
COMMUTATIVE ALGEBRA

NEIL STRICKLAND

1. Rings

Definition 1.1. [defn-ring]
A commutative ring is a set A equipped with elements 0, 1 ∈ A and operations of addition and multipli-

cation such that the following axioms be satisfied:

(a) For all a, b ∈ A we have a+ b, ab ∈ A.
(b) For all a ∈ A we have 0 + a = a and 1a = a.
(c) For all a, b ∈ A we have a+ b = b+ a and ab = ba.
(d) For all a, b, c ∈ A we have a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c.
(e) For all a, b, c ∈ A we have a(b+ c) = ab+ ac.
(f) For all a ∈ A there is an element −a ∈ A with a+ (−a) = 0.

In other words, addition and multiplication should be commutative and associative with 0 and 1 as neutral
elements, and multiplication should distribute over addition.

Remark 1.2. We will not consider noncommutative rings in this course, so we will just use the word “ring”
to mean “commutative ring”. We will use without comment various standard consequences of the axioms,
such as the facts that −(−a) = a, 0.a = 0 and (−1).a = −a.

Remark 1.3. If we have two rings A and B and we need to distinguish between the additive identity
elements in A and B, then we will call them 0A and 0B rather than just 0. Similarly, we may write 1A and
1B for the multiplicative identity elements.

Example 1.4. [eg-numbers]
The sets Z (of integers), Q (of rational numbers), R (of real numbers) and C (of complex numbers) are

all rings. Here of course we are using the standard definitions of addition and multiplication, and of the
elements 0 and 1. The set N (of nonnegative integers) satisfies all the axioms except for axiom (f).

Example 1.5. [eg-two-local]
There are also various other rings of numbers that are slightly less obvious. For example, let Z(2) denote

the set of rational numbers of the form a/b, where a and b are integers and b is odd. Using the equations
a
b + c

d = ad+bc
bd and a

b
c
d = ac

bd we see that Z(2) is closed under addition and multiplication. It also contains
0 = 0/1 and 1 = 1/1, so it is a ring. For another example, consider the set Z[i] of complex numbers of the
form a+ ib, with a, b ∈ Z. It is not hard to check that this is also a ring.

In the above example, we define addition and multiplication on Z(2) by restricting the corresponding
operations on Q, and we define addition and multiplication on Z[i] by restricting the corresponding operations
on C. It will be convenient to consider this construction more generally:

Definition 1.6. [defn-subring]
Let A be a ring. A subring of A is a subset B ⊆ A such that

(a) 0A, 1A ∈ B
(b) Whenever b ∈ B we have −b ∈ B
(c) Whenever b, c ∈ B we have b+ c ∈ B and bc ∈ B.

It is clear that any subring of A can be considered as a ring in its own right, using the restricted operations.

Example 1.7. [eg-subrings]
Z and Z(2) are subrings of Q, and Q is a subring of R, and R and Z[i] are subrings of C.
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Example 1.8. [eg-modular]
Now consider an integer n > 0. We will define a ring Z/n to serve as a home for modular arithmetic.

The most conceptual way to do this is to use the framework of quotient rings, which we will introduce in
Section 5. For the moment we take a more pedestrian approach. We first define Z/n = {0, 1, . . . , n − 1}.
Any integer a ∈ Z then has a unique representation a = nq + r with q ∈ Z and r ∈ Z/n; we define π(a) to
be r, giving a function π : Z → Z/n. Given a, b ∈ Z/n we define a ⊕ b = π(a + b) and a ⊗ b = π(ab); this
defines binary operations ⊕ and ⊗ on Z/n. We also define a unary operation 	a = π(−a). Standard ideas
about modular arithmetic show that these operations make Z/n into a commutative ring. We will usually
just write a + b and ab and −a instead of a ⊕ b and a ⊗ b and 	a, relying on the context to distinguish
between operations in Z/n and operations in Z.

Example 1.9. [eg-trivial-ring]
Consider a set T with one element, say T = {t}. We can make this into a ring by defining 0T = t and

1T = t and t+ t = t and tt = t. A ring of this form is called trivial. Note here that 1T = 0T . Conversely, if
A is any ring in which 1A = 0A, then for any element a ∈ A we have a = 1Aa = 0Aa = 0A, so A = {0A}, so
A is trivial.

Example 1.10. [eg-square-matrices]
Consider the set A = Mn(Z) of n×n matrices with integer entries. Let 0A denote the zero matrix, and let

1A denote the identity matrix. With these elements and the standard definition of matrix multiplication, A
satisfies all axioms except that multiplication is not commutative (provided that n ≥ 2). The same applies
to Mn(B) for any commutative ring B.

Example 1.11. [eg-F-four]
Let F4 denote the following set of matrices over Z/2:

F4 =

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]}
.

We will allow ourselves to write 0 for the zero matrix [ 0 0
0 0 ] and 1 for the identity matrix [ 1 0

0 1 ]. We also write
α = [ 0 1

1 1 ]. Note that α2 = [ 1 1
1 2 ], which is the same as [ 1 1

1 0 ] because we are working with matrices over Z/2.
We thus have F4 = {0, 1, α, α2}. One can check that α3 = 1 and thus α4 = α, and also that 1 + α+ α2 = 0.
From this it follows that F4 is closed under the operations of addition and multiplication, which can be
tabulated as follows:

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

· 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

We see that in this context matrix multiplication is commutative, so we have a commutative ring with just
four elements.

Example 1.12. [eg-boolean]
Let S be any set, and let Sub(S) be the set of all subsets of S. Put 0Sub(S) = ∅ and 1Sub(S) = S. Given

a, b ∈ Sub(S) (so a ⊆ S and b ⊆ S) we put

a+ b = (a ∪ b) \ (a ∩ b) = (a \ b) ∪ (b \ a)

ab = a ∩ b.
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One can check that this gives a ring, in which −a = a for all a. All the axioms are straightforward except
for the associativity of addition. For that, consider three elements a, b, c ∈ Sub(S). Put

a′ = a \ (b ∪ c) = {s | s lies in a but not b or c}
b′ = b \ (a ∪ c) = {s | s lies in b but not a or c}
c′ = c \ (a ∪ b) = {s | s lies in c but not a or b}
u = a′ ∪ b′ ∪ c′ ∪ (a ∩ b ∩ c).

a′

b′

c′

a ∩ b ∩ c

By a check of cases, we find that

a+ (b+ c) = u = (a+ b) + c

as required.

Definition 1.13. [defn-binary-product]
Let A and B be commutative rings. As usual, we write A×B for the cartesian product, so the elements

of A×B are pairs (a, b) with a ∈ A and b ∈ B. We define

0A×B = (0A, 0B)

1A×B = (1A, 1B)

(a, b) + (a′, b′) = (a+ a′, b+ b′)

(a, b)(a′, b′) = (aa′, bb′)

−(a, b) = (−a,−b).
It is easy to see that this makes A×B into a commutative ring.

Remark 1.14. [rem-axis-not-subring]
The set A′ = {(a, 0B) | a ∈ A} ⊆ A × B is naturally identified with the ring A, but it is not a subring

of A × B because it does not contain the element 1A×B = (1A, 1B) (unless B is trivial). Similarly, the set
B′ = {(0A, b) | b ∈ B} is not a subring unless A is trivial.

Remark 1.15. [rem-infinite-product]
If we have rings A1, . . . , An, we can make the product A1×· · ·×An into a ring by an obvious generalisation

of the above definition. We can even define the product of infinitely many factors, but we choose to postpone
this until we have discussed rings of functions.

Definition 1.16. [defn-map]
For any sets S and T , we write Map(S, T ) for the set of all functions from S to T .

Definition 1.17. [defn-map-ring]
Now suppose we have a set S and a ring A, and we put M = Map(S,A).

(a) We let 0M denote the constant function S → A with value 0A, so 0M (s) = 0A for all s ∈ S.
(b) Similarly, we define 1M : S → A by 1M (s) = 1A for all s ∈ S.
(c) Given elements a, b ∈M (so a : S → A and b : S → A) we define a+b ∈M by (a+b)(s) = a(s)+b(s)

for all s ∈ S.
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(d) Similarly, we define ab ∈M by (ab)(s) = a(s) b(s) for all s ∈ S.
(e) We also define (−a)(s) = −a(s).

It is clear that these operations make M into a ring.

Remark 1.18. [rem-function-rings]
We rarely want to work with the full ring Map(S,A); instead, we consider various subrings. For example,

the ring Map(R,R) is too unstructured to be interesting, but it is useful to study the subring of continuous
functions, or the subring of smooth (= infinitely differentiable) functions, or the subring of polynomial
functions. Similarly, if X is any compact hausdorff space X then we can consider the ring C(X) of continuous
functions from X to R. It can be shown that the topology of X is very closely related to the ring structure
of C(X). This is just the first of many different contexts where we can study spaces via suitable rings of
functions.
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Example 1.19. [eg-sunset]
We often want to consider subsets of Rn defined by polynomial equations, such as the set

X = {(x, y) ∈ R2 | (x2 + y2 − 1)y = 0}.

We can let A denote the ring of polynomial functions on X. If we have a system of coefficients cij ∈ R for
0 ≤ i < N and 0 ≤ j < M , we get an element f ∈ A given by

f(x, y) =

N−1∑
i=0

M−1∑
j=0

cijx
iyj .

The defining equation for X can be written as y3 = y(1 − x2). This in turn gives y4 = y2(1 − x2) and
y5 = y3(1−x2) = y(1−x2)2 and so on. This shows that we do not really need powers of y beyond y2: every

element f ∈ A can be expressed in the form f(x, y) =
∑L−1
i=0

∑2
j=0 dijx

iyj for some system of coefficients
dij .

There is an extensive theory of the geometry of sets defined by polynomial equations, and its relationship
with the structure of the corresponding rings of polynomial functions. This is called algebraic geometry.

Note that an element of Map(S,A) can be thought of as a family of elements a(s) ∈ A parametrised by
the elements s ∈ S. Sometimes it is more natural to use the notation as rather than a(s). Moreover, we
sometimes want to assume that as is an element of a ring As that depends on s, rather than having all the
elements as lie in the same ring A. This leads us to the following construction:

Definition 1.20. [defn-general-product]
Suppose we have a set S and a ring As for each element s ∈ S. We define a new ring P =

∏
s∈S As as

follows. An element of P is a family of elements (as)s∈S with as ∈ As for all s. The zero element is the
family 0P = (0As

)s∈S , and similarly 1P = (1As
)s∈S . Given elements a, b ∈ P we put (a+ b)s = as + bs and

(ab)s = asbs and (−a)s = −as, which defines elements a + b, ab,−a ∈ P . It is clear that these operations
make P into a commutative ring.

Remark 1.21. [rem-product-subring]
It is easiest to understand this definition in the case where there is a single ring A∗ such that As is a

subring of A∗ for all s. It is then easy to identify
∏
s∈S As with the ring

P ′ = {a ∈ Map(S,A∗) | a(s) ∈ As for all s},

which is a subring of Map(S,A∗). In particular, if As = A∗ for all s then we just have
∏
s∈S As =

∏
s∈S A

∗ =
Map(S,A∗).

Example 1.22. [eg-padic]
Fix a prime number p, and consider the ring P =

∏∞
k=1 Z/pk. We have defined Z/pk to be a subset (but

not a subring) of N, so P can be regarded as a subset (but not a subring) of Map(N \ 0,N). Specifically, P
is the set of sequences a = (a1, a2, . . . ) of integers with 0 ≤ ak < pk for all k. Now consider the subset

Zp = {a ∈ P | ak = ak+1 (mod pk) for all k}.
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One can check that this is a subring of P ; it is called the ring of p-adic integers, and is important in algebraic
number theory. For example, the sequences

a = (1, 1 + p, 1 + p+ p2, 1 + p+ p2 + p3, . . . )

b = (p− 1, p− 1, p− 1, p− 1, . . . )

are elements of Zp with ab+ 1 = 0.

We now turn to polynomial rings and formal power series rings. We will first define them using notation
that is rigorous but somewhat cumbersome, then we will introduce the more traditional notation.

Definition 1.23. [defn-poly-initial]
Let A be a ring. We write F (A) for the set of sequences a = (a0, a1, a2, . . . ) ∈ Map(N, A), considered as

a ring with the following operations:

0F (A) = (0, 0, 0, 0, . . . )

1F (A) = (1, 0, 0, 0, . . . )

(a+ b)i = ai + bi

(ab)i =

i∑
j=0

ajbi−j .

(Verification of the ring axioms is left to the reader.) We then put

P≤d(A) = {a ∈ F (A) | ai = 0 for i > d}

P (A) =
⋃
d≥0

P≤d(A) = {a ∈ F (A) | ai = 0 for i� 0}.

This is easily seen to be a subring of F (A). We call F (A) a formal power series ring, and P (A) a polynomial
ring. For a ∈ P (A), we define the degree deg(a) to be the largest d such that ad 6= 0, or deg(a) = −∞ if
ai = 0 for all i.

The subset P≤0(A) ⊆ P (A) consists of sequences of the form (a, 0, 0, 0, . . . ); it is a subring, which can be
identified with A itself.

We now introduce a symbol, say x, for the sequence (0, 1, 0, 0, . . . ) ∈ P (A). It is easy to see by induction
that xk is the sequence with 1 in position k and 0 elsewhere. More generally, if u ∈ A = P≤0(A) then uxk

has u in position k and 0 elsewhere. This means that any element

a = (a0, a1, . . . , ad, 0, 0, 0, . . . ) ∈ P≤d(A)

can be expressed as a =
∑d
i=0 aix

i. More generally, for any a ∈ F (A) it is natural to write a =
∑∞
i=0 aix

i,
with the understanding that this is just a notational convention, because we do not have any independent
definition for sums of infinitely many terms.

The traditional notation is to write A[x] for P (A) if we want to use the symbol x for the sequence
(0, 1, 0, 0, . . . ), or A[t] if we want to use the symbol t, and so on. We can then use the notation A[x, y] for

A[x][y] = P (P (A)). We find that any element of A[x, y] can be expressed as
∑d
i=0

∑d
j=0 aijx

iyj for some
d ∈ N and some system of coefficients aij ∈ A. More generally, we can define multivariable polynomial rings
A[x1, . . . , xn] in essentially the same way. For formal power series rings we use double brackets like A[[t]] or
A[[u, v, w]]. We also write A[x]≤d for P≤d(A).

We conclude by discussing division of polynomials, which is central to many of the special properties of
polynomial rings.

Definition 1.24. [defn-monic]

A polynomial f(t) ∈ A[t] is monic if it has the form f(t) =
∑d
i=0 ait

i for some d ∈ N and some sequence
of coefficients a0, . . . , ad ∈ A with ad = 1 (so f has degree d).

Proposition 1.25. [prop-poly-div]
Let f ∈ A[t] be a monic polynomial of degree d over A, and define µ : A[t]×A[t]<d → A[t] by

µ(q, r) = fq + r.
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Then µ is a bijection. (In other words, for any g ∈ A[t] there is a unique pair of polynomials q and r such
that g = qf + r and r has degree less than d.)

Proof. First, our hypothesis is that

f =

d∑
i=0

aix
i,

where ad = 1. It follows that fq has degree d+deg(q), and in particular, it has degree at least d unless q = 0.
Now, if µ(q, r) = 0 then deg(fq) = deg(−r) < d so q = 0, and substituting this in the relation µ(q, r) = 0
gives r = 0 as well. More generally, if µ(q0, r0) = µ(q1, r1) then µ(q0− q1, r0− r1) = 0, and we conclude that
(q0, r0) = (q1, r1). Thus, µ is injective.

Now consider a polynomial g ∈ A[t]≤k. We will show by induction on k that g lies in the image of µ. This
is clear if k < d, because we then have g = µ(0, g). Suppose instead that k ≥ d. Let u be the coefficient of
tk in g, and put q0 = ukt

k−d and g1 = g − q0f . Then g1 ∈ A[t]<k, so by induction we can find q1, r with
g1 = µ(q1, r) = q1f + r. We now put q = q0 + q1 and observe that g = qf + r as required. �

2. Ring homomorphisms

Definition 2.1. [defn-ring-hom]
Let A and B be rings. A homomorphism from A to B is a function φ : A→ B such that

(a) For all a, a′ ∈ A we have φ(a+ a′) = φ(a) + φ(a′), and φ(aa′) = φ(a)φ(a′).
(b) φ(1A) = 1B .

An isomorphism is a ring homomorphism that is also a bijection.

Remark 2.2. [rem-inv-hom]
If φ : A→ B is an isomorphism, it is straightforward to check that the inverse map φ−1 : B → A is also a

ring homomorphism (and therefore an isomorphism).

Remark 2.3. [rem-ring-hom]
As a special case of (a) we have φ(0A) = φ(0A) + φ(0A), and we can add −φ(0A) to both sides to get

φ(0A) = 0B . However, axiom (b) does not follow from (a) in the same way, as we see by considering the
function n 7→ (n, 0) from Z to Z × Z. (The same line of argument gives φ(1A)2 = φ(1A), which would be
enough if we knew that φ(1A) had a multiplicative inverse, but that might not be the case.)

Another special case of (a) gives φ(a) + φ(−a) = φ(a− a) = φ(0A) = 0B , so φ(−a) = −φ(a).

Example 2.4. [eg-inc-hom]
The obvious inclusion maps Z→ Q→ R→ C are ring homomorphisms.

Example 2.5. [eg-mod-hom]
The function π : Z→ Z/n (as in Example 1.8) is a ring homomorphism.

Example 2.6. [eg-boolean-iso]
Let S be a set, so we have a ring A = Sub(S) as in Example 1.12 and a ring B = Map(S,Z/2) as in

Definition 1.17. We would like to define homomorphisms φ : A → B and ψ : B → A. Suppose that a ∈ A,
so a is a subset of S. Then φ(a) should be a function from S to Z/2 = {0, 1}, so for each s ∈ S we should
have an element φ(a)(s) ∈ {0, 1}. We define

φ(a)(s) =

{
1 if s ∈ a
0 if s 6∈ a.

In the opposite direction, suppose that b ∈ B, so b : S → Z/2, and ψ(b) should be a subset of S. We put

ψ(b) = {s ∈ S | b(s) = 1}.

We leave it to the reader to check that φ and ψ are ring homomorphisms. It is also easy to see that
ψ(φ(a)) = a and φ(ψ(b)) = b, so φ and ψ are inverse to each other, so they are isomorphisms.
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Example 2.7. [eg-Z-initial]
Let A be any ring. For n ∈ N we define η(n) ∈ A inductively by the rules η(0) = 0A and η(n+1) = η(n)+1A

(so η(4) = 1A+1A+1A+1A, for example). We then define η(−n) = −η(n), which gives a function η : Z→ A.
One can check that this is a homomorphism, and that it is the only possible homomorphism from Z to A.
(In the language of category theory, this means that Z is an initial object in the category of rings.)

Example 2.8. [eg-eval]
Let A be any ring, and let u be an element of A. We can define a homomorphism εu : A[x]→ A by

εu

(
d∑
i=0

aix
i

)
=

d∑
i=0

aiu
i,

or more briefly εu(f) = f(u). This is called an evaluation homomorphism. Note in particular that εu(x) = u.
More generally, given a vector u = (u1, . . . , ud) ∈ Ad, we can define a homomorphism

εu : A[x1, . . . , xd]→ A

by

εu

 ∑
i1,...,id≥0

ai1,...,idx
i1
1 · · ·x

id
d

 =
∑

i1,...,id≥0

ai1,...,idu
i1
1 · · ·u

id
d ,

or more briefly εu(f) = f(u1, . . . , ud).

Example 2.9. [eg-gelfand]
Let X and Y be topological spaces, and let f : X → Y be a continuous map. Let C(X) be the ring of

continuous real-valued functions on X, and similarly for C(Y ). Note that if u : Y → R is continuous, then
so is the composite u ◦ f : X → R. We can thus define a function f∗ : C(Y ) → C(X) by f∗(u) = u ◦ f . If
v : Y → R is another continuous function, it is clear that (u+v)◦f = (u◦f)+(v◦f), and (uv)◦f = (u◦f)(v◦f).
Using this, we see that f∗ is a ring homomorphism.

If X and Y are compact hausdorff spaces, it can be shown that every ring homomorphism C(Y )→ C(X)
arises in this way from a unique continuous map X → Y .

For our final example, we need the following well-known congruence:

Lemma 2.10. [lem-frobenius]

Let p be a prime number, and suppose that 0 < k < p. Then the binomial coefficient

(
p
k

)
is divisible

by p.

Proof. Let X be the set of subsets K ⊂ Z/p with |K| = k, so |X| =

(
p
k

)
. We can let Z/p act on X by

the rule

a+ {u1, . . . , uk} = {a+ u1, . . . , a+ uk}.

We claim that if a 6= 0 then a+K can never be equal to K. Indeed, if a+K = K then ab+K = K for all b,
but we can choose b so that ab = 1 (mod p), so 1 +K = K. Thus, if u ∈ K then u+ 1 ∈ K, then u+ 2 ∈ K
and so on, so K = Z/p, which contradicts the fact that |K| = k. Thus all orbits for the action of Z/p on X
are free, so |X| is p times the number of orbits, as required. �

Example 2.11. [eg-frobenius]
Let A be a ring in which 1A + 1A = 0A (or more briefly 2 = 0). For example, A could be the ring F4 from

Example 1.11, or the polynomial ring Z/2[x]. Define φ : A→ A by φ(u) = u2. This clearly sends 1 to 1 and
preserves multiplication. Less obviously, it preserves addition, because φ(u + v) − φ(u) − φ(v) = 2uv = 0.
Thus, φ is a ring homomorphism, called the frobenius map.

More generally, if p is a prime number and B is a ring with p = 0 one can check using Lemma 2.10 that
(u+ v)p = up + vp in B, so we have a frobenius map φ : B → B given by φ(u) = up.

8



3. Properties of elements

Definition 3.1. [defn-el-props]
Let a be an element in a ring A.

(a) We say that a is invertible if there is an element b such that ab = 1. Such an element is called an
inverse for a, and we write a−1 for b. We write A× for the set of invertible elements in A.

(b) We say that a is a zero-divisor if there is an element x 6= 0 such that ax = 0. Otherwise, we say
that a is regular.

(c) We say that a is nilpotent if an = 0 for some n ∈ N.
(d) We say that a is idempotent if a2 = a, or equivalently a(1− a) = 0.

The following result shows that the notation a−1 is unambiguous.

Proposition 3.2. [prop-inv-unique]
If an element a ∈ A is invertible, then it has a unique inverse.

Proof. Suppose that b and c are both inverses for a. Then

b = b1 = b(ac) = (ba)c = 1c = c.

�

Example 3.3. [eg-C-el-props]
In C, every nonzero element is regular and invertible, 0 is the only nilpotent element, and 0 and 1 are the

only idempotent elements.

Proposition 3.4. [prop-Zn-el-props]
Consider an element a ∈ Z/n = {0, 1, . . . , n− 1}.
(a) a is invertible iff it is regular iff a and n are coprime, or equivalently a is not divisible by any prime

that divides n.
(b) a is nilpotent iff it is divisible by every prime that divides n.

Proof. The proof will rely on various facts from elementary number theory, which can also be recovered as
a special case of the results that will will be discussed in Section 16.

(a) a is invertible iff there is another integer b such that ab = 1 (mod n), or equivalently there exist
integers b and m such that ab + nm = 1, or equivalently a and n are coprime. Moreover, we can
define a map µ : Z/n → Z/n by µ(x) = ax. It is clear that µ is injective iff a is regular, and µ is
bijective iff as a is invertible. However, if µ is injective then |µ(Z/n)| = |Z/n| = n so µ(Z/n) is all
of Z/n so µ is automatically bijective. Thus a is invertible iff it is regular.

(b) Let the prime factorisation of n be pv11 · · · pvrr , with p1 < · · · < pr. Put v = max(v1, . . . , vr). If a
is divisible by p1, . . . , pr, then av will be divisible by n in Z, so av = 0 in Z/n, so a is nilpotent in
Z/n. Conversely, if a is not divisible by pi for some i, then ak will never be divisible by pi and so
will never be divisible by n, so ak will always be nonzero in Z/n, so a will not be nilpotent in Z/n.

�

Proposition 3.5. [prop-inv-prod]
For any two elements a, b ∈ A, the product ab is invertible iff a and b are both invertible.

Proof. Put c = ab. If a and b are both invertible, then a−1b−1 is an inverse for c. Conversely, if c is invertible
then bc−1 is an inverse for a, and ac−1 is an inverse for b. �

Proposition 3.6. [prop-regular-prod]
For any two elements a, b ∈ A, the product ab is regular iff a and b are both regular. Moreover, every

invertible element is regular.

Proof. Put c = ab. Suppose that a and b are both regular. Consider an element x such that cx = abx = 0.
As a is regular we must have bx = 0, and as b is also regular we see that x = 0. Thus c is regular.

Conversely, suppose that c is regular. Consider an element x with bx = 0. It follows that cx = abx = 0,
but c is regular so x = 0. This proves that b is regular, and essentially the same argument also shows that
a is regular.
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Finally, suppose that a is invertible. If ax = 0 we can multiply by a−1 to get x = 0; so a is regular. �

Proposition 3.7. [prop-finite-regular]
Let A be a ring with only finitely many elements. Then every regular element of A is invertible.

Proof. This is a straightforward generalisation of Proposition 3.4(a). We can enumerate the distinct elements
as a1, . . . , an say. Suppose that u ∈ A is a regular element, so all the elements u(ai− aj) are nonzero, so the
elements ua1, . . . , uan are distinct. As there are n elements in this list, every element of A must appear. In
particular, we have uak = 1 for some k, so ak is an inverse for u. �

Proposition 3.8. [prop-nilpotent-sum]
If a and b are nilpotent, then so is a+ b. More precisely, if an+1 = bm+1 = 0 then (a+ b)n+m+1 = 0.

Proof. If aibj 6= 0 then we must have i ≤ n and j ≤ m, so i + j ≤ n + m. Thus, if i + j = n + m + 1
we must have aibj = 0. In other words, all terms in the binomial expansion of (a + b)n+m+1 are zero, so
(a+ b)n+m+1 = 0 as claimed. �

Proposition 3.9. [prop-nilp-inv]
If a is nilpotent then 1 + a is invertible.

Proof. For some n we have an+1 = 0. Put u =
∑n
j=0(−a)j ; we then find that (1 + a)u = 1− an+1 = 1, so u

is the required inverse for 1 + a. �

Proposition 3.10. [cor-nilp-inv]
If u is invertible and a is nilpotent then u+ a is invertible.

Proof. We can write u + a as u(1 + au−1). Here au−1 is nilpotent so 1 + au−1 is invertible so u + a is
invertible. �

Proposition 3.11. [prop-idempotent-ops]
The elements 0 and 1 are idempotent. Moreover, if a and b are idempotent then so are the elements 1− a

and 1− b and a+ b− ab.

Proof. Straightforward, especially if we note that the condition a2 = a is equivalent to a(1−a) = 0 and that
a+ b− ab = 1− (1− a)(1− b). �

Proposition 3.12. [prop-root-one]
If e is idempotent then the element u = 1− 2e has u2 = 1 and so is invertible.

Proof. By expanding everything out and recalling that e(1− e) = 0 we see that u2 = 1− 4e(1− e) = 1. �

Proposition 3.13. [prop-lifting]

(a) If e and e′ are idempotent and e′ − e is nilpotent then e′ = e.
(b) Let e be an element of A such that the element x = e(1− e) is nilpotent. Then there is an element

a ∈ A such that e+ ax is idempotent. Moreover, this is the unique idempotent e′ such that e′ − e is
nilpotent.

Proof.

(a) Put x = e′ − e and u = 1 − 2e. If we expand out x(1 − xu) using e2 = e and (e′)2 = e′ repeatedly,
we get zero. As x is nilpotent we see that 1− xu is invertible, so we can multiply by the inverse to
get x = 0.

(b) Suppose that xn = 0, and consider the element

y = 1− en − (1− e)n.

It is clear from the binomial expansion that (e + f)n − en − fn is always divisible by ef . Taking
f = 1 − e, we see that y is divisible by x, say y = vx for some v. It follows that the element
u = en + (1 − e)n can be written as 1 − vx, and so is invertible. We put e′ = enu−1, so 1 − e′ =
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(1 − e)nu−1, so e′(1 − e′) = xnu−2 = 0, so e′ is idempotent. Note also that if we put b =
∑n−2
k=0 e

k

we have e− en = bx and u−1 − 1 = u−1vx so

e′ − e = enu−1 − e = en(u−1 − 1)− (e− en) = (enu−1v − b)x.
Thus, if we put a = enu−1v − b we have e′ = e + ax as required. Uniqueness follows from part (a)
together with Proposition 3.8.

�

Remark 3.14. [rem-lifting]
One can give an interesting alternative formula for the idempotent in part (b). Put x = e(1 − e) and

b =
∑∞
k=0

(
2k + 1
k

)
xk (noting that this is really only a finite sum, because x is nilpotent). Using some

standard combinatorics one can check that (1 − 4x)(b2x − b) = 1. Now put a = (2e − 1)b and e′ = e + ax.
We find that (1− 4x)e′(1− e′) = e(1− e)− x = 0 but 1− 4x is invertible so e′ is idempotent.

The following result is a nice illustration of all the above concepts.

Proposition 3.15. Let A be a ring with only finitely many elements, and suppose that the only idempotents
in A are 0 and 1. Then every element of A is either nilpotent or invertible.

Proof. Let a be an element of A. As A is finite, the powers of a cannot all be different. It follows that
there exist integers p, q > 0 with ap+q = ap. We then see by induction that ap+kq = ap for all k ≥ 0. In
particular, we have ap+pq = ap. Multiplying both sides by a(q−1)p gives a2pq = apq, so apq is idempotent, so
either apq = 0 or apq = 1. In the first case, a is nilpotent. In the second case, apq−1 is an inverse for a, so a
is invertible. �

Proposition 3.16. [prop-poly-el-props]
Let A be a ring, and let f =

∑
k akx

k ∈ A[x] be a polynomial over A.

(a) If a0 is invertible in A, and ai is nilpotent in A for all i > 0, then f is invertible in A[x]. Conversely,
if f is invertible in A[x] then a0 is invertible in A.

(b) If the first nonzero coefficient in f is regular in A, then f is regular in A[x]. Similarly, if the last
nonzero coefficient in f is regular in A, then f is regular in A[x].

(c) f is nilpotent in A[x] iff all coefficients ai are nilpotent in A.
(d) f is idempotent in A[x] iff a0 is idempotent in A and ai = 0 for i > 0.

Remark 3.17. In fact, claim (a) is fully reversible: if f is invertible in A[x], then the coefficients ai are
automatically nilpotent for i > 0. However, we will defer the proof, as it will become much easier when we
have more theory available.

Proof. (c) If all the coefficients ai are nilpotent, then all the individual terms aix
i are nilpotent, so

f is nilpotent by Proposition 3.8. Conversely, suppose that f is nilpotent, say fn = 0. If f =
adx

d + lower terms then fn = andx
nd + lower terms , so we must have and = 0, so ad is nilpotent.

It follows using Proposition 3.8 again that the polynomial

g =

d−1∑
i=0

aix
i = f + (−adxn)

is again nilpotent in A[x], so by induction on d we can conclude that the coefficients a0, . . . , ad−1 are
also nilpotent in A.

(a) First suppose that a0 is invertible and that ai is nilpotent for i > 0. Then the polynomial g =∑
i>0 aix

i is nilpotent by (c), so the polynomial f = a0+g is invertible by Proposition 3.9. Conversely,

if f is invertible with inverse g =
∑
i bix

i, we find that a0b0 = 1, so a0 is invertible.
(b) Suppose that f has lowest term anx

n and highest term amx
m, whereas g has lowest term bpx

p and
highest term bqx

q. Then

fg = anbpx
n+p + intermediate terms + ambqx

m+q,

so fg can only be zero if anbp = 0 and ambq = 0. (All this is still valid even if n = m or p = q.) The
claim follows easily.
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(d) If a0 is idempotent and ai = 0 for i > 0 then it is clear that f is idempotent. Conversely, suppose
that f is idempotent, so f2 = f . By looking at the constant term, we see that a0 is idempotent. It
follows that the poynomial g = (1− a0)f is also idempotent, and is divisible by x. Now for all n > 0
we have g = gn and so g is divisible by xn; this makes it clear that g = 0. It follows that f = a0f ,
so ai = a0ai for i > 0. Suppose that ai = 0 for 0 < i < m; then the coefficient of xm in f2 − f is
2a0am − am = am, so am = 0 as well. We deduce by induction that ai = 0 for all i > 0, as claimed.

�

If A = B × C then the element e = (1B , 0) is clearly idempotent, with 1A − e = (0, 1C). The following
proposition shows that all idempotents arise in essentially this way.

Proposition 3.18. [prop-idempotent-splitting]
Let A be a ring, and let e ∈ A be idempotent. Put

B = {b ∈ A | be = b} C = {c ∈ A | c(1− e) = c}.
Then B can be regarded as a ring with 1B = e, and C can be regarded as a ring with 1C = 1A− e. Moreover,
there is a ring isomorphism φ : A→ B × C given by φ(a) = (ae, a(1− e)) with φ−1(b, c) = b+ c.

Proof. It is clear that B contains 0 and is closed under addition, subtraction and multiplication. If we define
1B = e then we have 1Bb = b by the definition of B. All other ring axioms for B follow immediately from
the corresponding axioms for A. We can thus regard B as a ring, and the same argument works for C.

Next, we have e2 = e, so for any a ∈ A we have (ae)e = ae, so ae ∈ B. Similarly a(1 − e) ∈ C, so
the formula φ(a) = (ae, a(1 − e)) defines a function A → B × C. This clearly respects addition and sends
0 to 0. We also have φ(1A) = (e, 1 − e) = (1B , 1C) = 1B×C , and using e2 = e and (1 − e)2 = 1 − e
we see that φ(aa′) = φ(a)φ(a′). Thus, φ is a ring homomorphism. In the opposite direction, we define
ψ(b, c) = b + c, which clearly respects addition and sends 0 to 0. Note that if b ∈ B and c ∈ C we
have bc = bec(1 − e) = bc(e − e2) = 0. Using this, we find that ψ(bb′, cc′) = ψ(b, c)ψ(b′, c′). We also
have ψ(1B×C) = ψ(e, 1 − e) = 1A, so ψ is a ring homomorphism. It is also straightforward to check that
φψ : A → A and ψφ : B × C → B × C are identity maps, so φ and ψ are isomorphisms and are inverse to
each other. �

4. Properties of rings

Definition 4.1. [defn-ring-props]
Let A be a nontrivial ring.

