose that K = I.J asin (b). From the definition of (K : I) we have J C (K : I) and I.(K : I) C K.
As J C (K :I) we also have K = IJ C I.(K : I), so in fact I.(K : I) = K. This proves that (b)=(c), and
it is clear that (c)=-(a), which closes the loop. O

Definition 16.15. Suppose we have a,b € A®. A GCD system for the pair (a, b) is a list (@, b, z,y,d, m) € AS
such that

za+yb=1 dab=m
da=a db = b.

Proposition 16.16. For any pair (a,b), there is an associated GCD system (a,b,x,y,d,m). If we put
I = Aa and J = Ab, then for any such system we have

I+J=Ad
INJ=Am

1J = Aab
(I:J)=Aa
(J: 1) = Ab.

Proof. Certainly there exists d € A® with I +J = Ad. Now a € I C I+ J = Ad, so there is a unique element
@ € A with a = da. Similarly, there is a unique element b € A with b = db. Next, as d € I + J there exist
elements z,y € A with d = za + yb. This in turn gives d = xzad + ybd, and A is a domain so we can cancel
the factor of d to conclude that z@ + yb = 1. We now put m = dab, and we find that (@,b,z,y,d, m) is a
GCD system.
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Suppose instead that we start with a GCD system (@, b, z,y, d,m). We then have d = d(za+yb) = za+yb,
sod € I+ J. On the other hand, any element in I + J has the form ¢ = ua + vb for some u,v € A. This can
be rewritten as ¢ = (ua + vb)d, so ¢ € Ad. It follows that I + .J = Ad as claimed.

Next, as m = dab = ab = @b we see that Am C I'N.J. Conversely, suppose that u € IN.J, so u = va = wb
for some v and w. We then have u = (2@ + yb)u = zau + ybu. In the first term, we use u = wb and
ab = m to get zwm. In the second term, we use u = va and ab = m to get yvm. Combining these gives
u= (zw+ yv)m € Am. It follows that I NJ = Am.

The relation IJ = Aab is clear.

Next, we have

AaJ = Aab = Aabd = Aab C Aa =1,

so Aa C (I : J). In the opposite direction, suppose that t € (I : J), so t.J C I, or equivalently tb € Aa. This
means that tb = ra for some r, or equivalently tb = ra. Now

t = (za+ yb)t = a(tz + ry) € Aa.
This shows that (I : J) = Aa as claimed, and a symmetrical argument shows that (J : I) = Ab as well. [

Definition 16.17. Let A be an integral domain, and let p be a nonzero element of A. We say that p is a
prime element if Ap is a prime ideal (so whenever p divides ab, it divides a or b). We say that p is irreducible
if it is not invertible, but whenever p = ab, either a or b is invertible. We say that elements p and ¢ are
associates if there is an invertible element u such that ¢ = up.

Lemma 16.18. [lem-prime-irr]
In any integral domain, prime elements are irreducible.

Proof. Let p be prime. If p = ab then certainly p divides ab, so p divides either a or b. We may assume wlog
that p divides a, so a = px for some z. Now p = ab = pzb, so p(1 — xzb) = 0, and A is assumed to be an
integral domain, so b = 1. This shows that b is invertible, as required. ([l

Proposition 16.19. [prop-irr-prime]
Let A be a PID, and let P be a nontrivial ideal in A. Then the following conditions are equivalent:

)
(b) P is a prime ideal
(¢) Some generator of P is a prime element
(d) Every generator of P is a prime element
) Some generator of P is an irreducible element
) Every generator of P is an irreducible element.

Proof. Tt is clear from the definitions that (¢) and (d) are equivalent, and it is straightforward to check
that (e) and (f) are also equivalent. Remark 5.29 shows that (a) implies (b), and (b) is clearly equivalent
to (¢) and (d), which imply (e) and (f) by Lemma 16.18. The real point is to prove that (e) implies (a).
Equivalently, given an irreducible element p, we must show that A/Ap is a field. As p is not invertible by
definition, we see that A/Ap # 0. Any nontrivial element of A/Ap has the form a + Ap for some a ¢ Ap.
Let d be a ged for a and p, so we can write ¢ = ad and p = pd and za + yp = 1 for some @,p,z,y € A.
As p is irreducible, either § or d must be invertible. If p were invertible we would have a = @p—'p, which is
impossible as p is assumed not to divide a. Thus d must be invertible, and we see that the element a* = d~ 'z
satisfies a*a = 1 —d~lyp = 1 (mod p), so a* + Ap is the required inverse for a + Ap. |

Lemma 16.20. [lem-inf-divis]

Let (Py)r>0 be a sequence of nonzero prime ideals, and put I, =[], Pi. Then (), I = 0.

Proof. First, we can choose prime elements p; such that P; = Ap; for all i. We then have I, = Amy,, where
my = [[,c, pi- Now put I =, Ix. This is an ideal, and all ideals are principal, so I = Aa for some
a € I; we must show that a = 0. Now a € myi A for all k, so there is an element by such that a = mygb. It
follows that
my (b — Pk bi1) = mpby — Mpp1bppr =a—a =0,
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and A is an integral domain, so by = pibi1 for all k. This shows that the ideals J = Aby, satisfy Ji, C Jg11,
so the union Jo = |J,, Ji is again an ideal. As A is a PID, there must be an element by with Joo = Abs.
Now boo € |y, Jk, 50 boo € Jj, for some k < oo. This gives

brt1 € Jit1 C Joo € Ji = Aby, = Aprbita,

so there exists « with bg41 = zprbi+1, or in other words (1 — zpg)bg+1 = 0. Now Apy, = Py is assumed to be
prime, so in particular it is not all of A, so xpy # 1, so 1 — zpr # 0. As A is an integral domain, we deduce
that b1 = 0. It follows that a = mg1br+1 = 0 as required. O

In particular, if P is any nonzero prime ideal we see that P° = A but an P* = 0. This validates the
following:

Definition 16.21. [defn-vP]
Let P be a prime ideal in A. For any nonzero element a € A, we let vp(a) denote the largest natural

number n such that a € P™. For any nonzero ideal I, we let vp(I) denote the largest natural number n such
that I C P™ (so that vp(Aa) = vp(a)).

Proposition 16.22. [prop-vP]

(a) For any element a € A* we have vp(a) =0 iff a & P.
(b) For any elements a,b € A®* we have vp(ab) = vp(a) + vp(b).
(¢) For any a € A®, the set {P | vp(a) > 0} is finite.

Proof.

(a) This is clear from the definitions.

(b) Choose a generator p for P. If vp(a) = m and vp(b) = n then a = p"z and b = p™y for some
elements z,y € A\ P. This gives ab = p"t™xy € P"™™. If ab were in P *! we would have
ab = p" ™12 for some z, and we could cancel p" ™ to get xy = pz € P. However, this is impossible
because P is a prime ideal and x,y ¢ P. This shows that vp(ab) = n + m.

(c) If not, we can choose a sequence of distinct prime ideals P; such that a € (), P;. Now choose a
generator p; for each ideal P;, and put my = Hl <k Pi- As the ideals P; are distinct and maximal, we
see that p; € Py, for all i < k, and so my € P,. We claim that there are elements b, with a = bgmy
for all k. Indeed, we can take by = a. Once we have by, we can note that the product bymy = a
is divisible by the prime element py, but my is not divisible by pg, so by must be divisible by pg,
say by = brt1pk. This gives bprimpr1 = br1pemir = bpymy = a as required. The claim follows by
induction, so we see that a € (", [[,., P Using Lemma 16.20 we deduce that a = 0, contrary to
our assumption that a € A°.

i<k
(]

Part (c) of the proposition validates the following:

Definition 16.23. For any nonzero element a we put v*(a) = > pvp(a). We also put v*(I) = >, vp(I),
so v*(Aa) = v*(a).

Proposition 16.24. We have v*(I) =0 iff = A. We also have v*(IJ) = v*(I) + v*(J).

Proof. Tt is clear that v*(A) = > ,vp(1) = 0. On the other hand, if I is a nontrivial ideal that is different
from A, then I is contained in some maximal ideal P, which is clearly also nontrivial. This gives v*(I) >
vp(I) > 0. The formula v*(IJ) = v*(I) + v*(J) follows immediately from Proposition 16.22(b). O

Theorem 16.25. [thm-pid-ufd]

There is a bijection p: @pN — 1d1(A) given by u(m) = [[p P™F), with inverse u~*(I)(P) = vp(I).
In other words, every nontrivial ideal can be written in an essentially unique way as a product of powers of
nontrivial prime ideals.

Proof. We can certainly define a map u as above. Using Proposition 16.22(c), we can also define a map o in

the opposite direction by o(I)(P) = vp(I). It is clear that vp(P) = 1 and vp(Q) = 0 for all nontrivial prime

ideals @ # P. Using this together with Proposition 16.22(b), we see that ou = 1, so p is injective. We next
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claim that every nontrivial ideal I lies in the image of p. If v*(I) = 0 then I = A = p(0) and the claim is
clear. Suppose instead that v*(I) > 0, so we can choose a nontrivial prime ideal P with I C P. We now
have I = Aa and P = Ap for some a and p, and the relation I C P means that a = pb for some b. Thus, if
we put J = Ab we find that I = PJ. From this we get v*(J) = v*(I) — v*(P) = v*(I) — 1. We may assume
by induction that J lies in the image of p, say J = p(m). Now put n(P) = m(P) + 1 and n(Q) = m(Q) for
all @ # P. We find that u(n) = Pu(m) = PJ = I as required. This proves that u is surjective as well as
injective, so it is a bijection as claimed. (|

It is more traditional to talk about unique factorisation of elements rather than ideals. For this we need
some additional discussion.

Definition 16.26. Let A be an integral domain. A system of irreducibles for A is a set P of irreducible
elements, such that for every irreducible element py € A there is a unique element p € P that is an associate
of Po-
Example 16.27.

e The set of (positive) prime numbers is a system of irreducibles for Z.

e The set {p} is a system of irreducibles for Z,).
e The set {x — A | A € C} is a system of irreducibles for C[z].

We can now state our unique factorisation result for elements:

Theorem 16.28. [thm-pid-ufd-elts]
Let P be a system of irreducibles in a principal ideal domain A. Define a map

e AX X @N — A*
pEP
by p(u,m) =u [[,ep p™P). Then p is a bijection.

Proof. Consider an element a € A®. Note that the map p — Ap gives a bijection from P to the set
of nontrivial prime ideals. Theorem 16.25 therefore tells us that there is a unique system of exponents
m(p) = v,(Aa) = vy(a) € N (almost all zero) such that Aa = []p(Ap)™P) = A. prm(p). It follows that a

is a unit multiple of Hp p™(®) . The claim follows easily. 0

17. MODULES OVER PRINCIPAL IDEAL DOMAINS

Throughout this section, A is assumed to be a principal ideal domain. In this section, we will study the
structure of finitely generated A-modules. In Section 20 we will give a cruder classification of modules that
works for a much larger class of rings. Some features of this section are designed for compatibility with that
more general situation.

In order to state the main result, we need some definitions.

Definition 17.1. [defn-torsion]
Let M be any A-module.

(a) A torsion element is an element m € M such that am = 0 for some a € A\ {0}. We write T'(M) for
the set of all torsion elements. Note that if am = bn = 0 with a, b # 0 then ab # 0 and ab(m+n) = 0.
Using this, we see that T (M) is a submodule of M.

(b) Now let P be a nontrivial prime ideal. A P-torsion element is an element m € M such that P*m = 0
for some k > 0. We write Tp(M) for the set of all P-torsion elements, which is again a submodule.

(c) For compatibility with the notation used for more general rings, we also write Ep(M) for Tp(M)
(when P #0) and Eo(M) = M/T(M).

(d) We say that M is a torsion module if all elements are torsion, so M = T(M) and Ey(M) = 0.
Similarly, we say that M is a P-torsion module if M = Tp(M).

(e) We say that M is torsion-free if 0 is the only torsion element, so T (M) = 0 and Eo(M) = M.

Definition 17.2. [defn-f-p-k]
Suppose that P is a nontrivial prime ideal and k € N. For any A-module M, we define

FE(M) = {z € P*='M | Pz = 0}.
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This is easily seen to be a submodule of M. Moreover, as Px = 0 for all x € FE(M), we can regard F&(M)
as a module over the field A/P. We define

fB(M) = dimy, p(FE(M)).
If the dimensions f5(M) are all finite, we also put
9p(M) = fE(M) — f5H(M).
The main purpose of this section is to prove the following result.
Theorem 17.3. [thm-pid-modules]
Let M be a finitely generated A-module. Then
(a) M ~ Eo(M) & DpyoEr(M), and only finitely many of the terms in this sum are nonzero.
(b) Eo(M) ~ A? for some d.
(c) Ep(M) is isomorphic to a direct sum of copies of the modules A/P* for various k. The number of
copies of AJP¥ is gk (M), which is zero for sufficiently large k.
The proof will be given after Corollary 17.22 below.