(a) We say that A is a field if every nonzero element is invertible.
(b) We say that A is local if for every element a ∈ A, either a is invertible or 1− a is invertible.
(c) We say that A is a domain if all nonzero elements are regular, or equivalently, the product of any

two nonzero elements is nonzero.
(d) We say that A is irreducible if whenever a and b are nonzero elements of A, there are elements x

and y with ax = by 6= 0.
(e) We say that A is a predomain if all non-nilpotent elements are regular.
(f) We say that A is reduced if the only nilpotent element in A is 0.

By definition, the trivial ring is considered to be reduced, but not to have any of the other properties listed
above.

Remark 4.2. [rem-ring-props]
It is clear that every field is a local domain, and that every domain is a reduced predomain. Moreover,

every domain is also irreducible, because we can take x = b and y = a in the definition. Also, every
irreducible noetherian ring is a predomain; the noetherian condition will be introduced in Section 18, where
we will show that it is satisfied by many of the most commonly studied rings.

Proposition 4.3. [prop-Zn-props]
Consider a ring A = Z/n with n > 0.

(a) A is a field iff it is a domain iff n is prime.
(b) A is local iff n = pk for some prime number p and some k > 0.
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(c) A is reduced iff there is no prime p such that n is divisible by p2.

Proof. Recall from Proposition 3.4 that a ∈ Z/n is regular iff invertible iff a and n are coprime, and that
a is nilpotent iff it is divisible by every prime that divides n. Claims (a) and (c) are clear from this. For
claim (b), we first suppose that n = pk for some prime p and some k > 0. If a ∈ Z/n then a and 1−a cannot
both be divisible by p, so one of them is coprime to n, so one of them is invertible in Z/n; this proves that
Z/n is local. Convesely, suppose that n is not of the form pk. If n = 1 then Z/n is the trivial ring, which by
definition is not local. If n > 1 then we can write n = uv, where u and v are coprime integers that are both
larger than one. As they are coprime, we have ux + vy = 1 for some integers x, y. Take a = π(ux) ∈ Z/n,
so 1− a = π(vy). As gcd(ux, n) = u > 1 and gcd(vy, n) = v > 1 we see that neither a nor 1− a is invertible
in Z/n, so Z/n is not local. �

Example 4.4. [eg-Zpl-local]
Let p be a prime number, and let Z(p) denote the set of rational numbers of the form u/v with u ∈ Z and

v ∈ Z \ pZ. This is easily seen to be a subring of Q (and thus a domain). It is not a field, because p is a
nonzero element of Z(p) that has no inverse in Z(p). However, we claim that it is a local ring. To see this,
consider an element a ∈ Z(p), say a = u/v in lowest terms, so v is not divisible by p. It follows that u and
v−u cannot both be divisible by p. If u is not divisible by p then v/u is an inverse for a in Z(p), and if v−u
is not divisible by p then v/(v − u) is an inverse for 1− a in Z(p).

Proposition 4.5. Let A be a nontrivial ring.

(a) A[x] is never a field or a local ring.
(b) A[x] is a domain iff A is a domain.
(c) A[x] is reduced iff A is reduced.

Proof. Recall from Proposition 3.16 that a polynomial f ∈ A[x] is nilpotent iff it has nilpotent coefficients,
and that f is regular if either the lowest or the highest nonzero coefficient is regular. Claims (b) and (c)
follow easily from this. Next note that if f = axd + lower terms then xf = axd+1 + lower terms and
(1− x)f = −axd+1 + lower terms , so neither xf nor (1− x)f can be equal to 1. It follows that neither x
nor 1− x is invertible, so A[x] is not a field or a local ring. �

5. Ideals

Definition 5.1. An ideal in a ring A is a subset I ⊆ A such that

• 0 ∈ I
• If a, b ∈ I then a+ b ∈ I
• If a ∈ A and b ∈ I then ab ∈ I.

Example 5.2. [eg-degenerate-ideals]
The sets {0} and A are ideals in A. We will usually write 0 rather than {0}.

Example 5.3. [defn-principal-ideal]
For any element x ∈ A the set Ax = {ax | a ∈ A} is an ideal. Ideals of this type are called principal

ideals.

Example 5.4. [eg-annihilator]
For any subset S ⊆ A we put

annA(S) = {a ∈ A | as = 0 for all s ∈ S}.
This is called the annihilator of S in A; it is easily seen to be an ideal. Important special cases are where S
consists of a single element (in which case we write ann(s) rather than ann({s})) or where S itself is also an
ideal.

Definition 5.5. [defn-lin-comb]
Consider again a subset S ⊆ A. We say that an element a ∈ A is an A-linear combination of S if there

exists a finite list s1, . . . , sn of elements of S and a finite list c1, . . . , cn of elements of A such that a =
∑
i cisi.

We write spanA(S) for the set of all linear combinations of S. It is easy to see that this is an ideal, and that
any ideal containing S also contains spanA(S)
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Proposition 5.6. [prop-ker-ideal]
Let φ : A → B be a ring homomorphism. Then the kernel ker(φ) = {a ∈ A | φ(a) = 0} is an ideal in A.

Moreover, we have ker(φ) = 0 if and only if φ is injective.

Proof. It is clear that 0 ∈ ker(φ). Suppose that a, b ∈ ker(φ) and r ∈ A, so φ(a) = φ(b) = 0. It follows that
φ(a+ b) = φ(a) + φ(b) = 0 + 0 = 0 and φ(ra) = φ(r)φ(a) = φ(r)0 = 0, so a+ b, ra ∈ ker(φ).

Now suppose that ker(φ) = 0. If a, b ∈ A with φ(a) = φ(b) then we have φ(a − b) = φ(a) − φ(b) = 0
so a − b ∈ ker(φ) = 0 so a = b; this proves that φ is injective. Conversely, suppose that φ is injective. For
a ∈ ker(φ) we have φ(a) = 0 = φ(0), so injectivity means that a = 0; thus ker(φ) = 0. �

Proposition 5.7. [prop-eval-ker]
Consider a vector u ∈ Ad and the evaluation homomorphism

εu : A[x1, . . . , xd]→ A

as in Example 2.8. Then
ker(εu) = spanA[x1,...,xd](x1 − u1, . . . , xd − ud).

Proof. Put B = A[x1, . . . , xd] and Ku = ker(εu : B → A) and Lu = spanB(xi−ui | 1 ≤ i ≤ d). By definition
we have εu(xi − ui) = ui − ui = 0, so xi − ui ∈ K for all i, so Lu ≤ Ku. For the reverse inclusion, we
first consider the special case where ui = 0 for all i, so εu just sends every polynomial to its constant term.
It follows that if ε0(f) = 0, then f is an A-linear combination of monomials xi11 · · ·x

id
d where at least one

exponent has ik > 0, so the monomial is a multiple of xk. From this it is clear that K0 = L0. For the general
case, note that we can define homomorphisms

B
α−→ B

β−→ B

by

α(f(x1, . . . , xd)) = f(x1 + u1, . . . , xd + ud)

β(f(x1, . . . , xd)) = f(x1 − u1, . . . , xd − ud).
These satisfy αβ = βα = 1, so they are isomorphisms. We have εu = ε0 ◦ α, so

Ku = ker(ε0 ◦ α) = α−1(K0) = β(K0) = β(L0),

but it is clear that β(L0) = Lu, so Ku = Lu as claimed. �

Remark 5.8. [rem-congruence]
Ideals do not usually contain 1 and so are usually not subrings. However, they can be related to subrings

as follows. Given an ideal I ⊆ A, we put EI = {(a, b) ∈ A × A | a − b ∈ I}. As with any subset of A × A,
this can be regarded as a relation on the set A, with a related to b iff (a, b) ∈ EI . We find that EI is both a
subring of A× A and an equivalence relation. Conversely, if F is a subring of A× A that is an equivalence
relation, then there is a unique ideal I such that F = EI , namely I = {a ∈ A | (a, 0) ∈ F}. We will not need
this, so we leave the proof as an exercise.

Definition 5.9. [defn-ideal-ops]
Let I and J be ideals in A.

• We write I ∩ J for the intersection, so a ∈ I ∩ J iff a ∈ I and a ∈ J .
• We write I + J for the set of all elements a ∈ A that can be expressed in the form a = b + c with
b ∈ I and c ∈ J .

• We write IJ for the set of elements a ∈ A that can be expressed in the form a =
∑n
i=1 bici, with

bi ∈ I and ci ∈ J .
• We write (I : J) for the set of elements a ∈ A such that aJ ⊆ I.

Remark 5.10. [rem-ideal-ops]
It is easy to see that all the above sets are ideals. Moreover, we have IJ ⊆ I ∩ J ⊆ I ⊆ I + J and

IJ ⊆ I ∩ J ⊆ J ⊆ I + J .

We can apply the operations in Definition 5.9 repeatedly to define I1∩· · ·∩It and I1 + · · ·+It and I1 · · · It
for any finite list of ideals I1, . . . , It. There are also versions of the first two operations for infinite families:
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Definition 5.11. [defn-infinite-ideal-ops]
Suppose we have a family of ideals Is for s in some index set S. We put⋂

s

Is = {a ∈ A | a ∈ Is for all s ∈ S}

∑
s

Is = spanA

(⋃
s

Is

)
.

These are again easily seen to be ideals.
The union of a family of ideals is not generally an ideal, but there are some important special cases where

it is an ideal.

Proposition 5.12. [prop-chain-union]
Suppose we have a family of ideals In for n ∈ N such that In ⊆ In+1 for all n. Then the set I∞ =

⋃
n In

is also an ideal.

Proof. Suppose that a, b ∈ I∞, so a ∈ In and b ∈ Im for some n,m ∈ N. Put p = max(n,m), so both a and
b lie in the ideal Ip, so a + b lies in Ip ⊆ I∞. Thus I∞ is closed under addition, and it is clear that it also
contains zero and is closed under multiplication by elements of R. �

Example 5.13. [eg-torsion]
Fix an element a ∈ A, and put

I = {x ∈ A | anx = 0 for some n ∈ N}.

We find that I is the union of the chain

annA(a) ⊆ annA(a2) ⊆ annA(a3) ⊆ annA(a3) ⊆ · · · ,

and so I is an ideal.

Lemma 5.14. [lem-unit-ideal]
Let I be an ideal in a ring A. Then I = A iff 1 ∈ I iff I contains an invertible element.

Proof. If I contains an invertible element u then it contains u−1u = 1, and so for every element a ∈ A it
contains a.1 = a, so I = A. Conversely, if I = A then I contains the element 1 which is invertible. �

Corollary 5.15. [cor-field-ideals]
If A is a field then the only ideals in A are 0 and A.

Proof. Any nonzero ideal contains an invertible element and so is all of A. �

Definition 5.16. [defn-radical]
For any ideal I in A we put

√
I = {a ∈ A | an ∈ I for some n ≥ 0},

and we call this the radical of I. We also use the notation Nil(A) for
√

0 = { nilpotent elements in A}, and
call this the nilradical of A. We say that A is reduced if Nil(A) = 0.

Proposition 5.17. [prop-radical]

If I is an ideal in A then
√
I is also an ideal and I ⊆

√
I. In particular, Nil(A) is an ideal in A.

Proof. Suppose that a, b ∈
√
I, so an+1, bm+1 ∈ I for some n,m ∈ N. We then have aibj ∈ I whenever i > n

or j > m, so (a+ b)n+m+1 ∈ I by the same logic as in Proposition 3.8, so a+ b ∈
√
I. The other two axioms

are easy, so
√
I is an ideal as claimed. It is also clear that I ⊆

√
I. �

Definition 5.18. [defn-jacobson]
We put

Rad(A) = {a ∈ A | 1 + ax is invertible for all x ∈ A},
and call this the Jacobson radical of A.
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Proposition 5.19. [prop-nil-rad]
Rad(A) is an ideal in A, and Nil(A) ⊆ Rad(A).

Proof. Suppose that a, b ∈ Rad(A). For any x ∈ A we see that 1 + bx is invertible, and then that 1 + ax(1 +
bx)−1 is invertible, so the product (1 + ax(1 + bx)−1)(1 + bx) is invertible, but that product is 1 + (a+ b)x.
Using this we see that Rad(A) is closed under addition. The other two axioms are easy, so Rad(A) is an
ideal. If a is nilpotent then so is ax for all x, so 1 + ax is invertible by Proposition 3.9. This proves that
Nil(A) ⊆ Rad(A). �

Proposition 5.20. [prop-local-max]
Let A be a local ring, and let I be the set of elements that are not invertible. Then I is an ideal in A, and

in fact is equal to Rad(A). Moreover, if J is any other ideal then either J = A or J ⊆ I.

Proof. Suppose that a+b is invertible. We claim that either a or b is invertible. To see this, put x = a(a+b)−1,
so 1− x = b(a+ b)−1. As A is local, either x or 1− x must be invertible. If x is invertible then a = x(a+ b)
is invertible, and if 1 − x is invertible then b = (1 − x)(a + b) is invertible, which proves the claim. By the
contrapositive, if a and b are non-invertible then a + b is non-invertible, so I is closed under addition. The
other two axioms are easy, so I is an ideal. Any ideal not contained in I must contain an invertible element
and so must be equal to A. Thus every ideal is either contained in I or is equal to A, as claimed.

As A is local we have 1 6= 0, so 0 is not invertible, so 1 6∈ Rad(A). We must therefore have Rad(A) ⊆ I.
On the other hand, if a ∈ I then −ax is non-invertible for all x (by Proposition 3.5), so 1 + ax must be
invertible by the locality condition. This shows that I ⊆ Rad(A), so I = Rad(A) as claimed. �

Definition 5.21. [defn-quotient-ring]
Let I be an ideal in a ring A. A coset of I in A is a subset u ⊆ A of the form u = a+ I for some a ∈ A.

We write A/I for the set of all cosets, and we define π : A→ A/I by π(a) = a+ I. Given cosets u, v ∈ A/I
we put

u+ v = {a+ b | a ∈ u, b ∈ v} ⊆ A
uv = {ab+ x | a ∈ u, b ∈ v, x ∈ I}.

Proposition 5.22. [prop-quotient-ring]
In the above context, the sets u + v and uv are cosets. More specifically, if u = π(a) and v = π(b) then

u + v = π(a + b) and uv = π(ab). Moreover, with the above definition of addition and multiplication, the
set A/I becomes a ring, with 0A/I = π(0) = I and 1A/I = π(1) = 1 + I. The map π : A → A/I is a ring
homomorphism with ker(π) = I.

Proof. First, if x ∈ π(a) + π(b) then x = (a + u) + (b + v) for some u, v ∈ I. This can be rewritten as
x = (a+ b) + (u+ v) with u+ v ∈ I, so we see that π(a) + π(b) ⊆ π(a+ b). Conversely, if x ∈ π(a+ b) then
x = a + b + v for some v ∈ I, and this is the sum of elements a ∈ π(a) and b + v ∈ π(b), so we see that
π(a + b) ⊆ π(a) + π(b), so π(a) + π(b) = π(a + b) as claimed. In particular, the sum of any two cosets is
again a coset.

Now suppose instead that x ∈ π(a)π(b), so x = (a + u)(b + v) + w for some u, v, w ∈ I. This can be
rewritten as x = ab+ (av + ub+ uv + w), with av + ub+ uv + w ∈ I, so we see that π(a)π(b) ⊆ π(ab). The
reverse inclusion is clear, so we have π(a)π(b) = π(ab); in particular, the product of any two cosets is again
a coset.

The set A/I now has well-defined operations of addition and multiplication. We claim that for all cosets u,
v and w we have u(v+w) = uv+uw. Equivalently, for all elements a, b, c ∈ A we claim that π(a)(π(b)+π(c)) =
π(a)π(b) + π(a)π(c). Indeed, we have

π(a)(π(b) + π(c)) = π(a)π(b+ c) = π(a(b+ c)) = π(ab+ ac) = π(ab) + π(ac) = π(a)π(b) + π(a)π(c)

as claimed. The other ring axioms follow in a similar way. The identities π(a + b) = π(a) + π(b) and
π(ab) = π(a)π(b) and π(1A) = 1A/I show that π is a ring homomorphism.

If a ∈ ker(π) then π(a) = 0A/I , or in other words a + I = I, so in particular a ∈ I. Conversely, if a ∈ I
then any other element b ∈ I can be expressed as b = a+ (b− a) with b− a ∈ I, so π(a) = I = 0A/I . This
proves that ker(π) = I. �
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Example 5.23. [eg-modular-quotient]
Let n be a positive integer. The set nZ is then an ideal in Z, and we have a+ nZ = b+ nZ if and only if

a = b (mod n). Using this, we can identify the quotient Z/nZ with the ring Z/n as defined in Example 1.8.

In keeping with the above example, we adopt the following convention:

Definition 5.24. [defn-principal-quotient]
Given a principal ideal I = Aa, we write A/a for A/I.

Proposition 5.25. [prop-monic-quotient]
Let A be a ring, and let f be a monic polynomial of degree d over A. Put x = x+A[x]f ∈ A[x]/f . Then

every element u ∈ A[x]/f can be expressed in a unique way as

u =

d−1∑
i=0

aix
i

with a0, . . . , ad−1 ∈ A.

Proof. By definition, u is a coset π(g) say. Proposition 1.25 shows that g = qf + r for some polynomial

r(x) =
∑d−1
i=0 aix

i, with ai ∈ A. This gives u = π(qf + r) = π(r) =
∑d−1
i=0 aix

i. Uniqueness can be proved
similarly. �

Example 5.26. [eg-C-as-quotient]
Consider the quotient K = R[x]/(x2 + 1). Every element can be expressed uniquely as a + bx, with

a, b ∈ R. We also have x2 + 1 = π(x2 + 1) = 0. Using this, we can identify K with C.

Proposition 5.27. [prop-quotient-ring-map]
Let φ : A → B be a ring homomorphism, and let I be an ideal in A such that φ(I) = 0, or equivalently

I ⊆ ker(φ). Then there is a unique homomorphism φ : A/I → B such that φ ◦ π = φ. Moreover:

(a) φ is injective iff ker(φ) = I.
(b) φ is surjective iff φ is surjective.
(c) φ is an isomorphism iff ker(φ) = I and φ is surjective.

Proof. Consider a coset u ⊆ A. We claim that the set φ(u) = {φ(x) | x ∈ u} consists of a single element.
Indeed, we can write u = π(a) = {a+ t | t ∈ I} for some a, and then we find that

φ(u) = {φ(a) + φ(t) | t ∈ I} = φ(a) + φ(I) = φ(a) + {0} = {φ(a)}
as claimed. We define φ(u) to be the unique element of φ(u). The above calculation shows that φ(π(a)) =
φ(a) for all a, so φ ◦ π = φ, and it is clear that φ is the only function with this property. In particular, we
have φ(1A/I) = φ(π(1A)) = φ(1A) = 1B . We next claim that φ(u + v) = φ(u) + φ(v) for all u, v ∈ A/I.
Indeed, we can choose elements a, b with u = π(a) and v = π(b), and we find that

φ(u+ v) = φ(π(a) + π(b)) = φ(π(a+ b)) = φ(a+ b) = φ(a) + φ(b) = φ(u) + φ(v)

as claimed. The same argument gives φ(uv) = φ(u)φ(v), so φ is a ring homomorphism.

(a) Suppose that ker(φ) = I. We then have φ(π(a)) = 0 iff φ(a) = 0 iff a ∈ I iff π(a) = 0, so ker(φ) = 0,
so φ is injective. The converse is similar and is left to the reader.

(b) Suppose that φ is surjective. Then for each b ∈ B we can choose u ∈ A/I with φ(u) = b, then we
can choose a ∈ A with u = π(a), and we find that φ(a) = b. This proves that φ is surjective. The
converse is similar and is left to the reader.

(c) This follows from (a) and (b).

�

Definition 5.28. [defn-ideal-props]
Let I be an ideal in a ring A.

(a) We say that I is maximal iff A/I is a field.
(b) We say that I is prime iff A/I is a domain.
(c) We say that I is coirreducible if A/I is irreducible.
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(d) We say that I is primary iff A/I is a predomain.
(e) We say that I is a radical ideal if A/I is reduced.

Remark 5.29. [rem-ideal-props]
It follows from Remark 4.2 that maximal ideals are prime, and that prime ideals are are coirreducible and

primary and radical. In the noetherian setting (to be discussed later) we will see that all coirreducible ideals
are primary.

Example 5.30. [prop-Z-ideal-props]
Consider an ideal I = Z.n in Z. If n = 0 then Z/I = Z, which is a domain but not a field; so I is prime

but not maximal. If n = 1 then Z/I is the trivial ring, so I is radical but not maximal, prime, coirreducible
or primary. Suppose instead that n > 1, so Z/I = Z/n. Using Proposition 3.4, we see that I is maximal iff
I is prime iff n is a prime number. We also see that I is radical iff there is no prime p such that p2 divides n.

Example 5.31. [eg-poly-max]
Let F be a field, and put B = F [x1, . . . , xd]. For any u ∈ F d we have a an evaluation homomorphism

εu : B → F , and we saw in Proposition 5.7 that ker(εu) is the same as the ideal

Lu = spanB(x1 − u1, · · · , xd − ud).

It is clear that εu is surjective (because it is just the identity on the subring F ⊆ B) so it induces an
isomorphism B/Lu → F . This shows that Lu is a maximal ideal. We will see in Section 23 that every
maximal ideal in C[x1, . . . , xd] has the form Lu for some u ∈ Cd. On the other hand, Example 5.26 shows
that R[x].(x2 + 1) is a maximal ideal in R[x], and it does not have the form Lu.

Proposition 5.32. [prop-local-max-ii]
Let A be a local ring, and let M be the set of non-invertible elements. Then M is the unique maximal

ideal in A.

Proof. We saw in Proposition 5.20 that M is an ideal. It clearly does not contain 1, so A/M is a nontrivial
ring. If u is a nontrivial element of A/M then it has the form u = a+M for some a ∈ A \M . This means
that a is invertible in A, and a−1 +M is an inverse for u, so u is invertible in A/M . This proves that A/M
is a field, so M is a maximal ideal.

Now let N be any maximal ideal in A. Then A/N is a field, so it must be nontrivial, so N cannot be
all of A, so N cannot contain any invertible element of A, so N ⊆ M . Conversely, suppose that a 6∈ N . As
A/N is a field, there is another element b ∈ A with ab ∈ 1 + N . Now N ⊆ M so 1 + N ⊆ 1 + M , which is
disjoint from M and so consists of invertible elements. This means that ab is invertible, so a is invertible, so
a 6∈M . We conclude that N = M as required. �

Proposition 5.33. [prop-max-ideal]
An ideal I ⊆ A is maximal iff I 6= A, and the only ideal J with I < J is J = A.

Proof. First suppose that I is maximal, so A/I is a field. Then A/I is by definition nontrivial, so I 6= A.
Consider another ideal J with I < J , so we can choose a ∈ J \ I. As a 6∈ I the element π(a) is nonzero in
the field A/I, so it has an inverse. This means that there exists an element b ∈ A with ab + I = 1 + I, so
1 = ab+ c for some c ∈ I ⊆ J . As a, c ∈ J we deduce that 1 ∈ J , so J = A as required.

Conversely, suppose that the only ideal J with I < J is J = A. Any nontrivial element of A/I has the
form π(a) = a + I for some a 6∈ I. This means that the ideal J = Ra + I is strictly larger than I and so
must be all of A. In particular we see that 1 = ab+ c for some b ∈ A and c ∈ I. We can now apply π to see
that π(a) has an inverse π(b), as required. �

Proposition 5.34. [prop-prime-complement]
An ideal I ⊆ A is prime iff the complement A \ I contains 1 and is closed under multiplication.

Proof. Suppose that I is prime, so A/I is a domain. In particular, A/I is nontrivial, so 1 ∈ A \ I. If
a, b ∈ A \ I then π(a) and π(b) are nontrivial elements of the domain A/I, so π(ab) = π(a)π(b) is also
nontrivial, as ab ∈ A \ I as required. The converse is essentially the same. �
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Corollary 5.35. [cor-prime-for-ideals]
Suppose that I, J and P are ideals and that P is prime and IJ ≤ P or I ∩ J ≤ P ; then either I ≤ P or

J ≤ P .

Proof. If I 6≤ P and J 6≤ P then we can choose a ∈ I \ P and b ∈ J \ P . We then have ab ∈ IJ ≤ I ∩ J and
ab 6∈ P , so IJ 6≤ P and I ∩ J 6≤ P . The claim follows by taking the contrapositive. �

The next result is called prime avoidance.

Proposition 5.36. [prop-prime-avoidance]
Let I, P1, . . . , Pn be ideals in A such that I ⊆

⋃
i Pi and Pi is prime for i > 2. Then I ≤ Pi for some i.

Proof. We argue by induction on n. The case n = 0 is vacuous and the case n = 1 is trivial. Now suppose
that n ≥ 2. For 1 ≤ k ≤ n put Sk =

⋃
i 6=k Pi. We claim that I ⊆ Sk for some k (so that the desired

conclusion follows immediately from the induction hypoothesis). If not, we can choose ak ∈ I \ Sk for all k.
As I ⊆

⋃
i Pi we see that ak ∈ Pk. Now put b =

∏
i<n ai ∈ I and c = b + an. As ai 6∈ Pn for i < n we see

that b 6∈ Pn. (If n = 2 then b = a1 so this is trivial, and if n > 2 then if follows from the primality of Pn.)
As b 6∈ Pn and an ∈ Pn we have c 6∈ Pn. As c ∈ I we therefore have c ∈ Pj for some j < n. As aj ∈ Pj we
also have b ∈ Pj and so an = c − b ∈ Pj , contrary to our choice of an. This contradiction shows that we
must have I ⊆ Sk for some k after all. �

Proposition 5.37. If A is a predomain, then A/Nil(A) is a domain.

Proof. First, as A is a predomain it must be nontrivial, so 1 6= 0, so 1 6∈ Nil(A), so A/Nil(A) is nontrivial.
Now let u and v be nontrivial elements of A/Nil(A). This means that u = π(a) and v = π(b) for some

elements a, b ∈ A that are not nilpotent. As A is a predomain, it follows that a and b are regular, and thus ab
is also regular. In a nontrivial ring a regular element cannot be nilpotent, so ab 6∈ Nil(A), so uv = π(ab) 6= 0.
This proves that A/Nil(A) is a domain. �

Definition 5.38. [defn-idl-functor]
We write idl(A) for the set of all ideals in A, and zar(A) for the subset of prime ideals, and max(A) for

the subset of maximal ideals.
For any ring homomorphism φ : A→ B, we define maps φ∗ : idl(A)→ idl(B) and φ∗ : idl(B)→ idl(A) by

φ∗(I) = spanB(φ(I))

φ∗(J) = {a ∈ A | φ(a) ∈ J} = ker(A
φ−→ B

π−→ B/J).

Example 5.39. [eg-ideals-in-product]
Consider a product ring C = A × B, and let α : C → A and β : C → B be the projections, so we

have a map φ : idl(C) → idl(A) × idl(B) sending K to (α∗(K), β∗(K)). On the other hand, we can define
ψ : idl(A)× idl(B)→ idl(C) by ψ(I, J) = I ×J . It is not hard to see that φ and ψ are inverse to each other,
so both are bijections.

Remark 5.40. Consider the case where A is a subring of B and φ is just the inclusion map. We then have
φ∗(I) = spanB(I), and we may also write BI for this. We also have φ∗(J) = A ∩ J .

Remark 5.41. [rem-idl-triangle]
It is easy to see that for all I ∈ idl(A) and J ∈ idl(B) we have φ∗(I) ⊆ J iff I ⊆ φ∗(J). In particular,

we have I ⊆ φ∗(φ∗(I)) and φ∗(φ
∗(J)) ⊆ J . Later we will see various special cases where I = φ∗(φ∗(I)) or

φ∗(φ
∗(J)) = J , but neither of these holds in general.

Remark 5.42. [rem-idl-functor]

If we have homomorphisms A
φ−→ B

ψ−→ C, then it is easy to see that

(ψφ)∗ = ψ∗φ∗ : idl(A)→ idl(C)

(ψφ)∗ = φ∗ψ∗ : idl(C)→ idl(A).

In other words, these constructions are functorial.
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Proposition 5.43. [prop-zar-functor]
Consider a homomorphism φ : A → B. If J is a prime ideal in B, then φ∗(J) is a prime ideal in A; so

φ∗ restricts to give a map zar(B)→ zar(A).

Proof. Suppose that x, y ∈ A\φ∗(J). Then φ(x), φ(y) ∈ B\J , but J is prime so the element φ(xy) = φ(x)φ(y)
also lies in B \ J , so xy ∈ A \ φ∗(J). It follows that φ∗(J) is prime as claimed.

Alternatively, we can say that φ induces an injective homomorphism A/φ∗(J) → B/J , so A/φ∗(J) is
isomorphic to a subring of the domain B/J , so it is itself a domain. �

Remark 5.44. It is not true in general that φ∗(max(B)) ⊆ max(A) or φ∗(zar(A)) ⊆ zar(B) or φ∗(max(A)) ⊆
max(B). Indeed, none of these things is true when φ is the inclusion Z→ Q.

Proposition 5.45. [prop-quotient-ideals]
Let φ : A → B be a surjective homomorphism, with kernel K. Then the ideals in B are essentially the

same as the ideals in A that contain K. More precisely:

(a) For all I ∈ idl(A), the set φ(I) ⊆ B is an ideal, and is the same as φ∗(I).
(b) Moreover, we have φ∗(φ∗(I)) = I +K, so φ∗(φ∗(I)) = I if and only if K ⊆ I.
(c) For all J ∈ idl(B) we have K ⊆ φ∗(J) and φ∗(φ

∗(J)) = J .
(d) Thus, we have maps

idl(B)
φ∗−→ {I ∈ idl(A) | K ⊆ I} φ∗−→ idl(B)

which are inverse to each other and so are bijections.
(e) Moreover, if I ∈ idl(A) corresponds to J ∈ idl(B) under the above bijection, then φ induces an

isomorphism A/I → B/J . Thus, I is maximal, prime, coirreducible, primary or radical iff J has
the same property.

Proof.

(a) Consider elements u ∈ B and v, w ∈ φ(I). As φ is surjective we can choose r ∈ A with φ(r) = u,
and by the definition of φ(I) we can choose s, t ∈ I with φ(s) = v and φ(t) = w. As I is an ideal we
have 0, rs, s+ t ∈ I. This gives 0 = φ(0) ∈ φ(I) and uv = φ(rs) ∈ φ(I) and v+w = φ(s+ t) ∈ φ(I).
It follows that φ(I) is an ideal as claimed. Now φ∗(I) is by definition the ideal spanned by φ(I), and
as φ(I) is already an ideal it follows that φ∗(I) = φ(I).

(b) If r ∈ I +K then r = s+ t for some s ∈ I and t ∈ K. Now φ(t) = 0, so φ(r) = φ(s) ∈ φ(I) = φ∗(I),
so r ∈ φ∗(φ∗(I)). Conversely, suppose that r ∈ φ∗(φ(I)), so φ(r) ∈ φ(I), so φ(r) = φ(s) for some
element s ∈ I. This means that the element t = r− s has φ(t) = 0 and so t ∈ K. We therefore have
r = s+ t ∈ I +K as claimed.

(c) First, for t ∈ K we have φ(t) = 0 ∈ J , so t ∈ φ∗(J); this shows that K ⊆ φ∗(J). As in Remark 5.41,
we have φ∗(φ

∗(J)) ⊆ J for trivial reasons. Conversely, suppose that u ∈ J . As φ is surjective there
exists r ∈ R with φ(r) = u. As φ(r) ∈ J , we have r ∈ φ∗(J). Thus, the equation φ(r) = u shows
that u ∈ φ∗(φ∗(J)) as required.

(d) This follows from (a), (b) and (c).
(e) Consider an ideal J ⊆ B and the corresponding ideal I = φ∗(J) ⊆ B. Let ψ be the composite

A
φ−→ B

πJ−−→ B/J , and note that this is surjective. We have ψ(a) = 0 iff φ(a) ∈ J iff a ∈ φ∗(J) = I,
so ker(ψ) = I. Proposition 5.27 therefore gives us an isomorphism ψ : A/I → B/J .

�

Corollary 5.46. [cor-quotient-ideals]
Let K be an ideal in A. Then there is a bijection

{I ∈ idl(A) | K ⊆ I} → idl(A/K)

given by I 7→ I/K.

Proof. Just apply the proposition to the standard quotient homomorphism π : A→ A/K. �

Definition 5.47. A multiplicative set in a ring A is a subset U ⊆ A that contains 1 and is closed under
multiplication.
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Remark 5.48. If P ⊆ A is a prime ideal, then A \ P is a multiplicative set by Proposition 5.34.

Proposition 5.49. [prop-primes-exist]
Let A be a ring, let I be an ideal in A, and let U be a multiplicative set with U ∩ I = ∅. Let E be the set

of all ideals J ⊆ A such that I ⊆ J and J ∩ U = ∅. Then:

(a) E has a maximal element.
(b) Every maximal element in E is a prime ideal.
(c) If U = {1} then every maximal element in E is a maximal ideal.

Proof.

(a) A chain in E means a subset C ⊆ E such that for all K,L ∈ E we have either K ⊆ L or L ⊆ K. Let
C be a nonempty chain, and put

J =
⋃
C = {a ∈ A | there exists K ∈ C with a ∈ K}.

We claim that J ∈ E . Indeed, as C 6= ∅ we can choose an ideal K with K ∈ C, and certainly 0 ∈ K,
so 0 ∈ J . If u ∈ A and v, w ∈ J then we can choose ideals K,L ∈ C with v ∈ K and w ∈ L. We then
have uv ∈ K ⊆ J . Moreover, as C is a chain we have either K ⊆ L (so v + w ∈ L ⊆ J) or L ⊆ K
(so u+ v ∈ K ⊆ J). Either way we have v + w ∈ J , so we see that J is an ideal. As every ideal in
C ⊆ E is contained in A \ U it is clear that J is also contained in A \ U , so J ∈ C as claimed. Note
also that E is nonempty, because I ∈ E . We have now verified the conditions of the principle known
as Zorn’s Lemma, which guarantees that E has a maximal element.

As Zorn’s Lemma is often considered to be somewhat mysterious, we will outline a proof (for this
particular application).

For each maximal element K ∈ E (if any) we define φ(K) = K. For each element K ∈ E that is not
maximal, we choose an element K ′ ∈ E that strictly contains K, and we define φ(K) = K ′. (Note
that in general we need the Axiom of Choice to make all these choices simultaneously, although
for particular rings it my be possible to specify a choice explicitly. For example, if we are given
a surjective function f : N → A, we can let n be the smallest integer such that f(n) 6∈ K and
K + Af(n) ∈ E , and then put φ(K) = K + Af(n).) It will also be convenient to put φ(K) = A for
any subset K ⊆ A that is not an element of E .

Now define Kα recursively for α ∈ N by K0 = I and Kα+1 = φ(Kα). It may be that Kα is
maximal for some α, in which case Kβ = Kα for all β ≥ α and we can take J = Kα. If not, we
put Kω =

⋃
α∈NKα, and note that this is again an element of E . We then put Kω+1 = φ(Kω), and

Kω+2 = φ(Kω+1) and so on, and then K2ω =
⋃
α∈NKω+α. To organise this, we need some theory

of the “numbers” that we are using a subscripts. These are called ordinals, and the relevant theory
can be found in any text on axiomatic set theory. In particular, it is possible to make inductive
definitions and arguments, as one does for the integers. Using this, we can define subsets Kα ⊆ A
for all ordinals α, with Kβ+1 = φ(Kβ) for all β, and Kλ =

⋃
α<λKα whenever λ does not have the

form β + 1 for any β. One can then check using the chain condition that Kα ∈ E for all α, and that
if Kα is not maximal then all the ideals Kβ with β < α are distinct. Some further theory of ordinals
provides an ordinal α that is so large that this last condition is impossible, so Kα must be maximal,
as required. (There are also proofs of Zorn’s Lemma that avoid the use of ordinals, but they are less
easy to explain.)

(b) Let P be a maximal element in E , and let a and b be elements of A \P . As P +Aa is strictly larger
than P , and P is maximal in E , we see that P + Aa 6∈ E , so (P + Aa) ∩ U 6= ∅. Thus, there are
elements p ∈ P and x ∈ A and u ∈ U with p + ax = u. Similarly, there are elements q ∈ P and
y ∈ A and v ∈ U with q + by = v. This gives uv = (pq + pby + qax) + abxy ∈ P + Aab, so P + Aab
meets U and thus cannot be equal to P , so ab ∈ A \ P . Thus, P is prime.

(c) Now consider the case where U = {1}. Lemma 5.14 tells us that E is just the set of proper ideals in
A. Thus, Proposition 5.33 tells us that the maximal elements in E are precisely the maximal ideals.

�

Proposition 5.50. [prop-radical-intersection]
Let a be an element in a ring A. Then
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(a) a lies in Nil(A) iff a is nilpotent iff a lies in every prime ideal. In other words, Nil(A) is the
intersection of all prime ideals.

(b) a lies in Rad(A) iff 1 + aR ⊆ R× iff a lies in every maximal ideal. In other words, Rad(A) is the
intersection of all maximal ideals.

Proof. The first claim, that a lies in Nil(A) iff a is nilpotent, is simply a reminder of the definition. Similarly,
the first part of (b) is simply a reminder of the definition of Rad(A).

Suppose that there is a prime P such that a 6∈ P . Then the complement A \P is a multiplicative set that
contains a but not 0, so no power of a can be 0, so a is not nilpotent. Conversely, if a is not nilpotent then
the set U = {an | n ≥ 0} is multiplicative and disjoint from the ideal I = 0, so we can use Proposition 5.49
to see that there is a prime P with P ∩ U = ∅. In particular, a 6∈ P . This proves (a).

Now suppose that there is a maximal ideal M with a 6∈M . We then see that a corresponds to an element
in the field A/M that is nonzero and therefore invertible. It follows that there is an element b ∈ A such that
1− ab ∈M . Recall also that M cannot be equal to A and so cannot contain any invertible elements. Thus
1− ab is not invertible, so a is not in Rad(A).

Conversely, suppose that a is not in Rad(A), so there exists b ∈ A such that 1 − ab is not invertible, or
equivalently the ideal I = A(1 − ab) is not equal to A. It follows by Proposition 5.49 (with U = {1}) that
there is a maximal ideal M that contains 1−ab. If we also had a ∈M then we would have 1 ∈M so M = A,
which is false. We therefore see that M is a maximal ideal not containing a, as claimed. �

6. Basics of algebraic geometry

Let K be a field. We will typically draw pictures corresponding to the case K = R, but some of the theory
will be valid for all fields. Some aspects work better if we assume that K is algebraically closed, which means
that for every nonconstant polynomial f(t) ∈ K[t] there is a root α ∈ K with f(α) = 0. For example, it is
well known that C is algebraically closed, but Q and R are not (consider f(t) = t2 + 1).

Definition 6.1. [defn-algebraic-set]
Consider the ring Pn = K[x1, . . . , xn]. Note that given f ∈ Pn and u ∈ Kn we can evaluate f at u to get

f(u) ∈ K.

(a) For any ideal J ≤ Pn, we put

V (J) = {u ∈ Kn | f(u) = 0 for all f ∈ J}.

(b) For any set X ⊆ Kn, we put

I(X) = {f ∈ Pn | f(u) = 0 for all u ∈ X}.

(c) We say that a subset X ⊆ Kn is algebraic if X = V (J) for some ideal J .
(d) We say that an ideal J ≤ Pn is geometric if J = I(X) for some subset X ⊆ Kn.

Remark 6.2. [rem-hilbert]
Suppose we have polynomials f1, . . . , fr, and we put

X = {u ∈ Kn | f1(u) = · · · = fr(u) = 0}.

It is easy to see that this is the same as V (J), where J = Af1 + · · ·+Afr. Thus, X is algebraic. For example,
the set

X = {(x, y) ∈ R2 | y(x2 + y2 − 1) = 0}
(from Example 1.19) is algebraic.

Much later (in Theorem 18.10) we will show that any ideal J ≤ Pn can be expressed as J = Pnf1+· · ·+Pnfr
for some finite list f1, . . . , fr, so every algebraic set can be described by a finite system of polynomial
equations, as above.

Example 6.3. We have V (Pn) = ∅ and V (0) = Kn and I(∅) = Pn, so the sets ∅ and Kn are algebraic, and
the ideal Pn is geometric. However, if K = Fp then up = u for all u ∈ K, so the elements xpi − xi lie in I(X)
for any X. Thus, there is no set X with I(X) = 0, and the ideal 0 is not geometric. However, we will show
later than whenever K is infinite we have I(Kn) = 0, so the ideal 0 is geometric.
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Example 6.4. [eg-affine-line]
Consider the case where K = C and n = 1. Here it is well-known that every nonzero ideal J can be

written as J = Af , for some polynomial

f(x) =

r∏
i=1

(x− λi)ni ,

where we may assume that the roots λi are distinct and the exponents ni are strictly positive. This gives
V (J) = {λ1, . . . , λr}. Using this, we see that the algebraic subsets of C are just the finite subsets, together
with the subset C itself. If X is an infinite subset of C, then I(X) = 0, but if X = {λ1, . . . , λr} (with all the
λi distinct) then I(X) = P1.

∏
i(x− λi); this determines the geometric ideals. (Note here that we allow the

case r = 0 where X = ∅; the product of no terms is equal to 1, so I(∅) = P1 as before.

Lemma 6.5.

(a) If X1 ⊆ X2 then I(X1) ≥ I(X2)
(b) If J1 ≤ J2 then V (J1) ⊇ V (J2)
(c) I(

⋃
iXi) =

⋂
i I(Xi)

(d) V (
∑
i Ji) =

⋂
i V (Ji)

(e) I(X1) + I(X2) ≤ I(X1 ∩X2)
(f) V (I1I2) = V (I1 ∩ I2) = V (I1) ∪ V (I2).

Proof. Parts (a) to (e) are immediate from the definitions. For part (f), note that I1I2 ≤ I1 ∩ I2 ≤ I1,
so V (I1I2) ⊇ V (I1 ∩ I2) ⊇ V (I1). Similarly V (I1I2) ⊇ V (I1 ∩ I2) ⊇ V (I2), so V (I1I2) ⊇ V (I1 ∩ I2) ⊇
V (I1) ∪ V (I2). On the other hand, if u 6∈ V (I1) ∪ V (I2), then we can choose f1 ∈ I1 and f2 ∈ I2 with
f1(u) 6= 0 and f2(u) 6= 0 in K. As K is a field, this means that f1(u)f2(u) 6= 0, so u 6∈ V (I1I2). The claim
follows. �

Corollary 6.6.

(a) The intersection of any family of algebraic sets is again algebraic.
(b) The union of any two algebraic sets is again algebraic.
(c) The intersection of any family of geometric ideals is again geometric. �

Proposition 6.7.

(a) Given a set X ⊆ Kn and an ideal J ≤ Pn, we have X ⊆ V (J) iff J ≤ I(X).
(b) For every ideal J ≤ Pn, we have J ≤ I(V (J)).
(c) For every subset X ⊆ Kn, we have X ⊆ V (I(X)).
(d) We have J = I(V (J)) iff J is geometric.
(e) We have X = V (I(X)) iff X is algebraic.

Proof.

(a) Both conditions are equivalent to the condition that f(u) = 0 for all u ∈ X and f ∈ J .
(b) Take X = V (J) in part (a). The condition V (J) ⊆ V (J) is certainly true, so the condition J ≤

I(V (J)) is also true.
(c) Take J = I(X) in part (a). The condition I(X) ≤ I(X) is certainly true, so the condition X ⊆

V (I(X)) is also true.
(d) If J = I(V (J)) then J = I(something) so J is geometric. Conversely, suppose that J is geometric,

so J = I(X) for some set X. This gives V (J) = V (I(X)) ⊇ X, but the I(−) operator reverses order,
so I(V (J)) ≤ I(X). We have I(X) = J by assumption, so I(V (J)) ≤ J . The reverse inequality is
given by (b), so J = I(V (J)).

(e) If X = V (I(X)), then X = V (something), so X is algebraic. Conversely, suppose that X is algebraic,
so X = V (J) for some J . This gives I(X) = I(V (J)) ≥ J , but the V (−) operator reverses order, so
V (I(X)) ⊆ V (J). We have V (J) = X by assumption, so V (I(X)) ⊆ X. The reverse inequality is
given by (c), so X = V (I(X)).

�
23



Remark 6.8. The above argument is obviously very abstract, and not really specific to the present situation.
For a more general version, you can look up the theory of Galois connections.

Proposition 6.9. [prop-IKn]
If K is infinite, then I(Kn) = 0.

Proof. First consider the case n = 1. If f ∈ K[x] \ {0} and f(u) = 0, then deg(f) > 0 and we have
f(x) = (x−u)g(x) for some nonzero polynomial g with deg(g) = deg(f)−1. By a straightforward induction,
we see that |V (P1f)| ≤ deg(f) < ∞. In particular, V1(f) 6= K, so f 6∈ I(K). This completes the proof for
n = 1.

In general, if f is a nonzero element of Pn, we can write f =
∑d
i=0 cix

i
n, where c0, . . . , cd ∈ Pn−1 with

cd 6= 0. By induction, we can find u ∈ Kn−1 with cd(u) 6= 0. Now f(u, xn) is a nonzero polynomial in K[xn],
so by the n = 1 case, we can find v ∈ K with f(u, v) 6= 0, as required. �

7. Product splittings

Definition 7.1. we say that ideals I, J ≤ R are comaximal if I + J = R, or equivalently there exists a ∈ I
with 1− a ∈ J .

The following result (or a result closely related to it) is often called the Chinese Remainder Theorem.

Proposition 7.2. Suppose that I1, . . . , In are ideals in R such that Ii + Ij = R for all i 6= j. Then

I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In,

and there is a natural isomorphism

R/
⋂
i

Ii →
n∏
i=1

R/Ii.

Proof. Put J =
⋂
i Ii and K =

∏
i Ii. It is easy to see that K ≤ Ii for all i, and thus that K ≤ J .

Next, we can define a homomorphism π : R→
∏
iR/Ii by π(x) = (x+ I1, . . . , x+ In). Note that π(x) is

zero iff x + Ii = 0 + Ii for all i iff x ∈ Ii for all i iff x ∈ J . In other words, we have ker(π) = J , so there is
an induced homomorphism π : R/J →

∏
iR/Ii given by π(x+ J) = π(x), and this is injective.

Next, for i 6= j we have Ii + Ij = R, so we can choose aij ∈ Ii with 1− aij ∈ Ij . Put

bi =
∏
j 6=i

(1− aij) ∈
∏
j 6=i

Ij ≤
⋂
j 6=i

Ij .

As all the elements aij lie in Ii we see that 1− aij = 1 (mod Ii) and so bi = 1 (mod Ii).
Suppose we have an element y = (y1 + I1, . . . , yn + In) ∈

∏
iR/Ii. Put x =

∑
j yjbj ∈ R. If we fix i then

for j 6= i we have bj ∈ Ii, so yjbj does not contribute to x+ Ii; it follows that x+ Ii = yibi+ Ii. On the other
hand, we have bi = 1 (mod Ii) so yibi + Ii = yi + Ii. It follows that π(x+ J) = π(x) = y; so π is surjective,
and thus an isomorphism.

Now put c =
∏
i(1 − bi). As 1 − bi ∈ Ii we have c ∈ K. Now suppose that x ∈ J . For each i we have

x ∈ Ii and bi ∈
∏
j 6=i Ij so xbi ∈ K so x = x(1 − bi) (mod K). As this holds for all i, we see that xc = x

(mod K). However, c ∈ K so xc = 0 (mod K) so x ∈ K. This proves that J = K. �

The following result is often useful when checking the hypotheses of the Chinese Remainder Theorem.

Proposition 7.3. [prop-comaximal-powers]
If I and J are comaximal, then In and Jm are also comaximal, for any natural numbers n and m.

Proof. By hypothesis, we can choose a ∈ I and b ∈ J such that a + b = 1. Now consider the quotient ring
B = A/(In + Jm), and let a and b be the images of a and b in B. It is clear that an = b

m
= 0 in B, so a

and b are nilpotent. By Proposition 3.8, it follows that (a + b)n+m−1 = 0, but a + b = 1, so 1 = 0 in B, so
B is the trivial ring, so In + Jm = A as required. �
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8. Rings of fractions

Let A be a ring, and let U ⊆ A be a multiplicative set. We will define (in several stages) a new ring
A[U−1], whose elements can be regarded as fractions a/u with a ∈ A and u ∈ U .

Definition 8.1. [defn-fraction-ops]
We define addition and multiplication operations on the set A× U by the rules

(a, u) + (b, v) = (av + bu, uv)

(a, u)(b, v) = (ab, uv).

We also define η0 : A → A × U by η0(a) = (a, 1), and we write (a, u) ∼ (b, v) iff there exists x ∈ U with
avx = bux.

Lemma 8.2. [lem-fraction-ops]
The above addition rule is commutative and associative, with η0(0) as an identity element, and (a, u) +

(−a, u) = (0, u2). Similarly, the multiplication rule is commutative and associative, with η0(1) as an identity
element. The map η0 respects addition and multiplication. We also have

(a, u).((b, v) + (c, w)) = (abw + acv, uvw)

(a, u).(b, v) + (a, u).(c, w) = (u(abw + acv), u2vw).

Proof. Straightforward expansion of the definitions. �

Lemma 8.3. [lem-fraction-equiv]
The relation ∼ is an equivalence relation. Moreover, if we have elements p, p′, q, q′ ∈ A × U with p ∼ p′

and q ∼ q′ then we also have p+ q ∼ p′ + q′ and pq ∼ p′q′.

Proof. The definition of our relation is visibly symmetric, and we can take x = 1 to see that (a, u) ∼ (a, u),
so the relation is also reflexive. Now suppose that (a, u) ∼ (b, v) and (b, v) ∼ (c, w). We can then choose
x, y ∈ U such that avx = bux and bwy = cvy. After multiplying the first of these equations by wy and the
second by ux we see that avwxy = buwxy = cuvxy, so the element t = vxy ∈ U satisfies awt = cut, so
(a, u) ∼ (c, w). Thus, the relation is also transitive, and so is an equivalence relation.

Now suppose we have elements p = (a, u) and p′ = (a′, u′) and q = (b, v) and q′ = (b′, v′) such that p ∼ p′
and q ∼ q′. This means that there is an element x ∈ U with au′x = a′ux, and an element y ∈ U with
bv′y = b′vy. Note that pq = (ab, uv) and p′q′ = (a′b′, u′v′). After multiplying the equation au′x = a′ux by
bv′y and multiplying the equation bv′y = b′vy by a′ux we see that

abu′v′xy = a′buv′xy = a′b′uvxy,

which shows that pq ∼ p′q′. Similarly, we have p + q = (av + bu, uv) and p′ + q′ = (a′v′ + b′u′, u′v′). If we
add vv′y times the equation au′x = a′ux to uu′x times the equation bv′y = bvy′ we get

(av + bu)u′v′xy = (a′v′ + b′u)uvxy,

which proves that p+ q ∼ p′ + q′ �

Definition 8.4. We write A[U−1] for the quotient set (A×U)/ ∼, and a/u for the equivalence class of the
pair (a, u). We also define η(a) = a/1, which gives a map η : A→ A[U−1].

Proposition 8.5. The operations in Definition 8.1 induce well-defined operations on A[U−1], which make
A[U−1] into a ring. The map η : A → A[U−1] is a ring homomorphism. For any element u ∈ U , the
corresponding element η(u) = u/1 ∈ A[U−1] is invertible, with inverse 1/u.

Proof. Lemma 8.3 shows that we have well-defined addition and multiplication operations on A[U−1] with
a/u + b/v = (av + bu)/(uv) and (a/u)(b/v) = (ab)/(uv). As the operations on A × U are commutative,
associative and unital, the same is true of the induced operations on A[U−1]. In Lemma 8.2, it is clear that

(abw + acv, uvw) ∼ (u(abw + acv), u2vw);

using this, we deduce that a
u ( bv + c

w ) = ab
uv + ac

vw in A[U−1]. Thus, we have a ring structure on A[U−1]. The
rest is clear. �
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Remark 8.6. [rem-fraction-field]
If A is an integral domain, then the set U = A\{0} is multiplicative, so we can form the ring K = A[U−1].

This is easily seen to be a field, called the field of fractions of A. For example:

• The field of fractions of Z is Q
• The field of fractions of Z(2) is also Q
• If A is the ring of holomorphic functions on C, then the field of fractions of A is the ring of mero-

morphic functions (but some nontrivial complex analysis is needed to prove this).
• Any field is its own field of fractions.

Proposition 8.7. [prop-trivial-fractions]
The kernel of the homomorphism η : A→ A[U−1] is

{a ∈ A | there exists u ∈ U with au = 0} =
⋃
u∈U

annA(u).

In particular, we have A[U−1] = 0 if and only if 1 ∈ ker(η) if and only if 0 ∈ U .

Proof. It is clear that η(a) = 0 if and only if η0(a) ∼ η0(0), or in other words (a, 1) ∼ (0, 1). From the
definition of the equivalence relation, this happens if and only if au = 0 for some u, as claimed.

Next, it is true in general that a ring B is trivial if and only if 0 = 1. Taking B = A[U−1], we see that B
is trivial if and only if 1 ∈ ker(η), and by the previous paragraph that can only happen if 0 ∈ U . �

Corollary 8.8. [cor-domain-fractions]
If A is a domain and 0 6∈ U then A[U−1] is also a domain and the map η : A→ A[U−1] is injective.

Proof. Clear. �

Proposition 8.9. [prop-fractions-universal]
Let φ : A→ B be a ring homomorphism, and let U be a multiplicative subset of A such that φ(U) ⊆ B×.

Then there is a unique homomorphism φ : A[U−1]→ B such that φ ◦ η = φ.

Proof. We can define φ0 : A × U → B by φ0(a, u) = φ(a)φ(u)−1. It is straightforward to check that this
respects addition and multiplication (as defined in Definition 8.1), and that it satisfies φ0η0 = φ.

Now suppose we have pairs (a, u) and (b, v) in A × U with (a, u) ∼ (b, v), so there is an element x ∈ U
with avx = bux. Applying φ gives φ(a)φ(v)φ(x) = φ(b)φ(u)φ(x), but φ(u), φ(v) and φ(x) are invertible by
assumption, so we can multiply by φ(u)−1φ(v)−1φ(x)−1 to get φ(a)φ(u)−1 = φ(b)φ(v)−1, or in other words
φ0(a, u) = φ0(b, v). We therefore have a well-defined map φ : A[U−1] → B given by φ(a/u) = φ0(a, u) =
φ(a)φ(u)−1. It is now easy to see that this is a homomorphism with φ ◦ η = φ.

On the other hand, if ψ : A[U−1]→ B is any homomorphism with ψη = φ, we can apply ψ to the identity
(a/u)η(u) = η(a) to get ψ(a/u)φ(u) = φ(a), so ψ(a/u) = φ(a)φ(u)−1 = φ(a/u). Thus, φ is the unique
homomorphism with the stated properties. �

Definition 8.10. [defn-P-loc]
Let A be a ring, and let P be a prime ideal in A, so A \ P is a multiplicative set. We write AP for

A[(A \ P )−1], and call this the localisation of A at P .

Proposition 8.11. [prop-loc-local]
If P is a prime ideal in a ring A, then the localisation AP is a local ring, with maximal ideal

M = PP = {a/u | a ∈ P, u 6∈ P}.

Proof. Write U = A\P , so AP = A[U−1]. We have 0 ∈ P so 0 6∈ U so AP 6= 0. Consider an element x ∈ AP ,
so x = a/u for some a ∈ A and u 6∈ P . Note that 1− x = (u− a)/u. As the element u = a+ (u− a) is not
in P , at least one of the elements a and u− a must be outside P . If a is outside P then x is invertible with
inverse u/a, and if u − a is outside P then 1 − x is invertible with inverse u/(u − a). Thus AP is local as
claimed. In any local ring the unique maximal ideal is the set of elements that are not invertible, which is
easily seen to be the set M described above. �

Now consider a ring A and a multiplicative set U ⊆ A. We next discuss the relationship between ideals
in A and ideals in A[U−1].

26



Lemma 8.12. [lem-eta-star]
If I is an ideal in A then

η∗(I) = {a/u | a ∈ I, u ∈ U} ⊆ A[U−1].

Proof. Put I ′ = {a/u | a ∈ I, u ∈ U}. It is straightforward to check that this is an ideal in A[U−1]
containing η(I). On the other hand, if I ′′ is any other ideal that contains η(a) = a/1 for all a ∈ I, it must
also contain the elements (a/1).(1/u) = a/u, so I ′ ⊆ I ′′. Thus, I ′ is the smallest ideal in A[U−1] containing
η(I), so it must be equal to η∗(I). �

Definition 8.13. [defn-saturated]
For any ideal I ∈ idl(A) we put

I# = {a ∈ A | there exists u ∈ U with au ∈ I}.

It is clear that I ⊆ I#, and we say that I is U -saturated if I# = I. We write satU (A) for the set of all
U -saturated ideals.

Remark 8.14. [rem-saturated]
For any ideal I we have I## = I#. Indeed, if a ∈ I## then au ∈ I# for some u ∈ U , so auv ∈ I for some

v ∈ U , but uv ∈ U so a ∈ I#. Thus, I# is always U -saturated.

Proposition 8.15. [prop-saturated]
There is a natural bijection between ideals in A[U−1] and U -saturated ideals in A. In more detail:

(a) For any ideal J ⊆ A[U−1], the ideal η∗(J) ⊆ A is U -saturated. Thus, η∗ gives a map idl(A[U−1])→
satU (A).

(b) Moreover, we have η∗(η
∗(J)) = J , so the composite

idl(A[U−1])
η∗−→ satU (A)

η∗−→ idl(A[U−1])

is the identity.
(c) For any ideal I ⊆ A we have η∗(η∗(I)) = I#. In particular if I is U -saturated then η∗(η∗(I)) = I.

Thus, the composite

satU (A)
η∗−→ idl(A[U−1])

η∗−→ satU (A)

is the identity.

Proof.

(a) Suppose that a ∈ (η∗(J))#, so for some u ∈ U we have ua ∈ η∗(J), which means that the element
η(u)η(a) = η(ua) lies in J . As η(u) is invertible we can multiply by the inverse to see that η(a) ∈ J ,
or equivalently a ∈ η∗(J).

(b) Any element x ∈ J can be written as x = a/u for some a ∈ A and u ∈ U . It follows that the element
η(a) = xη(u) also lies in J , so a ∈ η∗(J), so η(a) ∈ η∗(η∗(J)), so the element x = η(u)−1η(a) also
lies in η∗(η

∗(J)). This proves that J ⊆ η∗(η∗(J)), and we mentioned in Remark 5.41 that the reverse
inclusion is automatic.

(c) If a ∈ I# then we can choose u ∈ U such that au ∈ I, so η(au) ∈ η∗(I), so the element η(a) =
η(au).η(u)−1 also lies in η∗(I), so a ∈ η∗(η∗(I)).

Conversely, if a ∈ η∗(η∗(I)) then η(a) ∈ η∗(I), so a/1 = b/v for some b ∈ I and v ∈ U . This
means that au = bvu for some u ∈ U , but bvu ∈ I, so a ∈ I#.

�

Now suppose we have a ring A, a multiplicative set U ⊆ A and an ideal I ⊆ A. We have various ways to
construct new rings from these. We can form the quotient ring A/I, which has a multiplicative set π(U).
We can invert this to get a ring (A/I)[π(U)−1] (which we will often denote more briefly by (A/I)[U−1]).
Alternatively, we can form A[U−1] and then the quotient A[U−1]/η∗(I) (which we will often denote more
briefly by A[U−1]/I). It turns out that A[U−1]/I is the same as (A/I)[U−1]. A more careful statement is
as follows:
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Proposition 8.16. [prop-fraction-quotient]
There is a unique natural isomorphism φ making the diagram below commute:

A[U−1]

π

��

A
ηoo π // A/I

η

��
A[U−1]/η∗(I)

φ

' // (A/I)[π(U)−1].

Proof. The basic definition is just that φ(a/u+ η∗(I)) = (a+ I)/(u+ I). To check that this is well-defined
we note that πη sends elements of U to invertible elements of (A/I)[π(U)−1], so Proposition 8.9 gives a
unique homomorphism θ : A[U−1] → (A/I)[π(U)−1] with θ(a/u) = ηπ(a)ηπ(u)−1 = (a + I)/(u + I). If
x ∈ η∗(I) then we can write x = a/u with a ∈ I and so θ(x) = 0. Thus, Proposition 5.27 gives us
a unique homomorphism φ : A[U−1]/η∗(I) → (A/I)[π(U)−1] with φ(x + η∗(I)) = θ(x), or equivalently
φ(a/u+η∗(I)) = (a+I)/(u+I) as before. Similarly, we can use Proposition 5.27 followed by Proposition 8.9
to get a well-defined homomorphism ψ : (A/I)[π(U)−1]→ A[U−1]/ηI(I) with ψ((a+I)/(u+I)) = a/u+η∗(I),
and then it is clear that ψ is an inverse for φ. �

Example 8.17. [eg-residue-field]
Let P be a prime ideal in A, and take I = P and U = A\P . We obtain an isomorphism AP /PP = (A/P )P .

This ring is just the field of fractions of the integral domain A/P . We call it the residue field of P and use
the notation K(P ).

Proposition 8.18. [prop-sat-prime]
Let P be a prime ideal in A.

(a) If P ∩ U 6= ∅ then η∗(P ) = A[U−1] and P# = A. In particular, neither η∗(P ) nor P# is prime.
(b) Suppose instead that P∩U = ∅. Then an element x ∈ A[U−1] lies in η∗(P ) iff for some representation

x = a/u we have a ∈ P , iff for every representation x = a/v we have a ∈ P . Moreover, η∗(P ) is a
prime ideal in A[U−1] and P# = P (so P is U -saturated).

Thus, the maps η∗ and η∗ give a bijection

{ prime ideals P ⊆ A with P ∩ U = ∅} ' { prime ideals in A[U−1]}.

Proof. (a) If P ∩ U 6= ∅ then we can choose u ∈ P ∩ U , so the element 1 = u/u lies in η∗(P ), so
η∗(P ) = A[U−1] and P# = η∗(η∗(P )) = A.

(b) Suppose instead that P∩U = ∅, so U is contained in the set A\P , which is closed under multiplication
by Proposition 5.34. Consider an element x = a/u ∈ A[U−1]. By Lemma 8.12 we see that x ∈ η∗(P )
iff there is a representation x = a/u with a ∈ P . Now suppose we have another representation
x = b/v, so avw = buw for some w ∈ U . The left hand side lies in P , but on the right hand side
u and w are in A \ P . As A \ P is closed under multiplication we must have b ∈ P as claimed. In
particular we have a/1 ∈ η∗(P ) iff a ∈ P , so P# = η∗(η∗(P )) = P .

We also see from Proposition 8.16 that A[U−1]/η∗(P ) can be identified with (A/P )[π(U)−1]. Here
A/P is a domain, and π(U) does not contain zero, so (A/P )[π(U)−1] is a domain, so A[U−1]/η∗(P )
is a domain, so η∗(P ) is prime. Alternatively, we can use the previous paragraph to see that
A[U−1] \ η∗(P ) contains 1 and is closed under multiplication, which again proves that η∗(P ) is
prime.

Now put

P = { prime ideals P ⊆ A with P ∩ U = ∅}
Q = { prime ideals in A[U−1]} = zar(A[U−1]).

If Q ∈ Q then η∗(Q) is prime by Proposition 5.43 and saturated by Proposition 8.15, so it lies in P. Thus
we have a map η∗ : Q → P. On the other hand, points (a) and (b) above show that η∗ gives a map P → Q.
Proposition 8.15 shows that these maps are inverse to each other. �
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9. Matrices and determinants

Many things involving vectors, matrices and determinants can be generalised from the traditional context
where the entries are real numbers; we can instead allow entries in any ring. Normally we consider matrices
M with entries Mij for 0 ≤ i < n and 0 ≤ j < m say. However, we will find it convenient to allow the indices
i and j to come from an arbitrary finite set. The most basic definitions are as follows.

Definition 9.1. [defn-matrix]
Let A be a ring, and let I and J be finite sets. We write FreeI(A) for the set of vectors with entries in A

indexed by I, so FreeI(A) =
∏
i∈I A. We also write MatIJ(A) for the set of matrices with entries in A indexed

by I×J . For M ∈ MatIJ(A) and v ∈ FreeJ(A) we define Mv ∈ FreeI(A) by (Mv)i =
∑
j∈JMijvj . Similarly,

given M ∈ MatIJ(A) and N ∈ MatJK(A) we define MN ∈ MatIK(A) by (MN)ik =
∑
j∈JMijNjk. We

write MatI(A) for MatII(A), and define 1I ∈ MatI(A) by

(1I)ii′ =

{
1 if i = j

0 otherwise;

this is called the identity matrix. Finally, given M ∈ MatIJ(A) we define MT ∈ MatJI(A) by (MT )ji = Mij ,
and we call this the transpose of A.

Various familiar properties, such as (MN)P = M(NP ), M(u + v) = Mu + Mv, (MN)T = NTMT and
so on, are easily generalised to this new context. We leave details to the reader.

Definition 9.2. [defn-trace]
For a matrix M ∈ MatI(A) we put trace(A) =

∑
i∈IMii.

Proposition 9.3. [prop-trace]
For M ∈ MatIJ(A) and N ∈ MatJI(A) we have

trace(MN) = trace(NM) =
∑
i∈I

∑
j∈J

MijNji.

Proof. Just unwind the definitions. �

Definition 9.4. Let I and J be finite, totally ordered sets with |I| = |J |. (The most common case is where
I = J = {0, . . . , n− 1}, but it is convenient to allow a little more flexibility.) We write Θ(I, J) for the set of
all maps from I to J , and Σ(I, J) for the subset of bijective maps. We also write Θ(I) = Θ(I, I) and Σ(I)
for Σ(I, I).

Definition 9.5. [defn-sgn]
Let P (I) be the set of pairs in I, or in other words subsets p ⊆ I with |p| = 2. If σ ∈ Σ(I, J) and

p = {i, j} ∈ P (I) then the set σ∗(p) = {σ(i), σ(j)} is an element of P (J). This construction gives a bijection
σ∗ : P (I) → P (J). We also let L(σ) denote the set of pairs p ∈ P (I) for which the map σ : p → σ∗(p)
is order-reversing. Thus, if p = {i, j} with i < j, then we have p ∈ L(σ) iff σ(i) > σ(j). We define
sgn(σ) = (−1)|L(σ)| ∈ {1,−1}, and call this the signature of σ. We also put sgn(σ) = 0 if σ : I → J is a map
that is not a permutation.

Example 9.6. [eg-transposition]
Suppose that p, q ∈ I with p < q, and let τ : I → I be the transposition defined by

τ(i) =


q if i = p

p if i = q

i otherwise

Put J = {i | p < i < q}. We find that

L(τ) = {{p, j} | j ∈ J} q {{j, q} | j ∈ J} q {{p, q}},

so |L(τ)| = 2|J |+ 1 so sgn(τ) = −1.
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Proposition 9.7. [prop-signature]

For all maps I
τ−→ J

σ−→ K (with |I| = |J | = |K|) we have sgn(στ) = sgn(σ) sgn(τ). Moreover, if σ is a
bijection then sgn(σ) = sgn(σ−1).

Proof. First, it is easy to see that στ is a permutation iff both σ and τ are both permutations. We can
restrict attention to this case, because in all other cases both sgn(στ) and sgn(σ) sgn(τ) are zero. Consider

a pair p ∈ P (I). Note that the composite p
τ−→ τ∗(p)

σ−→ (στ)∗(p) is order-reversing iff precisely one of the

maps p
τ−→ τ∗(p) and τ∗(p)

σ−→ (στ)∗(p) is order-reversing, so p lies in L(στ) iff it lies in precisely one of the
two sets L(τ) and τ−1

∗ L(σ). It follows that

|L(σ)|+ |L(τ)| = |τ−1
∗ L(σ)|+ |L(τ)| ∼= |L(στ)| (mod 2),

so sgn(στ) = sgn(σ) sgn(τ). It is clear that the signature of any identity map is one, so we can take τ = σ−1

to get sgn(σ−1) = sgn(σ). �

Definition 9.8. [defn-det]
For any matrix M ∈ MatIJ(A) with |I| = |J | we put

det(M) =
∑

σ∈Σ(I,J)

sgn(σ)
∏
i∈I

Mi,σ(i) ∈ A.

Proposition 9.9. [prop-det-triangle]
Suppose that M ∈ MatI(A) and Mij = 0 whenever i < j. Then det(M) =

∏
iMii. In particular, we have

det(1I) = 1.

Proof. If σ : I → I is not the identity, then let i be the smallest element of i where σ(i) 6= i. For j < i we
have σ(j) = j so we cannot have σ(i) = j; it therefore follows that i < σ(i), and so Mi,σ(i) = 0. Thus, the
term in det(M) corresponding to σ is zero. The only remaining term is where σ is the identity, which gives∏
iMii. �

Proposition 9.10. [prop-det-transpose]
Suppose that M ∈ MatIJ(A) with |I| = |J |. Then det(AT ) = det(A).