Proposition 17.4. [prop-hereditary]
Let n be a natural number. Then any submodule of A™ is isomorphic to A™ for some m < n.

Proof. We will argue by induction on n. The case n = 0 is trival. Suppose we have proved the case n = k,
and that M is a submodule of A"™! = @ jA. Define m: A"t — A by n(ag,...,an) = an, and put
N = M Nker(r) and I = w(M). Here N is a submodule of ker(7) ~ A", so by induction we can choose an
isomorphism ¢: A™ — N for some m < n. On the other hand, I is a submodule of A, or in other words
an ideal. If I = 0 then M = N, so M ~ A™ as required. If I # 0, then I = Az for some nonzero element
x € A. As I is defined to be m(M), we can choose u € M with 7(u) = x. Define ¢: A™Tt — M by

Y(ag,...,am) = d(ag,- .., am-1) + amu.

We claim that this is an isomorphism. Indeed, if ¢ (ao, ..., a;,) = 0 then we can apply 7 to get a,,x = 0. As
A is an integral domain, we deduce that a,, = 0, so

0=1v(ag,...,am)=d(ag,-.,am-1).
As ¢ is assumed to be an isomorphism, it follows that ag = -+ = a,,—1 = 0 as well. This shows that ¢ is
injective. In the other direction, suppose we have an element v € M. Then 7(v) € 7(M) = Az = An(u), so
we can choose t € A with w(v) = t w(u). This means that v—tu € MNker(w) = N, sov—tu = ¢(ag, . . ., Gm—1)
for some elements aq, ..., a;,,—1 in A. This in turn gives

v = ’l/)(a(% e ,amflvt),
showing that 1) is also surjective. |
Remark 17.5. [rem-hereditary)]
It is true more generally that any submodule of a free module over a PID is always free, even if the

modules in question are infinitely generated. However, a proof would require more set theory than we have
space to develop here.

Corollary 17.6. [cor-pid-noetherian]
Let M be a finitely generated A-module. Then every submodule N C M 1is also finitely generated.

Remark 17.7. This corollary is also valid for many rings that are not PIDs, but there are some rings for
which it fails. This will be discussed in more detail in Section 18.

Proof. Choose a generating set {eg,...,e,—1} for M. We can then define a surjective homomorphism
¢: A" — M by ¢(x) = >, xie;. Put L = {x € A" | ¢(x) € N}. This is a submodule of A", so it is
isomorphic to A™ for some m < n. We can thus choose a basis ug,...,u,,—1 for L. We claim that the

elements v; = ¢(u;) € N generate N. Indeed, as ¢ is surjective, every element t € N C M can be written

as ¢(z) for some element z € A". As () =t € N we see that x € L, so x =}, a;u; for some system of

coefficients a; € A. Applying ¢ gives t = Zj a;v; as required. |
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Remark 17.8. If M is finitely generated, we see in particular that the modules T(M), Ep(M) = Tp(M),
Eo(M) = M/T(M) and FE(M) are all finitely generated. This in turn implies that f&(M) < oo for all k,
so gh(M) is well defined.

Proposition 17.9. [prop-tors-free-free]
A finitely generated A-module is free if and only if it is torsion-free.

Proof. First suppose that M is a free. Then M ~ A™ for some n, so we may assume that M = A™. Suppose
that £ € A™ is a torsion element. Then there is a nonzero element a € A such that az = 0, so ax; = 0 for
all i. As A is a domain and a # 0 we must have x; = 0 for all 4, so x = 0. Thus M is torsion-free.

Conversely, suppose that M is torsion-free. Clearly, a list eq, ..., e,—; generates M iff Y. Ae; = M. We
will say that such a set almost generates M if there is a nonzero element ¢ € A such that ), Ae; > tM. By
assumption we can choose a finite list of elements that generates M, so certainly we can choose a finite list
that almost generates M. Let eg,...,e,_1 be such a list which is as short as possible, and fix an element
t # 0 such that ), Ae; > tM.

We claim that the elements e; are independent. If not, we have a relation ), a;e; = 0 where some
coefficient aj is nonzero. After reordering everything if necessary, we may assume that ag # 0. For any
x € M we know that tz can be written in the form tzx = Z?;OI b;e;. After multiplying by ag and using

the substitution agbgey = — Z?;ll a;bpe;, we see that aotzx lies in the span of e1,...,e,_1. Thus, Ae; +
...+ Ae,_1 > agtM, so the list eq,...,e,_1 almost generates M, contradicting our assumption that the list
€o,---,en was as short as possible. This contradiction shows that eg,...,e,_1 must be independent, after

all. This implies that the module N = ), Ae; is free. By assumption, the module L := aM is contained
in N, so it is free by Proposition 17.4, with basis fy,..., fim_1 say. As L = aM we have f; = ag; for some
gi € M. It is now easy to see that the elements g; give a basis for M, so M is free as claimed. O

Lemma 17.10. [lem-tf-quotient]
The module Eo(M) = M/T(M) is always torsion free.

Proof. Let m: M — Ey(M) be the quotient map. Let ¢ € Eyg(M) be a torsion element, so ag = 0 for
some a € A\ {0}. We must have ¢ = w(m) for some m € M. Now 7w(am) = aw(m) = aq = 0, so
am € ker(m) = T(M), so we must have bam = 0 for some b € A\ {0}. As A is a domain and a,b # 0 we
must have ba # 0, but bam = 0, so m € T(M). This means that 7(m) = 0, or in other words ¢ = 0 as
required. O

Proposition 17.11. [prop-free-summand]
If M is a finitely generated module, then Eq(M) ~ A? for some d, and M ~ Eo(M) @ T(M).

Remark 17.12. There are some choices involved in constructing an isomorphism M ~ Eo(M) @ T(M), so
this is not a natural isomorphism in the sense of category theory.

Proof. Recall that Eo(M) = M/T(M). This is clearly finitely generated, and it is torsion free by Lemma 17.10,
so it is isomorphic to A% for some d. We can therefore choose elements mo, ..., mg—1 € M such that the
corresponding cosets ¢; = m(m;) form a basis for Eo(M). Let F be the submodule of M generated by the
elements m;. As the elements 7(m;) form a basis, it is easy to see that the elements m; are independent, so
they form a basis for F', proving that F' is a free module. This in turn means that the only torsion element
in Fis0,soT(M)NF =0. Now let m € M be an arbitrary element. We can then write m(m) as ), a;qg;
for some system of coefficients a;. Put f =Y. a;m; € F and t = m — f. We find that 7(f) = w(m), so
m(t)=0,s0t e T(M),som = f+te F®T(M). It follows that M = F®T(M) ~ Eo(M) ® T(M) as
claimed. |

Lemma 17.13. [lem-totally-tors]
If M is a finitely generated torsion module, then there is a nonzero element a € A such that aM = 0.
Similarly, if M is a finitely generated P-torsion module, then there exists k > 0 such that P*M = 0.

Proof. Choose a finite generating set {eg,...,e,—1} for M. As M is a torsion module, for each i we can
choose a; # 0 such that a;e; = 0. Put a =[], a;, so ae; = (Hj# a;)(a;e;) = 0 for all . As the elements e;

generate M, we deduce that aM = 0. Similarly, if M is P-torsion then we can choose k; such that P*ie; = 0,
then we can put & = max(ko,...,k,_1). We find that P*e; = 0 for all i, and so P*M = 0. |
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Lemma 17.14. [lem-module-coprime-split]
Let L be an A-module. Suppose that b,c € A are coprime and that bcL = 0. Put M = {y € L | by = 0}
and N={z€L|cz=0}. Then L=M & N.

Proof. As b and c are coprime there exist elements u, w such that ub+wec = 1. If x € MNN then bx = cx =0
so x = l.x = ubr + wex = 0; thus M NN = 0. Now let x be an arbitrary element of M. Put y = wex and
z = ubzx, so x =y + z. We have by = (bc)(wz) but beL =0 so by = 0so y € M. Similarly, cz = (bc)(ux) =0
soz€ N. Thus z =y + z € M + N, which shows that M + N = L. As M NN =0, the sum is direct. 01O

Proposition 17.15. [prop-tors-split]
Let M be a finitely generated torsion module. Then M = @ pTp(M), and only finitely many of the terms
Tp(M) are nonzero.

Proof. Put I = {a € A | aM = 0}. This is easily seen to be an ideal, and it is nonzero by Lemma 17.13,
so it can be factored as I = [[, P/* for some finite list of distinct nontrivial prime ideals P; and exponents
n; > 0. Put M; = {m € M | P""m = 0}. The ideals P/"" are pairwise coprime, so an evident inductive
extension of Lemma 17.14 gives M = @, M;. It follows that Tp(M) = M, if P = P;, and that Tp(M) =0
if P is not one of the ideals P;. The claim is clear from this. O

Remark 17.16. [rem-pid-modules]

By combining Propositions 17.11 and 17.15, we see that any finitely generated module M is isomorphic
to Eo(M) @ Dp 20F p(M), and again only finitely many of the terms are nonzero. To complete the proof of
Theorem 17.3; we just need to study the structure of finitely generated P-torsion modules, such as Ep(M).

We start with some results about the numbers f&(M) and gk (M).

Remark 17.17. [rem-g-p-k-additive]
It is easy to see that a pair (z,y) € M @ N lies in FE(M @ N) if and only if # € FE(M) and y € FE(N). Tt
follows that FE(M @& N) = FE(M)® FE(N) and thus that fR(M & N) = fE(M)+ fE(N) and gh(M & N) =
p(M) + gp(N).
9gp gp

Remark 17.18. [rem-g-p-k-iso]
It is clear that any isomorphism M — M’ restricts to give isomorphisms F&(M) — FE(M') for all P and
k. Thus, if M ~ M’ then f&(M) = fE(M') and gk (M) = gh(M").

Proposition 17.19. [prop-g-p-k-basic]
We have g%(A) =0 for all P and k, and

, 1 ifp=qandk=3j
9p(A/Q7) = { .
0  otherwise.
Proof. Tt is clear that Ff(A) =0 and so gh(A) = fE(A) =0 for all P and all k > 0.
For the case of A/Q7, it will be convenient to choose generators p and ¢ for P and Q. We start by proving
that
0 ifP#Q
fEA/Q)Y=L{0 ifP=Qandk>j
1 ifP=Qandk <j.

First suppose that p # ¢. Then p* and ¢’ are coprime, so ap® +bg’ = 1 for some a,b € A. If v € FE(A/Q7)
then z = p*~!y for some y and pz = 0 so p¥y = 0. On the other hand, it is clear from the definition of A/Q’
that ¢z = 0 for all z € A/Q7, so ¢y = 0. We thus have y = 1.y = ap*y+bg’y = 0, and thus z = p*~1y = 0.
Thus FE(A/Q’) =0 and so fE(A/Q7) = 0, as required.
Now suppose that @ = P (so we can choose ¢ = p) and j < k. Then k —1 —j > 0 and pF~1A/P/ =
pt=1Ipi A/PI =0 and FE(M) < p*~1M so FE(A/P?) = 0. This means that f}%(A/Pj) = 0, as required.
Now suppose instead that ¢ = p and k < j. Let e be the element 14+ p’ A in A/P’, so that ae = (a+p’ A).
Put f = p’~le, sothat f # 0 and pf = 0. We also have f = p*~1(p’~*e) so f € p*~TA/P7 so f € FE(A/P).
Let u be another element of FE(A/P7). We can write u = ae = (a + p’ A) for some a € A. As pu = 0 we
have pa = 0 (mod p’), or in other words pa = p’b for some b, so a = p’~1b and thus u = bf. This shows
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that {f} generates the vector space F&(A/P7) over A/P, and f # 0 so the dimension must be exactly one.
Thus fE(A/P7) = 1, as required.

It is now easy to deduce our description of g&(A/Q7). If Q # P then fE(A/Q7) = 0 for all k and it
follows easily that g%(A/Q7) = 0. Suppose instead that Q = P. If k > j then k+ 1 > j as well so
fE(A/P7) = fETH(A/P7) = 050 gl (A/P7) = 0 as claimed. If k < j then both k and k + 1 are less than or
equal to j, so fiE(A/P7) = fETY(A/P7) = 1 so ghh(A/P7) = 0 as claimed. If k = j then fi(A/P’) =1 and
fEFLY(A/PT) = 0 s0 g&(A/P7) =1 as claimed. O

Corollary 17.20. [cor-g-p-X]
Let M be a finitely generated torsion module. Then if there is any list of basic modules whose direct sum
is isomorphic to M, then that list must contain precisely g%(M) copies of A/ P*. O

Lemma 17.21. [lem-one-summand]
Suppose that M has a generating set eq, ...,en_1 such that P*e; = 0 for all i, and P*~'eq # 0. Then
Aeg ~ A/Pk, and there is a submodule N such that M = Aey ® N.