Proof. By unwinding the definitions we have det(MT ) =
∑
τ∈Σ(J,I) sgn(τ)

∏
j∈JMτ(j),j . We can reindex

this in terms of σ = τ−1 and i = τ(i) to get det(MT ) =
∑
σ∈Σ(I,J) sgn(σ)

∏
i∈IMi,σ(i) = det(M). �

Proposition 9.11. [prop-det-repeated]
Suppose that there are indices p, q ∈ I with p < q such that Mpj = Mqj for all j ∈ J . Then det(M) = 0.

Proof. Let τ ∈ Σ(I) be the transposition that exchanges p and q, so τ−1 = τ and Mτ(i),j = Mij for all i and
j. For any σ ∈ Σ(I, J) put m(σ) = sgn(σ)

∏
iMi,σ(i), so det(M) =

∑
σm(σ). In m(στ) we can reindex the

product in terms of j = τ(i) to get

m(στ) = sgn(στ)
∏
i

Mi,στ(i) = − sgn(σ)
∏
j

Mτ(j),σ(j) = − sgn(σ)
∏
j

Mj,σ(j) = −m(σ).

Now put Σ0 = {σ ∈ Σ(I, J) | σ(p) < σ(q)}. We find that the maps in Σ \ Σ0 are precisely those of the
form στ with σ ∈ Σ0, so the terms m(σ) for σ ∈ Σ0 cancel the terms m(σ) for σ 6∈ Σ0 and we are left with
det(M) = 0 as claimed. �

Proposition 9.12. [prop-prod-det]
Suppose we have matrices M ∈ MatIJ(A) and N ∈ MatJK(A) with |I| = |K| = n say. Then if |J | = n

we have det(MN) = det(M) det(N), but if |J | < n then det(MN) = 0.

The proof relies on the following observation:

Lemma 9.13. For any U ∈ MatIJ(A) we have∏
i∈I

∑
j∈J

uij =
∑

θ : I→J

∏
i∈I

ui,θ(i).

Proof. This is just a codification of the usual process of expanding a product of sums as a sum of products. �
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Proof of Proposition 9.12. From the definitions, we have

det(MN) =
∑

σ∈Σ(I,K)

sgn(σ)
∏
i∈I

∑
j∈J

MijNj,σ(i).

Using the lemma, this becomes

det(MN) =
∑

σ∈Σ(I,K)

∑
θ : I→J

sgn(σ)
∏
i∈I

Mi,θ(i)Nθ(i),σ(i). =
∑

σ∈Σ(I)

∑
θ : I→J

sgn(σ)
∏
i∈I

Mi,θ(i)

∏
i′∈I

Nθ(i′),σ(i′).

We write ∆ for the sum of terms where θ is injective, and ∆′ for the sum of all other terms. If |J | < n then
clearly ∆ = 0. If |J | = n then any injective map θ : I → J is a bijection, and we can reindex everything in
∆ using τ = σθ−1 ∈ Σ(J,K) and j = θ(i′) (so σ = τθ and i′ = θ−1(j)). This gives

∆ =
∑

θ∈Σ(I,J)

∑
τ∈Σ(J,K)

sgn(τθ)
∏
i∈I

Mi θ(i)

∏
j∈J

Nj,τ(j) = det(M) det(N).

To complete the proof, it will therefore suffice to show that ∆′ = 0.
Consider a function θ : I → J that is not injective, so θ(p) = θ(q) for some p < q. Next, for any

σ ∈ Σ(I,K) we put

Γ(θ, σ) = sgn(σ)
∏
i∈I

Nθ(i),σ(i).

Let τ ∈ Σ(I) be the transposition that exchanges p and q, and note that θτ = θ and sgn(τ) = −1. Using
these facts, we can reindex the above product in terms of j = τ(i) to get Γ(θ, σ) = −Γ(θ, σ◦τ). Now consider
the sum Γ(θ) =

∑
σ Γ(θ, σ). We can divide the permutations into two groups: those for which σ(p) < σ(q),

and those for which σ(p) > σ(q). If σ is in the first group then σ ◦ τ is in the second group and vice-versa. It
follows that the terms Γ(θ, σ) from the first group cancel the terms Γ(θ, σ) from the second group, leaving
Γ(θ) = 0.

Finally, from our earlier expansion of det(MN) we have

∆′ =
∑
θ

(∏
i∈I

Mi,θ(i)

)
Γ(θ),

where the sum runs over all functions θ : I → J that are not permutations. We have seen that Γ(θ) = 0, so
∆′ = 0 as required. �

Definition 9.14. [defn-adj]
Suppose that M ∈ MatIJ(A), where |I| = |J |. For p ∈ I and q ∈ J we let µpq(M) be the evident matrix

in MatI\{p},J\{q}(A) obtained by forgetting some of the entries in M . We also define ρ(p) = |{i ∈ I | i < p}|,
and similarly for ρ(q). We define adj(M) ∈ MatJI(A) by

adj(M)qp = (−1)ρ(p)+ρ(q) det(µpq(M)).

Proposition 9.15. [prop-adjugate]
M adj(M) = det(M).1I and adj(M)M = det(M).1J .

Proof. It will be harmless to assume that I = J = {0, . . . , n−1}. PutN = adj(M), soNji = (−1)i+j det(µij(M)).
Then put P = MN , so

Ppp =
∑
q

(−1)p+qMpq det(µpq(M)).

For any p ∈ I and q ∈ J , put S(p, q) = Σ(I \{p}, J \{q}). For any τ ∈ S(p, q), let τ+ denote the unique map
I → J extending τ with τ+(p) = q. If we fix p then this construction gives a bijection

∐
q S(p, q)→ Σ(I, J).

We claim that sgn(τ+) = (−1)p+q sgn(τ). This is clear when p = q = 0, because we then have L(τ+) = L(τ).
For the general case, we define ρr ∈ Σ(I) by

ρr(i) =


r if i = 0

i− 1 if 0 < i ≤ r
i if i > r.
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We also write λr for the map I \ {0} → I \ {r} obtained by restricting ρr. As λr is an order-preserving
bijection we have sgn(λr) = 1, but one can also check directly that sgn(ρr) = (−1)r.

If τ ∈ S(p, q) we find that the map τ0 = λ−1
q τλp lies in S(0, 0) and that τ+ = ρqτ

+
0 ρ
−1
p . From this it

follows that sgn(τ0) = sgn(τ) and sgn(τ+) = (−1)p+q sgn(τ) as claimed.
We can now use the decomposition Σ(I) '

∐
q S(p, q) to get

det(M) =
∑
q

∑
τ∈S(p,q)

sgn(τ+)
∏
i

Mi,τ+(i) = (−1)p+qMpq

∑
q,τ

sgn(τ)
∏
i 6=p

Mi,τ(i) = Ppp.

Now consider instead an entry

Ptp =
∑
q

(−1)p+qMtq det(µpq(M)),

where t 6= p. Define a new matrix M∗ by M∗ij = Mij when i 6= p, and M∗pj = Mtj . Put P ∗ = M∗ adj(M∗).
Replacing M by M∗ in the previous paragraphs, we get P ∗tt = det(M∗), and this is zero by Proposition 9.11.
On the other hand, we have µpq(M

∗) = µpq(M), and using this we see that Ptp = P ∗tp = 0. This completes
the proof that M adj(M) = P = det(M).1I as claimed.

We can now replace M by MT in the above argument to get MT adj(MT ) = det(MT ).1J . We have seen
that det(MT ) = det(M), and after applying this to the matrices µpq(M) we see that adj(MT ) = adj(MT ).
We can also see from the definitions that 1TJ = 1J and (XY )T = Y TXT . By combining these ingredients,
we deduce that adj(M)M = det(M).1J . �

Definition 9.16. Consider finite ordered sets I and J , and a matrix M ∈ MatIJ(A). For any I ′ ⊆ I
and J ′ ⊆ J we form a matrix M |I′×J′ ∈ MatI′J′(A) in the obvious way. If |I ′| = |J ′| we can then take
the determinant to get an element of A. We let Dk(M) denote the ideal generated by all determinants
det(M |I′×J′) with |I ′| = |J ′| = k.

Remark 9.17. The determinant of the empty matrix is taken to be one, so D0(M) = A. It is also clear
that D1(M) is the ideal generated by all the elements Mij . On the other hand, if |I| = |J | = n then
Dn(M) = A.det(M), and if n > min(|I|, |J |) then Dn(M) = 0.

Proposition 9.18. [prop-inj-mat]
Consider a matrix M ∈ MatIJ(A) and the corresponding map µ : FreeJ(A) → FreeI(A) given by µ(u) =

Mu. Then µ is injective iff annA(D|J|(M)) = 0. In particular, if A 6= 0 and |J | > |I| then µ cannot be
injective.

The proof will be given after some preparatory results.

Lemma 9.19. [lem-minor-ideal]
For all k > 0 we have Dk(M) ⊆ Dk−1(M).

Proof. Suppose we have I ′ ⊆ I and J ′ ⊆ I with |I ′| = |J ′| = k, and put N = M |I′×J′ . It is then clear from
the definitions that the entries in adj(N) lie in Dk−1(M), so the identity adj(N).N = det(N).1J′ shows that
det(N) ∈ Dk−1(M). As Dk(M) is generated by determinants of this form, we have Dk(M) ⊆ Dk−1(M). �

Lemma 9.20. [lem-minor-kernel]
Suppose we have k > 0 and I ′ ⊆ I and J ′ ⊆ J with |I ′| = k − 1 and |J ′| = k. For j ∈ J ′ put

ρ(j) = |{j′ ∈ J ′ | j′ < j}|, Define v ∈ FreeJ(A) by

vj =

{
(−1)ρ(j) det(MI′×J′\{j}) if j ∈ J ′

0 otherwise.

Then

(Mv)i =

{
0 if i ∈ I ′

±det(M |I′∪{i}×J′) otherwise.

Proof. If i 6∈ I ′ then we put N = M |I′∪{i}×J′ . We then note that (Mv)i =
∑
j∈J′Mijvj , which is the same

up to sign as (N. adj(N))ii = det(N).
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Similarly, if i ∈ I ′ we choose an element z 6∈ I and define N ∈ MatI′∪{z},J′(A) by

Ntj =

{
Mtj if t ∈ I ′

Mij if t = z.

We again find that (Mv)i = ±(N.adj(N))ii = ± det(N), but Nij = Nzj for all j so det(N) = 0. �

Proof of Proposition 9.18. Put n = |J |.
First suppose that annA(Dn(M)) = 0. Consider a vector v ∈ FreeJ(A) with Mv = µ(v) = 0. For any

I ′ ⊆ I with |I ′| = n we then have (M |I′×J)v = (Mv)|I′ = 0, and we can multiply on the left by adj(M |I′×J)
to get det(M |I′×J)v = 0. This implies that Dn(M)v = 0, so each component of v lies in annA(Dn(M)) = 0,
so v = 0. Thus µ is injective as claimed.

Conversely, suppose that µ is injective. Consider an element a ∈ annA(Dk(M)) with k > 0. For each
I ′ ⊆ I and J ′ ⊆ J with |I ′| = k − 1 and |J ′| = k, we define v ∈ FreeJ(A) as in Lemma 9.20. We find that
the entries in Mv lie in Dk(M), and thus that µ(av) = aMv = 0. As µ is injective, it follows that av = 0.
Every generator of Dk−1(M) appears (up to sign) as an entry in some such vector v, so it follows that
a ∈ ann(Dk−1(M)). Extending this inductively, we see that ann(Dn(M)) ⊆ ann(D0(M)), but D0(M) = A
so ann(Dn(M)) = 0.

Note in particular that if |I| < n then Dn(M) = 0 so 1 ∈ ann(Dn(M)). Thus, M can only be injective if
1 = 0, or equivalently A is the trivial ring. �

10. The Cayley-Hamilton Theorem

Definition 10.1. For M ∈ MatI(A) we define χM (t) = det(t.1I −M) ∈ A[t]. We call this the characteristic
polynomial of M .

Proposition 10.2. If |I| = n then χM (t) is a monic polynomial of degree n in t.

Proof. In the definition of det(t.1I −M), the identity permutation contributes
∏
i∈I(t−mii), and all other

permutations contribute terms of degree lower than n. The claim is clear from this. �

The following result is called the Cayley-Hamilton Theorem.

Proposition 10.3. If χM (t) =
∑n
i=0 ait

i, then the matrix χM (M) =
∑n
i=0 aiM

i ∈ MatI(A) is zero.

Proof. Given P ∈ MatI(A[t]) and Q ∈ MatI(A) we can expand P as
∑d
k=0 Pkt

k with Pk ∈ MatI(A), and
we can then define P ∗Q =

∑
k PkQM

k. One can check that this satisfies some obvious rules:

(P + P ′) ∗ (Q+Q′) = P ∗Q+ P ∗Q′ + P ′ ∗Q+ P ′ ∗Q′

(PP ′) ∗Q = P ∗ (P ′ ∗Q)

1I ∗Q = Q.

We also have (t.1I −M) ∗ 1I = M −M = 0. Now consider the characteristic polynomial

χM (t) = det(t.1I −M) =

n∑
i=0

ait
i ∈ A[t].

Proposition 9.15 gives

adj(t.1I −M)(t.1I −M) = χA(t).1I =

n∑
i=0

ait
i.1I ∈ MatI(A[t]).

It follows that ∑
i

aiM
i =

(
n∑
i=0

ait
i.1I

)
∗ 1I

= adj(t.1I −M) ∗ ((t.1I −M) ∗ 1I) = adj(t.1I −M) ∗ 0 = 0,

as claimed. �
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One interesting application of the characteristic polynomial is that it gives a way to convert idempotent
matrices to idempotent elements.

Definition 10.4. Let E be a matrix in MI(A) such that E2 = E. Put

ΦE(u) = 1I + (u− 1)E = (1− u)
(
(1− u)−11I − E

)
∈MI(A[u])

φE(u) = det(ΦE(u)) = (1− u)nχE((1− u)−1) ∈ A[u].

Proposition 10.5. The polynomial φE(u) can be expanded as
∑n
i=0 eiu

i where e2
i = ei (so ei is idempotent)

and
∑
i ei = 1 and eiej = 0 when i 6= j.

Proof. Using E2 = E it is straightforward to check that ΦE(1) = 1I and

ΦE(u)ΦE(v) = 1I + (uv − 1)E = ΦE(uv).

Taking determinants gives φE(1) = 1 and φE(u)φE(v) = φE(uv), or equivalently
∑
i ei = 1 and

∑
i,j eieju

iuj =∑
k eku

kvk. Comparing coefficients gives e2
i = ei, and eiej = 0 for j 6= i. �

11. Modules

Definition 11.1. [defn-module]
Let A be a ring. An A-module is a set M equipped with an element 0 ∈ M , an addition operation

M ×M →M and a multiplication operation A×M →M such that:

(a) M is an abelian group under addition, with 0 as the identity element.
(b) For all m ∈M and a, b ∈ A we have 1m = m, and a(bm) = (ab)m.
(c) For all a, b ∈ A and m,n ∈M we have (a+ b)m = am+ bm and a(m+ n) = am+ an.

It is an exercise to check that 0m = 0 for all m and that (−1)m = −m.

Example 11.2. For any finite sets I and J , the sets FreeI(A) and MatIJ(A) are A-modules in an obvious
way. In the case I = {0, . . . , n− 1} we also write Rn for FreeI(R).

Definition 11.3. [defn-algebra]
An A-algebra is just a ring B equipped with a specified ring homomorphism φ : A → B (which may be

called the unit map or the A-algebra structure map). For example, if B is any ring and A is a subring of B,
then we can use the inclusion map A→ B to regard B as an A-algebra. In particular, C and Q[t] can both
be regarded as Q-algebras.

Example 11.4. [eg-algebra-as-module]
Any A-algebra can be regarded as an A-module. Indeed, if B is an A-algebra with structure map φ : A→

B, then we can use the rule ab = φ(a)b to define multiplication of elements of B by elements of A, and it is
straightforward to check that this satisfies the axioms in Definition 11.1.

Example 11.5. [eg-group-as-module]
If M is any abelian group then we can regard it as a Z-module in an obvious way. More explicitly, for

a ≥ 0 and m ∈ M we define am recursively by 0m = 0 and (a+ 1)m = am+m. We then define (−a)m to
be the additive inverse of am. It is tedious but essentially straightforward to check all the axioms.

Example 11.6. [eg-module-sum]
If M and N are A-modules, we can define a new A-module M⊕N as follows. The elements are pairs (m,n)

with m ∈M and n ∈ N , and the addition and multiplication rules are (m,n) + (m′, n′) = (m+m′, n+ n′)
and a.(m,n) = (am, an). We call M ⊕ N the direct sum of M and N . This generalises in an obvious way
to define M0 ⊕ · · · ⊕Mn−1 for any finite list of modules Mi.

Definition 11.7. [defn-module-hom]
If M and N are A-modules, an A-module homomorphism (or A-linear map) from M to N is a function

α : M → N that satisfies α(m+m′) = α(m) + α(m′) for all m,m′ ∈ M , and α(am) = aα(m) for all a ∈ A
and m ∈ M . We write HomA(M,N) for the set of all A-module homomorphisms (or just Hom(M,N) if A
is clear from the context).
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Remark 11.8. [rem-hom-module]
If M and N are A-modules, then the set Hom(M,N) is itself an A-module in a natural way. Indeed, if α

and β are two elements of Hom(M,N), then we can define a new map α + β : M → N by the obvious rule
(α+ β)(m) = α(m) + β(m). This satisfies

(α+ β)(am+ a′m′) = α(am+ a′m′) + β(am+ a′m′)

= aα(m) + a′α(m′) + aβ(m) + a′β(m′)

= a (α+ β)(m) + a′ (α+ β)(m′),

so it is a homomorphism. Similarly, given α ∈ Hom(M,N) and t ∈ A we can define tα : M → N by
(tα)(m) = t α(m). This is again a homomorphism, so we have addition and scalar multiplication rules for
the set Hom(M,N). To see that this makes Hom(M,N) into an A-module, we need to check various axioms,
for example that α+β = β+α. This is clear because (α+β)(m) = α(m)+β(m) and (β+α)(m) = β(m)+α(n),
and the right hand sides are the same because addition in N is commutative. The other axioms are equally
easy.

Example 11.9. [eg-matrix-hom]
Given finite sets I and J , and a matrix M ∈ MatIJ(A), we can define a homomorphism µM : FreeJ(A)→

FreeI(A) by µM (u) = Mu.

Definition 11.10. Let I be any set, and let Map(I, A) denote the set of all functions from I to A. For
m,n ∈ Map(I, A) and a ∈ A we define m+ n, am ∈ Map(I, A) by (m+ n)(i) = m(i) + n(i) and (am)(i) =
am(i). It is easy to see that this makes Map(I, A) into an A-module.

Next, define the support of an element u ∈ Map(I, A) to be the set supp(u) = {i ∈ I | u(i) 6= 0}. We say
that u is finitely supported if supp(u) is a finite set. For example, for each i ∈ I we can define ei : I → A by

ei(j) =

{
1 if j = i

0 otherwise.

We then have supp(ei) = {i}. We write FreeI(A) or Map0(I, A) for the set of all finitely supported functions.
(Previously we defined FreeI(A) = Map(I, A) for finite sets I; our new definition is clearly compatible with
that.) It is clear that supp(u + v) ⊆ supp(u) ∪ supp(v), and supp(au) supp(u), so FreeI(A) is a submodule
of Map(I, A). We say that a module M is free if it is isomorphic to FreeI(A) for some set I.

Definition 11.11. [defn-free-universal]
Suppose we have a ring A, an A-moduleM and a set I. For any mapm : I →M we define φm : FreeI(A)→

M by

φm(u) =
∑

i∈supp(u)

u(i)m(i) =
∑
i∈I

u(i)m(i).

Proposition 11.12. [prop-free-universal]
For any map m : I →M , the resulting map φm : FreeI(A)→M is a homomorphism, with φm(ei) = m(i)

for all i. Conversely, if we start with any homomorphism ψ : FreeI(A)→M and define m(i) = ψ(ei), then
we have ψ = φm. Thus, these constructions give a natural bijection HomA(FreeI(A),M) ' Map(I,M).

Proof. Straightforward. The key point is that any element u ∈ FreeI(A) can be expressed as u =
∑
i∈supp(u) u(i) ei,

so if ψ : FreeI(A)→M is a homomorphism we have ψ(u) =
∑
i∈supp(u) u(i)ψ(ei). �

Remark 11.13. Definition 11.11 and Proposition 11.12 are formulated in terms of maps I →M . Often we
have a list m0, . . . ,mn−1 of elements of M and we consider the map from the set N = {0, . . . , n− 1} to M
given by i 7→ mi; this gives a homomorphism φm : An ' FreeN (A)→M . It is also common to have a subset
S ⊂ M and to consider the inclusion map S → M , giving a homomorphism φS : FreeS(A) → M . We will
need some straightforward translations between these contexts, most of which we leave to the reader.

The following result is essentially a special case of Proposition 11.12, but written in slightly different
notation.
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Proposition 11.14. [prop-matrix-hom]
Let I and J be finite sets. Then any A-module homomorphism FreeJ(A) → FreeI(A) has the form αM

for a unique matrix M ∈ MatIJ(A), so HomA(FreeJ(A),FreeI(A)) can be identified with MatIJ(A).

Proof. Let φ : FreeJ(A) → FreeI(A) be an A-module homomorphism. For each j ∈ J we have an element
φ(ej) ∈ FreeI(A). We write Mij for the i’th coefficient of φ(ej), so that φ(ej) =

∑
iMijei. An arbitrary

element v ∈ FreeJ(A) can be expressed as v =
∑
j vjej , giving

φ(v) =
∑
j

vjφ(ej) =
∑
i,j

Mijvjei,

or in other words φ(v)i =
∑
jMijvj . This shows that φ = αM . �

Definition 11.15. Consider a map m : I →M , and the corresponding homomorphism φm : FreeI(A)→M .

(a) We say that a map m is A-linearly independent if φm is injective.
(b) We say that m spans M if φm is surjective.
(c) We say that m is a basis for M if φm is an isomorphism. (Thus, M is free iff it has a basis.)

Remark 11.16. If m : I → M is A-linearly independent, or spans, or is a basis, then the inclusion map
m(I) → M has the same property. Conversely, if m(I) → M spans then so does m : I → M . However, the
corresponding statements for (a) and (c) are not true.

Definition 11.17. We say that a module M is finitely generated if there is a surjective homomorphism
An →M , or equivalently there is a map I →M that spans M with I finite.

Proposition 11.18. If A 6= 0 and n > m then there is no injective A-algebra homomorphism from
A[x0, . . . , xn−1] to A[x0, . . . , xm−1].

Proof. Write Pn = A[x0, . . . , xn−1] for brevity, and let FdPn denote the span of the monomials of total degree

at most d. This is a free module over A of rank

(
d+ n
n

)
, which is a polynomial in d with leading term

dn/n!. Let φ : Pn → Pm be an R-algebra homomorphism, where m < n. Choose t such that φ(xi) ∈ FtPm
for all i, and note that φ(FdPn) ⊆ FtdPm. As m < n we will have

(
d+ n
n

)
>

(
td+m
m

)
for large d,

and it follows from Proposition 9.18 that φ cannot be injective. �

Proposition 11.19. [prop-rank-unique]
If A is a nontrivial ring and n < m then there is no surjective homomorphism from An to Am. In

particular, An and Am are not isomorphic.

Proof. Suppose we have a surjective homomorphism φ : An → Am. We can then choose ui ∈ An with
φ(ui) = ei for 0 ≤ i < m. Using these, we define ψ : Am → An by ψ(t) =

∑m−1
i=0 tiui; we find that

φ(ψ(ei)) = ei for all i, and thus that φψ is the identity.
Next, by Proposition 11.14, there are matrices M ∈ Matm,n(A) and N ∈ Matn,m(A) with φ = αM and

ψ = αN . As φψ is the identity we see that MN = 1m and in particular det(MN) = 1. As A is nontrivial
we have det(MN) 6= 0, and using Proposition 9.12 it follows that n ≥ m. �

Corollary 11.20. [cor-rank-unique]
Suppose we have a finite set I and a possibly infinite set J with |J | > |I|. Then there is no surjective

homomorphism from FreeI(A) to FreeJ(A).

Proof. We can put n = |I| and choose K ⊆ J with |K| = n + 1. We can then define a surjective homo-
morphism π : FreeJ(A) → FreeK(A) ' Rn+1 by π(ek) = ek when k ∈ K, and π(ej) = 0 for j ∈ J \K. If
φ : FreeI(A)→ FreeJ(A) is surjective, then the same is true of the composite

πφ : FreeI(A) ' Rn → FreeK(A) ' Rn+1,

but that is impossible by Proposition 11.19. �

This allows us to make the following definition.
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Definition 11.21. If M is isomorphic to FreeI(A) for some finite set I, then we define the rank of M to be
the cardinality of I, which is well-defined by Proposition 11.19.

Definition 11.22. Let M be an A-module. A submodule of M is a subset N ⊆M such that

(a) 0 ∈ N
(b) For all n, n′ ∈ N we have n+ n′ ∈ N
(c) For all a ∈ A and n ∈ N we have an ∈ N .

Remark 11.23. If N is a submodule of M , then we can regard N itself as an A-module by restricting the
addition and multiplication operations on M .

Example 11.24. [eg-ideal-submodule]
We can regard A itself as an A-module; then submodules of A are just the same as ideals in A.

Example 11.25. [eg-ker-img]
If α : M → N is any homomorphism of A-modules, we put

ker(α) = {m ∈M | α(m) = 0}
image(α) = {n ∈ N | n = α(m) for some m ∈M}.

It is straightforward to check that ker(α) is a submodule of M and image(α) is a submodule of N .

Example 11.26. [eg-submodule-ops]
If P and Q are submodules of M , then so are the subsets P ∩Q and P +Q = {p+ q | p ∈ P, q ∈ Q}.

Example 11.27. [eg-ann-submodule]
If I is an ideal in A, then the set

annM (I) = {m ∈M | am = 0 for all a ∈ I}
is a submodule of M .

We also write IM for the set of elements m ∈M that can be expressed in the form m = a1m1 + · · ·+akmk

with ai ∈ I and mi ∈M . This is again a submodule of M .

Example 11.28. [eg-submodule-span]
Let M be an A-module, and let G be any subset of M . We say that an element m ∈ M is an A-linear

combination of G if there exist elements a0, . . . , an−1 ∈ A and g0, . . . , gn−1 ∈ G such that m =
∑
i aigi. (The

case n = 0 is permitted, so 0 is always a linear combination even if G = ∅.) We write spanA(G) for the set
of all possible linear combinations. This is easily seen to be a submodule of M , and in fact it is the smallest
submodule that contains G. We call it the span of G, or the submodule generated by G.

Definition 11.29. [prop-infinite-product]
Suppose we have a set I (which may be infinite) and a family of modules Mi for i ∈ I. We define

∏
iMi

to be the set of all indexed families (mi)i∈I where mi ∈Mi for all i. We can define addition of such families
termwise, and similarly for multiplication by elements of A; this makes

∏
iMi into an A-module. For j ∈ I

we define a homomorphism πj :
∏
iMi →Mj by πj((mi)i∈I) = mj .

Example 11.30. [eg-map-as-prod]
If all the modules Mi are equal to the same module M , then

∏
iMi is just the same as Map(I,M). More

generally, if all the modules Mi are submodules of a fixed module P , then we have∏
i

Mi = {u ∈ Map(I, P ) | u(i) ∈Mi for all i}.

Example 11.31. [eg-finite-prod]
If I = {0, . . . , n− 1} then

∏
iMi is the same as M0 ⊕ · · · ⊕Mn−1.

Remark 11.32. [rem-prod-categorical]
If we have another module N and homomorphisms fi : N → Mi for all i, we can combine them to get a

single homomorphism f : N →
∏
iMi given by f(n) = (fi(n))i∈I . This is the unique homomorphism that

satisfies πi ◦ f = fi for all i. It follows that
∏
iMi is the product of the modules Mi in the sense of category

theory.
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Definition 11.33. [defn-infinite-sum]
For an element m ∈

∏
iMi, we put supp(m) = {i | mi 6= 0}. We say that m is finitely supported if

supp(m) is a finite set. We write
⊕

iMi for the set of all finitely supported elements. It is not hard to see
that supp(am+ a′m′) ⊆ supp(m) ∪ supp(m′) and thus that

⊕
iMi is a submodule of

∏
iMi.

We define homomorphisms ιj : Mj →
⊕

iMi by

ιj(m)i =

{
m if i = j

0 otherwise.

Remark 11.34. [rem-infinite-sum-elements]
Note that an arbitrary element m ∈

⊕
iMi can be expressed as m =

∑
i∈supp(m) ιi(mi).

Example 11.35. [eg-free-as-sum]
In the case where Mi = A for all i, we have

⊕
iA = FreeI(A).

Example 11.36. [eg-sum-as-product]
If I is finite it is clear that

⊕
iMi =

∏
iMi.

Remark 11.37. [rem-coproduct-categorical]
If we have another module P and homomorphisms gi : Mi → P for all i, we can combine them to get a

single homomorphism g :
⊕

iMi → P defined by

g(m) =
∑

i∈supp(m)

gi(mi) =
∑
i∈I

gi(mi).

This is the unique homomorphism such that g ◦ ιi = gi for all i. It follows that
⊕

iMi is the coproduct of
the modules Mi in the sense of category theory.

Remark 11.38. [rem-submodule-sum]
Suppose we have a module M and a family of submodules Ni ⊆ M for i in some set I. It is then easy

to check that the set
⋂
iNi = {m ∈ M | m ∈ Ni for all i} is again a submodule. Note that a submodule

P ⊆M satisfies P ⊆
⋂
iNi iff we have P ⊆ Ni for all i.

Next, we define σ :
⊕

iNi →M by σ(n) =
∑
i∈supp(n) ni, and we put

∑
iNi = image(σ), which is another

submodule of M . Given a submodule P ⊆ M , it is not hard to check that P ⊇
∑
iNi iff we have P ⊇ Ni

for all i.

Remark 11.39. [rem-chain-union]
The union of a family of submodules is not generally a submodule. However, if we have a nested chain of

submodules
N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆M,

then
⋃
iNi is a submodule of M , by the argument that we gave in Proposition 5.12.

Definition 11.40. [defn-quotient-module]
Let M be an A-module, and let N be a submodule. A coset of N is a subset u ⊆ N that can be expressed

in the form u = m+N for some m ∈M . We write M/N for the set of all cosets. Given cosets u, v ∈M/N
and an element a ∈ A we put

u+ v = {x+ y | x ∈ u, y ∈ v} ⊆M
au = {ax+ n | x ∈ u, y ∈ N} ⊆M.

One can check that u+ v and au are cosets, and that these operations make M/N into another A-module.
There is an A-module homomorphism π : M →M/N given by π(m) = m+N .

Proposition 11.41. [prop-quotient-module-map]
Let α : M → P be a homomorphism of A-modules, and let N ⊆ M be a submodule such that α(N) = 0,

or equivalently N ⊆ ker(α). Then there is a unique homomorphism α : M/N → P such that α ◦ π = α, or
equivalently α(m+N) = α(m) for all m ∈M . Moreover:

(a) α is injective iff ker(α) = N .
(b) α is surjective iff α is surjective.
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(c) α is an isomorphism iff α is surjective with ker(α) = N .

Proof. This is very similar to Proposition 5.27. If u ∈ M/N and m,m′ ∈ u then u − u′ ∈ N ≤ ker(α) so
α(m − m′) = 0 so α(m) = α(m′). We define α(u) to be the common value of α(m) for all m ∈ u. This
gives a well-defined map α : M/N → P with α(m +N) = α(m) for all m, so α ◦ π = α. If u = m +N and
u′ = m′ +N and a, a′ ∈ A then we can choose m ∈ u and m′ ∈ u′ and we find that

α(au+ a′u′) = α(am+ a′m′ +N) = α(am+ a′m′) = aα(m) + a′α(m′) = aal(u) + a′al(u′),

so α is a module homomorphism.

(a) Suppose that ker(α) = N , and that α(u) = α(u′). We can choose m ∈ u and m′ ∈ u′, and we deduce
that α(m) = α(m′), so m−m′ ∈ ker(α) = N , so m+N = m′ +N , or in other words u = u′. This
shows that α is injective as claimed. The converse is similar and is left to the reader.

(b) For any m ∈ M we have α(m) = al(m + N), and for any u ∈ M/N we can choose m ∈ u and we
have α(u) = α(m). This shows that α and α have the same image, so in particular α is surjective iff
α is surjective.

(c) This is clear from (a) and (b).

�

Proposition 11.42. [prop-quotient-submodules]
Consider a module M , a submodule N and the quotient map π : M →M/N .

(a) For any submodule P ⊆M , the image π(P ) is the same as (P +N)/N and is a submodule of M/N .
If P ⊇ N then π(P ) is just P/N .

(b) For any submodule Q ⊆ M/N , the preimage π−1(Q) = {m ∈ M | π(m) ∈ Q} is a submodule of M
that contains N .

(c) For any submodule P ⊆M we have π−1(π(P )) = P +N , which is the same as P iff P ⊇ N .
(d) For any submodule Q ⊆M/N we have π(π−1(Q)) = Q.
(e) Thus, we have a natural bijection

{ submodules of M containing N} ' { submodules of M/N}.

Proof. (a) For any p ∈ P and n ∈ N we have π(p) = π(p+n). It follows that π(P ) = π(P +N). This is
the set of all cosets of the form x+N with x ∈ P +N , and by definition this is (P +N)/N , which
is clearly a submodule of M/N . If P ⊇ N then P = P + 0 ⊆ P +N ⊆ P + P = P , so P +N = P ,
so π(P ) = P/N .

(b) First, as π(N) = 0M/N ∈ Q, we see that N ⊆ π−1(Q), and in particular 0M ∈ π−1(Q). Now suppose

that u, v ∈ π−1(Q) and a ∈ A. Then π(u + v) = π(u) + π(v) ∈ Q + Q = Q, so u + v ∈ π−1(Q).
Similarly π(au) = aπ(u) ∈ aQ ⊆ Q, so au ∈ π−1(Q). This shows that π−1(Q) is a submodule of M .

(c) Suppose we start with a submodule P ⊆ M . If u ∈ P + N then π(u) ∈ π(P + N) = π(P ), so
u ∈ π−1(π(P )). Conversely, suppose that u ∈ π−1(π(P )), so π(u) ∈ π(P ), so there exists v ∈ P such
that π(u) = π(v). This means that π(u− v) = 0, so u− v ∈ ker(π) = N , so u = v+ (u− v) ∈ P +N .
We conclude that π−1(π(P )) = P +N , and we have already seen that this is the same as P if N ⊆ P .