Proof. Tt will again be convenient to choose a generator p for P.

First, it is clear that the map a — aep induces an isomorphism A/I — Aeg, where I = {a | aeg = 0}.
Now I = Au for some u, and p* € I so u divides p*, so u must be a unit multiple of p? for some j < k.
On the other hand, we are given that p*~! ¢ I, so we must have j = k and I = P*. This means that
Aeg ~ A/P¥ = A/P* as claimed.

For the splitting M = Aeqg® N, we will argue by induction on n. If n = 1 we can just take N = 0. Suppose
instead that n > 1, and put M’ = Z;:OQ Ae; € M. By induction, there is a submodule N’ < M’ such that
M' = Aeg®N'. Put J = {a | ae,,_1 € M'}. This again contains P¥, so we must have J = P! for some [ < k.
We thus have p'e,,_1 € M’ = Aeqg @ N', so ple,_1 = veg + n' for some v € A and n’ € N’. We can multiply
this by p*~! to get p*lveg + pF~n/ = 0in M’ = Aeg © N', so pF~lveg = 0. As Aeg ~ A/p* we deduce that
pF~lv € pP A and so v € p'A, say v = plw. Put e* = e,,_1 —weg (so ple* =n') and N = N’ + Ae*. It is clear
that

Aeg+ N = Aeg+ N' + Ae* = Aeg + N' + Ae,,_1 = M' + Ae,,_1 = M.

Now suppose we have an element x € Aeg N N, so
T =reg =5+t =s+te,_1 — twegy

for some r € A and s € N’ and t € A. This gives te, 1 = (r +tw)eg — s € Aeg + N' = M',so t € J = Ap,
sot = p't’ for some t’ € A. As ple* = n’ we deduce that req = s +t'n’ € N'. However, we have Aeg NN’ =0
by assumption, so reg = 0, or in other words = = 0. This proves that M = Aey & N, as required. ([l

Corollary 17.22. [cor-one-summand]
Let M be a nontrivial finitely generated P-torsion module, and let k be the smallest integer such that
PEM =0. Then M ~ A/P* @ N for some N.

Proof. Choose a finite system of generators e; for M. These must all satisfy P¥e; = 0, and at least one of
them must satisfy P¥e; # 0. After renumbering if necessary we can assume that P¥eg # 0, and then we can
apply the lemma. O

Proof of Theorem 17.3. Given Remark 17.16 and Corollary 17.20, we need only show that every finitely
generated P-torsion module M is isomorphic to a finite direct sum of modules of the form A/P*. We will
argue by induction on the number

fB(M) =dimy,p{m € M | Pm = 0}.

If f5(M) = 0 then multiplication by p gives an injective map M — M, but every element m € M also

satisfies p*m = 0 for large k. The only way that these can be reconciled is if M = 0, in which case

M is the direct sum of the empty list. Suppose instead that fi(M) > 0, so M # 0. Let k be the

smallest integer such that P*M = 0. Corollary 17.22 gives a splitting M = A/P* @ N, and we find that

fE(N) = fL(M) — f5(A/P*) = f5(M) — 1. We can thus assume by induction that N splits as a sum of

modules of the form A/P7, and it follows that M has a splitting of the same type. O
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Example 17.23. [eg-finab]

Abelian groups are just the same as Z-modules, so we can use Theorem 17.3 to classify the finitely
generated ones. Every such group is therefore a direct sum of copies of Z, or Z/p* for various prime numbers
p and integers k > 0. The classification of finite abelian groups is the same, except that we cannot have any
summands isomorphic to Z.

Example 17.24. [eg-jordan]
Another application of the above theory is to the classification of matrices up to conjugacy. Given a
square matrix C' € Mat,(C), we can make C? into a module over C[z] by the rule

(Z aia:i> U= Z a;Cu.

We write Ve for C? equipped with this module structure. Note that any C-linear map o: C¢ — C? has the
form a(v) = Uwv for some matrix U, and « gives a C[z]-linear map from Vi to Vp if and only if UC = DU.
Using this, we see that Vo ~ Vp if and only if C' and D are conjugate. Note that Vi cannot have any
summands of the form C[z], because dim¢(C[x]) = oo. Theorem 17.3 therefore tells us that V¢ is isomorphic
to a finite direct sum of modules of the form C[x]/(x — A\)*, for various complex numbers A and integers
k > 0. In particular, if C' is a Jordan block of size d and eigenvalue A, it is not hard to write down an
isomorphism V¢ ~ C[z]/(z — A\)%. After a small amount of translation, this proves the familiar theorem that
every square matrix over C is conjugate to a block diagonal sum of some Jordan blocks.

Example 17.25. [eg-diffeq]

A third application is to the study of differential equations. Let C*°(R,C) denote the set of smooth
complex-valued functions on the real line. We can make this a module over the polynomial ring C[D] by the
rule D.f = f’. Given a differential operator L = ZZ:O apD¥*, we want to understand the solution space

S(L) = {f € C*(R.C) | Lf =0}.

This is a finitely generated module over C[D], so we can use the above theory. We can factor L as
T
L = U H(D — /\j)mj
j=1
for some u # 0 and some distinct complex numbers A; and exponents m; > 0. Using Lemma 17.14 we get
S(L) = P SUD = A)™).
j=1

It is straightforward to check that S(D™) has basis {1, z,...,2™ '}, and that multiplication by e** gives an
isomorphism S(D™) — S((D — A\)™). It follows that the functions zPe*** (with 1 < k <7 and 0 < p < my,)
give a basis for S(L) over C, and that

S(L) =~ @ CIDI/((D = Ae)™).
k=1

18. NOETHERIAN RINGS

Definition 18.1. [defn-noetherian]

Let A be a ring, and let M be an A-module. We say that M is noetherian if every submodule of M
is finitely generated. We say that A is a noetherian ring if it is noetherian as a module over itself, or
equivalently, every ideal is finitely generated.

We will see that most of the rings that people usually study are noetherian, but it takes some work to
prove this. However, there are a few cases that we can handle immediately:

Example 18.2. [eg-basic-noetherian]

In a principal ideal domain, every ideal is generated by a single element and so is certainly finitely
generated. Thus, principal ideal domains are noetherian rings. In particular Z is noetherian, and for any
field K both K and K[z] are noetherian.

62



Example 18.3. [eg-not-noetherian]
Consider the set
A=72Qz] ={f € Q[z] | f(0) € Z}.

One can check that A is a subring of Q[z], and that the subset I = xQ[z] is an ideal. We claim that this
is not finitely generated, so A is not noetherian. To see this, define 7: I — Q by 7(3_,-, a;x') = ay, so
m(I) = Q. Suppose we have a finite list of elements go,...,g94—1 € I, and we let J be the ideal in A that
they generate. By clearing denominators we can find n > 0 such that nn(g;) € Z for all i. Now any element
of J has the form h = ), f;g; with f; € A, which gives nm(h) = >, fi(0).n7w(g;) € Z. This shows that
x/(2n) eI\ J,soJ#1I.

Proposition 18.4. [prop-noetherian-ses]
Suppose we have a short exact sequence of A-modules

0sLS M5 N

Then M is noetherian iff both L and N are noetherian. In particular:

(a) If M is noetherian, then every submodule and every quotient module of M is also noetherian.
(b) If L and N are noetherian, then so is L & N.

Proof. First suppose that M is noetherian. Any submodule Ly C L is isomorphic to ¢(Lg) C M and so is
finitely generated; so L is noetherian. Consider instead a submodule Ny C N, and put My = ¢~ (Ny) C M.
Now My must be generated by some finite list of elements (yi)?z_ol, and ¢: My — Ny is surjective, so Ny is
generated by (w(yi))f.l;(}. This proves that N is also noetherian.

Suppose instead L and N are both noetherian. Consider a submodule My C M, and put Lo = ¢~ (Lg) C

L and Ny = (M) C M. One can check that ¢ and « restrict to give a short exact sequence

0— Lo 2% My 2% Ny — 0.

As L and N are noetherian, we can choose finite lists X = (:Ei)f;()l and Z = (zk)’,;;é that generate L
and Ny respectively. Put = = ¢o(z;), and choose 2}, € My with tg(z,) = 2. We claim that the list
Y = (20, Ty 1520, %_1) generates Mo. To see this, consider an element m € My. As Z generates
Ny, we can express ¢o(m) as ), ¢,zj for some coefficients ¢, € A. Put my =", crz;, € spany(Y) and mg =
m —my. We then have 1g(m1) = ¥o(m) so ma € ker(1pg) = image(¢o). Thus, for some system of coefficients
a; € A we have mp = ¢(>_, a;x;) = Y, a;x; € spany(Y). It follows that m = m; + my € spany(Y) as
claimed. This shows that an arbitrary submodule My C M is finitely generated, so M is noetherian.
Finally, we can recover statements (a) and (b) by considering short exact sequences L — M — M /L and
L— L& N — N as in Examples 12.4 and 12.5. ([l

Corollary 18.5. [cor-fg-noetherian]
Let A be a noetherian ring. Then an A-module M is noetherian iff it is finitely generated.

Proof. If M is noetherian then by definition it must be finitely generated (because it is a submodule of
itself).

Conversely, we can use Proposition 18.4(b) to see by induction that A™ is noetherian for all n > 0. Any
finitely generated module is isomorphis to a quotient of A™, and so is noetherian by Proposition 18.4(a). O

Proposition 18.6. [prop-simple-noetherian]
Let A be an arbitrary ring; then every simple module is noetherian. More generally, every module of finite
length is noetherian.

Proof. First let S be a simple module, so S # 0 and every nontrivial submodule is all of S. Choose any
nontrivial element s € S and note that As must be all of S; this proves that S is finitely generated. The
only other submodule of S is 0, which is also finitely generated, so S is noetherian.

Now let M be a simple module, with composition series (M;)?_, say. We then have short exact sequences
M;—1 — M; — M;/M;_1 in which M;/M;_, is simple. We can use these to prove by induction that M; is
noetherian for all 7. In particular, as M,, = M, we see that M is noetherian. O
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Proposition 18.7. [prop-noetherian-ops]
Let A be a noetherian ring. Then A/K is noetherian for every ideal K C A, and A[U~1] is noetherian for
every multiplicative subset U C A. Moreover, if B is another noetherian ring then A X B is also noetherian.

Proof. Corollary 5.46 tells us that every ideal in A/K has the form I/K for some ideal ] C A with K C I.
As A is noetherian we can choose a finite set of generators for I, and the images of these elements in A/K
will generate I/K. A similar argument based on Proposition 8.15 shows that A[U~!] is noetherian.
Finally, Example 5.39 tells us that every ideal in A x B has the form I x J for some ideals I C A and
J C B. Now I will be generated by some finite list (ai)f;Ol and J will be generated by some finite list
(bj)?;é. It follows easily that I x J is generated by the elements (a;,0) and (0, b;). O

Proposition 18.8. [prop-acc|
Let A be a ring and let M be an A-module. Let submod(M) be the set of all submodules of M. Then the
following are equivalent:

(a) M is noetherian.

(b) Any chain My C M; C My C --- in submod(M) is eventually constant (so there exists ng € N such
that My, = M,, for alln > ng).

(¢) Every nonempty subset of submod(M) has a mazimal element.

The advantage of conditions (b) and (c) here is that they depend only on the structure of submod (M) as
an ordered set.

Proof.

(a)=(b) Suppose that M is noetherian, and that we have a nested chain of submodules M; as in (b). Put
M. =J; M;, and recall from Remark 11.39 that this is also a submodule of M. As M is noetherian,
we can choose a finite list of elements (mk)z;(l) that generate M,,. As myi € M, we can choose py
such that my € M,,. Now put ng = max(po,...,pa—1), S0 my € M,, for all k. It follows that for
all n > ng we have M,, = M,, = M as required.

(b)=(c) Suppose that there is a nonempty subset C C submod(M) with no maximal element. As C is
nonempty we can choose My € C. Now M, cannot be maximal, so we can choose M; € C with
My C My. Again M; cannot be maximal, so we can choose My € C with M; C Ms. We can continue
this process recursively to get a strictly increasing chain which never becomes constsnt. This shows
that the negation of (¢) implies the negation of (b), or equivalently that (b) implies (c).