(d) Consider a submodule Q ⊆ M/N . If u ∈ π−1(Q) then π(u) ∈ Q; it follows that π(π−1(Q)) ⊆ Q.
Conversely, suppose that v ∈ Q. As Q ⊆M/N , we have v = u+N = π(u) for some element u ∈M .
As π(u) = v ∈ Q, we actually have u ∈ π−1(Q). This means that v = π(u) ∈ π(π−1(Q)) as required.
We conclude that Q = π(π−1(Q)).

(e) Put

Sub(M,N) = { submodules of M containing N}
Sub(M/N) = { submodules of M/N}.

Part (a) shows that we can define a map α : Sub(M,N)→ Sub(M/N) by α(P ) = (P+N)/N = π(P ).
Part (b) shows that we can define a map β : Sub(M/N)→ Sub(M,N) by β(Q) = π−1(Q). Part (c)
shows that βα is the identity, and part (d) shows that αβ is the identity. Thus, α and β are bijections.

�
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The name Nakayama’s Lemma is often attached to the following result, or to one of several special cases
or closely related statements.

Proposition 11.43. [prop-nakayama]
Let M be a finitely generated A-module, and let I be an ideal such that M = IM . Then there is an

element a ∈ I such that (1− a)M = 0.

Proof. By hypothesis, there is a finite list (m0, . . . ,mn−1) ∈Mn such that the corresponding map φm : An →
M is surjective. We also have M = IM , so mi ∈ IM = φm(In), so we can choose elements uij ∈ I such that
mi =

∑
j uijmj for all i. If we form a matrix U with entries uij we find that m = Um in An, or equivalently

(1n − U)m = 0. We can multiply by adj(1n − U) to deduce that det(1n − U)m = 0, but the elements mi

generate M , so det(1n−U)M = 0. On the other hand, as the entries in U are all elements of I, we find that
det(1n − U) = det(1n) = 1 (mod I), so det(1n − U) = 1− a for some a ∈ I. �

Corollary 11.44. [cor-nakayama]
Let M be a finitely generated A-module, let N be a submodule, and let I be an ideal such that M = IM+N .

Then there is an element a ∈ I such that (1− a)M ≤ N . Moreover, if I ≤ Rad(A) then M = N .

Proof. For the first statement, we note that the quotient L = M/N is finitely generated and has IL = L, so
there exists a ∈ I with (1− a)L = 0, or equivalently (1− a)M ≤ N . If I ≤ Rad(A) then 1− a is invertible
and so M ≤ N . �

Definition 11.45. [defn-fraction-module]
Let A be a ring and let U be a multiplicative subset of A. For any A-module M , we define M [U−1] =

(M × U)/ ∼, where (m,u) ∼ (m′, u′) iff there is an element v ∈ U with mu′v = m′uv. We write m/u for
the equivalence class of (m,u), and η(m) for m/1.

If U = A\P for some prime ideal P , we also use the notation MP for M [U−1] (generalising Definition 8.10).

By essentially the same arguments as those given in Section 8, we see that M [U−1] has a natural structure
as a module over A[U−1], with (a/u).(m/v) = (am)/(uv) and m/v + n/w = (wm+ vn)/(vw).

Example 11.46. Recall that we have a ring homomorphism η : A → A[U−1], and for any ideal I ⊆ A
we define η∗(I) = spanA[U−1](η(I)). We can also regard I as an A-module and thus define I[U−1]. Using

Lemma 8.12 one can identify η∗(I) with I[U−1].

Remark 11.47. [rem-fraction-functor]
Given anA-module homomorphism φ : M → N , we can define anA[U−1]-module homomorphism φ[U−1] : M [U−1]→

N [U−1] by φ[U−1](m/u) = φ(m)/u. A little work is required to show that this is well-defined and is a ho-
momorphism, but we leave that to the reader. We will often just write φ instead of φ[U−1].

Proposition 11.48. [prop-stalks-zero]

(a) Let M be an A-module such that MP = 0 for all maximal ideals P ; then M = 0.
(b) Let M be a finitely generated A-module such that M/PM = 0 for all maximal ideals P ; then M = 0.

Proof. In both cases we assume that we have a nonzero element m ∈ M , and derive a contradiction. As
m 6= 0 we see that ann(m) 6= A. By Proposition 5.49, there exists a maximal ideal P ≥ ann(m). This
means that for s ∈ A \ P we have s 6∈ ann(m) and so sm 6= 0. It follows that m/1 is a nonzero element of
MP , so MP 6= 0. This provides the required contradiction for (a). For (b) we instead use Proposition 11.43,
which gives us an element a ∈ P with 1 − a ∈ ann(M). As ann(M) ≤ P this gives 1 ∈ P , which is again
impossible. �

Remark 11.49. To guard against over-optimistic generalisations, we can consider the following example.
Take A = Z and M = Q/Z (which is not finitely generated). We find that M ⊗A K(P ) = 0 for all prime
ideals P , but M 6= 0. (Here K(P ) is the residue field as in Example 8.17, so M ⊗A K(P ) = M/PM when
M is maximal. Thus for A = Z we have M ⊗A K(Zp) = M/pM and M ⊗A K(0) = M ⊗Z Q.)
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12. Exact sequences

Definition 12.1. [defn-exact]

Consider a sequence ofA-module homomorphisms L
φ−→M

ψ−→ N . We then have submodules image(φ), ker(ψ) ⊆
M , and it is not hard to see that image(φ) ⊆ ker(ψ) if and only if the composite ψφ is zero. We say that
this sequence is exact if in fact image(φ) = ker(ψ).

More generally, we say that a sequence

M0
φ0−→M1

φ1−→ · · ·Mn−1
φn−1−−−→Mn

is exact if each of the sequences Mi → Mi+1 → Mi+2 is exact. We make the same definition for sequences
that extend infinitely to the left or to the right or both.

Remark 12.2. [rem-exact]
Some special cases are as follows.

(a) A sequence of the form L
φ−→ M

0−→ N is exact iff φ is surjective. In particular, a sequence of the

form L
φ−→M → 0 is exact iff φ is surjective.

(b) A sequence of the form L
0−→M

ψ−→ N is exact iff ψ is injective. In particular, a sequence of the form

0→M
ψ−→ N is exact iff ψ is surjective.

(c) A sequence of the form K
0−→ L

φ−→M
0−→ N is exact iff φ is an isomorphism.

(d) A sequence of the form L
0−→M

0−→ N is exact iff M = 0.

Definition 12.3. [defn-ses]
A short exact sequence is an exact sequence of the form

0→ L
φ−→M

ψ−→ N → 0.

Exactness here means that φ is injective, ψ is surjective, and image(φ) = ker(ψ).

Example 12.4. [eg-standard-ses]
Suppose we have a module M and a submodule L. We let j : L → M be the inclusion map, and we let

q : M →M/L be the projection, so j(x) = x and q(y) = y + L. We then find that the sequence

0→ L
j−→M

q−→M/N → 0

is short exact.

Example 12.5. [eg-sum-ses]
Suppose we have modules L and N , and we define maps

0→ L
j−→ L⊕N q−→ N → 0

by j(x) = (x, 0) and q(x, z) = z. It is then clear that the sequence is short exact.

Example 12.6. [eg-nm-ses]
For any integers n,m > 0 we can define maps

0→ Z/n φ−→ Z/nm ψ−→ Z/m −→ 0

by φ(a+nZ) = ma+nmZ and ψ(b+nmZ) = b+mZ. One can check that these give a short exact sequence.

In fact, every short exact sequence is essentially the same as one coming from example 12.4. More formally:

Proposition 12.7. [prop-ses]

Let 0 → L
φ−→ M

ψ−→ N → 0 be a short exact sequence. Then there is a commutative diagram as follows,
in which the vertical maps are isomorphisms.

L
φ //

α '
��

M
ψ //

1

��

N

β '
��

φ(L)
j
// M

q
// M/φ(L)
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Proof. As the given sequence is short exact, we see that φ is injective, so it restricts to give an isomorphism
L → φ(L) which we call α. By definition we have j ◦ α = φ so the left square commutes. Next, using
Proposition 11.41 we see that there is a unique homomorphism

ψ : M/ ker(ψ) = M/ image(φ)→ N

such that ψ = q ◦ ψ. As the original sequence is exact we see that ψ is surjective and thus that ψ is an

isomorphism. We put β = ψ
−1

, so the equation ψ = q ◦ ψ gives q = ψ ◦ β. Thus, the right hand square
commutes. �

We next discuss some ideas which help us decide whether an arbitrary short exact sequence is essentially
the same as one coming from Example 12.5.

Definition 12.8. [defn-splitting]
Suppose we have a short exact sequence

0→ L
φ−→M

ψ−→ N → 0.

(a) A left splitting is a homomorphism ρ : M → L such that ρφ = 1L.
(b) A right splitting is a homomorphism σ : N →M such that ψσ = 1N .
(c) A full splitting is a pair of homomorphisms (ρ, σ) such that ρ is a left splitting and σ is a right

splitting and ρσ = 0: N → L and φρ+ σψ = 1M .

We say that the sequence is split if it admits a full splitting.

Example 12.9. [eg-nm-split]
Take n = m in Example 12.6 to get a short exact sequence Z/n → Z/n2 → Z/n. If this is split then

Z/n2 ' Z/n ⊕ Z/n, so every element x ∈ Z/n2 satisfies nx = 0. In particular we can take x = 1 + n2Z to
see that n2 divides n, so n = 1. Thus, when n > 1 the sequence does not split. A similar argument shows
more generally that the sequence in Example 12.6 splits iff n and m are coprime.

Proposition 12.10. [prop-splitting]

(a) For every left splitting ρ there is a unique σ such that (ρ, σ) is a full splitting.
(b) For every right splitting σ there is a unique ρ such that (ρ, σ) is a full splitting.
(c) For every full splitting (ρ, σ) we have an isomorphism α : M → L⊕N given by α(y) = (ρ(y), ψ(y)),

with inverse α−1(x, z) = φ(x) + σ(z). Moreover, the diagram

L
φ //

1

��

M
ψ //

α '
��

N

1

��
L

j
// L⊕N

q
// N

commutes.

Proof.

(a) Let ρ be a left splitting. For z ∈ L we can choose y ∈ M with ψ(y) = z. We would like to define
σ(z) = y − φρ(y). To check that this is well-defined, suppose we have another element y′ ∈M with
ψ(y′) = z. Then y′ − y ∈ ker(ψ) = image(φ), so y′ = y + φ(x) for some x ∈ L. This gives

y′ − φρ(y′) = y − φρ(y) + φ(x)− φρφ(x),

but ρφ is the identity so the last two terms cancel and y′ − φρ(y′) = y − φρ(y). We thus have a
well-defined function σ as claimed.

Now consider elements z0, z1 ∈ N and a0, a1 ∈ A. Choose yi with ψ(yi) = zi, so σ(zi) = yi−φρ(yi).
The element y = a0y0 + a1y1 is mapped by ψ to the element z = a0z0 + a1z1, so we can use y when
calculating σ(z), and we find that σ(z) = a0σ(z0) + a1σ(z1). This shows that σ is an A-module
homomorphism.

42



As the given sequence is exact we have ψφ = 0, so ψσ(z) = ψ(y) − ψφρ(y) = ψ(y) = z. Thus
ψσ = 1N , which means that σ is a right splitting. We also have ρσ(z) = ρ(y)−ρφρ(z), which is zero
because ρφ = 1L.

For any y ∈M we can use y to calculate σψ(y), and we get σψ(y) = y − φρ(y). This shows that
φρ+ σψ = 1M , so we have a full splitting as claimed.

(b) Now suppose instead that we have a right splitting σ, so ψσ = 1N . For y ∈M the element y−σψ(y)
lies in the kernel of ψ, which is the same as the image of φ, so there is an element x ∈ L with
φ(x) = y − σψ(y). This element is unique because φ is injective, so we can define ρ : M → L by
ρ(y) = x. Now suppose that y = a0y0 + a1y1 for some a0, a1 ∈ A and y0, y1 ∈ M . We find that
the element x = a0ρ(y0) + a1ρ(y1) satisfies φ(x) = y − σψ(y), so x = ρ(y); this proves that ρ is a
homomorphism.

Now suppose instead that y = φ(x) for some x. We then have ψ(y) = 0 so φ(x) = y = y− σψ(y),
so x = ρ(y). This proves that ρφ = 1L.

Now suppose instead that y = σ(z) for some z ∈ N . Using ψσ = 1N we see that y − σψ(y) = 0
and thus that ρ(y) = 0. This proves that ρσ = 0.

Finally, for any y ∈M it is built into the definition of ρ that y−σψ(y) = φρ(y), so φρ+σψ = 1M ,
so we again have a full splitting.

(c) Now let (ρ, σ) be any full splitting. We can certainly define maps M
α−→ L ⊕ N β−→ M by α(y) =

(ρ(y), ψ(y)) and β(x, z) = φ(z) + σ(z). The axioms for a full splitting, together with the identity
ψφ = 0, give βα(y) = y and αβ(x, z) = (x, z), so α is an isomorphism with inverse β. We also have
αφ(x) = (ρφ(x), ψφ(x)) = (x, 0) = j(x) and qα(y) = q(ρ(y), ψ(y)) = ψ(y), so the diagram commutes
as claimed.

�

Proposition 12.11. [prop-free-projective]

Suppose we have homomorphisms F
α−→ N

β←−M where β is surjective and F is a free module. Then there
is a homomorphism γ : F →M with βγ = α.

Proof. By hypothesis F is isomorphic to FreeI(A) for some set I, and it will be harmless to assume that
F is actually equal to FreeI(A). Proposition 11.12 then tells us that α = φn for some map n : I → N .
As β is surjective, we can choose an element m(i) ∈ M with β(m(i)) = n(i) for all i. We can then put
γ = φm : F → M , and it is straightforward to check that βγ(ei) = β(m(i)) = n(i) = α(ei) for all i, so
βγ = α. �

Corollary 12.12. [cor-split-projective]
Suppose we have a short exact sequence

0→ L
φ−→M

ψ−→ N → 0

in which N is a free module. Then the sequence is split.

Proof. Apply the proposition to the maps N
1−→ N

ψ←− M . This gives a homomorphism σ : N → M with
ψσ = 1N , or in other words a right splitting. Using Proposition 12.10 we can extend this to a full splitting,
so the sequence is split. �

Proposition 12.13. [prop-fractions-exact]

Let U be a multiplicative set in A, and let L
φ−→ M

ψ−→ N be an exact sequence of A-modules. Then the
sequence

L[U−1]
φ[U−1]−−−−→M [U−1]

ψ[U−1]−−−−→ N [U−1]

is also exact.

Proof. For any element x/u ∈ L[U−1] we have

ψ[U−1](ψ[U−1](x/u)) = ψ[U−1](φ(x)/u) = ψ(φ(x))/u.

As the original sequence is exact we see that ψφ = 0, so the above element is zero. This proves that
image(φ[U−1]) ⊆ ker(ψ[U−1]).
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Conversely, suppose we have an element y/v ∈ ker(ψ[U−1]). This means that ψ(y)/v = 0 in N [U−1], so
ψ(y)w = 0 in N for some element w ∈ U . This in turn means that yw ∈ ker(ψ) = image(φ), so we can
choose x ∈ L with φ(x) = yw. It follows that y/v = φ[U−1](x/(vw)) ∈ image(φ[U−1]) as required. �

Remark 12.14. [rem-fractions-exact]
If we have a longer exact sequence

M0 −→M1 −→ · · · −→Mn

we can apply the above to all the subsequences Mi →Mi+1 →Mi+2 and deduce that the resulting sequence

M0[U−1]→M1[U−1]→ · · · →Mn[U−1]

is also exact.

Remark 12.15. Suppose we have a module M and a submodule L. This gives an exact sequence

0→ L→M →M/L→ 0

and thus an exact sequence

0→ L[U−1]→M [U−1]→ (L/M)[U−1]→ 0

This means that we can regard L[U−1] as a submodule of M [U−1] and that M [U−1]/L[U−1] = (M/L)[U−1].
We can use this to give another proof of Proposition 8.16.

13. Simple modules

Definition 13.1. [defn-simple]
A module M is simple if it is nontrivial, and the only submodules of M are 0 and M itself.

Proposition 13.2. [prop-simple-max]
If M is simple then the ideal P = annA(M) = {a ∈ A | aM = 0} is maximal, and M is isomorphic to

A/P .

Proof. Choose a nontrivial element m ∈ M , and define φ : A → M by φ(a) = am. The image φ(A) = Am
is a nontrivial submodule of M , so it must be all of M , so φ is surjective. It follows that an element a ∈ A
satisfies am = 0 iff aAm = 0 iff aM = 0 iff a ∈ P , so the kernel of φ is P . We therefore have an induced
isomorphism φ : A/P →M . Next, if a ∈ A \ P then φ(Aa) is a nontrivial submodule of M so it must be all
of M , and so must contain m = φ(1). It follows that there exists b ∈ A with φ(ab) = φ(1) or φ(ab−1) = 0, so
ab−1 ∈ P , so a becomes invertible in A/P . This proves that A/P is a field, or equivalently P is maximal. �

Definition 13.3. Let M be an A-module. A composition series for M is a chain of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

for some n ≥ 0, such that Mi/Mi−1 is simple for 1 ≤ i ≤ n. We call n the length of the series. We say that
a module M has finite length if there exists a composition series.

Lemma 13.4. [lem-ses-series]
Suppose we have a short exact sequence

0→ L
φ−→M

ψ−→ N → 0,

and a composition series (Mi)
q
i=0 for M . Put Li = φ−1(Mi) ⊆ L and Ni = ψ(Mi) ⊆ N , so Li−1 ⊆ Li and

Ni−1 ⊆ Ni. Then there are natural short exact sequences

0→ Li
Li−1

αi−→ Mi

Mi−1

βi−→ Ni
Ni−1

→ 0.

Moreover, for each i we have either

(a) Li = Li−1 and Ni/Ni−1 is isomorphic to Mi/Mi−1; or
(b) Ni = Ni−1 and Li/Li−1 is isomorphic to Mi/Mi−1.

Thus, after eliminating repetitions the submodules Li give a composition series for L of some length n, and
the submodules Ni give a composition series for N of some length m, where n+m = p.
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Proof. We define αi : Li/Li−1 → Mi/Mi−1 by αi(x+ Li−1) = φ(x) +Mi−1. This is zero iff φ(x) ∈ Mi−1 iff
x ∈ Li−1 iff x+ Li−1 = 0, so αi is injective.

Next, we define βi : Mi/Mi−1 → Ni/Ni−1 by βi(y +Mi−1) = ψ(y) +Ni−1. As Ni is ψ(Mi) by definition,
we see that βi is surjective. As ψφ = 0 we have βiαi = 0, so image(αi) ⊆ ker(βi).

Now suppose that y + Mi−1 ∈ ker(βi). This means that ψ(y) ∈ Ni−1 = ψ(Mi−1), so we can find
u ∈ Mi−1 with ψ(y − u) = 0. This in turn means that y − u = φ(x) for some x ∈ L. More precisely, as
φ(x) = y−u ∈M)i we have x ∈ Li−1. We also have αi(x+Li−1) = φ(x)+Mi−1 = y−u+Mi−1 = y+Mi−1,
so y +Mi−1 ∈ image(αi) as required. We thus have a short exact sequence as claimed.

Moreover, the set image(αi) = ker(βi) is a submodule of the simple module Mi/Mi−1, so it must be zero
or the whole of Mi−1. If it is zero then αi = 0 and βi is an isomorphism, but if it is all of Mi/Mi−1 then αi
is an isomorphism and βi = 0. Note also that αi is injective, so if αi = 0 then Li/Li−1 = 0 so Li = Li−1.
Similarly, βi is surjective so if βi = 0 then Ni = Ni−1. �

Proposition 13.5. [prop-unique-length]
Any two composition series for M have the same length.

Proof. We will prove by induction on n that if M admits a composition of length n then every composition
series has length n. This is clear if n = 0 (in which case M = 0) or if n = 1 (in which case M is simple). Now
suppose that M has a composition series of length n > 1. This means that there exists a simple submodule
S ≤M such that M/S admits a composition series of length n−1. Now suppose we have another composition
series, of length m say. We can apply the lemma to the short exact sequence S → M → M/S; this gives
composition series for S and M/S of length i and j say, where i+ j = m. As S is simple we must have i = 1,
so j = m − 1. On the other hand, M/S admits a composition series of length n − 1, so by the induction
hypothesis we must have m− 1 = n− 1, so m = n as required. �

Definition 13.6. If M has finite length, we define len(M) to be the length of any composition series, which
is well-defined by Proposition 13.5.

Proposition 13.7. [prop-len-additive]
Suppose we have a short exact sequence

0→ L
φ−→M

ψ−→ N → 0.

Then M has finite length iff both L and N have finite length, and if so, we have len(M) = len(L) + len(N).

Proof. First, if we have composition series 0 = L0 ⊂ · · · ⊂ Ln = L and 0 = N0 ⊂ · · · ⊂ Nm = N then we
can put

Mi =


φ(Li) if 0 < i < n

φ(Ln) = image(φ) = ker(ψ) = ψ−1(N0) if i = n

ψ−1(Ni−n) if n < i ≤ n+m.

For 0 < i ≤ n we find that φ gives an isomorphism Li/Li−1 → Mi/Mi−1, and for n < i ≤ n + m we find
that ψ gives an isomorphism Mi/Mi−1 → Ni−n/Ni−n−1. Thus, all quotients Mi/Mi−1 are simple, and we
have a composition series of length n+m as claimed. The converse follows easily from Lemma 13.4. �

Corollary 13.8. [cor-len-additive]
If M has finite length, then every submodule L ⊆ M and every quotient module M/L also have finite

length, with len(M) = len(L) + len(M/L). Moreover, if P and Q have finite length then so does P ⊕Q, and
len(P ⊕Q) = len(P ) + len(Q) �.

Remark 13.9. For a more refined invariant, we can fix a maximal ideal P ∈ max(A) and define multP (M)
to be the number of composition factors Mi/Mi−1 that are isomorphic to A/P . Arguments very similar to
Propositions 13.5 and 13.7 show that multP (M) is independent of the choice of composition series, and the
multP (M) = multP (L) + multP (N) whenever we have a short exact sequence L→M → N .
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14. Tensor products

The tensor product is a construction that combines two A-modules M and N to form a new A-module
denoted by M ⊗A N (or just M ⊗N , if there is no danger of confusion). The most basic examples are that
Am ⊗An ' Amn and A/I ⊗A/J ' A/(I + J).

Construction 14.1. [cons-tensor]
Let M and N be modules over a ring A. Let M�N denote the module FreeM×N (A) = Map0(M ×N,A).

Given m ∈ M and n ∈ N we write m�n for the basis element e(m,n) ∈ M�N . Next, let G(M,N) denote
the subset of M�N consisting of all elements of the following forms:

• (m+m′)�n−m�n−m′�n (with m,m′ ∈M and n ∈ N)
• m�(n+ n′)−m�n−m�n′ (with m ∈M and n, n′ ∈ N)
• (am)�n− a(m�n) (with a ∈ A and m ∈M and n ∈ N)
• m�(an)− a(m�n) (with a ∈ A and m ∈M and n ∈ N).

Put M ⊗ N = (M�N)/ spanA(G(M,N)), and let m ⊗ n denote the coset corresponding to m�n. Thus
m⊗ n ∈M ⊗N , and by construction we have

(m+m′)⊗ n = m⊗ n+m′ ⊗ n m⊗ (n+ n′) = m⊗ n+m⊗ n′

(am)⊗ n = a.(m⊗ n) m⊗ (an) = a.(m⊗ n).

Definition 14.2. [defn-bilinear]
Let M , N and T be A-modules, and let φ : M × N → T be a function. We say that φ is bilinear if we

have

φ(m+m′, n) = φ(m,n) + φ(m′, n) φ(m,n+ n′) = φ(m,n) + φ(m,n′)

φ(am, n) = aφ(m,n) φ(m, an) = aφ(m,n)

for all m,m′ ∈M and n, n′ ∈ N and a ∈ A.

Note that we have a map µ : M×N →M⊗N given by µ(m,n) = m⊗n, and this is bilinear by construction.
Thus, for any A-module homomorphism φ : M ⊗N → T , we have a bilinear map φ : M ×N → T given by
φ(m,n) = φ(m⊗ n), or equivalently φ = φ ◦ µ. In fact, this construction gives all possible bilinear maps out
of M ×N :

Proposition 14.3. [prop-tensor-universal]
If φ : M ×N → Z is A-bilinear, then there is a unique A-linear map φ : M ⊗N → Z such that φ(m,n) =

φ(m⊗ n) for all m and n.

Proof. Proposition 11.12 shows that there is a unique homomorphism

ψ : M�N = FreeM×N (A)→ Z

with ψ(m�n) = φ(m,n) for all m and n. Using the bilinearity of φ, we see that

ψ((m+m′)�n−m�n−m′�n) = ψ(m+m′, n)− ψ(m,n)− ψ(m′, n) = 0.

Similarly, all other elements of G(M,N) lie in the kernel of ψ, so spanA(G(M,N)) ⊆ ker(ψ), so Proposi-
tion 11.41 gives a unique homomorphism

φ : M ⊗N = (M�N)/ spanA(G(M,N))→ Z

with φ(m⊗ n) = ψ(m�n) = φ(m,n) as required. �

Example 14.4. [eg-tensor-universal]
Define φ : R3 × R3 → R3 by φ(u, v) = u × v (the traditional cross product of 3-dimensional vectors).

This is clearly bilinear, so Proposition 14.3 guarantees that there is a unique R-module homomorphism
φ : R3 ⊗R3 → R3 satisfying φ(u⊗ v) = u× v for all u and v. Rather than spelling this out in full detail, we
will usually just say that we define φ : R3⊗R3 → R3 by φ(u⊗v) = u×v, leaving to the reader the definition
of φ, the check of bilinearity, and the appeal to Proposition 14.3.
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Example 14.5. [eg-tensor-functor]
Suppose we have modules M,M ′, N and N ′, and A-linear maps α : M → M ′ and β : N → N ′. We then

define α⊗ β : M ⊗N →M ′ ⊗N ′ by

(α⊗ β)(m⊗ n) = α(m)⊗ α(n).

(As discussed above, we are implicitly applying Proposition 14.3 to the bilinear map (m,n) 7→ α(m)⊗β(n).)
It is easy to see that this fits into the following commutative diagram:

M ⊗N α⊗1 //

1⊗β
��

α⊗β

&&MM
MMM

MMM
MM

M ′ ⊗N

1⊗β
��

M ⊗N ′
α⊗1
// M ′ ⊗N ′.

It is convenient to rephrase Proposition 14.3 in terms of the following definition:

Definition 14.6. Let ν : M × N → T be a bilinear map. We say that ν is universal if for every other
bilinear map φ : M ×N → Z, there is a unique A-module homomorphism φ : T → Z with φ = φ ◦ ν.

The proposition says that the bilinear map µ : M ×N → M ⊗N is universal. In fact, this characterises
M ⊗N up to isomorphism:

Corollary 14.7. [cor-tensor-unique]
Let ν : M ×N → T be a bilinear map, giving a homomorphism ν : M ⊗N → T with ν = νµ. Then ν is

an isomorphism iff ν is universal.

Proof. Suppose that ν is universal. There is then a unique homomorphism µ : T → M ⊗N with µ = µν =
µνµ. Now µν and 1M⊗N are both homomorphisms out of M ⊗ N that become the same when composed
with µ. By the uniqueness clause in Proposition 14.3, they must be the same. A similar argument (using
the universality of ν) shows that νµ = 1T , so µ is the required inverse for ν. �

Example 14.8. [eg-free-tensor]
We claim that FreeI(A)⊗ FreeJ(A) is naturally isomorphic to FreeI×J(A). To prove this, define

ν : FreeI(A)× FreeJ(A)→ FreeI×J(A)

by ν(u, v)(i, j) = u(i)v(j). This is clearly bilinear. Consider another bilinear map φ : FreeI(A)×FreeJ(A)→
T . Define φ0 : I × J → T by φ0(i, j) = φ(ei, ej), then let φ : FreeI×J(A)→ T be the unique homomorphism

satisfying φ(e(i,j)) = φ0(i, j) = φ(ei, ej). It is straightforward to check that φν = φ, and that φ is uniquely
characterised by this property. This means that ν is universal, so the map

ν : FreeI(A)⊗ FreeJ(A)→ FreeI×J(A)

is an isomorphism as required.

Remark 14.9. As a special case of the above example, we have An ⊗Am ' Amn.

Proposition 14.10. There are natural isomorphisms

A⊗M 'M
M ⊗N ' N ⊗M

L⊗ (M ⊗N) ' (L⊗M)⊗N
L⊗ (M ⊕N) ' (L⊗M)⊕ (L⊗N).

Proof. First, we define α : A ⊗M → M to be the unique A-module map satisfying α(a ⊗m) = am for all
a ∈ A and m ∈M . We also define β : M → A⊗M by β(m) = 1⊗m. After recalling that

a⊗m = (a.1)⊗m = a.(1⊗m) = 1⊗ (am)

we see that β is also an A-module homomorphism, and that it is inverse to α.
Next, define homomorphisms

M ⊗N τ−→ N ⊗M σ−→M ⊗N
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by τ(m⊗n) = n⊗m and σ(n⊗m) = m⊗n. (As usual, these definitions implicitly appeal to Proposition 14.3.)
It is clear that τ and σ are inverse to each other, so they are isomorphisms.

Next, for any l ∈ L we can define a bilinear map

λ0(l) : M ×N → (L⊗M)⊗N

by λ0(l)(m,n) = (l ⊗m) ⊗ n. It follows that there is a unique linear map λ(l) : M ⊗ N → (L ⊗M) ⊗ N
satisfying λ(l)(m⊗n) = (l⊗m)⊗n. We next clam that λ(l+ l′) = λ(l)+λ(l′) in Hom(M⊗N, (L⊗M)⊗N).
Equivalently, we claim that λ(l+ l′)(x) = λ(l)(x) + λ(l′)(x) for all x ∈M ⊗N . This is clear by construction
if x has the form m ⊗ n for some m and n, and M ⊗ N is generated by terms of that form, so the claim
holds in general. Similarly, we have λ(al) = aλ(l) for all a ∈ A and l ∈ L. We can now define a map

γ0 : L× (M ⊗N)→ (L⊗M)⊗N

by γ0(l, x) = λ(l)(x), so γ0(l,m⊗n) = (l⊗m)⊗n. Using the above properties of λ, we see that γ0 is bilinear,
so there is a unique homomorphism

γ : L⊗ (M ⊗N)→ (L⊗M)⊗N

satisfying γ(l⊗ x) = γ0(l, x), and in particular γ(l⊗ (m⊗ n)) = (l⊗m)⊗ n. A similar argument constructs
a homomorphism δ : (L⊗M)⊗N → L⊗ (M ⊗N) satisfying δ((l⊗m)⊗ n) = l⊗ (m⊗ n). Now δγ(x) = x
whenever x has the form l⊗ (m⊗n), and it is not hard to see that terms of that form generate L⊗ (M ⊗N),
so δγ is the identity. A similar argument shows that γδ is also the identity, completing the proof that
L⊗ (M ⊗N) ' (L⊗M)⊗N .

Finally, we can define a map

ζ : L⊗ (M ⊕N)→ (L⊗M)⊕ (L⊗N)

by ζ(l ⊗ (m,n)) = (l ⊗m, l ⊗ n). We can also define maps

L⊗M φ−→ L⊗ (M ⊕N)
ψ←− L⊗N

by φ(l ⊗m) = l ⊗ (m, 0) and ψ(l ⊗ n) = l ⊗ (0, n). We can then combine these to define

ξ : (L⊗M)⊕ (L⊗N)→ L⊗ (M ⊕N)

by ξ(x, y) = φ(x) + ψ(y). It is straightforward to check that ξ is inverse to ζ. �

The above proof that L ⊗ (M ⊗ N) ' (L ⊗M) ⊗ N can be reorganised and generalised as follows. We
say that a map

φ : L×M ×N → Z

is trilinear if

• For fixed m ∈M and n ∈ N , the map l 7→ φ(l,m, n) gives an A-module homomorphism L→ Z.
• For fixed l ∈ L and n ∈ N , the map m 7→ φ(l,m, n) gives an A-module homomorphism M → Z.
• For fixed l ∈ L and m ∈M , the map n 7→ φ(l,m, n) gives an A-module homomorphism N → Z.

We can generalise this in an obvious way to define the notion of an n-linear map from
∏n−1
i=0 Mi → Z, for

any list of modules Mi. Suppose we have a trilinear map φ as above. If we fix l then we have a bilinear map
φ0(l) : M × N → Z, defined by φ0(l)(m,n) = φ(l,m, n). It follows that there is a module homomorphism
φ1(l) : M ⊗ N → Z satisfying φ1(l)(m ⊗ n) = φ(l,m, n). Using this, we define φ2 : L × (M ⊗ N) → Z by
φ2(l, x) = φ1(l)(x). One can check that φ2 is bilinear, so it gives rise to a homomorphism L⊗ (M ⊗N) →
Z. A slight elaboration shows that this gives a bijection between trilinear maps L ×M × N → Z, and
homomorphisms L ⊗ (M ⊗ N) → Z. A similar procedure gives a bijection between trilinear maps and
homomorphisms (L ⊗ M) ⊗ N → Z. By considering Z0 = (L ⊗ M) ⊗ N and Z1 = L ⊗ (M ⊗ N) we
can produce maps Z0 → Z1 → Z0 and check that they are inverse to each other. The whole argument
can be extended inductively to show that n-linear maps from M0 × . . . ×Mn−1 to Z biject with A-module
homomorphisms M0 ⊗ · · · ⊗Mn−1 → Z, where the tensor product can be bracketed in any way we choose.

Proposition 14.11. For any ideal I and module M there is a natural isomorphism A/I ⊗AM 'M/IM .
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Proof. We define ν : A/I ×M → M/IM by ν(a+ I,m) = am+ IM . This is easily seen to be well-defined
and bilinear, so it gives rise to a homomorphism ν : A/I ⊗M → M/IM . In the opposite direction, we can
define φ : M → A/I ⊗M by φ(m) = (1 + I)⊗m. If a ∈ I and m ∈M we see that

φ(am) = (1 + I)⊗ am = a.((1 + I)⊗m) = (a+ I)⊗m = 0⊗m = 0.

It follows that φ(IM) = 0, so there is an induced homomorphism φ : M/IM → A/I⊗M with φ(m+ IM) =
(1 + I)⊗m. It is easy to see that φ is inverse to ν. �

Remark 14.12. [rem-quot-tensor]
One can check that I.(A/J) = (I + J)/J , so as a special case we have A/I ⊗A/J ' A/(I + J).