(¢c)=>(a) Suppose that (c) holds. Given any submodule N C M, put

C ={L € submod(M) | L C N and N/L is not finitely generated }.

We claim that C is empty. If not, there is a maximal element L € C. As N/N is certainly finitely
generated, we see that L must be a proper subset of N, so we can choose g € N\ L. Now L+ Az is
strictly larger than L, so by the maximality of L we see that the quotient N/(L 4+ Axg) is generated
by some finite list of elements, which will be the images of some elements x1, ..., z, € N. This means
that N = L+ Axo + Azy + -+ -+ Ax,., so N/L is generated by the finite list g, ..., z,, contradicting
the assumption that L € C. Thus, C must be empty after all, so in particular 0 ¢ C, so N is finitely
generated.

]

We call the next result the principle of noetherian induction.

Corollary 18.9. [cor-induction]

Let M be a noetherian module, and let C be a family of submodules of M. Suppose that whenever N C M
and every strictly larger submodule lies in C, we also have N € C. (In particular, we suppose that M € C,
as the condition is vacuously satisfied when N = M.) Then every submodule lies in C.

Proof. The set D = submod(M) \ C cannot have a maximal element, so it must be empty. a

The following result is called the Hilbert basis theorem.
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Theorem 18.10. [thm-hilbert]
Let A be a noetherian ring; then Alzx] is also noetherian.

Proof. For any f € Alx] we let m,(f) denote the coefficient of ™ in f. This defines an A-module map
T Alz] = A.

Now consider an ideal I C Afz]. Let I<,, denote the set of polynomials in I of degree at most n, which
is an A-submodule of I. Put J, = m,(I<,) € A, which is an A-submodule of A and thus an ideal. We
have x.I<,, C I<py1 and mpi1(xf) = mp(f) so J,, C Juy1. We thus have an ascending chain of ideals in
A, which must eventually be constant as A is noetherian. Choose N such that J, = Jy for all n > N.
Now note that I<y is an A-submodule of the module A[z]<n, which is isomorphic to AN*L and is therefore
noetherian. We can therefore choose a finite set ' C I<, that generates I<y as an A-module. Let I* denote
the ideal in A[z] generated by F. It is clear that I<y C I* C I. Suppose we know that I<,,_1 C I* for some
n > N, and that f € I<,. We then have 7,(f) € J, = Jnv = nn(I<n). We can therefore express m,(f) as
Y aimn(f;) witha; € Aand fi € F. Put g =2V Y, a;fiand h= f —g. Then g € I* C I and m,(h) =0
so h € I<p,—1 C I*. It follows that the polynomial f = g+ h is also in I*. As f € I<, was arbitrary we
deduce that I<, C I'*, and after extending this inductively we see that I* = I. Thus, I is generated by the
finite set F', as required. O

Corollary 18.11. [cor-hilbert]
If A is a noetherian ring and B is a finitely generated A-algebra then B is also noetherian.

Proof. Every finitely generated A-algebra is a quotient of a polynomial ring P, = Alzo,...,2z,—1] for some
n. As P, ~ P,,_1[z] we can use Theorem 18.10 repeatedly to see that P, is noetherian for all n, and we have
also seen that quotients of noetherian rings are noetherian. (Il

19. SUPPORTS AND ASSOCIATED PRIMES

Throughout this section, A is assumed to be a noetherian ring. Moreover, the symbol M will refer to an
A-module that is assumed to be finitely generated unless we explicitly say otherwise.

In the Section 17, we considered the case where A is a principal ideal domain, and we studied the structure
of M using certain auxiliary modules Ep(M). We now generalise the definition of these modules.

Definition 19.1. Let M be an arbitrary A-module, and let P be a prime ideal in A.

(a) We again say that m € M is a P-torsion element if P*m = 0 for some k > 0. We write Tp(M) for
the set of P-torsion elements, which is a submodule of M.

(b) There is a natural map from Tp(M) to the localisation Tp(M)p = Tp(M)[(A\ P)~!]. We define
Ep(M) to be the image of this map (which is a quotient of Tp(M)).

(c) We say that M is P-coprimary if every element of M is P-torsion, but for every element a € A\ P,
multiplication by a gives an injective map M — M.

Remark 19.2. Suppose that A is a principal ideal domain. We then find that To(M) = M, and To(M ) =
MI[(A\ 0)~1]. Tt follows that the kernel of the map n: To(M) — To(M)o is just T(M), so the image (which
we are now calling Fo(M)) can be identified with M /T (M) (which was our previous definition of Ey(M)).
Similarly, for a nonzero prime ideal P and an element u € A\ P we find that u is invertible mod P, so u is
invertible mod P¥ for all k, so the map n: Tp(M) — Tp(M)p is an isomorphism. It again follows that our
new definition of Ep(M) is essentially the same as the old one.

One of our main tasks is to understand which primes P have Ep(M) # 0. Just as in the case of a principal
ideal domain, it will turn out that there are only finitely many of them (under our standing assumption that
M is finitely generated). Next, it turns out that we do not have M ~ @, Ep(M) in general. Nonetheless,
we will be able to prove some weaker and more complicated statements along the same lines, involving the
notion of a primary decomposition. Our other main task is to set up this theory.

Proposition 19.3. [prop-EPM-coprimary]
Let M be an arbitrary A-module. Then Ep(M) is always P-coprimary, and M is P-coprimary if and
only if it is isomorphic to Ep(M).
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Proof. Because Ep(M) is a quotient of Tp(M), it is easily seen to be a P-torsion module. It is also a
submodule of Tp(M)p, and elements of A\ P act as isomorphisms on Tp(M)p, so they act injectively on
Ep(M). This proves that Ep(M) is P-coprimary.

Conversely, suppose that M is P-coprimary. This firstly means that Tp(M) = M, so Ep(M) is the image
of the map M — Mp. This is the same as M /N, where

N={neM |un =0 for some u € A\ P}.
From the definitions and the P-coprimary condition we see that N =0, so Ep(M) = M. O

Definition 19.4. Let M be an arbitrary A-module.

(a) We put supp(M) = {P € zar(A) | Mp # 0}, and call this the support of M. (Recall here that zar(A)
is the set of all prime ideals in A.)

(b) A minimal prime for M is a minimal element of the set supp(M). We write min(M) for the set of
minimal primes.

(¢) An associated prime for M is a prime ideal P such that M contains a submodule isomorphic to A/P.
We write ass(M) for the set of associated primes.

(d) We put reg(M) = {a € A | a.1ps is injective }.

(e) We put ann(M) ={a € A|aM = 0}.

(f) We put A(M) = {anng(m)|m e M\ {0}}.

Example 19.5. [eg-pid-ass]

Let A be a principal ideal domain. As we see from Theorem 17.3, any finitely generated A-module M can
be written as M = Eo(M) ® @ p_o Ep(M), where Eq(M) is free and Ep (M) is annihilated by some power
of P and only finitely many of the summands Ep(M) are nonzero. One can check that

(a) If Eg(M) # 0 then supp(M) = zar(A) = {0} II{P | P # 0}. However, if Ex(M) = 0 then
supp(M) = {P # 0| Ep(M) # 0}.

(b) If Eg(M) # 0 then min(M) = {0}, but if Ey(M) = 0 (or equivalently M = T'(M)) then min(M) =
supp(M).

(c) In all cases ass(M) = {P € zar(A4) | Ep(M) # 0}. (In fact, we will see that this holds for arbitrary
noetherian rings, not just for principal ideal domains.)

(d) reg(M) is the set of elements a € A that do not lie in any associated prime ideal.

There is no real difficulty in describing ann(M) and A(M) as well, but the notation would be cumbersome.

Example 19.6. [eg-dedekind-ass]

As in Example 16.11, consider the ring A = Z[\/—5] and the ideal M generated by 3 and 1+ /=5. We
will use this repeatedly as a counterexample for various things related to associated primes and primary
decompositions. For the moment we just note that A is an integral domain and A ~ 34 < M < A; this
easily implies that Ey(M) = To(M) = M, whereas Ep(M) = Tp(M) = 0 for all P # 0. We also find that
supp(M) = zar(A) and min(M) = ass(M) = {0} and reg(M) = A\ 0 and ann(M) = 0 and A(M) = {0}.

Example 19.7. [eg-cross-ass]
Consider the ring A = C[z,y] and the module M = A/(xy). We claim that

supp(M) = {P € zar(4) |z € Por y € P}
={Az, Ay, Ao + Ay} N {Az+ Aly —p) | p € C*J I {A(x — A) + Ay | A € C*}.

To see this, put e = 1 4+ Azy, which is the obvious generator of M. We have Mp = 0 iff ¢/1 = 0 in Mp,
iff there exists u € A\ P with ue = 0, iff there exists u € A\ P with u € Axy, iff zy ¢ P, iff (x € P and
y € P). By the contrapositive, we have P € supp(M) iff x € P or y € P. If x € P then P corresponds to
a prime ideal P in the quotient ring A/z = Cly], so P must be zero or generated by y — u for some u € C.
The situation if y € P is similar, and our more explicit description of supp(M) follows easily. It follows in
turn that min(M) = {Az, Ay}.

Any element m € M can be written in a unique way as a +x f(z) +y g(y), where a € C, and f and g are
polynomials. One can check that

e If a # 0 then anns(m) = Axy
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If a=0but f # 0 and g # 0 then again annx(m) = Azy

If a=0and f =0 but g # 0 then anny(m) = Ax

If a=0and g =0 but f # 0 then anns(m) = Ay
Ifa=0and f =0and g =0 (so m =0) then anng(m) = A.
This gives

(Here we have used the fact that ass(M) is the set of prime ideals in A(M); the proof is straightforward,
and is given as part of Proposition 19.15 below.)

Example 19.8. [eg-tick-ass]

The previous example involved the associated prime ideals Az and Ay, neither of which is contained in
the other. Some additional phenomena appear in cases where the relevant prime ideals are nested. For
example, we can take A = C[xz,y] again, and M = A/(Axy + Ay?). We first claim that

supp(M) = {P € zar(A) |y € P} = {Ay} I {A(x — \) + Ay | A € C}.
To see this, we again let e denote the standard generator of M, so Mp = 0 iff e/1 = 0 iff there exists
u € A\ P with u € Azy + Ay?. By the contrapositive, we have P € supp(M) iff Azy + Ay> < P. If y € P
then it is clear that Axy + Ay? < P. Conversely, if Azy + Ay? < P then y? € P, which means that y € P
as P is prime. It follows easily that supp(M) is as described, and thus that min(M) = {Ay}.

Any element m € M can be written as m = f(x) 4+ ay for some some polynomial f and some constant
a € C. One can check that

o If £(0) # 0 then anna(m) = Azy + Ay?
o If f(0) =0 but f(x) # 0 then anng(m) = Ay
o If f(x) =0 but a # 0 then anny(m) = Ax + Ay
o If f(z) =0 and b =0 (so m =0) then anny(m) = A.
This gives
ass(M) = {Ay, Az + Ay}
reg(M) = A\ (Az + Ay)
ann(M) = Azy + Ay?
A(M) = {Azy + Ay?, Ay, Az + Ay}.

Proposition 19.9. [prop-ass-supp]
ass(M) is always a subset of supp(M).

Proof. If P € ass(M) then we have an injective homomorphism «: A/P — M. Using Proposition 12.13
we deduce that the map ap: (A4/P)p — Mp is also injective, but (A/P)p is easily seen to be nonzero, so
Mp # 0, so P € supp(M). a

Proposition 19.10. [prop-sum-ass]
For direct sums we have
supp(M @ N) = supp(M) U supp(N)
ass(M @ N) = ass(M) U ass(N)
reg( ) = reg(M) Nreg(N)
ann(M @ N) = ann(M) Nann(N).
Proof. Ounly the claim about ass(M @& N) requires comment. Using the inclusions M — M @& N and
N — M @& N, it is clear that ass(M @& N) D ass(M) U ass(N). In the opposite direction, suppose that
P € ass(M @ N), so there is an injective homomorphism a: A/P — M @& N. This consists of a pair of
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homomorphisms 8: A/P — M and v: A/P — N. We claim that at least one of these is injective. If not, we
can choose a,b € A\ P with (a4 P) = 0 and y(b+ P) = 0. It follows that a(ab+ P) = 0, but « is injective,
so ab € P, which contradicts the fact that P is a prime ideal. This proves the claim, so P € ass(M)Uass(N),
as required. O

The above can be partially generalised as follows.

Proposition 19.11. [prop-ass-ses]|
Suppose that there is a short exact sequence

0MESUL NSO

Then
supp(U) = supp(M) U supp(N)
ass(M) C  ass(U) Cass(M)Uass(NV)
reg(M) Nreg(N) C  reg(U) Creg(M)
ann(M).ann(N) C  ann(U) C ann(M)Nann(N).

Proof. First, Proposition 12.13 gives us a short exact sequence Mp — Up — Np for each P, and it follows
easily that Up can only be zero if Mp and Np are both zero. This means that supp(U) = supp(M)Usupp(NV).

Next, if P € ass(M) then we have an injective homomorphism A/P — M, which we can compose with
¢ to get an injective homomorphism A/P — U. This shows that ass(M) C ass(U). Suppose instead that
we start with an injective homomorphism g: A/P — U. If ¥8: A/P — N is injective, then P € ass(N).
Otherwise we can choose an element x € A\ P such that ¢5(x + P) = 0. As image(¢) = ker(¢) there exists
m € M with ¢(m) = f(xz + P). As both ¢ and 8 are injective, we see that ann(m) = ann(¢(m)) = P, so
there is an injective homomorphism a: A/P — M with a(a + P) = am. This means that P € ass(M), as
required.

We now consider regular elements. Suppose that a € reg(M)Nreg(N). If e € U with ae = 0, then we also
have ay(e) = ¢(ae) = 0, but a is regular on N so ¢(e) = 0. As image(¢) = ker(¢)) we see that e = ¢(m)
for some m, and ¢(am) = a¢p(m) = ae = 0, but ¢ is injective so am = 0. Moreover, a is regular on M so
m =0, so e = ¢(m) = 0. This proves that reg(M) Nreg(N) C reg(U). In the other direction, if a € reg(U)
and am = 0 for some m € M then we can apply the map ¢ to see that a ¢(m) = 0, but a is regular on U so
¢(m) =0, and ¢ is injective so m = 0. Thus, reg(U) C reg(M).

Finally, suppose that a € ann(U). Any n € N has n = ¢(e) for some e € U, so an = ¢(ae) = 1»(0) = 0;
thus a € ann(N). Also, for m € M we have ¢(m) € U so ¢p(am) = a¢p(m) = 0, but ¢ is injective so am = 0;
thus a € ann(M). In the opposite direction, suppose that b € ann(M) and ¢ € ann(N). For e € U we have
P(ce) = cip(e) =0, so ce = ¢p(m) for some m, so bee = ¢(bm) = $(0) = 0; thus be € ann(U). O

Proposition 19.12. If there exist injective homomorphisms
M2 N Lo,

then supp(M) = supp(N) and min(M) = min(N) and ass(M) = ass(N) and reg(M) = reg(N) and
ann(M) = ann(N) and A(M) = A(N).

Proof. Just from the existence of an injective homomorphism M — N we get supp(M) C supp(N) and
ass(M) C ass(N) and reg(N) C reg(M) and ann(N) C ann(M) and A(M) C A(N). As we have injective
homomorphisms in both directions, we conclude that supp(M) = supp(NN) and ass(M) = ass(N) and
reg(M) = reg(N) and ann(M) = ann(N) and A(M) = A(N). From supp(M) = supp(N) it is clear that
min(M) = min(N). O

Proposition 19.13. [prop-ass-chain]
For any finitely generated module M there is a chain

0=MyCM; C---CM,=M

)

and a list Py,..., P, of prime ideals, such that M;/M;_1 ~ A/P; for 1 < i < n. Moreover, we have
ass(M) C{Py,..., Py} (so ass(M) is finite).
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Proof. Let C be the family of all submodules of M that have a chain as described. The zero module lies in
C so C # (. Thus, Proposition 18.8 tells us that C has a maximal element, say N. As N € C we can choose
a chain

O0=MyCM C---CM,=N

for some n, and a list Pp,..., P, of prime ideals, such that M;/M; 1 ~ A/P; for 1 <i <n. If N # M then
ass(M/N) # 0, so we can choose a prime ideal P, and an injective homomorphism a: A/P;y 17 — M/N.
The image of this homomorphism will have the form M, 1/N for some submodule M,,1; C M containing
N = M,. This module M, will then lie in C, contradicting the maximality of N. We conclude that
N = M after all, so we have a chain of the required type for M itself. Note that when P is prime, the
annihilator of any nontrivial element of A/P is just P. It follows that ass(M;/M;_1) = ass(R/P;) = {F;}.
Using the short exact sequences M; 1 — M; — M;/M,;_1 we get ass(M;) C ass(M;—1) U {P;}, and so
ass(M) = ass(M,) C{P1,..., P,}. O

Remark 19.14. [rem-extra-quotient]

In general, we cannot arrange to have ass(M) = {Py,...,P,} in the above construction. To see this,
consider the pair (A, M) as in Example 16.11, where ass(M) = {0}. Suppose we have a chain of submodules
0=DMy< - <M, =M with M;/M;_1 ~ A/0 = A. The short exact sequences M;_; — M; — A must
split, so we have M ~ A", with basis my,...,m, say. As M is a non-principal ideal, we must have n > 1.
As M is just a subset of A, we have a relation mq.my + (—mq).mo = 0, showing that mq,...,m,, cannot be
a basis after all. Thus, there can be no chain of the indicated type.

Proposition 19.15. [prop-max-ann]

(a) The associated primes are precisely the prime ideals that lie in A(M), so ass(M) = zar(A) N A(M).
(b) Every element of A(M) is contained in a mazximal element of A(M).
(¢) Ewvery mazimal element of A(M) is an associated prime.

(d) reg(M) is the complement of the union of the associated primes.

In particular, if M # 0 then ass(M) # 0.
Proof.

(a) If P is an associated prime then there is an isomorphism from A/P to some submodule of M, or
equivalently there is an injective homomorphism a: A/P — M. Put m = «(1 + P), so a(x + P) =
a(z.(14 P)) = xm for all z. As « is injective we see that anng(m) = P. As P # A we have m # 0,
so P € A(M). This shows that ass(M) C zar(A) N .A(M), and the reverse inclusion can be proved
in essentially the same way.

(b) If I € A(M) then {J € A(M) | J D I} is a nonempty family of ideals in the noetherian ring A, so it
has a maximal element by Proposition 18.8. It is clear that any such element will also be maximal
in A(M).

(¢c) Now let P be a maximal element in A(M), and choose m € M \ {0} such that P = anns(m). As
m # 0 we have 1 ¢ P. Suppose that a € P, so am # 0. It follows that anns(am) € A(M) and
P C anny(am) so by maximality anny(am) = P. In particular, if b is another element with b ¢ P
then b & ann4(am) so abm # 0 so ab & P. This proves that P is prime, so P € ass(M) by (a).

(d) Tt is clear that the complement of reg(M) is the union of all the ideals in A(M). From (b) and (c)
we see that this is the same as the union of the associated prime ideals.

O

Corollary 19.16. [cor-exists-regular]
Let I < A be an ideal that is not contained in any of the associated primes for M. Then reg(M) NI # (.

Proof. Proposition 19.13 tells us that that there are only finitely many associated primes, we can use Propo-
sition 5.36. This tells us that I is not contained in the union of the associated primes. The claim therefore
follows from Proposition 19.15(d). O

Proposition 19.17. [prop-fraction-ass]
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For any multiplicative set U C A we have
asspg-(M[U™Y) ={PU"] | P € assa(M), PNU = 0}.
In particular, we have M[U '] # 0 iff ass giy-1](M[U']) # 0 iff there is a prime P € ass(M) with PNU = (.

Proof. First, for an element m/u € M[U~1] we have m/u = 0 iff mw = 0 for some w € U iff ann (m)NU = 0.
Similarly, if (a/v)(m/u) = 0 then awm = 0 for some w € U, and we can rewrite a/v as (aw)/(vw) with
aw € anny(m) and vw € U. This gives

ann gy -1)(m/u) = ann 4 (m)[U Y.

Suppose that P € asss (M) with PN U = (. Then there is an element m € M \ {0} with anny(m) = P.
It follows that anng;y—1)(m/1) = P[U'], and P[U~'] is a prime ideal in A[U~'] by Proposition 8.18, so
PIU| € assqjy—1)(M[U)).

Conversely, suppose we have an ideal P* ¢ assA[Uq](M[U*l]). Proposition 8.18 tells us that the set
P={a€ Ala/l € P*}isa prime ideal in A with PNU = @ and that P* = P[U~!]. As P* is an associated
prime, there is an element m/u € M[U™'] with ann -1 (m/u) = P*. Next, as A is noetherian we can
choose a finite list ag,...,aq—1 that generates P. Now a;/1 € P* so a;m/u = 0 so there exists v; € U
with a;v;m = 0. Put v = [[,v; € U, and note that a;um = 0 for all ¢, so P C anng(vm). On the other
hand, if bum = 0 then the element b/1 = (bv)/v lies in ann g;y-1j(m/u) = P*, so b € P. We conclude that
anny(vm) = P, so P € assa(M). O

Corollary 19.18. [cor-loc-ass]
Let Q be a prime ideal in A. Then the following are equivalent:

(a) Q € supp(M)

(b) @2 annA(M)

(c) @ ann g (M)

(d) There is an associated prime P € ass(M) with Q 2O P.

Proof. Take U = A\ P in the Proposition to see that (a) and (d) are equivalent. As @ is prime, we see that
a € Q iff ¥ € Q for some k > 0. Using this, we see that (b) and (c) are equivalent.

Next, if there is an element v € anna (M) \ @ then for all m/u € Mg we have m/u = (vm)/(vu) = 0, so
Mg = 0. Conversely, suppose that Mg = 0. By assumption there is a finite list myg, ..., mg—1 that generates
M. The elements m;/1 € Mg must be zero, so there are elements v; € A\ Q with v;m; = 0. The product
v =[], v; then lies in anns (M) \ Q. It follows that (a) and (b) are equivalent. O

Corollary 19.19. [cor-min-ass]
We have min(M) C ass(M) C supp(M), so min(M) (which was originally defined as the set of minimal
elements in supp(M) ), is also the set of minimal elements in ass(M).

Proof. We saw in Proposition 19.9 that ass(M) C supp(M). Now suppose that @ € min(M), so in particular
Q € supp(M). By the previous corollary, there is an associated prime P € ass(M) with P C ). Now both P
and @ lie in ass(M), but @ is minimal in supp(M) by hypothesis, so we must have P = @, so Q € ass(M). O

Proposition 19.20. [prop-primary-collect]
Submodules and direct sums of P-coprimary modules are again P-coprimary.

Proof. Let M and N be P-coprimary modules, and let L be a submodule of M & N. If a € P then there
are integers m,n > 0 such that a™M = 0 and "N = 0; it follows that a™>("™"™) [, = 0. On the other
hand, if a ¢ P then a.1j; and a.1y are injective, so the map a.1;, = (a.1p @ a.1y)|p is also injective. It
follows that L is P-coprimary. The special cases where L = M & N or N = 0 give the two statements in the
Proposition. (Il

Proposition 19.21. [prop-coprimary-ass]
Suppose that M is nontrivial and P- copm'mary. Then
(a) reg(M) = A\ P, and \/ann (M
(b) Ep(M) =Tp(M) =M.
(C) ]fQ ﬁ P then EQ(M) = TQ(M) =0.
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(d) If Q < P then To(M) = M but Eq(M) = Mg = 0.
(e) If Q@ # P then Eq(M) = 0.

() supp(M) = {Q € zar(4) | Q > P}.

(g) min(M) = ass(M) = {P}.

Proof. Tt is clear from the definitions that reg(M) = A\ P and thus that \/ann(M) < P. For the converse,

let my,...,m, be generators for M. If a € P then by assumption there are integers k; > 0 with a*m; = 0
for all i. It follows that the number k& = max(ky, ..., k,) satisfies a¥*m; = 0 for all 4, so a* € ann 4 (M). This
proves (a).

Claim (b) is just a reminder of Proposition 19.3.

For claim (c), suppose that Q £ P, so we can choose u € Q \ P. If m € To(M) then we have u*m = 0
for some k, but u acts injectively on M by assumption, so To(M) = 0. It follows that To(M)g = 0 and
Eq(M) =0 as claimed.

For claim (d), suppose instead that Q < P. For every m € M we have P*m = 0 for large k, so certainly
Q*m = 0. This proves that Tg(M) = M. Now choose u € P\ Q. For any element m/v € Mg we have
m € M so uFm = 0 for some k, so m/v = (uFm)/(uFv) = 0. This proves that To(M)g = Mg = 0. As
Eq(M) is the image of the natural map To(M) — To(M)g, we see that Eg(M) = 0 as well.

Claim (e) is simply a combination of (c) and (d).