Proposition 14.13. For any multiplicative set U and any module M there is a natural isomorphism
A[U−1]⊗AM 'M [U−1].

Proof. We define ν : A[U−1]×M → M [U−1] by ν(a/u,m) = (am)/u. This is easily seen to be well-defined
and bilinear, so it gives rise to a homomorphism ν : A[U−1] ⊗M → M [U−1]. In the opposite direction, we
can define φ : M [U−1]→ A[U−1]⊗M by φ(m/u) = 1/u⊗m. To see that this is well-defined, suppose that
m/u = m′/u′, so there exists v ∈ U with u′vm = uvm′. It follows that

1

u
⊗m =

u′v

uu′v
⊗m = u′v.

(
1

uu′v
⊗m

)
=

1

uu′v
⊗ u′vm =

1

uu′v
⊗ uvm′ =

1

u′
⊗m′

as required. It is now easy to check that φ is inverse to ν. �

Proposition 14.14. [prop-tensor-exact]
Suppose we have a module P and an exact sequence

L
α−→M

β−→ N −→ 0.

Then the resulting sequence

P ⊗ L 1⊗α−−−→ P ⊗M 1⊗β−−−→ P ⊗N −→ 0

is also exact.

Proof. By hypothesis we have βα = 0, and it follows easily that (1 ⊗ β)(1 ⊗ α) = 0. This proves that
ker(1⊗ β) ⊇ image(1⊗ α). Now put

Q = (P ⊗M)/ image(1⊗ α),

and observe that there is an induced homomorphism φ : Q→ P⊗N given by φ(x+image(1⊗α)) = (1⊗β)(x).
We claim that φ is actually an isomorphism. To see this, suppose that p ∈ P and n ∈ N . We can choose
m ∈M with β(m) = n, and then put

ψ0(p, n) = p⊗m+ image(1⊗ α) ∈ Q.

This is not obviously well-defined, because m is not unique. However, as ker(β) = image(α), any other choice
will have the form m′ = m+ α(l) for some l, giving p⊗m′ = p⊗m+ (1⊗ α)(p⊗ l), and this shows that ψ0

is well-defined after all. It is easily seen to be bilinear, so there is an induced map ψ : P ⊗N → Q. We find
that ψ is inverse to φ. From this in turn it follows that 1⊗ β is surjective, with kernel equal to the image of
1⊗ α. In other words, the sequence is exact as claimed. �

Remark 14.15. If α : L → M is injective, it does not follow that the map 1 ⊗ α : P ⊗ L → P ⊗M is
injective. For example, we can take

A = Z P = Z/2 L = Z M = Q,

and let α : Z→ Q be the inclusion map. Then P ⊗ L = Z/2 and P ⊗M = 0, so 1⊗ α cannot be injective.
The following terminology is often used: Proposition 14.14 says that the functor P ⊗ (−) is right exact,

but the above example shows that it is not left exact, and therefore not exact.

So far we have discussed tensor products of modules; we now consider tensor products of algebras (as in
Definition 11.3).
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Remark 14.16. [defn-algebra-mult]
Suppose that B is an A-algebra, with structure map φ : A → B. We can use this to consider B as an

A-module, and thus form the tensor product B ⊗A B. We can define an A-bilinear map µ0 : B ×B → B by
µ0(b, b′) = bb′. Proposition 14.3 therefore gives us an A-module homomorphism µ : B ⊗A B → B satisfying
µ(b⊗ b′) = bb′. Either µ0 or µ may be referred to as the multiplication map for B.

Proposition 14.17. [prop-algebra-tensor]
If B and C are A-algebras, then B ⊗A C also has a structure as an A-algebra, such that for all b, b′ ∈ B

and c, c′ ∈ C we have

(b⊗ c)(b′ ⊗ c′) = (bb′)⊗ (cc′).

Proof. We can define a 4-linear map

φ : B × C ×B × C → B ⊗ C

by φ(b, c, b′, c′) = bb′ ⊗ cc′. As discussed above, this gives rise to an A-module homomorphism

φ′ : (B ⊗ C)⊗ (B ⊗ C)→ B ⊗ C

satisfying φ′(b⊗ c⊗ b′ ⊗ c′) = bb′ ⊗ cc′. For u, v ∈ B ⊗ C we then define uv = φ′(u⊗ v). Alternatively, we
can define τ : C ⊗B → B ⊗ C to be the unique homomorphism with τ(c⊗ b) = b⊗ c, then we can consider
the composite

B ⊗ C ⊗B ⊗ C 1⊗τ⊗1−−−−→ B ⊗B ⊗ C ⊗ C µB⊗µC−−−−−→ B ⊗ C.

It is not hard to see that this is the same as φ′.
We have now defined a multiplication rule on B⊗C, but we still need to check that it satisfies the axioms.

For example, we must show that (uv)w = u(vw) for all u, v, w ∈ B ⊗ C. This is clear from the definitions
(and the associativity of B and C) in the case where u, v and w all have the form b⊗ c for some b ∈ B and
c ∈ C. Every element of B ⊗ C can be expressed as an A-linear combination of terms of that form, so the
general case follows easily. �

Remark 14.18. [rem-ring-pushout]

We can define ring maps B
λ−→ B⊗AC

ρ←− C by λ(b) = b⊗1 and ρ(c) = 1⊗ c. If β : A→ B and γ : A→ C
are the given structure maps, we find that

λβ(a) = β(a)⊗ 1 = a.(1⊗ 1) = 1⊗ γ(a) = ργ(a),

so the following diagram commutes:

A
β //

γ

��

B

λ

��
C

ρ
// B ⊗A C.

Now suppose we have another commutative square of rings:

A
β //

γ

��

B

ζ

��
C

ξ
// Z.

Using the homomorphism ζβ = ξγ : A→ Z we can regard Z as an A-algebra, and thus as an A-module. We
can define a module map φ : B ⊗ C → Z by φ(b⊗ c) = ζ(b)ξ(c). It is not hard to see that this is actually a
ring map, and that it is the unique ring map that satisfies φλ = ζ and φρ = ξ. In the language of category
theory, this means that our first square is actually a pushout in the category of rings.
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15. Modules over fields

Let K be a field. Modules over K are traditionally called vector spaces. Although we expect that most
readers will be familiar with the theory of vector spaces, we will give a rapid treatment here to explain the
relationship with our more general theory of modules.

Proposition 15.1. [prop-basis-test]
Let M be a K-module, and let S be a subset of M , giving a homomorphism φS : FreeS(K) → M . Then

the following are equivalent:

(a) S is maximal among linearly independent subsets of M .
(b) S is minimal among sets that span M .
(c) S is a basis for M .

Proof.

(a)⇒(c) Suppose that S is maximal among linearly independent sets, and consider an element x ∈ M . If
x ∈ S then x = φS(ex) ∈ image(φS). Suppose instead that x 6∈ S, so the set T = S ∪ {x} is strictly
larger than S and so cannot be linearly independent. This means that there is a nonzero element
m ∈ FreeT (K) with φT (m) = 0. If m(x) were zero we would have φS(m|S) = φT (m) = 0 and so
m|S = 0 because S is linearly independent, but that would give m = 0, contrary to assumption.
We therefore have m(x) 6= 0, and it follows that the element n = −m(x)−1m|S ∈ FreeS(K) has
φS(n) = x, so x ∈ image(φS) again. This proves that φS is surjective as well as injective, so it is a
basis.

(b)⇒(c) Suppose that S is minimal among sets that span M . We will assume that we have a nonzero element
m ∈ FreeS(M) with φS(m) = 0, and derive a contradiction. As m 6= 0 we can choose x ∈ S with
m(x) 6= 0 and put T = S \ {x}. Put n = −m(x)−1m|T , and note that φS(n) = x. Thus, for any
u ∈ FreeS(K) we have φS(u) = φT (u|T+u(x)n), so image(φT ) = image(φS) = M , so T is a spanning
set. This contradicts the assumed minimality of S.

(c)⇒(a) Suppose that S is a basis, and let T be a strictly larger set. Choose x ∈ T \S. As S is a basis, there
exists m ∈ FreeS(K) with φS(m) = x. Let n ∈ FreeT (K) be given by

n(z) =


m(z) if z ∈ S
−1 if z = x

0 otherwise.

Then n is a nontrivial element of ker(φT ), so T is linearly dependent. This proves that S is maximal
among linearly independent sets.

(c)⇒(b) Suppose again that S is a basis, and let U be a proper subset of S. Choose x ∈ S \ U . We claim
that x 6∈ image(φU ). Indeed, if x = φU (m) then we can define n ∈ FreeS(K) by

n(z) =


m(z) if z ∈ U
−1 if z = x

0 otherwise.

We find that n is a nontrivial element in ker(φS), contradicting the assumption that S is a basis.
We conclude that x 6∈ image(φU ), so φU is not surjective, so S is minimal among spanning sets.

�

Corollary 15.2. Every K-module has a basis, and so is free.

Proof. Let M be a K-module, and let L be the set of all linearly independent subsets of M . Note that ∅ ∈ L,
so L 6= ∅. We will apply Zorn’s Lemma to L. Let C be a chain in L, or in other words a subset of L such
that for all C,D ∈ C we have either C ⊆ D or D ⊆ C. Let S be the union of all the sets in C. We claim that
S is linearly independent (or equivalently, S ∈ L). To see this, consider a nonzero m ∈ FreeS(K). For each
element x in the finite set supp(m), we have x ∈ S, so we can choose Cx ∈ C such that x ∈ Cx. The chain
condition implies that the family {Cx | x ∈ supp(m)} is linearly ordered by inclusion, so there is an element
z ∈ supp(m) such that Cx ⊆ Cz for all x, and therefore supp(m) ⊆ Cz. As Cz ∈ L we deduce that the
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element φS(m) = φCz (m|Cz ) is nonzero. This implies that S is linearly independent as claimed. This verifies
the key condition in Zorn’s Lemma, so L has a maximal element, which is a basis by Proposition 15.1. �

Corollary 15.3. Every short exact sequence of K-modules is split.

Proof. This now follows from Corollary 12.12. �

Proposition 15.4. [prop-field-simple]
Every simple K-module is isomorphic to K.

Proof. Proposition 13.2 implies that every simple module is isomorphic to K/P for some maximal ideal P ,
but as K is a field, the only maximal ideal is 0. �

Proposition 15.5. [prop-fin-dim]
For a K-module M , the following are equivalent.

(a) M has a finite basis
(b) M is finitely generated
(c) M has finite length.

Moreover, if these conditions hold then the rank of M is the same as the length.

Proof. It is clear that (a) implies (b). Moreover, if (b) holds then M ' Kn/L for some integer n and some
submodule L, but Kn clearly has finite length, so M has finite length by Corollary 13.8.

Now suppose we assume that M has finite length, say len(M) = n. This implies that there is a submodule
L ⊂M such that len(L) = n− 1 and M/L is simple, which means that M/L ' K. As M/L ' K is free the
short exact sequence L→M →M/L must split, so M ' L⊕K. By induction on n we may assume that L
is free of rank n− 1, and it follows that M is free of rank n. All remaining claims are now clear. �

Remark 15.6. In this context it is traditional to say that M is finite-dimensional if it satisfies the above
conditions, and to define the dimension of M to be the rank or length. Note that Corollary 13.8 shows that
submodules, quotients and direct sums of finite-dimensional modules are finite-dimensional, with dim(M) =
dim(L) + dim(M/L) and dim(P ⊕Q) = dim(P ) + dim(Q).

16. Principal ideal domains

Definition 16.1. [defn-pid]
Recall that an ideal I ⊆ A is principal if it has the form I = Aa for some a ∈ A. A principal ideal domain

(or PID) is a domain in which every ideal is principal.

The simplest way to prove that a ring is a PID is to use the following notion:

Definition 16.2. [defn-ev]
Let A be a domain. A euclidean valuation on A is a function ν : A→ N with the following properties:

(a) ν(a) = 0 if and only if a = 0
(b) Whenever a, b ∈ A with a 6= 0 there are elements q, r ∈ A with b = qa+ r and ν(r) < ν(a)

(Some other sources handle the case a = 0 differently, taking ν(0) to be −∞ or leaving it undefined. Our
convention is very natural for Examples 16.3, 16.4 and 16.7, but less natural for Examples 16.5 and 16.6.)

Example 16.3. [eg-Z-ev]
The map ν(n) = |n| is a euclidean valuation on Z.

Example 16.4. [eg-field-ev]
If K is a field, then we can define a euclidean valuation on K by ν(0) = 0 and ν(a) = 1 for all a 6= 0. In

axiom (b) we simply take q = b/a and r = 0.

Example 16.5. [eg-poly-ev]
Let K be a field, and define ν : K[x] → N by ν(f) = deg(f) + 1 when f 6= 0, and ν(0) = 0. It follows

easily from Proposition 1.25 that this is a euclidean valuation.
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Example 16.6. [eg-Zpl-ev]
Let p be a prime number. Recall that Z(p) is the set of rational numbers of the form a = x/u, where

x, u ∈ Z and u is not divisible by p. If x = 0 we define ν(x/u) = 0. Otherwise, we let d be the largest
integer such that x is divisible by pd, and we put ν(x/u) = d+1. We claim that this is a euclidean valuation.
Indeed, suppose we have a, b ∈ Z(p) with a 6= 0. If ν(b) < ν(a) then we just take q = 0 and r = b. On the
other hand, if ν(b) ≥ ν(a) we find that b/a ∈ Z(p) and we just take q = b/a and r = 0. Either way we have
b = qa+ r with ν(r) < ν(a) as required.

Example 16.7. [eg-C-ev]
Let A be a subring of C such that

(a) For all a ∈ A we have |a|2 ∈ N
(b) For all z ∈ C there exists q ∈ A with |z − q| < 1.

We then claim that the map ν(a) = |a|2 is a euclidean valuation. Indeed, if a, b ∈ A with a 6= 0 then we can
choose q ∈ A with |b/a − q| < 1, then put r = b − aq = a(b/a − q) ∈ A so b = aq + r and |r|2 < |a|2 as
required.

The most obvious example of this type is the ring Z[i] = {a + ib | a, b ∈ Z} of gaussian integers. Given
z = x+iy ∈ C we can choose integers n,m with |n−x| ≤ 1/2 and |m−y| ≤ 1/2. The element q = n+im ∈ A
then has |z − q| ≤ 1/

√
2 < 1 as required. For another example, we can take ω = e2πi/3 = (i

√
3 − 1)/2, so

ω−1 = ω = ω2 = −1−ω, and put A = {n+mω | n,m ∈ Z}. One can check that |n+mω|2 = n2 +m2−nm,
so condition (a) holds. We leave (b) to the reader.

Proposition 16.8. [prop-ev-pid]
If A is a domain with a euclidean valuation ν : A→ N, then it is a PID.

Proof. Consider an ideal I ⊆ A. If I = 0 then I = A0 and so I is principal. Suppose instead that I 6= 0, and
choose an element a ∈ I \ {0} for which ν(a) is as small as possible. Let b be any other element of I. We
then have b = qa + r for some q, r ∈ A with ν(r) < ν(a). Now r = b − qa with a, b ∈ I so r ∈ I. However,
a was chosen to have minimal valuation among nontrivial elements of I, so we must have r = 0, and thus
b = qa. This proves that I = Aa, so I is principal as required. �

Corollary 16.9. The rings Z, Z(p), Z[i] and Z[e2πi/3] are all PIDs. Moreover, for every field K, both K
and K[x] are PIDs. �

We next discuss some domains that are not principal ideal domains.

Example 16.10. [eg-not-pid]
Consider a maximal ideal P in a domain A. For any A-module M we can regard M/PM as a module

over the field A/P , so we have a well-defined dimension dimA/P (M/PM). In particular, we can take M = P

and consider dimA/P (P/P 2). If P = Ap then P/P 2 is spanned by the coset p+ P 2, so dimA/P (P/P 2) ≤ 1.

Thus, if we can find a maximal ideal P with dimA/P (P/P 2) > 1, then A cannot be a principal ideal domain.
There are many examples where this is easy. For example, if A = C[x, y] and P = Ax+ Ay then A/P = C
and P/P 2 has basis {x+ P 2, y + P 2}, so P is not principal.

Example 16.11. [eg-not-pid-dedekind]
For a more subtle example, consider the ring

A = Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z} ⊂ C.

Note that |a + b
√
−5|2 = a2 + 5b2 ∈ N, so the first condition in Example 16.7 is satisfied, but the example

z =
√
−5/2 shows that the second condition is not satisfied.

Now define φ : A → Z/3 by φ(a + b
√
−5) = a − b + 3Z. It is straightforward to check that this is a

surjective homomorphism, and that the kernel is the ideal M generated by 3 and 1 +
√
−5.

We claim that M is not principal. One can check that dimA/P (M/PM) = 1 for all maximal ideals P ,
so the method in the previous example is not useful here. Instead, suppose that M = Aπ for some element
π. We must then have 3 = απ and 1 +

√
−5 = βπ for some elements α, β ∈ A. This gives 9 = |α|2|π|2 and

6 = |β|2|π|2, so |π|2(|α|2−|β|2) = 3. As |π|2 and |α|2−|β|2 are positive integers, we must have |π|2 ∈ {1, 3}.
However, it is clear that 3 cannot be represented as a2 + 5b2, and that 1 can only be represented as a2 + 5b2

if (a, b) = (±1, 0). We must therefore have π = ±1, which is impossible as ±1 6∈M .
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For the rest of this section, we let A be a PID.

Definition 16.12. We put

Idl(A) = idl(A) \ {0} = {nontrivial ideals}.
We also put A• = A \ {0} and A× = {invertible elements}.

Lemma 16.13. If I ∈ Idl(A) then I = Aa for some a ∈ A•. Moreover, for a, b ∈ A• we have Aa = Ab iff
b = ua for some u ∈ A×, so Idl(A) can be identified with A•/A×.

Proof. The first claim is clear from the definitions. If Aa = Ab then b ∈ Aa and a ∈ Ab, so there are elements
u, v ∈ A with b = ua and a = vb. It follows that a = uva, so a(uv− 1) = 0. If a 6= 0 then (as A is a domain)
we have uv = 1 so u ∈ A×. �

We now discuss various structures on Idl(A). Recall that in a general ring we defined IJ to be the ideal
generated by the set U = {xy | x ∈ I, y ∈ J}. However, if I = Aa and J = Ab then it is straightforward to
check that U itself is an ideal and in fact IJ = U = Aab. Note that this is contained in I ∩ J , so if I and
J are nonzero then I ∩ J is also nonzero. We now see that when I, J ∈ Idl(A) we have ideals I + J , I ∩ J
and IJ , all of which again lie in Idl(A). We also put (I : J) = {a ∈ A | aJ ⊆ I}, which contains I and so is
again in Idl(A).

We also consider Idl(A) as an ordered set using the inclusion relation. The order is related to the above
operations, because we have I ⊆ J iff I ∩ J = I iff I + J = J ; this follows directly from the definitions. The
following is a little less obvious:

Proposition 16.14. For I,K ∈ Idl(A), the following are equivalent:

(a) K ⊆ I
(b) For some J ∈ Idl(A) we have K = IJ
(c) K = I.(K : I)
(d) For some a, b ∈ A• we have I = Aa and K = Aab.

Proof. First, we can choose a, c ∈ A such that I = Aa and K = Ac.
Note that if K ⊆ I then Ac ⊆ Aa so c ∈ Aa so c = ab for some b. Thus if we put J = Ab we have K = IJ .

These arguments show that (a)⇒(d)⇒(b).
Now suppose that K = IJ as in (b). From the definition of (K : I) we have J ⊆ (K : I) and I.(K : I) ⊆ K.

As J ⊆ (K : I) we also have K = IJ ⊆ I.(K : I), so in fact I.(K : I) = K. This proves that (b)⇒(c), and
it is clear that (c)⇒(a), which closes the loop. �

Definition 16.15. Suppose we have a, b ∈ A•. A GCD system for the pair (a, b) is a list (a, b, x, y, d,m) ∈ A6

such that

xa+ yb = 1 dab = m

da = a db = b.

Proposition 16.16. For any pair (a, b), there is an associated GCD system (a, b, x, y, d,m). If we put
I = Aa and J = Ab, then for any such system we have

I + J = Ad

I ∩ J = Am

IJ = Aab

(I : J) = Aa

(J : I) = Ab.

Proof. Certainly there exists d ∈ A• with I+J = Ad. Now a ∈ I ⊆ I+J = Ad, so there is a unique element
a ∈ A with a = da. Similarly, there is a unique element b ∈ A with b = db. Next, as d ∈ I + J there exist
elements x, y ∈ A with d = xa+ yb. This in turn gives d = xad+ ybd, and A is a domain so we can cancel
the factor of d to conclude that xa + yb = 1. We now put m = dab, and we find that (a, b, x, y, d,m) is a
GCD system.
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Suppose instead that we start with a GCD system (a, b, x, y, d,m). We then have d = d(xa+yb) = xa+yb,
so d ∈ I + J . On the other hand, any element in I + J has the form c = ua+ vb for some u, v ∈ A. This can
be rewritten as c = (ua+ vb)d, so c ∈ Ad. It follows that I + J = Ad as claimed.

Next, as m = dab = ab = ab we see that Am ⊆ I ∩J . Conversely, suppose that u ∈ I ∩J , so u = va = wb
for some v and w. We then have u = (xa + yb)u = xau + ybu. In the first term, we use u = wb and
ab = m to get xwm. In the second term, we use u = va and ab = m to get yvm. Combining these gives
u = (xw + yv)m ∈ Am. It follows that I ∩ J = Am.

The relation IJ = Aab is clear.
Next, we have

AaJ = Aab = Aabd = Aab ⊆ Aa = I,

so Aa ⊆ (I : J). In the opposite direction, suppose that t ∈ (I : J), so tJ ⊆ I, or equivalently tb ∈ Aa. This
means that tb = ra for some r, or equivalently tb = ra. Now

t = (xa+ yb)t = a(tx+ ry) ∈ Aa.

This shows that (I : J) = Aa as claimed, and a symmetrical argument shows that (J : I) = Ab as well. �

Definition 16.17. Let A be an integral domain, and let p be a nonzero element of A. We say that p is a
prime element if Ap is a prime ideal (so whenever p divides ab, it divides a or b). We say that p is irreducible
if it is not invertible, but whenever p = ab, either a or b is invertible. We say that elements p and q are
associates if there is an invertible element u such that q = up.

Lemma 16.18. [lem-prime-irr]
In any integral domain, prime elements are irreducible.

Proof. Let p be prime. If p = ab then certainly p divides ab, so p divides either a or b. We may assume wlog
that p divides a, so a = px for some x. Now p = ab = pxb, so p(1 − xb) = 0, and A is assumed to be an
integral domain, so xb = 1. This shows that b is invertible, as required. �

Proposition 16.19. [prop-irr-prime]
Let A be a PID, and let P be a nontrivial ideal in A. Then the following conditions are equivalent:

(a) P is a maximal ideal
(b) P is a prime ideal
(c) Some generator of P is a prime element
(d) Every generator of P is a prime element
(e) Some generator of P is an irreducible element
(f) Every generator of P is an irreducible element.

Proof. It is clear from the definitions that (c) and (d) are equivalent, and it is straightforward to check
that (e) and (f) are also equivalent. Remark 5.29 shows that (a) implies (b), and (b) is clearly equivalent
to (c) and (d), which imply (e) and (f) by Lemma 16.18. The real point is to prove that (e) implies (a).
Equivalently, given an irreducible element p, we must show that A/Ap is a field. As p is not invertible by
definition, we see that A/Ap 6= 0. Any nontrivial element of A/Ap has the form a + Ap for some a 6∈ Ap.
Let d be a gcd for a and p, so we can write a = ad and p = pd and xa + yp = 1 for some a, p, x, y ∈ A.
As p is irreducible, either p or d must be invertible. If p were invertible we would have a = ap−1p, which is
impossible as p is assumed not to divide a. Thus d must be invertible, and we see that the element a∗ = d−1x
satisfies a∗a = 1− d−1yp = 1 (mod p), so a∗ +Ap is the required inverse for a+Ap. �

Lemma 16.20. [lem-inf-divis]
Let (Pk)k≥0 be a sequence of nonzero prime ideals, and put Ik =

∏
i<k Pi. Then

⋂
k Ik = 0.

Proof. First, we can choose prime elements pi such that Pi = Api for all i. We then have Ik = Amk, where
mk =

∏
i<k pi. Now put I∞ =

⋂
k Ik. This is an ideal, and all ideals are principal, so I∞ = Aa for some

a ∈ I∞; we must show that a = 0. Now a ∈ mkA for all k, so there is an element bk such that a = mkbk. It
follows that

mk(bk − pk bk+1) = mkbk −mk+1bk+1 = a− a = 0,
55



and A is an integral domain, so bk = pkbk+1 for all k. This shows that the ideals Jk = Abk satisfy Jk ⊆ Jk+1,
so the union J∞ =

⋃
k Jk is again an ideal. As A is a PID, there must be an element b∞ with J∞ = Ab∞.

Now b∞ ∈
⋃
k Jk, so b∞ ∈ Jk for some k <∞. This gives

bk+1 ∈ Jk+1 ⊆ J∞ ⊆ Jk = Abk = Apkbk+1,

so there exists x with bk+1 = xpkbk+1, or in other words (1−xpk)bk+1 = 0. Now Apk = Pk is assumed to be
prime, so in particular it is not all of A, so xpk 6= 1, so 1− xpk 6= 0. As A is an integral domain, we deduce
that bk+1 = 0. It follows that a = mk+1bk+1 = 0 as required. �

In particular, if P is any nonzero prime ideal we see that P 0 = A but
⋂
k P

k = 0. This validates the
following:

Definition 16.21. [defn-vP]
Let P be a prime ideal in A. For any nonzero element a ∈ A, we let vP (a) denote the largest natural

number n such that a ∈ Pn. For any nonzero ideal I, we let vP (I) denote the largest natural number n such
that I ⊆ Pn (so that vP (Aa) = vP (a)).

Proposition 16.22. [prop-vP]

(a) For any element a ∈ A• we have vP (a) = 0 iff a 6∈ P .
(b) For any elements a, b ∈ A• we have vP (ab) = vP (a) + vP (b).
(c) For any a ∈ A•, the set {P | vP (a) > 0} is finite.

Proof.

(a) This is clear from the definitions.
(b) Choose a generator p for P . If vP (a) = m and vP (b) = n then a = pnx and b = pmy for some

elements x, y ∈ A \ P . This gives ab = pn+mxy ∈ Pn+m. If ab were in Pn+m+1 we would have
ab = pn+m+1z for some z, and we could cancel pn+m to get xy = pz ∈ P . However, this is impossible
because P is a prime ideal and x, y 6∈ P . This shows that vP (ab) = n+m.

(c) If not, we can choose a sequence of distinct prime ideals Pi such that a ∈
⋂
i Pi. Now choose a

generator pi for each ideal Pi, and put mk =
∏
i<k pi. As the ideals Pi are distinct and maximal, we

see that pi 6∈ Pk for all i < k, and so mk 6∈ Pk. We claim that there are elements bk with a = bkmk

for all k. Indeed, we can take b0 = a. Once we have bk, we can note that the product bkmk = a
is divisible by the prime element pk, but mk is not divisible by pk, so bk must be divisible by pk,
say bk = bk+1pk. This gives bk+1mk+1 = bk+1pkmk = bkmk = a as required. The claim follows by
induction, so we see that a ∈

⋂
k

∏
i<k Pi. Using Lemma 16.20 we deduce that a = 0, contrary to

our assumption that a ∈ A•.
�

Part (c) of the proposition validates the following:

Definition 16.23. For any nonzero element a we put v∗(a) =
∑
P vP (a). We also put v∗(I) =

∑
P vP (I),

so v∗(Aa) = v∗(a).

Proposition 16.24. We have v∗(I) = 0 iff I = A. We also have v∗(IJ) = v∗(I) + v∗(J).

Proof. It is clear that v∗(A) =
∑
P vP (1) = 0. On the other hand, if I is a nontrivial ideal that is different

from A, then I is contained in some maximal ideal P , which is clearly also nontrivial. This gives v∗(I) ≥
vP (I) > 0. The formula v∗(IJ) = v∗(I) + v∗(J) follows immediately from Proposition 16.22(b). �

Theorem 16.25. [thm-pid-ufd]
There is a bijection µ :

⊕
P N → Idl(A) given by µ(m) =

∏
P P

m(P ), with inverse µ−1(I)(P ) = vP (I).
In other words, every nontrivial ideal can be written in an essentially unique way as a product of powers of
nontrivial prime ideals.

Proof. We can certainly define a map µ as above. Using Proposition 16.22(c), we can also define a map σ in
the opposite direction by σ(I)(P ) = vP (I). It is clear that vP (P ) = 1 and vP (Q) = 0 for all nontrivial prime
ideals Q 6= P . Using this together with Proposition 16.22(b), we see that σµ = 1, so µ is injective. We next
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claim that every nontrivial ideal I lies in the image of µ. If v∗(I) = 0 then I = A = µ(0) and the claim is
clear. Suppose instead that v∗(I) > 0, so we can choose a nontrivial prime ideal P with I ⊆ P . We now
have I = Aa and P = Ap for some a and p, and the relation I ⊆ P means that a = pb for some b. Thus, if
we put J = Ab we find that I = PJ . From this we get v∗(J) = v∗(I)− v∗(P ) = v∗(I)− 1. We may assume
by induction that J lies in the image of µ, say J = µ(m). Now put n(P ) = m(P ) + 1 and n(Q) = m(Q) for
all Q 6= P . We find that µ(n) = Pµ(m) = PJ = I as required. This proves that µ is surjective as well as
injective, so it is a bijection as claimed. �

It is more traditional to talk about unique factorisation of elements rather than ideals. For this we need
some additional discussion.

Definition 16.26. Let A be an integral domain. A system of irreducibles for A is a set P of irreducible
elements, such that for every irreducible element p0 ∈ A there is a unique element p ∈ P that is an associate
of p0.

Example 16.27.

• The set of (positive) prime numbers is a system of irreducibles for Z.
• The set {p} is a system of irreducibles for Z(p).
• The set {x− λ | λ ∈ C} is a system of irreducibles for C[x].

We can now state our unique factorisation result for elements:

Theorem 16.28. [thm-pid-ufd-elts]
Let P be a system of irreducibles in a principal ideal domain A. Define a map

µ : A× ×
⊕
p∈P

N→ A•

by µ(u,m) = u
∏
p∈P p

m(p). Then µ is a bijection.

Proof. Consider an element a ∈ A•. Note that the map p 7→ Ap gives a bijection from P to the set
of nontrivial prime ideals. Theorem 16.25 therefore tells us that there is a unique system of exponents
m(p) = vp(Aa) = vp(a) ∈ N (almost all zero) such that Aa =

∏
P (Ap)m(p) = A.

∏
p p

m(p). It follows that a

is a unit multiple of
∏
p p

m(p). The claim follows easily. �

17. Modules over principal ideal domains

Throughout this section, A is assumed to be a principal ideal domain. In this section, we will study the
structure of finitely generated A-modules. In Section 20 we will give a cruder classification of modules that
works for a much larger class of rings. Some features of this section are designed for compatibility with that
more general situation.

In order to state the main result, we need some definitions.

Definition 17.1. [defn-torsion]
Let M be any A-module.

(a) A torsion element is an element m ∈M such that am = 0 for some a ∈ A \ {0}. We write T (M) for
the set of all torsion elements. Note that if am = bn = 0 with a, b 6= 0 then ab 6= 0 and ab(m+n) = 0.
Using this, we see that T (M) is a submodule of M .

(b) Now let P be a nontrivial prime ideal. A P -torsion element is an element m ∈M such that P km = 0
for some k ≥ 0. We write TP (M) for the set of all P -torsion elements, which is again a submodule.

(c) For compatibility with the notation used for more general rings, we also write EP (M) for TP (M)
(when P 6= 0) and E0(M) = M/T (M).

(d) We say that M is a torsion module if all elements are torsion, so M = T (M) and E0(M) = 0.
Similarly, we say that M is a P -torsion module if M = TP (M).

(e) We say that M is torsion-free if 0 is the only torsion element, so T (M) = 0 and E0(M) = M .

Definition 17.2. [defn-f-p-k]
Suppose that P is a nontrivial prime ideal and k ∈ N. For any A-module M , we define

F kP (M) = {x ∈ P k−1M | Px = 0}.
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This is easily seen to be a submodule of M . Moreover, as Px = 0 for all x ∈ F kP (M), we can regard F kP (M)
as a module over the field A/P . We define

fkP (M) = dimA/P (F kP (M)).

If the dimensions fkP (M) are all finite, we also put

gkP (M) = fkP (M)− fk+1
P (M).

The main purpose of this section is to prove the following result.

Theorem 17.3. [thm-pid-modules]
Let M be a finitely generated A-module. Then

(a) M ' E0(M)⊕
⊕

P 6=0EP (M), and only finitely many of the terms in this sum are nonzero.

(b) E0(M) ' Ad for some d.
(c) EP (M) is isomorphic to a direct sum of copies of the modules A/P k for various k. The number of

copies of A/P k is gkP (M), which is zero for sufficiently large k.

The proof will be given after Corollary 17.22 below.

Proposition 17.4. [prop-hereditary]
Let n be a natural number. Then any submodule of An is isomorphic to Am for some m ≤ n.

Proof. We will argue by induction on n. The case n = 0 is trival. Suppose we have proved the case n = k,
and that M is a submodule of An+1 =

⊕n
i=0A. Define π : An+1 → A by π(a0, . . . , an) = an, and put

N = M ∩ ker(π) and I = π(M). Here N is a submodule of ker(π) ' An, so by induction we can choose an
isomorphism φ : Am → N for some m ≤ n. On the other hand, I is a submodule of A, or in other words
an ideal. If I = 0 then M = N , so M ' Am as required. If I 6= 0, then I = Ax for some nonzero element
x ∈ A. As I is defined to be π(M), we can choose u ∈M with π(u) = x. Define ψ : Am+1 →M by

ψ(a0, . . . , am) = φ(a0, . . . , am−1) + amu.

We claim that this is an isomorphism. Indeed, if ψ(a0, . . . , am) = 0 then we can apply π to get amx = 0. As
A is an integral domain, we deduce that am = 0, so

0 = ψ(a0, . . . , am) = φ(a0, . . . , am−1).

As φ is assumed to be an isomorphism, it follows that a0 = · · · = am−1 = 0 as well. This shows that ψ is
injective. In the other direction, suppose we have an element v ∈M . Then π(v) ∈ π(M) = Ax = Aπ(u), so
we can choose t ∈ A with π(v) = t π(u). This means that v−tu ∈M∩ker(π) = N , so v−tu = φ(a0, . . . , am−1)
for some elements a0, . . . , am−1 in A. This in turn gives

v = ψ(a0, . . . , am−1, t),

showing that ψ is also surjective. �

Remark 17.5. [rem-hereditary]
It is true more generally that any submodule of a free module over a PID is always free, even if the

modules in question are infinitely generated. However, a proof would require more set theory than we have
space to develop here.