Claim (f) follows from (a) together with Corollary 19.18. It follows in turn that min(M) = {P}, so
Corollary 19.19 gives P € ass(M). Conversely, if () € ass(M) then there must exist m € M \ 0 with
anng(m) = Q, and as Q is prime we have /ann4(m) = +/Q = Q. However, the coprimary condition gives
\/m = P, so we must have Q = P. This completes the proof of (g). O

20. PRIMARY DECOMPOSITION
In this section we again assume that A is a noetherian ring, and M is a finitely generated A-module.

Definition 20.1. [defn-primdec]
A primary decomposition of M consists of a family of modules M (P) (for all P € zar(A)) together with
homomorphisms 7p: M — M (P) such that
(a) M(P) is P-coprimary for all P.
b) M(P) =0 for all but finitely many P.
¢) The homomorphisms mp: M — M(P) are all surjective.
d) The combined map 7: M — @, M(P) is injective.
e) Whenever M(P) # 0, the combined map M — P, p M(Q) has nontrivial kernel (which we denote
by M[P]).

We will show that every finitely generated module has a primary decomposition.

Remark 20.2. Primary decompositions are traditionally defined in terms of the submodules ker(7p) rather
than the quotient modules M (P), but that approach obscures the analogy with the theory of modules over
PIDs, so we have avoided it.

Proposition 20.3. [prop-primdec-theta]
Suppose we have a primary decomposition as above, and we put M' = @p M(P) and M" = @, M|[P)].
Put p = 7TP|M[P] : M[P] — M(P) Then
(a) Op is injective for all P.
(b) The evident maps M" — M — M' are also injective, and their composite is @ p Op.
(¢) The modules M[P] and M(P) are both P-coprimary.

Proof. Let o be the evident map M"” — M. The composite
P M =m" 5 M5 M= MP
decomposes into homomorphisms 7p|yg): M[Q] — M(P). By the definition of M[Q], we have mp|ysiq) = 0

unless P = Q. Thus, 7o is the direct sum of the maps p, and the restriction of m to M[P] is essentially
71



Op. As 7 is injective, we conclude that 0p is injective. It follows that the map 7o = @p 0p is injective,
and thus that o is injective. As 0p: M[P] — M(P) is injective, Proposition 19.20 tells us that M[P] is
P-coprimary. (|

Proposition 20.4. In any primary decomposition, we have M (P) # 0 iff P € ass(M).

Proof. We have injective homomorphisms M"” — M — M’, where M" = @, M[P] and M' = @, M(P).
It follows that ass(M") C ass(M) C ass(M’). Using Propositions 19.10 and 19.21 we see that ass(M") =
{P | M[P] # 0} and ass(M’) = {P | M(P) # 0}. From the definition of a primary decomposition, we have
MI[P] # 0 iff M(P) # 0. The claim is now clear. O

Proposition 20.5. [prop-T-exact]

Suppose that the sequence 0 — L = M By N is ezact. Then the rows in the following diagram are also
ezxact, except that the third row need not be exact at EpM.

0 L M N

0—— TP(L) —— TP(M) —— TP(N)

0—— EP(L) —— EP(M) —— EP(N)

O4>TP(L)p HTP(M)IJ 4>TP(N)P.

Proof. The first row is exact by hypothesis. For the second row, injectivity of L — M clearly implies
injectivity of Tp(L) — Tp(M). Now consider an element m € Tp(M), say with P¥m = 0, and suppose that
B(m) = 0 in Tp(N). By the exactness of the original sequence, we have m = «(l) for some | € L. This
satisfies a(P*l) = PFa(l) = P*m = 0, but « is injective so P*l = 0. This means that [ is an element of
Tp(L) with ¢(I) = m, completing the proof that the second row is exact. Exactness of the last row therefore
follow by Proposition 12.13. By definition, the third row maps injectively to the last row, and it follows
easily that the map Ep(L) — Ep(M) is injective. This completes the proof (as we are making no claim
about exactness at Ep(M)). O

Proposition 20.6. Any primary decomposition of M gives a natural diagram as follows:

M[P]|>—— Ep(M)>——> M(P)

L]

M[P]p ?TP(M)p>—>M(P)p.

Proof. First note that Ep(M[Q]) = Ep(M(Q)) = 0 for all Q # P, by Proposition 19.21. Moreover, both
Ep(:) and Tp(:)p preserve monomorphisms, by Proposition 20.5. We can thus apply these functors to the
maps

to get a diagram as claimed, except that we do not yet know that the map M[P]p — Tp(M)p is surjective.
For this, we consider the sequence

0— M[P] - M — P M(@Q),
Q#P
which is exact by the definition of M[P]. Proposition 20.5 tells us that it will remain exact if we apply
Tp()p. Here Tp(M(Q))p = 0 for all Q # P, whereas Tp(M[P])p = M[P]p. We therefore have an exact
sequence
0 — M[P]p — FpM — 0,
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showing that the map M[P]p — Tp(M)p is an isomorphism. O

Although our main interest is in coprimary modules, it turns out to be useful to work temporarily with
modules satisfying a slightly stronger condition which we now introduce.

Definition 20.7. [defn-coirr-submodule]

We say that an A-module M is coirreducible if the intersection of any two nontrivial submodules is
nontrivial. We say that a submodule L < M is drreducible if M/L is coirreducible. Equivalently, L is
irreducible iff whenever U and V are strictly larger submodules of M, the intersection U NV is also strictly
larger than L.

We also say that L is P-primary in M if M/L is P-coprimary.

Remark 20.8. [rem-primary-intersection]
If Ly and L; are both P-primary, then the evident embedding M/(LoNLy) — M /Ly x M /Ly shows that
LoN L is also P-primary.

Proposition 20.9. [prop-coirr-submodule]
Let M be a finitely generated A-module. If M is coirreducible then the ideal P = \/anna (M) is prime
and M is P-coprimary.

Proof. Consider an element a € A. The submodules annj;(a*) € M form an ascending chain, which must
eventually be constant. Thus, for some n we have anny;(a™) = annps(a™1). We claim that anny;(a)Na™ M =
0. To see this, suppose that z € anny (a) N a"M, so x = a™y for some y. Now a""ly = axr = 0, so
y € annys(a™*l) = annps(a™), so a”y = 0 or in other words z = 0 as claimed. As M is assumed to be
coirreducible, we must either have annys(a) =0 or ™M = 0. If annps(a) = 0 then a.1,/ is injective. On the
other hand, if a” M = 0 then a.1); is nilpotent and a™ € anna (M) so a € \Jannua(M) = P. It follows that
P is prime and M is P-coprimary. O

Proposition 20.10. [prop-irr-decomp]
Every submodule of M can be written as the intersection of some finite list of irreducible submodules.

Proof. Let C be the set of submodules that can be written as the intersection of some finite list of irreducible
submodules. Clearly every irreducible submodule lies in C, as does M itself (use the empty list). Moreover,
if L, N € C then it is clear that LN N € C. Now suppose that N is a submodule of M, and that every strictly
larger submodule lies in C. If N is irreducible then it lies in C. Otherwise, we have N = U NV for some
submodules U,V C M that are strictly larger than N, so U and V liein C, so N =U NV € C. It follows by
noetherian induction that every submodule lies in C, as claimed. O

Theorem 20.11. [thm-primdec]
FEvery finitely generated module M has a primary decomposition.

Proof. Propositions 20.9 and 20.10 show that there exist lists L1, ..., Lq of primary submodules with (), L; =
0. Choose such a list which is as short as possible, and let P; be the prime ideal such that L; is P;-primary.
If we had P; = P; for some ¢ # j, then we could replace L; and L; by L; N L;, giving a shorter list of the
required type. This is impossible by assumption, so the ideals P; must all be different. We define M{P} = L;
if P = P; for some i, and M{P} = M otherwise. We then put M(P) = M/M{P}, and note that this is
P-coprimary for all P. We have (\p, M{P} =), L; = 0, so the natural map M — @, M(P) is injective.
Next, observe that M[P,] = ), “k L;, and this is nontrivial by our minimality assumption. We therefore
have a primary decomposition as claimed. O

21. ARTINIAN RINGS

Definition 21.1. [defn-artinian]
We say that a ring A is artinian if for every descending chain

ADJp2J12J22 -

of ideals, there exists N such that J,, = Jy for all n > N.
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More generally, let M be a module over an arbitrary ring A. We say that M is artinian if for every
descending chain

M2 My2>M DM 2---

of submodules, there exists N such that M,, = My for all n > N. Thus, an artinian ring is just a ring A
that is artinian as an A-module.

Remark 21.2. [rem-dcc]
A ring A is artinian if and only if every nonempty family of ideals has a minimal element. The proof is
essentially the same as for Proposition 18.8.

Example 21.3. [eg-finite-artinian]

Suppose that A has only finitely many elements. Given a descending chain of ideals Ji, the numbers |J|
form a weakly decreasing sequence of positive integers, so there exists N such that |J,,| = |Jn| for all n > N.
As J, C Jy this implies that J,, = Jy. We therefore see that A is artinian.

Example 21.4. [eg-length-artinian]

Let M be a module of finite length over a ring A. Given a descending chain of submodules M}, we again
have a weakly decreasing sequence of nonnegative integers len(Mj), which must eventually be constant, and
it again follows that M}, is independent of k when k is sufficiently large. Thus, M is artinian.

Example 21.5. [eg-dim-artinian]

Let M be a module over a field K. We can then identify M with Free;(K) for some set I. If I is infinite
we can choose an infinite sequence of distinct elements (i, )nen, and let M, be the span of {e; | k > n};
this gives an infinite descending chain of submodules that never stabilises, showing that M is not artinian.
Thus, we see that K-modules are artinian if and only if they have finite dimension.

Remark 21.6. [rem-artinian-constructs]

Let A be an artinian ring. For any ideal I C A the partially ordered set idl(A/I) can be identified with
{J €1idl(A) | I C J}, and using this we see that A/l is artinian. Similarly, if U C A is a multiplicative set
then idl(A[U~!]) can be identified with saty (A) C idl(A), so A[U ] is artinian.

Note also that if A = B x C then idl(A) ~ idl(B) x idl(C), and it follows easily that A is artinian iff both
B and C are artinian.

Theorem 21.7. [thm-artinian]
A ring A is artinian if and only if it is noetherian and all prime ideals are mazimal. If so, then A is a
finite product of local Tings in which the mazximal ideal is finitely generated and nilpotent.

Proof. Combine Lemmas 21.8 to 21.11 below. O

Lemma 21.8. [lem-artinian-a]
Any artinian ring is a finite product of indecomposable artinian rings.

Proof. Let A be artinian, and let E be the set of idempotents. We say that idempotents ey and e; are
disjoint if ege; = 0, and we say that an idempotent e is primitive if it is nonzero but cannot be expressed as
the sum of two disjoint, nonzero idempotents. Note that we always have a splitting A = Ae x A(1 —e), and
the factor Ae is indecomposable iff e is primitive.

Let Eqy be the set of primitive idempotents, let E; be the set of idempotents that can be represented as
a finite disjoint sum of primitive idempotents, and put F; = E '\ E;. It will suffice to show that 1 € Fy. In
fact we claim that Ey; = F, or equivalently Es = (). To see this, put & = {Ae | e € Ex}. If Ey # (), then
we can choose e € Fy such that Ae is minimal in & (by the artinian condition). As e lies in Ey it cannot
be zero or primitive, so e = ¢y + e; for some disjoint nonzero idempotents eg,e;. As e € E7, the elements
eo and ey cannot both lie in F;. We may assume without loss of generality that eq € F1, so Aeg € &, but
e & Aeg so this contradicts the assumed minimality of Ae. Thus E5 must be empty after all. O

Lemma 21.9. [lem-artinian-b]
Let A be an indecomposable artinian ring, and put M = Nil(A). Then M is finitely generated and satisfies
M™ =0 for some n, and every element of A\ M is invertible, so A is a local ring. Moreover, A is noetherian.
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Proof. For any element a € A we see that the ideals Aa™ form a descending chain, which must eventually
stabilise. It follows that for some n we have a™ € Aa™!, so for some z € A we have a” = a" 1. It follows
inductively that a” = a"**2* for all k > 0, and in particular a® = a?"z". It follows from this that the
element e = a™z™ is idempotent, with a™ = a™e. As A is indecomposable we have e =0 ore =1. If e =0
then the equation a™ = a™e shows that a is nilpotent. If e = 1 then the equation a™z™ = e = 1 shows that
a is invertible. We now see that every element of A\ M is invertible, so A is local, with M as the unique
maximal ideal. The ideals M* form a descending chain, so for some n € N we must have M™ = M"+1. We
claim that in fact M™ = 0. If not, put J = {J € idl(A) | JM™ # 0}, and note that this is nonempty because
it contains A. By the artinian condition, we can choose a minimal element J € J. As JM"™ # 0 we can
choose a € J with aM™ # 0. As M"T! = M™ we see that (aM)M™ # 0 so aM € J and also aM C J. As J
is assumed to be minimal, we must have aM = J, so in particular a € aM, so a(1 — b) = 0 for some b € M.
However, every element of M is nilpotent, so 1 — b is invertible, so a = 0, which contradicts the assumption
that aM™ # 0. Thus, we must have M"™ = 0 after all.