Corollary 17.6. [cor-pid-noetherian]
Let M be a finitely generated A-module. Then every submodule N ⊆M is also finitely generated.

Remark 17.7. This corollary is also valid for many rings that are not PIDs, but there are some rings for
which it fails. This will be discussed in more detail in Section 18.

Proof. Choose a generating set {e0, . . . , en−1} for M . We can then define a surjective homomorphism
φ : An → M by φ(x) =

∑
i xiei. Put L = {x ∈ An | φ(x) ∈ N}. This is a submodule of An, so it is

isomorphic to Am for some m ≤ n. We can thus choose a basis u0, . . . , um−1 for L. We claim that the
elements vj = φ(uj) ∈ N generate N . Indeed, as φ is surjective, every element t ∈ N ⊆ M can be written
as φ(x) for some element x ∈ An. As φ(x) = t ∈ N we see that x ∈ L, so x =

∑
j ajuj for some system of

coefficients aj ∈ A. Applying φ gives t =
∑
j ajvj as required. �
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Remark 17.8. If M is finitely generated, we see in particular that the modules T (M), EP (M) = TP (M),
E0(M) = M/T (M) and F kP (M) are all finitely generated. This in turn implies that fkP (M) < ∞ for all k,
so gkP (M) is well defined.

Proposition 17.9. [prop-tors-free-free]
A finitely generated A-module is free if and only if it is torsion-free.

Proof. First suppose that M is a free. Then M ' An for some n, so we may assume that M = An. Suppose
that x ∈ An is a torsion element. Then there is a nonzero element a ∈ A such that ax = 0, so axi = 0 for
all i. As A is a domain and a 6= 0 we must have xi = 0 for all i, so x = 0. Thus M is torsion-free.

Conversely, suppose that M is torsion-free. Clearly, a list e0, . . . , en−1 generates M iff
∑
iAei = M . We

will say that such a set almost generates M if there is a nonzero element t ∈ A such that
∑
iAei ≥ tM . By

assumption we can choose a finite list of elements that generates M , so certainly we can choose a finite list
that almost generates M . Let e0, . . . , en−1 be such a list which is as short as possible, and fix an element
t 6= 0 such that

∑
iAei ≥ tM .

We claim that the elements ei are independent. If not, we have a relation
∑
i aiei = 0 where some

coefficient ak is nonzero. After reordering everything if necessary, we may assume that a0 6= 0. For any
x ∈ M we know that tx can be written in the form tx =

∑n−1
i=0 biei. After multiplying by a0 and using

the substitution a0b0e0 = −
∑n−1
i=1 aib0ei, we see that a0tx lies in the span of e1, . . . , en−1. Thus, Ae1 +

. . .+Aen−1 ≥ a0tM , so the list e1, . . . , en−1 almost generates M , contradicting our assumption that the list
e0, . . . , en was as short as possible. This contradiction shows that e0, . . . , en−1 must be independent, after
all. This implies that the module N =

∑
iAei is free. By assumption, the module L := aM is contained

in N , so it is free by Proposition 17.4, with basis f0, . . . , fm−1 say. As L = aM we have fi = agi for some
gi ∈M . It is now easy to see that the elements gi give a basis for M , so M is free as claimed. �

Lemma 17.10. [lem-tf-quotient]
The module E0(M) = M/T (M) is always torsion free.

Proof. Let π : M → E0(M) be the quotient map. Let q ∈ E0(M) be a torsion element, so aq = 0 for
some a ∈ A \ {0}. We must have q = π(m) for some m ∈ M . Now π(am) = a π(m) = aq = 0, so
am ∈ ker(π) = T (M), so we must have bam = 0 for some b ∈ A \ {0}. As A is a domain and a, b 6= 0 we
must have ba 6= 0, but bam = 0, so m ∈ T (M). This means that π(m) = 0, or in other words q = 0 as
required. �

Proposition 17.11. [prop-free-summand]
If M is a finitely generated module, then E0(M) ' Ad for some d, and M ' E0(M)⊕ T (M).

Remark 17.12. There are some choices involved in constructing an isomorphism M ' E0(M)⊕ T (M), so
this is not a natural isomorphism in the sense of category theory.

Proof. Recall that E0(M) = M/T (M). This is clearly finitely generated, and it is torsion free by Lemma 17.10,
so it is isomorphic to Ad for some d. We can therefore choose elements m0, . . . ,md−1 ∈ M such that the
corresponding cosets qi = π(mi) form a basis for E0(M). Let F be the submodule of M generated by the
elements mi. As the elements π(mi) form a basis, it is easy to see that the elements mi are independent, so
they form a basis for F , proving that F is a free module. This in turn means that the only torsion element
in F is 0, so T (M) ∩ F = 0. Now let m ∈ M be an arbitrary element. We can then write π(m) as

∑
i aiqi

for some system of coefficients ai. Put f =
∑
i aimi ∈ F and t = m − f . We find that π(f) = π(m), so

π(t) = 0, so t ∈ T (M), so m = f + t ∈ F ⊕ T (M). It follows that M = F ⊕ T (M) ' E0(M) ⊕ T (M) as
claimed. �

Lemma 17.13. [lem-totally-tors]
If M is a finitely generated torsion module, then there is a nonzero element a ∈ A such that aM = 0.

Similarly, if M is a finitely generated P -torsion module, then there exists k ≥ 0 such that P kM = 0.

Proof. Choose a finite generating set {e0, . . . , en−1} for M . As M is a torsion module, for each i we can
choose ai 6= 0 such that aiei = 0. Put a =

∏
i ai, so aei = (

∏
j 6=i aj)(aiei) = 0 for all i. As the elements ei

generate M , we deduce that aM = 0. Similarly, if M is P -torsion then we can choose ki such that P kiei = 0,
then we can put k = max(k0, . . . , kn−1). We find that P kei = 0 for all i, and so P kM = 0. �
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Lemma 17.14. [lem-module-coprime-split]
Let L be an A-module. Suppose that b, c ∈ A are coprime and that bcL = 0. Put M = {y ∈ L | by = 0}

and N = {z ∈ L | cz = 0}. Then L = M ⊕N .

Proof. As b and c are coprime there exist elements u,w such that ub+wc = 1. If x ∈M∩N then bx = cx = 0
so x = 1.x = ubx+ wcx = 0; thus M ∩N = 0. Now let x be an arbitrary element of M . Put y = wcx and
z = ubx, so x = y+ z. We have by = (bc)(wx) but bcL = 0 so by = 0 so y ∈M . Similarly, cz = (bc)(ux) = 0
so z ∈ N . Thus x = y + z ∈M +N , which shows that M +N = L. As M ∩N = 0, the sum is direct. �

Proposition 17.15. [prop-tors-split]
Let M be a finitely generated torsion module. Then M =

⊕
P TP (M), and only finitely many of the terms

TP (M) are nonzero.

Proof. Put I = {a ∈ A | aM = 0}. This is easily seen to be an ideal, and it is nonzero by Lemma 17.13,
so it can be factored as I =

∏
i P

ni
i for some finite list of distinct nontrivial prime ideals Pi and exponents

ni > 0. Put Mi = {m ∈ M | Pni
i m = 0}. The ideals Pni

i are pairwise coprime, so an evident inductive
extension of Lemma 17.14 gives M =

⊕
iMi. It follows that TP (M) = Mi if P = Pi, and that TP (M) = 0

if P is not one of the ideals Pi. The claim is clear from this. �

Remark 17.16. [rem-pid-modules]
By combining Propositions 17.11 and 17.15, we see that any finitely generated module M is isomorphic

to E0(M)⊕
⊕

P 6=0EP (M), and again only finitely many of the terms are nonzero. To complete the proof of

Theorem 17.3, we just need to study the structure of finitely generated P -torsion modules, such as EP (M).

We start with some results about the numbers fkP (M) and gkP (M).

Remark 17.17. [rem-g-p-k-additive]
It is easy to see that a pair (x, y) ∈M⊕N lies in F kP (M⊕N) if and only if x ∈ F kP (M) and y ∈ F kP (N). It

follows that F kP (M ⊕N) = F kP (M)⊕F kP (N) and thus that fkP (M ⊕N) = fkP (M)+fkP (N) and gkP (M ⊕N) =
gkP (M) + gkP (N).

Remark 17.18. [rem-g-p-k-iso]
It is clear that any isomorphism M →M ′ restricts to give isomorphisms F kP (M)→ F kP (M ′) for all P and

k. Thus, if M 'M ′ then fkP (M) = fkP (M ′) and gkP (M) = gkP (M ′).

Proposition 17.19. [prop-g-p-k-basic]
We have gkP (A) = 0 for all P and k, and

gkP (A/Qj) =

{
1 if p = q and k = j

0 otherwise.

Proof. It is clear that F kP (A) = 0 and so gkP (A) = fkP (A) = 0 for all P and all k > 0.
For the case of A/Qj , it will be convenient to choose generators p and q for P and Q. We start by proving

that

fkP (A/Qj) =


0 if P 6= Q

0 if P = Q and k > j

1 if P = Q and k ≤ j.
First suppose that p 6= q. Then pk and qj are coprime, so apk + bqj = 1 for some a, b ∈ A. If x ∈ F kP (A/Qj)
then x = pk−1y for some y and px = 0 so pky = 0. On the other hand, it is clear from the definition of A/Qj

that qjz = 0 for all z ∈ A/Qj , so qjy = 0. We thus have y = 1.y = apky+ bqjy = 0, and thus x = pk−1y = 0.
Thus F kP (A/Qj) = 0 and so fkP (A/Qj) = 0, as required.

Now suppose that Q = P (so we can choose q = p) and j < k. Then k − 1 − j ≥ 0 and pk−1A/P j =
pk−1−jpjA/P j = 0 and F kP (M) ≤ pk−1M so F kP (A/P j) = 0. This means that fkP (A/P j) = 0, as required.

Now suppose instead that q = p and k ≤ j. Let e be the element 1+pjA in A/P j , so that ae = (a+pjA).
Put f = pj−1e, so that f 6= 0 and pf = 0. We also have f = pk−1(pj−ke) so f ∈ pk−1A/P j , so f ∈ F kP (A/P j).
Let u be another element of F kP (A/P j). We can write u = ae = (a + pjA) for some a ∈ A. As pu = 0 we
have pa = 0 (mod pj), or in other words pa = pjb for some b, so a = pj−1b and thus u = bf . This shows

60



that {f} generates the vector space F kP (A/P j) over A/P , and f 6= 0 so the dimension must be exactly one.
Thus fkP (A/P j) = 1, as required.

It is now easy to deduce our description of gkP (A/Qj). If Q 6= P then fkP (A/Qj) = 0 for all k and it
follows easily that gkP (A/Qj) = 0. Suppose instead that Q = P . If k > j then k + 1 > j as well so

fkP (A/P j) = fk+1
P (A/P j) = 0 so gkP (A/P j) = 0 as claimed. If k < j then both k and k + 1 are less than or

equal to j, so fkP (A/P j) = fk+1
P (A/P j) = 1 so gkP (A/P j) = 0 as claimed. If k = j then fkP (A/P j) = 1 and

fk+1
P (A/P j) = 0 so gkP (A/P j) = 1 as claimed. �

Corollary 17.20. [cor-g-p-k]
Let M be a finitely generated torsion module. Then if there is any list of basic modules whose direct sum

is isomorphic to M , then that list must contain precisely gkP (M) copies of A/P k. �

Lemma 17.21. [lem-one-summand]
Suppose that M has a generating set e0, . . . , en−1 such that P kei = 0 for all i, and P k−1e0 6= 0. Then

Ae0 ' A/P k, and there is a submodule N such that M = Ae0 ⊕N .

Proof. It will again be convenient to choose a generator p for P .
First, it is clear that the map a 7→ ae0 induces an isomorphism A/I → Ae0, where I = {a | ae0 = 0}.

Now I = Au for some u, and pk ∈ I so u divides pk, so u must be a unit multiple of pj for some j ≤ k.
On the other hand, we are given that pk−1 6∈ I, so we must have j = k and I = P k. This means that
Ae0 ' A/P k = A/P k as claimed.

For the splitting M = Ae0⊕N , we will argue by induction on n. If n = 1 we can just take N = 0. Suppose
instead that n > 1, and put M ′ =

∑n−2
i=0 Aei ⊆ M . By induction, there is a submodule N ′ < M ′ such that

M ′ = Ae0⊕N ′. Put J = {a | aen−1 ∈M ′}. This again contains P k, so we must have J = P l for some l ≤ k.
We thus have plen−1 ∈M ′ = Ae0 ⊕N ′, so plen−1 = ve0 + n′ for some v ∈ A and n′ ∈ N ′. We can multiply
this by pk−l to get pk−lve0 + pk−ln′ = 0 in M ′ = Ae0 ⊕N ′, so pk−lve0 = 0. As Ae0 ' A/pk we deduce that
pk−lv ∈ pkA and so v ∈ plA, say v = plw. Put e∗ = en−1−we0 (so ple∗ = n′) and N = N ′+Ae∗. It is clear
that

Ae0 +N = Ae0 +N ′ +Ae∗ = Ae0 +N ′ +Aen−1 = M ′ +Aen−1 = M.

Now suppose we have an element x ∈ Ae0 ∩N , so

x = re0 = s+ te∗ = s+ ten−1 − twe0

for some r ∈ A and s ∈ N ′ and t ∈ A. This gives ten−1 = (r + tw)e0 − s ∈ Ae0 +N ′ = M ′, so t ∈ J = Apl,
so t = plt′ for some t′ ∈ A. As ple∗ = n′ we deduce that re0 = s+ t′n′ ∈ N ′. However, we have Ae0∩N ′ = 0
by assumption, so re0 = 0, or in other words x = 0. This proves that M = Ae0 ⊕N , as required. �

Corollary 17.22. [cor-one-summand]
Let M be a nontrivial finitely generated P -torsion module, and let k be the smallest integer such that

P kM = 0. Then M ' A/P k ⊕N for some N .

Proof. Choose a finite system of generators ei for M . These must all satisfy P kei = 0, and at least one of
them must satisfy P kei 6= 0. After renumbering if necessary we can assume that P ke0 6= 0, and then we can
apply the lemma. �

Proof of Theorem 17.3. Given Remark 17.16 and Corollary 17.20, we need only show that every finitely
generated P -torsion module M is isomorphic to a finite direct sum of modules of the form A/P k. We will
argue by induction on the number

f1
P (M) = dimA/P {m ∈M | Pm = 0}.

If f1
P (M) = 0 then multiplication by p gives an injective map M → M , but every element m ∈ M also

satisfies pkm = 0 for large k. The only way that these can be reconciled is if M = 0, in which case
M is the direct sum of the empty list. Suppose instead that f1

P (M) > 0, so M 6= 0. Let k be the
smallest integer such that P kM = 0. Corollary 17.22 gives a splitting M = A/P k ⊕ N , and we find that
f1
P (N) = f1

P (M) − f1
P (A/P k) = f1

P (M) − 1. We can thus assume by induction that N splits as a sum of
modules of the form A/P j , and it follows that M has a splitting of the same type. �
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Example 17.23. [eg-finab]
Abelian groups are just the same as Z-modules, so we can use Theorem 17.3 to classify the finitely

generated ones. Every such group is therefore a direct sum of copies of Z, or Z/pk for various prime numbers
p and integers k > 0. The classification of finite abelian groups is the same, except that we cannot have any
summands isomorphic to Z.

Example 17.24. [eg-jordan]
Another application of the above theory is to the classification of matrices up to conjugacy. Given a

square matrix C ∈ Matd(C), we can make Cd into a module over C[x] by the rule(∑
i

aix
i

)
.u =

∑
i

aiC
iu.

We write VC for Cd equipped with this module structure. Note that any C-linear map α : Cd → Cd has the
form α(v) = Uv for some matrix U , and α gives a C[x]-linear map from VC to VD if and only if UC = DU .
Using this, we see that VC ' VD if and only if C and D are conjugate. Note that VC cannot have any
summands of the form C[x], because dimC(C[x]) =∞. Theorem 17.3 therefore tells us that VC is isomorphic
to a finite direct sum of modules of the form C[x]/(x − λ)k, for various complex numbers λ and integers
k > 0. In particular, if C is a Jordan block of size d and eigenvalue λ, it is not hard to write down an
isomorphism VC ' C[x]/(x−λ)d. After a small amount of translation, this proves the familiar theorem that
every square matrix over C is conjugate to a block diagonal sum of some Jordan blocks.

Example 17.25. [eg-diffeq]
A third application is to the study of differential equations. Let C∞(R,C) denote the set of smooth

complex-valued functions on the real line. We can make this a module over the polynomial ring C[D] by the

rule D.f = f ′. Given a differential operator L =
∑d
k=0 akD

k, we want to understand the solution space

S(L) = {f ∈ C∞(R,C) | Lf = 0}.
This is a finitely generated module over C[D], so we can use the above theory. We can factor L as

L = u

r∏
j=1

(D − λj)mj

for some u 6= 0 and some distinct complex numbers λj and exponents mj > 0. Using Lemma 17.14 we get

S(L) =

r⊕
j=1

S((D − λj)mj ).

It is straightforward to check that S(Dm) has basis {1, x, . . . , xm−1}, and that multiplication by eλx gives an
isomorphism S(Dm)→ S((D− λ)m). It follows that the functions xpeλkx (with 1 ≤ k ≤ r and 0 ≤ p < mk)
give a basis for S(L) over C, and that

S(L) '
r⊕

k=1

C[D]/((D − λk)mk).

18. Noetherian rings

Definition 18.1. [defn-noetherian]
Let A be a ring, and let M be an A-module. We say that M is noetherian if every submodule of M

is finitely generated. We say that A is a noetherian ring if it is noetherian as a module over itself, or
equivalently, every ideal is finitely generated.

We will see that most of the rings that people usually study are noetherian, but it takes some work to
prove this. However, there are a few cases that we can handle immediately:

Example 18.2. [eg-basic-noetherian]
In a principal ideal domain, every ideal is generated by a single element and so is certainly finitely

generated. Thus, principal ideal domains are noetherian rings. In particular Z is noetherian, and for any
field K both K and K[x] are noetherian.
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Example 18.3. [eg-not-noetherian]
Consider the set

A = Z⊕ xQ[x] = {f ∈ Q[x] | f(0) ∈ Z}.
One can check that A is a subring of Q[x], and that the subset I = xQ[x] is an ideal. We claim that this
is not finitely generated, so A is not noetherian. To see this, define π : I → Q by π(

∑
i>0 aix

i) = a1, so
π(I) = Q. Suppose we have a finite list of elements g0, . . . , gd−1 ∈ I, and we let J be the ideal in A that
they generate. By clearing denominators we can find n > 0 such that nπ(gi) ∈ Z for all i. Now any element
of J has the form h =

∑
i figi with fi ∈ A, which gives nπ(h) =

∑
i fi(0).nπ(gi) ∈ Z. This shows that

x/(2n) ∈ I \ J , so J 6= I.

Proposition 18.4. [prop-noetherian-ses]
Suppose we have a short exact sequence of A-modules

0 −→ L
φ−→M

ψ−→ N −→ 0.

Then M is noetherian iff both L and N are noetherian. In particular:

(a) If M is noetherian, then every submodule and every quotient module of M is also noetherian.
(b) If L and N are noetherian, then so is L⊕N .

Proof. First suppose that M is noetherian. Any submodule L0 ⊆ L is isomorphic to φ(L0) ⊆ M and so is
finitely generated; so L is noetherian. Consider instead a submodule N0 ⊆ N , and put M0 = ψ−1(N0) ⊆M .

Now M0 must be generated by some finite list of elements (yi)
d−1
i=0 , and ψ : M0 → N0 is surjective, so N0 is

generated by (ψ(yi))
d−1
i=0 . This proves that N is also noetherian.

Suppose instead L and N are both noetherian. Consider a submodule M0 ⊆M , and put L0 = φ−1(L0) ⊆
L and N0 = ψ(M0) ⊆M . One can check that φ and ψ restrict to give a short exact sequence

0 −→ L0
φ0−→M0

ψ0−−→ N0 −→ 0.

As L and N are noetherian, we can choose finite lists X = (xi)
p−1
i=0 and Z = (zk)r−1

k=0 that generate L0

and N0 respectively. Put x′i = φ0(xi), and choose z′k ∈ M0 with ψ0(z′k) = zk. We claim that the list
Y = (x′0, . . . , x

′
p−1, z

′
0, . . . , z

′
r−1) generates M0. To see this, consider an element m ∈ M0. As Z generates

N0, we can express ψ0(m) as
∑
k ckzk for some coefficients ck ∈ A. Put m1 =

∑
k ckz

′
k ∈ spanA(Y ) and m2 =

m−m1. We then have ψ0(m1) = ψ0(m) so m2 ∈ ker(ψ0) = image(φ0). Thus, for some system of coefficients
ai ∈ A we have m2 = φ(

∑
i aixi) =

∑
i aix

′
i ∈ spanA(Y ). It follows that m = m1 + m2 ∈ spanA(Y ) as

claimed. This shows that an arbitrary submodule M0 ⊆M is finitely generated, so M is noetherian.
Finally, we can recover statements (a) and (b) by considering short exact sequences L→M →M/L and

L→ L⊕N → N as in Examples 12.4 and 12.5. �

Corollary 18.5. [cor-fg-noetherian]
Let A be a noetherian ring. Then an A-module M is noetherian iff it is finitely generated.

Proof. If M is noetherian then by definition it must be finitely generated (because it is a submodule of
itself).

Conversely, we can use Proposition 18.4(b) to see by induction that An is noetherian for all n ≥ 0. Any
finitely generated module is isomorphis to a quotient of An, and so is noetherian by Proposition 18.4(a). �

Proposition 18.6. [prop-simple-noetherian]
Let A be an arbitrary ring; then every simple module is noetherian. More generally, every module of finite

length is noetherian.

Proof. First let S be a simple module, so S 6= 0 and every nontrivial submodule is all of S. Choose any
nontrivial element s ∈ S and note that As must be all of S; this proves that S is finitely generated. The
only other submodule of S is 0, which is also finitely generated, so S is noetherian.

Now let M be a simple module, with composition series (Mi)
n
i=0 say. We then have short exact sequences

Mi−1 → Mi → Mi/Mi−1 in which Mi/Mi−1 is simple. We can use these to prove by induction that Mi is
noetherian for all i. In particular, as Mn = M , we see that M is noetherian. �
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Proposition 18.7. [prop-noetherian-ops]
Let A be a noetherian ring. Then A/K is noetherian for every ideal K ⊆ A, and A[U−1] is noetherian for

every multiplicative subset U ⊆ A. Moreover, if B is another noetherian ring then A×B is also noetherian.

Proof. Corollary 5.46 tells us that every ideal in A/K has the form I/K for some ideal I ⊆ A with K ⊆ I.
As A is noetherian we can choose a finite set of generators for I, and the images of these elements in A/K
will generate I/K. A similar argument based on Proposition 8.15 shows that A[U−1] is noetherian.

Finally, Example 5.39 tells us that every ideal in A × B has the form I × J for some ideals I ⊆ A and
J ⊆ B. Now I will be generated by some finite list (ai)

p−1
i=0 and J will be generated by some finite list

(bj)
q−1
j=0. It follows easily that I × J is generated by the elements (ai, 0) and (0, bj). �

Proposition 18.8. [prop-acc]
Let A be a ring and let M be an A-module. Let submod(M) be the set of all submodules of M . Then the

following are equivalent:

(a) M is noetherian.
(b) Any chain M0 ⊆M1 ⊆M2 ⊆ · · · in submod(M) is eventually constant (so there exists n0 ∈ N such

that Mn = Mn0
for all n ≥ n0).

(c) Every nonempty subset of submod(M) has a maximal element.

The advantage of conditions (b) and (c) here is that they depend only on the structure of submod(M) as
an ordered set.

Proof.

(a)⇒(b) Suppose that M is noetherian, and that we have a nested chain of submodules Mi as in (b). Put
M∞ =

⋃
iMi, and recall from Remark 11.39 that this is also a submodule of M . As M is noetherian,

we can choose a finite list of elements (mk)d−1
k=0 that generate M∞. As mk ∈ M∞ we can choose pk

such that mk ∈ Mpk . Now put n0 = max(p0, . . . , pd−1), so mk ∈ Mn0
for all k. It follows that for

all n ≥ n0 we have Mn0 = Mn = M∞ as required.
(b)⇒(c) Suppose that there is a nonempty subset C ⊂ submod(M) with no maximal element. As C is

nonempty we can choose M0 ∈ C. Now M0 cannot be maximal, so we can choose M1 ∈ C with
M0 ⊂M1. Again M1 cannot be maximal, so we can choose M2 ∈ C with M1 ⊂M2. We can continue
this process recursively to get a strictly increasing chain which never becomes constsnt. This shows
that the negation of (c) implies the negation of (b), or equivalently that (b) implies (c).

(c)⇒(a) Suppose that (c) holds. Given any submodule N ⊆M , put

C = {L ∈ submod(M) | L ⊆ N and N/L is not finitely generated }.

We claim that C is empty. If not, there is a maximal element L ∈ C. As N/N is certainly finitely
generated, we see that L must be a proper subset of N , so we can choose x0 ∈ N \L. Now L+Ax0 is
strictly larger than L, so by the maximality of L we see that the quotient N/(L+Ax0) is generated
by some finite list of elements, which will be the images of some elements x1, . . . , xr ∈ N . This means
that N = L+Ax0 +Ax1 + · · ·+Axr, so N/L is generated by the finite list x0, . . . , xr, contradicting
the assumption that L ∈ C. Thus, C must be empty after all, so in particular 0 6∈ C, so N is finitely
generated.

�

We call the next result the principle of noetherian induction.

Corollary 18.9. [cor-induction]
Let M be a noetherian module, and let C be a family of submodules of M . Suppose that whenever N ⊆M

and every strictly larger submodule lies in C, we also have N ∈ C. (In particular, we suppose that M ∈ C,
as the condition is vacuously satisfied when N = M .) Then every submodule lies in C.

Proof. The set D = submod(M) \ C cannot have a maximal element, so it must be empty. �

The following result is called the Hilbert basis theorem.
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Theorem 18.10. [thm-hilbert]
Let A be a noetherian ring; then A[x] is also noetherian.

Proof. For any f ∈ A[x] we let πn(f) denote the coefficient of xn in f . This defines an A-module map
πn : A[x]→ A.

Now consider an ideal I ⊆ A[x]. Let I≤n denote the set of polynomials in I of degree at most n, which
is an A-submodule of I. Put Jn = πn(I≤n) ⊆ A, which is an A-submodule of A and thus an ideal. We
have x.I≤n ⊆ I≤n+1 and πn+1(xf) = πn(f) so Jn ⊆ Jn+1. We thus have an ascending chain of ideals in
A, which must eventually be constant as A is noetherian. Choose N such that Jn = JN for all n ≥ N .
Now note that I≤N is an A-submodule of the module A[x]≤N , which is isomorphic to AN+1 and is therefore
noetherian. We can therefore choose a finite set F ⊆ I≤N that generates I≤N as an A-module. Let I∗ denote
the ideal in A[x] generated by F . It is clear that I≤N ⊆ I∗ ⊆ I. Suppose we know that I≤n−1 ⊆ I∗ for some
n > N , and that f ∈ I≤n. We then have πn(f) ∈ Jn = JN = πN (I≤N ). We can therefore express πn(f) as∑
i aiπN (fi) with ai ∈ A and fi ∈ F . Put g = xn−N

∑
i aifi and h = f − g. Then g ∈ I∗ ⊆ I and πn(h) = 0

so h ∈ I≤n−1 ⊆ I∗. It follows that the polynomial f = g + h is also in I∗. As f ∈ I≤n was arbitrary we
deduce that I≤n ⊆ I∗, and after extending this inductively we see that I∗ = I. Thus, I is generated by the
finite set F , as required. �

Corollary 18.11. [cor-hilbert]
If A is a noetherian ring and B is a finitely generated A-algebra then B is also noetherian.

Proof. Every finitely generated A-algebra is a quotient of a polynomial ring Pn = A[x0, . . . , xn−1] for some
n. As Pn ' Pn−1[x] we can use Theorem 18.10 repeatedly to see that Pn is noetherian for all n, and we have
also seen that quotients of noetherian rings are noetherian. �

19. Supports and associated primes

Throughout this section, A is assumed to be a noetherian ring. Moreover, the symbol M will refer to an
A-module that is assumed to be finitely generated unless we explicitly say otherwise.

In the Section 17, we considered the case where A is a principal ideal domain, and we studied the structure
of M using certain auxiliary modules EP (M). We now generalise the definition of these modules.

Definition 19.1. Let M be an arbitrary A-module, and let P be a prime ideal in A.

(a) We again say that m ∈ M is a P -torsion element if P km = 0 for some k ≥ 0. We write TP (M) for
the set of P -torsion elements, which is a submodule of M .

(b) There is a natural map from TP (M) to the localisation TP (M)P = TP (M)[(A \ P )−1]. We define
EP (M) to be the image of this map (which is a quotient of TP (M)).

(c) We say that M is P -coprimary if every element of M is P -torsion, but for every element a ∈ A \ P ,
multiplication by a gives an injective map M →M .

Remark 19.2. Suppose that A is a principal ideal domain. We then find that T0(M) = M , and T0(M)0 =
M [(A \ 0)−1]. It follows that the kernel of the map η : T0(M)→ T0(M)0 is just T (M), so the image (which
we are now calling E0(M)) can be identified with M/T (M) (which was our previous definition of E0(M)).
Similarly, for a nonzero prime ideal P and an element u ∈ A \ P we find that u is invertible mod P , so u is
invertible mod P k for all k, so the map η : TP (M)→ TP (M)P is an isomorphism. It again follows that our
new definition of EP (M) is essentially the same as the old one.

One of our main tasks is to understand which primes P have EP (M) 6= 0. Just as in the case of a principal
ideal domain, it will turn out that there are only finitely many of them (under our standing assumption that
M is finitely generated). Next, it turns out that we do not have M '

⊕
P EP (M) in general. Nonetheless,

we will be able to prove some weaker and more complicated statements along the same lines, involving the
notion of a primary decomposition. Our other main task is to set up this theory.

Proposition 19.3. [prop-EPM-coprimary]
Let M be an arbitrary A-module. Then EP (M) is always P -coprimary, and M is P -coprimary if and

only if it is isomorphic to EP (M).
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Proof. Because EP (M) is a quotient of TP (M), it is easily seen to be a P -torsion module. It is also a
submodule of TP (M)P , and elements of A \ P act as isomorphisms on TP (M)P , so they act injectively on
EP (M). This proves that EP (M) is P -coprimary.

Conversely, suppose that M is P -coprimary. This firstly means that TP (M) = M , so EP (M) is the image
of the map M →MP . This is the same as M/N , where

N = {n ∈M | un = 0 for some u ∈ A \ P}.

From the definitions and the P -coprimary condition we see that N = 0, so EP (M) = M . �

Definition 19.4. Let M be an arbitrary A-module.

(a) We put supp(M) = {P ∈ zar(A) |MP 6= 0}, and call this the support of M . (Recall here that zar(A)
is the set of all prime ideals in A.)

(b) A minimal prime for M is a minimal element of the set supp(M). We write min(M) for the set of
minimal primes.

(c) An associated prime for M is a prime ideal P such that M contains a submodule isomorphic to A/P .
We write ass(M) for the set of associated primes.

(d) We put reg(M) = {a ∈ A | a.1M is injective }.
(e) We put ann(M) = {a ∈ A | aM = 0}.
(f) We put A(M) = {annA(m) | m ∈M \ {0}}.

Example 19.5. [eg-pid-ass]
Let A be a principal ideal domain. As we see from Theorem 17.3, any finitely generated A-module M can

be written as M = E0(M)⊕
⊕

P 6=0EP (M), where E0(M) is free and EP (M) is annihilated by some power

of P and only finitely many of the summands EP (M) are nonzero. One can check that

(a) If E0(M) 6= 0 then supp(M) = zar(A) = {0} q {P | P 6= 0}. However, if E0(M) = 0 then
supp(M) = {P 6= 0 | EP (M) 6= 0}.

(b) If E0(M) 6= 0 then min(M) = {0}, but if E0(M) = 0 (or equivalently M = T (M)) then min(M) =
supp(M).

(c) In all cases ass(M) = {P ∈ zar(A) | EP (M) 6= 0}. (In fact, we will see that this holds for arbitrary
noetherian rings, not just for principal ideal domains.)

(d) reg(M) is the set of elements a ∈ A that do not lie in any associated prime ideal.

There is no real difficulty in describing ann(M) and A(M) as well, but the notation would be cumbersome.

Example 19.6. [eg-dedekind-ass]
As in Example 16.11, consider the ring A = Z[

√
−5] and the ideal M generated by 3 and 1 +

√
−5. We

will use this repeatedly as a counterexample for various things related to associated primes and primary
decompositions. For the moment we just note that A is an integral domain and A ' 3A ≤ M ≤ A; this
easily implies that E0(M) = T0(M) = M , whereas EP (M) = TP (M) = 0 for all P 6= 0. We also find that
supp(M) = zar(A) and min(M) = ass(M) = {0} and reg(M) = A \ 0 and ann(M) = 0 and A(M) = {0}.

Example 19.7. [eg-cross-ass]
Consider the ring A = C[x, y] and the module M = A/(xy). We claim that

supp(M) = {P ∈ zar(A) | x ∈ P or y ∈ P}
= {Ax, Ay, Ax+Ay} q {Ax+A(y − µ) | µ ∈ C×} q {A(x− λ) +Ay | λ ∈ C×}.

To see this, put e = 1 + Axy, which is the obvious generator of M . We have MP = 0 iff e/1 = 0 in MP ,
iff there exists u ∈ A \ P with ue = 0, iff there exists u ∈ A \ P with u ∈ Axy, iff xy 6∈ P , iff (x 6∈ P and
y 6∈ P ). By the contrapositive, we have P ∈ supp(M) iff x ∈ P or y ∈ P . If x ∈ P then P corresponds to
a prime ideal P in the quotient ring A/x = C[y], so P must be zero or generated by y − µ for some µ ∈ C.
The situation if y ∈ P is similar, and our more explicit description of supp(M) follows easily. It follows in
turn that min(M) = {Ax,Ay}.

Any element m ∈M can be written in a unique way as a+ x f(x) + y g(y), where a ∈ C, and f and g are
polynomials. One can check that

• If a 6= 0 then annA(m) = Axy
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• If a = 0 but f 6= 0 and g 6= 0 then again annA(m) = Axy
• If a = 0 and f = 0 but g 6= 0 then annA(m) = Ax
• If a = 0 and g = 0 but f 6= 0 then annA(m) = Ay
• If a = 0 and f = 0 and g = 0 (so m = 0) then annA(m) = A.