Next, the quotient K = A/M is a field, and M/M? can be regarded as a vector space over K. Any
descending chain of vector subspaces gives a descending chain of ideals in the artinian ring A/M?, and so
must eventually stabilise. It follows that M/M? has finite dimension over K, so we can choose a finite
subset ' C M such that the image in M/M? is a basis. If we let I be the ideal in A generated by F,
we find that M = I + M?2. This in turn gives M? = IM + M3 C I + M3, and by combining this with
M =1+ M? we get M = I + M3. An evident inductive extension gives M = I 4+ M* for all k, and by
taking k = n we get M = I. Thus, M is finitely generated. It follows that MF is finitely generated for
all k, so M*/M*+! has finite dimension over K, and thus has finite length as an A-module. Using the
short exact sequences M*/M¥*+1 — A/M*F*+1 — A/M* we deduce by induction on k that A/MP* has finite
length. Taking k = n, we see that A itself has finite length. It follows that for all ideals J C A we have
len(J) <len(A) < oo. Thus, if we have an ascending chain of ideals (Jx)xen, then the sequence (len(Jx))ken
is nondecreasing and bounded above, so it must eventually be constant. Thus, for large k we have Ji, C Ji41
with len(Jgy1/Jx) = len(Jgy1) —len(Jx) = 0, so Jr11 = Ji. It follows that A is noetherian. O

Lemma 21.10. [lem-artinian-c]
Let A be a noetherian local ring in which every element of the mazimal ideal is nilpotent. Then A is
artinian.

Proof. Let M be the maximal ideal. As A is noetherian, we can choose a finite list of elements ag, ..., aq_1
that generates M. By assumption, each element a; is nilpotent, so aZ”H = 0 for some integer n;. We put
n=7y.n;.

Next, for any sequence o = (a, . .., aq—1) € N? we put a® = [[, af and |a| = 3, a;. We then find that
{a® | |a] = m} is a generating set for M™. We also find that a® can only be nonzero if a; < n; for all i,
which implies that |a| < n. It follows from this that M™+! = 0.

Next, put K = A/M, which is a field. The quotient M*/M¥*+! is a finitely generated K-module and
so has finite length as an A-module. It follows by induction using the short exact sequences M*/M*F+1 —
A/MFHL — A/MPF that A/M* has finite length for all k. As M™* = 0 it follows that A itself has finite
length as an A-module, and so is artinian by Example 21.4. |

Lemma 21.11. [lem-artinian-d]
Suppose that A is noetherian and that all prime ideals in A are mazimal. Then A is a finite product of
noetherian local rings in which the maximal ideal is nilpotent.

Proof. As A is noetherian, there is a decomposition Q1 N --- N Q, = 0 say, where each ); is a primary ideal
and the corresponding prime ideals P; = \/Q; are distinct. The general theory of primary decompositions
also tells us that every minimal prime ideal of A occurs in the list Py, ..., P,. However, all primes in A are
maximal, so there are no inclusions between distinct primes, which means that all primes are minimal, so
Py, ..., P, are the only prime ideals. If ¢ # j then P; + P; is strictly larger than the maximal ideal P;, so it
must be all of A. We can thus choose a € P; and b € P; with a+b=1. As P, = \/Q; and P; = \/67] we can
choose n and m such that a" ™! € Q; and b € Q;. Now (a+b)"T™*! =1, and all terms in the expansion
of the left hand side lie in Q; or Q;, so Q; + Q; = A. As (), Q; = 0, the Chinese Remainder Theorem now
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gives A~ [[, A/Q;. As /Q; = P; and P; is maximal we see that A/Q); is local, with maximal ideal P;/Q;,
which is nilpotent. O

22. FINITE EXTENSIONS AND INTEGRAL EXTENSIONS
Throughout this section, A will denote a noetherian ring.
To do:
e Finite etale extensions.
e Balmer approach to degree.
Definition 22.1. Let B be an A-algebra, and let b be an element of B. There is an evaluation homomorphism
eyr: Alt] = B given by e,(f) = f(b). We write A[b] for the image of this homomorphism, which is easily seen
to be the smallest A-subalgebra of B containing b.
Proposition 22.2. [prop-integral-tfae]
For A, B and b as above, the following are equivalent:

(a) There is a monic polynomial f(t) over A with f(b) = 0.

(b) The subalgebra A[b] < B is finitely generated as an A-module.
(¢) There is a subalgebra C < B such that b € C' and C is finitely generated as an A-module.
(d) There is a finitely generated A[b]-module M that is finitely generated as an A-module and satisfies

annA[b](M) =0.

(a)=(b): Suppose that b" 4+ >"""_; a;b* = 0. Let M be the submodule of B generated by {b* | 0 <4 < n}. The
relation shows that bM < M, and it follows easily that M = A[b].

(c): Take C = A[b).

): Take M = C.

(a): Suppose that M is as in (d). Choose generators my,...,m, for M as an A-module. We then have
bm; = Zj a;;m; for some coeflicients a;; € A. This can be written as an equation bm = Am in
M™ for some matrix A € M, (R). Let f(t) be the characteristic polynomial of A, which is monic of
degree n over R. The equation zm = Am gives (bI — A)m = 0, and we can multiply on the left by
adj(bI — A) to get f(b)m = 0in M", so f(b)m; = 0 for all 4, so f(b) € annyp) (M) =0, so f(b) =0
as required.

O

Definition 22.3. [defn-integral]
We say that b € B is integral over A if the above conditions are satisfied. We write A for the set of
integral elements, and call this the integral closure of A in B.

Remark 22.4. [rem-gaussian-integral]

If B itself is finitely generated as an A-module, then it is clear that all elements are integral and so A=B.
For example, this applies when A =7Z and B = Z[i] = {a + bi | a,b € Z}. Explicitly, any element z = a + ib
satisfies f(z) = 0, where f(t) = t?> — 2at + a® + b°.

Lemma 22.5. [lem-integral-tensor]

Let B be an A-algebra, let C and D be A-subalgebras of B that are finitely generated as A-modules, and
let CD denote the smallest A-subalgebra containing C' and D. Then CD is also finitely generated as an
A-module. In particular, if Alc] and A[d] are finitely generated then so is Alc,d).

Proof. Let {c; | i < n} be a generating set for C', and let {d; | j < m} be a generating set for D. Put
FE = ZACidj == ZDCZ = ZCdJ
i i j

This is both an C-submodule and a D-submodule of C'D and it contains 1 so it is equal to CD. It is clearly
finitely generated. O
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Lemma 22.6. [lem-integral-chain)]
Suppose we have ring maps A — B — C such that B is finitely generated as an A-module and C' is finitely
generated as a B-module. Then C is also finitely generated as an A-module.

Proof. Choose generating setsso that B =%, Abjand C =} ._  Bc;. Wethenhave C' =3, _ >

i<n j<m j<m Abic;.
]
Proposition 22.7. [prop-double-integral]

A is an A-subalgebra of B, and every element that is integral over A is also integral over A.

Proof. 1t is clear that A contains the image of A. If ¢,d € A then A[d] and A[d] are finitely generated
A-modules, so the same is true of Alc, d], so any element of Alc,d] is integral. In particular ¢+ d and cd are
integral. It follows that Aisa subalgebra, as claimed.

Now suppose that b € B is integral over A. We then have a monic polynomial h(t) =t + Zk<p etk such
that ¢, € A for all k, and h(b) = 0. Put C = Alc, ..., cn_1], and note that this is finitely generated as an

A-module. Now C'[b] is finitely generated as a C-module, and therefore also as an A-module; so b is integral
over A. O

Example 22.8. [eg-cyclotomic]
Let U denote the group of roots of unity in C, so

U={zeC]|z"=1for some n >0} = {>™™/" | m,n € Z, n > 0}.

Let A denote the set of Z-linear combinations of elements of U. This is easily seen to be a subring of C,
called the ring of cyclotomic integers. Each element of U is a root of some monic polynomial " — 1, so it is
integral over Z. It follows that A is an integral extension of Z, but it is clearly not finitely generated as a
Z-module.

Definition 22.9. Suppose that the map A — B is the inclusion of a subring.

We say that B is an integral extension of A if every element of B is integral, so A = B. On the other
hand, we say that A is integrally closed in B if A=A If Aisan integral domain, we say that A is integrally
closed if it is integrally closed in its field of fractions.

Example 22.10. [eg-invariant-integral]
Let B be an integral domain, and let G be a finite group of automorphisms of B. Put

A=BY={acB|~(a)=a forall vy G},

and note that this is a subring of B. We claim that B is integral over A. To see this, consider an element
b€ B, and put ¢p(t) = [[,cq(t — (b)) € B[t]. This is clearly a monic polynomial, of degree |G|. Now note
that each automorphism v € G gives rise to an automorphism of B[t] by the rule y(}, a;t’) = >, v(a;)t",
and we have B[t]® = A[t]. It is easy to see that v(¢y(t)) = ¢p(t) for all v, so ¢,(t) € A[t]. Moreover, ¢y(t)
has a factor ¢ — b (corresponding to v = 1), so ¢»(b) = 0. This proves that b is integral over A, as claimed.

Proposition 22.11. If A is a unique factorisation domain, then it is integrally closed.

n—1

Proof. Let K be the field of fractions. If z € K is integral over A then we have a relation z" = Y7 a;z"
with a; € A. For each prime p this gives v,(z") > min(v,(a;z’) | i < n), so there exists i < n with
vp(a;) + ivp(z) < nup(x). As a; € A we have vy(a;) > 0, and it follows that vy (z) > 0. As this holds for all
p we must have x € A. ]

Proposition 22.12. If U is a multiplicative subset of A, then the integral closure of A[lU™] in B[U™!] is
A[U1Y.

Proof. First suppose that x € B is integral over A, so there is an A-subalgebra C' < B that is a finitely gen-
erated A-module and contains z. Then C[U~!] is an A[U~!]-subalgebra of B[U '] that is finitely generated
over A[U~1] and contains a/u for all u € U; so all such elements a/u are integral.

Conversely, suppose we have an element y € B[U~!] that is integral over A[U~1], so there is a relation
yn+z?:—01 byt = 0 with b; € A[U 1] after multiplying together all the denominators that appear, we find that
there are elements v € U and © € B and ag, . . ., a,—1 € A such that y = z/u and b; = a;/u. After multiplying
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the given relation by u™ we find that the element r = 2 + >, b;u" "z’ € A becomes zero in A[U~']. This
means that there is an element v € U with vr = 0 in A, which implies that (vz)™ + >, b;(uv)" " (vz)" = 0

in A. This shows that vz € A, so y = (vz)/(w) € A[U]. O

Corollary 22.13.
(a) If B is an integral extension of A, then B[U™!] is an integral extension of A[U~1].
(b) If A is integrally closed in B, then A[U1] is integrally closed in B[U~!].
(c) Suppose that A is a domain with field of fractions K and A is integrally closed in K. Then A[U™!]
s again a domain with field of fractions K that is integrally closed in K.

Proof. Clear from the Proposition. O

Proposition 22.14. Suppose that B is an integral domain and A is a subring of B, and that Ay is integrally
closed in By for all maximal ideals M. Then A is integrally closed in B.

Proof. Suppose that b € B and b is integral over A. Put I = {a € A | ab € A}; we must show that I = A.
For any maximal ideal M we see that b is an element of By, that is integral over Ay, so b € Ay, so there
is an element a € A\ M with ab € A, so I £ M. As I is not contained in any maximal ideal, we must have
I = A as required. O

Proposition 22.15. [prop-int-field]
Suppose that B is an integral domain and that A is a subring such that B is integral over A. Then A is
a field if and only if B is a field.

Proof. First suppose that A is a field. For any element 2 € B\ {0} choose a monic polynomial f(t) =
St gait’ € Alt] of minimal degree such that f(z) = 0. Put g(t) = —> 1", a;t"" !, so ap = g(z)z. By
minimality of f we have g(z) # 0, and by assumption we have z # 0, and B is a domain so ag # 0.
Moreover, ag € A and A is a field so we have an inverse a; 1€ A, and we find that agy Lg(z) is an inverse for

z in B. Thus B is a field. O

Corollary 22.16. [cor-int-max]
Suppose that ¢: A — B makes B into an integral A-algebra, and that Q is a prime ideal in B. Then Q
is mazimal in B if and only if the ideal ¢*(Q) = {a € A | ¢(a) € Q} is mazimal in A.

Proof. Tt is easy to see that ¢ induces an injective homomorphism from A/¢*(Q) to B/Q, which makes B/Q
into an integral extansion of A/¢*(Q). The proposition tells us that B/Q is a field if and only if A/¢*(Q)
is a field. |

Proposition 22.17. [prop-zar-fibre|
Let ¢: A — B be an integral extansion of integral domains, and consider the resulting map ¢*: zar(B) —
zar(A). Given P € zar(B) put

K(P) = field of fractions of A/P
F(P)={Q € zar(B) | ¢"(Q) = P}.

Then
(a) F(P) is naturally identified with max(Ap ® 4 B) and with zar(K(P) ®4 B).
(b) F(P) is always nonempty, so ¢* is surjective.
(c) If Qo, @1 € F(P) with Qo € Q1 then Qo = Q1.
(d) If B is a finitely generated A-module then F(P) is finite.

Proof. Tt will be harmless to assume that ¢ is just the inclusion of a subring, so ¢*(Q) = @ N A for all
Q. Proposition 8.16 allows us to identify K(P) with Ap/Pp. We have a commutative diagram of ring
homomorphisms as follows:

A Ap K(P)

[ |

B%BP:AP®A34>>BP/PBPZK(P)®AB
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Using Propositions 5.45 and 8.18, we get natural bijections
zar(Ap) = {P' € zar(A) | P' < P}
zar(K(P)) = zar(Ap/Pp) = {P}
zar(Bp) = {Q € zar(B) | QN (A\ P) =0} ={Q € zar(B) | QN A < P}
zar(Bp/BPp) = {Q € zar(B) | QN A< P and Q > BP}
={Qezar(B)|QNA=P}=F(P).

This proves claim (a).

Next, note that Pp is the unique maximal ideal in the local ring Ap. We can also identify F(P) with
{Q" € zar(Bp) | @ N Ap = Pp}, or in other words with {Q’ € zar(Bp) | @ N Ap is maximal }. However,
Corollary 22.16 tells us that Q' N Ap is maximal if and only if Q" is maximal, so F'(P) bijects with max(Bp).
The map A — B is injective, so Ap — Bp is injective, so Bp # 0, so max(Bp) # 0, so F(P) # (), which
proves claim (b). Moreover, if My, My € max(Bp) with My < M; then maximality clearly implies that
My = Mjy; this proves claim (c). Finally, if B is finitely generated as an A-module then K(P) ®4 B is
finite-dimensional over the field K (P), so it is an artinian ring, so the set F(P) = zar(K(P) ® 4 B) is finite
by Theorem 21.7. O

Example 22.18. Consider the case where A = Z and B = Z[i]. Standard arguments from number theory,
which we will not explain here, give the following.
(a) F(0) = {0}
(b) F(A2)=B.(1+1i)=B.(1—1)
(c) If p is a prime congruent to 1 mod 4 then there are integers a,b with p = a? + b2, and F(A.p) =
{B.(a +1b), B.(a —ib)}.
(d) If p is a prime congruent to 3 mod 4 then F(A.p) = {B.p}.

In the context of Example 22.10, we can be more precise about the relationship between zar(A) and
zar(B).

Proposition 22.19. Let B be an integral domain with a finite group G of automorphisms, and put A =
{a € B|~(a) =a for all v € G}. Then the inclusion ¢: A — B induces a bijection zar(B)/G — zar(A).

Proof. We saw in Example 22.10 that ¢ is an integral extension, so ¢*: zar(B) — zar(A) is surjective by
Proposition 22.17.

For v € G we have v¢ = ¢, so ¢*v* = ¢*: zar(B) — zar(A). It follows that ¢* induces a map
zar(B)/G — zar(A), which must again be surjective.

Now suppose we have two prime ideals Q,Q" € zar(B) with ¢*(Q) = ¢*(Q') = P say. Put I =
N,ecV(Q) < B. Consider an element b € I, and put ¢y(t) = [[ cq(t —v(b)) as before. All the ele-
ments v(b) lie in Q, so ¢p(t) — t" € Q[t]. On the other hand, we know that ¢,(t) € B[t]® = A[t], and
QNA=P,so¢p(t) —t" € P[t] C Q'[t]. We can now substitute ¢ = b and recall that ¢,(b) = 0 to get
" € Q. As @' is prime, it follows that b € Q'. We now conclude that the ideal I = ﬂv ~7*(Q) is contained
in @'. Using Corollary 5.35, we deduce that one of the ideals v*(Q) must be contained in @’. Now both @
and v*(Q’) lie in F(P), so part (c) of Proposition 22.17 tells us that v*(Q’) = Q. It follows that the map
zar(B)/G — zar(A) is bijective as claimed. O

The significance of the following result will become clearer when we define the Krull dimension of com-
mutative rings

Proposition 22.20. [prop-going-up]

Let ¢: A — B be an integral extension. Suppose we have a chain of prime ideals Py < --- < P, in A, and
another chain of prime ideals Qg < -+ < Qu, in B, where m <n, and Q; VA = P; for 0 <i <m. Then we
can choose further prime ideals Qmy1,...,Qn in B such that Qg < --+ < Qp, and Q; N A = P; for all i.

Proof. First consider the special case where n = 1 and m = 0. As QoNA = Py, we have an integral extension

A/Py — B/Qq of integral domains. We can apply Proposition 22.17 to this extension; we learn that there

is a prime ideal Q, € zar(B/Q) with @, N A/Py = P;/Py. This must have the form Q; = Q1/Qo for some
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Q1 € zar(B) with Q1 N A = P;. This completes the proof of the special case, and we can use that as the
induction step in an an obvious inductive proof of the general case. (Il

23. NOETHER NORMALISATION AND THE NULLSTELLENSATZ
Fix a field K, and write P, for the polynomial ring Klxg,...,Zn—1].

Theorem 23.1. [thm-normalisation]
Let A be a nontrivial finitely generated algebra over K. Then there is a subalgebra P C A such that P is
isomorphic to Py for some d, and A is finitely generated as a P-module.

We pause to explain the geometric meaning of this result. Suppose that K = C and A = P,,/I1(X)
for some algebraic subset X C C™. The theorem gives an inclusion P; — A, corresponding to a map
f: X — C?. The fact that A is integral over P; means that f is surjective with finite fibres, which indicates
that X is d-dimensional over C.

The proof depends on the following result.

Definition 23.2. [defn-ess-monic]
We say that a polynomial f € A[t] is essentially monic in t if it has the form f = Z?:o a;t* for some d,
where a4 is invertible.

Lemma 23.3. For any nonzero element f € P, there is an automorphism « of P, such that «(f) is
essentially monic as a polynomial in xq.

Proof. We can write f as a K-linear combination of monomials H?;()l :Eff Let b be an integer that is strictly
larger than any of the exponents i; that occur in this representation.

Now define a: P, — P, by a(zg) = xg, and a(x;) = z; +x81 for 0 < i < n. We also define 8: P, — P, by

B(xo) = xo, and B(x;) = ; — xf for 0 < i < n; this is an inverse for a, proving that « is an automorphism.

Next, for 0 < k < b™ there is a unique sequence (ig,...,i,—1) such that 0 < i; < b for all ¢, and
>, irb" = k (this is essentially the base b representation of k). We put my, = [], z;*, so the list mg, ..., mpn_1
contains all monomials that have degree less than b in each of the variables xg, ..., x,—1. We therefore have

f= 227;51 cpmy, for some sequence of coefficients ¢, € K that are not all zero. It is easy to see that

a(my) = zf + terms of degree less than k in g .
Thus, if we let m be the largest integer with ¢, # 0, we have
a(f) = emal’ + terms of degree less than m in zg ,

so «(f) is essentially monic in zg. O

Proof of Theorem 23.1. Suppose that A can be generated as a K-algebra by n elements, so we have a
surjective homomorphism ¢: P, — A say. We may assume inductively that theorem holds for any K-
algebra that can be generated by n — 1 elements. If ¢ is injective then it is an isomorphism so we can just
take P = A. Suppose instead that ¢ is not injective, so we can choose a nonzero polynomial f € P, with
#(f) = 0. After replacing f by a(f) and ¢ by ¢ o a~! for some automorphism ¢, we may assume that f is
essentially monic in g, of degree m say. Now put R = K[z1,...,2,_1] and Q = P,/ f, so {z{ | 0 <i < m}
is a finite basis for @ as an R-module. As ¢ is surjective with ¢(f), it induces a surjective homomorphism
¢: Q — A. Tt follows that A is finitely generated as a module over the subring B = ¢(R). As R ~ P, 4,
our induction hypothesis gives a subalgebra P C B that is isomorphic to Py for some d, such that B is
finitely generated as a P-module. It follows that A is also finitely generated as a P-module, which proves
the theorem. |

We next want to prove that the integer d occuring in Theorem 23.1 is independent of the choice of P. For
this it is convenient to introduce the following notation:

Definition 23.4. For any monomial m = Hf;ol i, the total degree is |m| =Y, i;. We write B,.Py for the

set of all monomials of total degree at most r, and F}.P, for the K-linear span of B, P;.
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Lemma 23.5. Suppose that A is a finitely generated module over Py, and that ¢: P, — A is a homomor-
phism of K-algebras. Then there is a polynomial f(t) of degree d such that the leading coefficient is positive,
and dimg (¢(F,.Py,)) < f(r) for all r.

Proof. Choose a finite set X that contains 1 and generates A as a module over P;. Let F.A denote the
K-linear span of F,.P;.X, so A=, Fr-A. Choose an integer p large enough that X.X C F,A, and choose
q such that ¢(z;) € F,A for all i. Note that

FoAFyprq)A = spang (B Py. X . BppingPa. X) = spang Byt (nt1)gPa-X. X)
C spang (Bnt1)(p+) Pa-X) = 1) o) A-

Using this, we can prove by induction that ¢(F,.Py,) < F,4q),A. It is standard that |B,Py| = ( " Z d ),

and it follows that

dim(§(F, Pyy)) < ( g ) X

which is polynomial of degree d in r. |

Proposition 23.6. [prop-noether-dim|
Let A be a K-algebra, and suppose that A has subalgebras P ~ P; and P’ ~ Py such that A is finitely
generated as a module over each of these subalgebras. Then d = d'.

Proof. Let ¢: P — A and ¢': P/ — A be the inclusions. The Lemma tells us that dim(¢’'(F,.Py)) <
f(r) for some polynomial f of degree d whose leading coefficient is positive. However, ¢’ is injective, so
dim(¢’(F,.Py)) = dim(F.Py) = ( d/;,— " ), which is polynomial of degree d’, again with positive leading
coefficient. This is only consistent if d’ < d. By exchanging the roles of P and P’, we deduce that d = d’. O
Definition 23.7. [defn-noether-dim]

The number d occuring in Theorem 23.1 will be called the noether dimension of A. Proposition 23.6 tells
us that this is well defined.

Proposition 23.8. [prop-nsatz-a]
Let K be a field, and let L be a finitely generated K -algebra that is also a field. Then L is finitely generated
as a K-module. In particular, if K is algebraically closed, then the map K — L is an isomorphism.

Proof. By Theorem 23.1, we can choose an integer d > 0 and a subalgebra P < L such that P ~ P; and L
is a finitely generated P-module. This means that L is integral over P, and L is a field, so P is a field by
Proposition 22.15. This can only happen if d =0, so P = K and L is a finitely generated K-module. (]

Corollary 23.9. [cor-nsatz-b]

Let K be a field, let A be a finitely generated K-algebra, and let M be a mazimal ideal in A. Then A/M
is finite-dimensional over K. In particular, if K is algebraically closed then the natural map K — A/M is
an isomorphism.

Proof. Just apply the Proposition to the field L = A/M. O
Proposition 23.10. Suppose that A is a finitely generated algebra over a field K. Then Rad(A) = Nil(A).

Proof. By Proposition 5.19, we always have Nil(A) C Rad(A), for any commutative ring A. Conversely,
suppose that a € A but a ¢ Nil(A). Put A’ = Afa~'] ~ A[b]/(ab — 1), and note that this is nontrivial,
and finitely generated as a K-algebra. We can therefore choose a maximal ideal M’ € max(A’), and we
find that A’/M’ is finite-dimensional over K. Now put M = M’ N A, so we have natural injective maps
K — A/M — A’/M’'. This implies that A/M is an integral domain that is finite-dimensional over K, so it
is a field, so M is maximal. It is clear that a ¢ M, so a € Rad(A) by Proposition 5.50. O
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