This gives

ass(M) = {Ax, Ay}
reg(M) = A \ (Ax ∪Ay)

ann(M) = Axy

A(M) = {Ax, Ay, Axy}.
(Here we have used the fact that ass(M) is the set of prime ideals in A(M); the proof is straightforward,
and is given as part of Proposition 19.15 below.)

Example 19.8. [eg-tick-ass]
The previous example involved the associated prime ideals Ax and Ay, neither of which is contained in

the other. Some additional phenomena appear in cases where the relevant prime ideals are nested. For
example, we can take A = C[x, y] again, and M = A/(Axy +Ay2). We first claim that

supp(M) = {P ∈ zar(A) | y ∈ P} = {Ay} q {A(x− λ) +Ay | λ ∈ C}.
To see this, we again let e denote the standard generator of M , so MP = 0 iff e/1 = 0 iff there exists
u ∈ A \ P with u ∈ Axy + Ay2. By the contrapositive, we have P ∈ supp(M) iff Axy + Ay2 ≤ P . If y ∈ P
then it is clear that Axy + Ay2 ≤ P . Conversely, if Axy + Ay2 ≤ P then y2 ∈ P , which means that y ∈ P
as P is prime. It follows easily that supp(M) is as described, and thus that min(M) = {Ay}.

Any element m ∈ M can be written as m = f(x) + ay for some some polynomial f and some constant
a ∈ C. One can check that

• If f(0) 6= 0 then annA(m) = Axy +Ay2

• If f(0) = 0 but f(x) 6= 0 then annA(m) = Ay
• If f(x) = 0 but a 6= 0 then annA(m) = Ax+Ay
• If f(x) = 0 and b = 0 (so m = 0) then annA(m) = A.

This gives

ass(M) = {Ay, Ax+Ay}
reg(M) = A \ (Ax+Ay)

ann(M) = Axy +Ay2

A(M) = {Axy +Ay2, Ay, Ax+Ay}.

Proposition 19.9. [prop-ass-supp]
ass(M) is always a subset of supp(M).

Proof. If P ∈ ass(M) then we have an injective homomorphism α : A/P → M . Using Proposition 12.13
we deduce that the map αP : (A/P )P → MP is also injective, but (A/P )P is easily seen to be nonzero, so
MP 6= 0, so P ∈ supp(M). �

Proposition 19.10. [prop-sum-ass]
For direct sums we have

supp(M ⊕N) = supp(M) ∪ supp(N)

ass(M ⊕N) = ass(M) ∪ ass(N)

reg(M ⊕N) = reg(M) ∩ reg(N)

ann(M ⊕N) = ann(M) ∩ ann(N).

Proof. Only the claim about ass(M ⊕ N) requires comment. Using the inclusions M → M ⊕ N and
N → M ⊕ N , it is clear that ass(M ⊕ N) ⊇ ass(M) ∪ ass(N). In the opposite direction, suppose that
P ∈ ass(M ⊕ N), so there is an injective homomorphism α : A/P → M ⊕ N . This consists of a pair of
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homomorphisms β : A/P →M and γ : A/P → N . We claim that at least one of these is injective. If not, we
can choose a, b ∈ A\P with β(a+P ) = 0 and γ(b+P ) = 0. It follows that α(ab+P ) = 0, but α is injective,
so ab ∈ P , which contradicts the fact that P is a prime ideal. This proves the claim, so P ∈ ass(M)∪ass(N),
as required. �

The above can be partially generalised as follows.

Proposition 19.11. [prop-ass-ses]
Suppose that there is a short exact sequence

0→M
φ−→ U

ψ−→ N → 0.

Then
supp(U) = supp(M) ∪ supp(N)

ass(M) ⊆ ass(U) ⊆ ass(M) ∪ ass(N)
reg(M) ∩ reg(N) ⊆ reg(U) ⊆ reg(M)
ann(M). ann(N) ⊆ ann(U) ⊆ ann(M) ∩ ann(N).

Proof. First, Proposition 12.13 gives us a short exact sequence MP → UP → NP for each P , and it follows
easily that UP can only be zero if MP and NP are both zero. This means that supp(U) = supp(M)∪supp(N).

Next, if P ∈ ass(M) then we have an injective homomorphism A/P → M , which we can compose with
φ to get an injective homomorphism A/P → U . This shows that ass(M) ⊆ ass(U). Suppose instead that
we start with an injective homomorphism β : A/P → U . If ψβ : A/P → N is injective, then P ∈ ass(N).
Otherwise we can choose an element x ∈ A \P such that ψβ(x+P ) = 0. As image(φ) = ker(ψ) there exists
m ∈ M with φ(m) = β(x + P ). As both φ and β are injective, we see that ann(m) = ann(φ(m)) = P , so
there is an injective homomorphism α : A/P → M with α(a + P ) = am. This means that P ∈ ass(M), as
required.

We now consider regular elements. Suppose that a ∈ reg(M)∩ reg(N). If e ∈ U with ae = 0, then we also
have aψ(e) = ψ(ae) = 0, but a is regular on N so ψ(e) = 0. As image(φ) = ker(ψ) we see that e = φ(m)
for some m, and φ(am) = aφ(m) = ae = 0, but φ is injective so am = 0. Moreover, a is regular on M so
m = 0, so e = φ(m) = 0. This proves that reg(M) ∩ reg(N) ⊆ reg(U). In the other direction, if a ∈ reg(U)
and am = 0 for some m ∈M then we can apply the map φ to see that aφ(m) = 0, but a is regular on U so
φ(m) = 0, and φ is injective so m = 0. Thus, reg(U) ⊆ reg(M).

Finally, suppose that a ∈ ann(U). Any n ∈ N has n = ψ(e) for some e ∈ U , so an = ψ(ae) = ψ(0) = 0;
thus a ∈ ann(N). Also, for m ∈M we have φ(m) ∈ U so φ(am) = aφ(m) = 0, but φ is injective so am = 0;
thus a ∈ ann(M). In the opposite direction, suppose that b ∈ ann(M) and c ∈ ann(N). For e ∈ U we have
ψ(ce) = c ψ(e) = 0, so ce = φ(m) for some m, so bce = φ(bm) = φ(0) = 0; thus bc ∈ ann(U). �

Proposition 19.12. If there exist injective homomorphisms

M
α−→ N

β−→M,

then supp(M) = supp(N) and min(M) = min(N) and ass(M) = ass(N) and reg(M) = reg(N) and
ann(M) = ann(N) and A(M) = A(N).

Proof. Just from the existence of an injective homomorphism M → N we get supp(M) ⊆ supp(N) and
ass(M) ⊆ ass(N) and reg(N) ⊆ reg(M) and ann(N) ⊆ ann(M) and A(M) ⊆ A(N). As we have injective
homomorphisms in both directions, we conclude that supp(M) = supp(N) and ass(M) = ass(N) and
reg(M) = reg(N) and ann(M) = ann(N) and A(M) = A(N). From supp(M) = supp(N) it is clear that
min(M) = min(N). �

Proposition 19.13. [prop-ass-chain]
For any finitely generated module M there is a chain

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M,

and a list P1, . . . , Pn of prime ideals, such that Mi/Mi−1 ' A/Pi for 1 ≤ i ≤ n. Moreover, we have
ass(M) ⊆ {P1, . . . , Pn} (so ass(M) is finite).
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Proof. Let C be the family of all submodules of M that have a chain as described. The zero module lies in
C so C 6= ∅. Thus, Proposition 18.8 tells us that C has a maximal element, say N . As N ∈ C we can choose
a chain

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = N

for some n, and a list P1, . . . , Pn of prime ideals, such that Mi/Mi−1 ' A/Pi for 1 ≤ i ≤ n. If N 6= M then
ass(M/N) 6= ∅, so we can choose a prime ideal Pn+1 and an injective homomorphism α : A/Pi+1 → M/N .
The image of this homomorphism will have the form Mn+1/N for some submodule Mn+1 ⊆ M containing
N = Mn. This module Mn+1 will then lie in C, contradicting the maximality of N . We conclude that
N = M after all, so we have a chain of the required type for M itself. Note that when P is prime, the
annihilator of any nontrivial element of A/P is just P . It follows that ass(Mi/Mi−1) = ass(R/Pi) = {Pi}.
Using the short exact sequences Mi−1 → Mi → Mi/Mi−1 we get ass(Mi) ⊆ ass(Mi−1) ∪ {Pi}, and so
ass(M) = ass(Mn) ⊆ {P1, . . . , Pn}. �

Remark 19.14. [rem-extra-quotient]
In general, we cannot arrange to have ass(M) = {P1, . . . , Pn} in the above construction. To see this,

consider the pair (A,M) as in Example 16.11, where ass(M) = {0}. Suppose we have a chain of submodules
0 = M0 < · · · < Mn = M with Mi/Mi−1 ' A/0 = A. The short exact sequences Mi−1 → Mi → A must
split, so we have M ' An, with basis m1, . . . ,mn say. As M is a non-principal ideal, we must have n > 1.
As M is just a subset of A, we have a relation m2.m1 + (−m1).m2 = 0, showing that m1, . . . ,mn cannot be
a basis after all. Thus, there can be no chain of the indicated type.

Proposition 19.15. [prop-max-ann]

(a) The associated primes are precisely the prime ideals that lie in A(M), so ass(M) = zar(A)∩A(M).
(b) Every element of A(M) is contained in a maximal element of A(M).
(c) Every maximal element of A(M) is an associated prime.
(d) reg(M) is the complement of the union of the associated primes.

In particular, if M 6= 0 then ass(M) 6= ∅.

Proof.

(a) If P is an associated prime then there is an isomorphism from A/P to some submodule of M , or
equivalently there is an injective homomorphism α : A/P → M . Put m = α(1 + P ), so α(x+ P ) =
α(x.(1 + P )) = xm for all x. As α is injective we see that annA(m) = P . As P 6= A we have m 6= 0,
so P ∈ A(M). This shows that ass(M) ⊆ zar(A) ∩ A(M), and the reverse inclusion can be proved
in essentially the same way.

(b) If I ∈ A(M) then {J ∈ A(M) | J ⊇ I} is a nonempty family of ideals in the noetherian ring A, so it
has a maximal element by Proposition 18.8. It is clear that any such element will also be maximal
in A(M).

(c) Now let P be a maximal element in A(M), and choose m ∈ M \ {0} such that P = annA(m). As
m 6= 0 we have 1 6∈ P . Suppose that a 6∈ P , so am 6= 0. It follows that annA(am) ∈ A(M) and
P ⊆ annA(am) so by maximality annA(am) = P . In particular, if b is another element with b 6∈ P
then b 6∈ annA(am) so abm 6= 0 so ab 6∈ P . This proves that P is prime, so P ∈ ass(M) by (a).

(d) It is clear that the complement of reg(M) is the union of all the ideals in A(M). From (b) and (c)
we see that this is the same as the union of the associated prime ideals.

�

Corollary 19.16. [cor-exists-regular]
Let I ≤ A be an ideal that is not contained in any of the associated primes for M . Then reg(M)∩ I 6= ∅.

Proof. Proposition 19.13 tells us that that there are only finitely many associated primes, we can use Propo-
sition 5.36. This tells us that I is not contained in the union of the associated primes. The claim therefore
follows from Proposition 19.15(d). �

Proposition 19.17. [prop-fraction-ass]
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For any multiplicative set U ⊆ A we have

assA[U−1](M [U−1]) = {P [U−1] | P ∈ assA(M), P ∩ U = ∅}.

In particular, we have M [U−1] 6= 0 iff assA[U−1](M [U−1]) 6= ∅ iff there is a prime P ∈ ass(M) with P∩U = ∅.

Proof. First, for an element m/u ∈M [U−1] we have m/u = 0 iff mw = 0 for some w ∈ U iff annA(m)∩U = ∅.
Similarly, if (a/v)(m/u) = 0 then awm = 0 for some w ∈ U , and we can rewrite a/v as (aw)/(vw) with
aw ∈ annA(m) and vw ∈ U . This gives

annA[U−1](m/u) = annA(m)[U−1].

Suppose that P ∈ assA(M) with P ∩ U = ∅. Then there is an element m ∈M \ {0} with annA(m) = P .
It follows that annA[U−1](m/1) = P [U−1], and P [U−1] is a prime ideal in A[U−1] by Proposition 8.18, so

P [U−1] ∈ assA[U−1](M [U−1]).

Conversely, suppose we have an ideal P ∗ ∈ assA[U−1](M [U−1]). Proposition 8.18 tells us that the set

P = {a ∈ A | a/1 ∈ P ∗} is a prime ideal in A with P ∩U = ∅ and that P ∗ = P [U−1]. As P ∗ is an associated
prime, there is an element m/u ∈ M [U−1] with annA[U−1](m/u) = P ∗. Next, as A is noetherian we can
choose a finite list a0, . . . , ad−1 that generates P . Now ai/1 ∈ P ∗ so aim/u = 0 so there exists vi ∈ U
with aivim = 0. Put v =

∏
i vi ∈ U , and note that aivm = 0 for all i, so P ⊆ annA(vm). On the other

hand, if bvm = 0 then the element b/1 = (bv)/v lies in annA[U−1](m/u) = P ∗, so b ∈ P . We conclude that
annA(vm) = P , so P ∈ assA(M). �

Corollary 19.18. [cor-loc-ass]
Let Q be a prime ideal in A. Then the following are equivalent:

(a) Q ∈ supp(M)
(b) Q ⊇ annA(M)

(c) Q ⊇
√

annA(M)
(d) There is an associated prime P ∈ ass(M) with Q ⊇ P .

Proof. Take U = A \P in the Proposition to see that (a) and (d) are equivalent. As Q is prime, we see that
a ∈ Q iff ak ∈ Q for some k > 0. Using this, we see that (b) and (c) are equivalent.

Next, if there is an element v ∈ annA(M) \Q then for all m/u ∈ MQ we have m/u = (vm)/(vu) = 0, so
MQ = 0. Conversely, suppose that MQ = 0. By assumption there is a finite list m0, . . . ,md−1 that generates
M . The elements mi/1 ∈ MQ must be zero, so there are elements vi ∈ A \Q with vimi = 0. The product
v =

∏
i vi then lies in annA(M) \Q. It follows that (a) and (b) are equivalent. �

Corollary 19.19. [cor-min-ass]
We have min(M) ⊆ ass(M) ⊆ supp(M), so min(M) (which was originally defined as the set of minimal

elements in supp(M)), is also the set of minimal elements in ass(M).

Proof. We saw in Proposition 19.9 that ass(M) ⊆ supp(M). Now suppose that Q ∈ min(M), so in particular
Q ∈ supp(M). By the previous corollary, there is an associated prime P ∈ ass(M) with P ⊆ Q. Now both P
and Q lie in ass(M), but Q is minimal in supp(M) by hypothesis, so we must have P = Q, so Q ∈ ass(M). �

Proposition 19.20. [prop-primary-collect]
Submodules and direct sums of P -coprimary modules are again P -coprimary.

Proof. Let M and N be P -coprimary modules, and let L be a submodule of M ⊕ N . If a ∈ P then there
are integers m,n ≥ 0 such that amM = 0 and anN = 0; it follows that amax(m,n)L = 0. On the other
hand, if a 6∈ P then a.1M and a.1N are injective, so the map a.1L = (a.1M ⊕ a.1N )|L is also injective. It
follows that L is P -coprimary. The special cases where L = M ⊕N or N = 0 give the two statements in the
Proposition. �

Proposition 19.21. [prop-coprimary-ass]
Suppose that M is nontrivial and P -coprimary. Then

(a) reg(M) = A \ P , and
√

annA(M) = P .
(b) EP (M) = TP (M) = M .
(c) If Q 6≤ P then EQ(M) = TQ(M) = 0.
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(d) If Q < P then TQ(M) = M but EQ(M) = MQ = 0.
(e) If Q 6= P then EQ(M) = 0.
(f) supp(M) = {Q ∈ zar(A) | Q ≥ P}.
(g) min(M) = ass(M) = {P}.

Proof. It is clear from the definitions that reg(M) = A \ P and thus that
√

ann(M) ≤ P . For the converse,

let m1, . . . ,mr be generators for M . If a ∈ P then by assumption there are integers ki ≥ 0 with akimi = 0
for all i. It follows that the number k = max(k1, . . . , kr) satisfies akmi = 0 for all i, so ak ∈ annA(M). This
proves (a).

Claim (b) is just a reminder of Proposition 19.3.
For claim (c), suppose that Q 6≤ P , so we can choose u ∈ Q \ P . If m ∈ TQ(M) then we have ukm = 0

for some k, but u acts injectively on M by assumption, so TQ(M) = 0. It follows that TQ(M)Q = 0 and
EQ(M) = 0 as claimed.

For claim (d), suppose instead that Q < P . For every m ∈M we have P km = 0 for large k, so certainly
Qkm = 0. This proves that TQ(M) = M . Now choose u ∈ P \ Q. For any element m/v ∈ MQ we have
m ∈ M so ukm = 0 for some k, so m/v = (ukm)/(ukv) = 0. This proves that TQ(M)Q = MQ = 0. As
EQ(M) is the image of the natural map TQ(M)→ TQ(M)Q, we see that EQ(M) = 0 as well.

Claim (e) is simply a combination of (c) and (d).
Claim (f) follows from (a) together with Corollary 19.18. It follows in turn that min(M) = {P}, so

Corollary 19.19 gives P ∈ ass(M). Conversely, if Q ∈ ass(M) then there must exist m ∈ M \ 0 with

annA(m) = Q, and as Q is prime we have
√

annA(m) =
√
Q = Q. However, the coprimary condition gives√

annA(m) = P , so we must have Q = P . This completes the proof of (g). �

20. Primary decomposition

In this section we again assume that A is a noetherian ring, and M is a finitely generated A-module.

Definition 20.1. [defn-primdec]
A primary decomposition of M consists of a family of modules M(P ) (for all P ∈ zar(A)) together with

homomorphisms πP : M →M(P ) such that

(a) M(P ) is P -coprimary for all P .
(b) M(P ) = 0 for all but finitely many P .
(c) The homomorphisms πP : M →M(P ) are all surjective.
(d) The combined map π : M →

⊕
P M(P ) is injective.

(e) Whenever M(P ) 6= 0, the combined map M →
⊕

Q6=P M(Q) has nontrivial kernel (which we denote

by M [P ]).

We will show that every finitely generated module has a primary decomposition.

Remark 20.2. Primary decompositions are traditionally defined in terms of the submodules ker(πP ) rather
than the quotient modules M(P ), but that approach obscures the analogy with the theory of modules over
PIDs, so we have avoided it.

Proposition 20.3. [prop-primdec-theta]
Suppose we have a primary decomposition as above, and we put M ′ =

⊕
P M(P ) and M ′′ =

⊕
P M [P ].

Put θP = πP |M [P ] : M [P ]→M(P ). Then

(a) θP is injective for all P .
(b) The evident maps M ′′ →M →M ′ are also injective, and their composite is

⊕
P θP .

(c) The modules M [P ] and M(P ) are both P -coprimary.

Proof. Let σ be the evident map M ′′ →M . The composite⊕
Q

M [Q] = M ′′
σ−→M

π−→M ′ =
⊕
P

M(P )

decomposes into homomorphisms πP |M [Q] : M [Q]→M(P ). By the definition of M [Q], we have πP |M [Q] = 0
unless P = Q. Thus, πσ is the direct sum of the maps θP , and the restriction of π to M [P ] is essentially
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θP . As π is injective, we conclude that θP is injective. It follows that the map πσ =
⊕

P θP is injective,
and thus that σ is injective. As θP : M [P ] → M(P ) is injective, Proposition 19.20 tells us that M [P ] is
P -coprimary. �

Proposition 20.4. In any primary decomposition, we have M(P ) 6= 0 iff P ∈ ass(M).

Proof. We have injective homomorphisms M ′′ → M → M ′, where M ′′ =
⊕

P M [P ] and M ′ =
⊕

P M(P ).
It follows that ass(M ′′) ⊆ ass(M) ⊆ ass(M ′). Using Propositions 19.10 and 19.21 we see that ass(M ′′) =
{P | M [P ] 6= 0} and ass(M ′) = {P | M(P ) 6= 0}. From the definition of a primary decomposition, we have
M [P ] 6= 0 iff M(P ) 6= 0. The claim is now clear. �

Proposition 20.5. [prop-T-exact]

Suppose that the sequence 0 → L
α−→ M

β−→ N is exact. Then the rows in the following diagram are also
exact, except that the third row need not be exact at EPM .

0 // L // M // N

0 // TP (L)

OO

OO

����

// TP (M)

OO

OO

����

// TP (N)

OO

OO

����
0 // EP (L)

��

��

// EP (M)
��

��

// EP (N)
��

��
0 // TP (L)P // TP (M)P // TP (N)P .

Proof. The first row is exact by hypothesis. For the second row, injectivity of L → M clearly implies
injectivity of TP (L)→ TP (M). Now consider an element m ∈ TP (M), say with P km = 0, and suppose that
β(m) = 0 in TP (N). By the exactness of the original sequence, we have m = α(l) for some l ∈ L. This
satisfies α(P kl) = P kα(l) = P km = 0, but α is injective so P kl = 0. This means that l is an element of
TP (L) with φ(l) = m, completing the proof that the second row is exact. Exactness of the last row therefore
follow by Proposition 12.13. By definition, the third row maps injectively to the last row, and it follows
easily that the map EP (L) → EP (M) is injective. This completes the proof (as we are making no claim
about exactness at EP (M)). �

Proposition 20.6. Any primary decomposition of M gives a natural diagram as follows:

M [P ] // //
��

��

EP (M) // //
��

��

M(P )
��

��
M [P ]P '

// TP (M)P // // M(P )P .

Proof. First note that EP (M [Q]) = EP (M(Q)) = 0 for all Q 6= P , by Proposition 19.21. Moreover, both
EP (·) and TP (·)P preserve monomorphisms, by Proposition 20.5. We can thus apply these functors to the
maps ⊕

QM [Q] // // M // //⊕
QM(Q)

to get a diagram as claimed, except that we do not yet know that the map M [P ]P → TP (M)P is surjective.
For this, we consider the sequence

0 −→M [P ] −→M −→
⊕
Q 6=P

M(Q),

which is exact by the definition of M [P ]. Proposition 20.5 tells us that it will remain exact if we apply
TP (·)P . Here TP (M(Q))P = 0 for all Q 6= P , whereas TP (M [P ])P = M [P ]P . We therefore have an exact
sequence

0 −→M [P ]P −→ FPM −→ 0,
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showing that the map M [P ]P → TP (M)P is an isomorphism. �

Although our main interest is in coprimary modules, it turns out to be useful to work temporarily with
modules satisfying a slightly stronger condition which we now introduce.

Definition 20.7. [defn-coirr-submodule]
We say that an A-module M is coirreducible if the intersection of any two nontrivial submodules is

nontrivial. We say that a submodule L ≤ M is irreducible if M/L is coirreducible. Equivalently, L is
irreducible iff whenever U and V are strictly larger submodules of M , the intersection U ∩ V is also strictly
larger than L.

We also say that L is P -primary in M if M/L is P -coprimary.

Remark 20.8. [rem-primary-intersection]
If L0 and L1 are both P -primary, then the evident embedding M/(L0 ∩L1)→M/L0×M/L1 shows that

L0 ∩ L1 is also P -primary.

Proposition 20.9. [prop-coirr-submodule]

Let M be a finitely generated A-module. If M is coirreducible then the ideal P =
√

annA(M) is prime
and M is P -coprimary.

Proof. Consider an element a ∈ A. The submodules annM (ak) ⊆ M form an ascending chain, which must
eventually be constant. Thus, for some n we have annM (an) = annM (an+1). We claim that annM (a)∩anM =
0. To see this, suppose that x ∈ annM (a) ∩ anM , so x = any for some y. Now an+1y = ax = 0, so
y ∈ annM (an+1) = annM (an), so any = 0 or in other words x = 0 as claimed. As M is assumed to be
coirreducible, we must either have annM (a) = 0 or anM = 0. If annM (a) = 0 then a.1M is injective. On the

other hand, if anM = 0 then a.1M is nilpotent and an ∈ annA(M) so a ∈
√

annA(M) = P . It follows that
P is prime and M is P -coprimary. �

Proposition 20.10. [prop-irr-decomp]
Every submodule of M can be written as the intersection of some finite list of irreducible submodules.

Proof. Let C be the set of submodules that can be written as the intersection of some finite list of irreducible
submodules. Clearly every irreducible submodule lies in C, as does M itself (use the empty list). Moreover,
if L,N ∈ C then it is clear that L∩N ∈ C. Now suppose that N is a submodule of M , and that every strictly
larger submodule lies in C. If N is irreducible then it lies in C. Otherwise, we have N = U ∩ V for some
submodules U, V ⊆M that are strictly larger than N , so U and V lie in C, so N = U ∩ V ∈ C. It follows by
noetherian induction that every submodule lies in C, as claimed. �

Theorem 20.11. [thm-primdec]
Every finitely generated module M has a primary decomposition.

Proof. Propositions 20.9 and 20.10 show that there exist lists L1, . . . , Ld of primary submodules with
⋂
i Li =

0. Choose such a list which is as short as possible, and let Pi be the prime ideal such that Li is Pi-primary.
If we had Pi = Pj for some i 6= j, then we could replace Li and Lj by Li ∩ Lj , giving a shorter list of the
required type. This is impossible by assumption, so the ideals Pi must all be different. We define M{P} = Li
if P = Pi for some i, and M{P} = M otherwise. We then put M(P ) = M/M{P}, and note that this is
P -coprimary for all P . We have

⋂
P M{P} =

⋂
i Li = 0, so the natural map M →

⊕
P M(P ) is injective.

Next, observe that M [Pk] =
⋂
i 6=k Li, and this is nontrivial by our minimality assumption. We therefore

have a primary decomposition as claimed. �

21. Artinian rings

Definition 21.1. [defn-artinian]
We say that a ring A is artinian if for every descending chain

A ⊇ J0 ⊇ J1 ⊇ J2 ⊇ · · ·

of ideals, there exists N such that Jn = JN for all n ≥ N .
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More generally, let M be a module over an arbitrary ring A. We say that M is artinian if for every
descending chain

M ⊇M0 ⊇M1 ⊇M2 ⊇ · · ·
of submodules, there exists N such that Mn = MN for all n ≥ N . Thus, an artinian ring is just a ring A
that is artinian as an A-module.

Remark 21.2. [rem-dcc]
A ring A is artinian if and only if every nonempty family of ideals has a minimal element. The proof is

essentially the same as for Proposition 18.8.

Example 21.3. [eg-finite-artinian]
Suppose that A has only finitely many elements. Given a descending chain of ideals Jk, the numbers |Jk|

form a weakly decreasing sequence of positive integers, so there exists N such that |Jn| = |JN | for all n ≥ N .
As Jn ⊆ JN this implies that Jn = JN . We therefore see that A is artinian.

Example 21.4. [eg-length-artinian]
Let M be a module of finite length over a ring A. Given a descending chain of submodules Mk, we again

have a weakly decreasing sequence of nonnegative integers len(Mk), which must eventually be constant, and
it again follows that Mk is independent of k when k is sufficiently large. Thus, M is artinian.

Example 21.5. [eg-dim-artinian]
Let M be a module over a field K. We can then identify M with FreeI(K) for some set I. If I is infinite

we can choose an infinite sequence of distinct elements (in)n∈N, and let Mn be the span of {eik | k ≥ n};
this gives an infinite descending chain of submodules that never stabilises, showing that M is not artinian.
Thus, we see that K-modules are artinian if and only if they have finite dimension.

Remark 21.6. [rem-artinian-constructs]
Let A be an artinian ring. For any ideal I ⊆ A the partially ordered set idl(A/I) can be identified with

{J ∈ idl(A) | I ⊆ J}, and using this we see that A/I is artinian. Similarly, if U ⊆ A is a multiplicative set
then idl(A[U−1]) can be identified with satU (A) ⊆ idl(A), so A[U−1] is artinian.

Note also that if A = B×C then idl(A) ' idl(B)× idl(C), and it follows easily that A is artinian iff both
B and C are artinian.

Theorem 21.7. [thm-artinian]
A ring A is artinian if and only if it is noetherian and all prime ideals are maximal. If so, then A is a

finite product of local rings in which the maximal ideal is finitely generated and nilpotent.

Proof. Combine Lemmas 21.8 to 21.11 below. �

Lemma 21.8. [lem-artinian-a]
Any artinian ring is a finite product of indecomposable artinian rings.

Proof. Let A be artinian, and let E be the set of idempotents. We say that idempotents e0 and e1 are
disjoint if e0e1 = 0, and we say that an idempotent e is primitive if it is nonzero but cannot be expressed as
the sum of two disjoint, nonzero idempotents. Note that we always have a splitting A = Ae×A(1− e), and
the factor Ae is indecomposable iff e is primitive.

Let E0 be the set of primitive idempotents, let E1 be the set of idempotents that can be represented as
a finite disjoint sum of primitive idempotents, and put E2 = E \ E1. It will suffice to show that 1 ∈ E1. In
fact we claim that E1 = E, or equivalently E2 = ∅. To see this, put E2 = {Ae | e ∈ E2}. If E2 6= ∅, then
we can choose e ∈ E2 such that Ae is minimal in E2 (by the artinian condition). As e lies in E2 it cannot
be zero or primitive, so e = e0 + e1 for some disjoint nonzero idempotents e0, e1. As e 6∈ E1, the elements
e0 and e1 cannot both lie in E1. We may assume without loss of generality that e0 6∈ E1, so Ae0 ∈ E2, but
e 6∈ Ae0 so this contradicts the assumed minimality of Ae. Thus E2 must be empty after all. �

Lemma 21.9. [lem-artinian-b]
Let A be an indecomposable artinian ring, and put M = Nil(A). Then M is finitely generated and satisfies

Mn = 0 for some n, and every element of A\M is invertible, so A is a local ring. Moreover, A is noetherian.
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Proof. For any element a ∈ A we see that the ideals Aan form a descending chain, which must eventually
stabilise. It follows that for some n we have an ∈ Aan+1, so for some x ∈ A we have an = an+1x. It follows
inductively that an = an+kxk for all k ≥ 0, and in particular an = a2nxn. It follows from this that the
element e = anxn is idempotent, with an = ane. As A is indecomposable we have e = 0 or e = 1. If e = 0
then the equation an = ane shows that a is nilpotent. If e = 1 then the equation anxn = e = 1 shows that
a is invertible. We now see that every element of A \M is invertible, so A is local, with M as the unique
maximal ideal. The ideals Mk form a descending chain, so for some n ∈ N we must have Mn = Mn+1. We
claim that in fact Mn = 0. If not, put J = {J ∈ idl(A) | JMn 6= 0}, and note that this is nonempty because
it contains A. By the artinian condition, we can choose a minimal element J ∈ J . As JMn 6= 0 we can
choose a ∈ J with aMn 6= 0. As Mn+1 = Mn we see that (aM)Mn 6= 0 so aM ∈ J and also aM ⊆ J . As J
is assumed to be minimal, we must have aM = J , so in particular a ∈ aM , so a(1− b) = 0 for some b ∈M .
However, every element of M is nilpotent, so 1− b is invertible, so a = 0, which contradicts the assumption
that aMn 6= 0. Thus, we must have Mn = 0 after all.

Next, the quotient K = A/M is a field, and M/M2 can be regarded as a vector space over K. Any
descending chain of vector subspaces gives a descending chain of ideals in the artinian ring A/M2, and so
must eventually stabilise. It follows that M/M2 has finite dimension over K, so we can choose a finite
subset F ⊆ M such that the image in M/M2 is a basis. If we let I be the ideal in A generated by F ,
we find that M = I + M2. This in turn gives M2 = IM + M3 ⊆ I + M3, and by combining this with
M = I + M2 we get M = I + M3. An evident inductive extension gives M = I + Mk for all k, and by
taking k = n we get M = I. Thus, M is finitely generated. It follows that Mk is finitely generated for
all k, so Mk/Mk+1 has finite dimension over K, and thus has finite length as an A-module. Using the
short exact sequences Mk/Mk+1 → A/Mk+1 → A/Mk, we deduce by induction on k that A/Mk has finite
length. Taking k = n, we see that A itself has finite length. It follows that for all ideals J ⊆ A we have
len(J) ≤ len(A) <∞. Thus, if we have an ascending chain of ideals (Jk)k∈N, then the sequence (len(Jk))k∈N
is nondecreasing and bounded above, so it must eventually be constant. Thus, for large k we have Jk ⊆ Jk+1

with len(Jk+1/Jk) = len(Jk+1)− len(Jk) = 0, so Jk+1 = Jk. It follows that A is noetherian. �

Lemma 21.10. [lem-artinian-c]
Let A be a noetherian local ring in which every element of the maximal ideal is nilpotent. Then A is

artinian.

Proof. Let M be the maximal ideal. As A is noetherian, we can choose a finite list of elements a0, . . . , ad−1

that generates M . By assumption, each element ai is nilpotent, so ani+1
i = 0 for some integer ni. We put

n =
∑
i ni.

Next, for any sequence α = (α0, . . . , αd−1) ∈ Nd we put aα =
∏
i a
αi
i and |α| =

∑
i αi. We then find that

{aα | |α| = m} is a generating set for Mm. We also find that aα can only be nonzero if αi ≤ ni for all i,
which implies that |α| ≤ n. It follows from this that Mn+1 = 0.

Next, put K = A/M , which is a field. The quotient Mk/Mk+1 is a finitely generated K-module and
so has finite length as an A-module. It follows by induction using the short exact sequences Mk/Mk+1 →
A/Mk+1 → A/Mk that A/Mk has finite length for all k. As Mn+1 = 0 it follows that A itself has finite
length as an A-module, and so is artinian by Example 21.4. �

Lemma 21.11. [lem-artinian-d]
Suppose that A is noetherian and that all prime ideals in A are maximal. Then A is a finite product of

noetherian local rings in which the maximal ideal is nilpotent.

Proof. As A is noetherian, there is a decomposition Q1 ∩ · · · ∩Qn = 0 say, where each Qi is a primary ideal
and the corresponding prime ideals Pi =

√
Qi are distinct. The general theory of primary decompositions

also tells us that every minimal prime ideal of A occurs in the list P1, . . . , Pn. However, all primes in A are
maximal, so there are no inclusions between distinct primes, which means that all primes are minimal, so
P1, . . . , Pn are the only prime ideals. If i 6= j then Pi + Pj is strictly larger than the maximal ideal Pi, so it

must be all of A. We can thus choose a ∈ Pi and b ∈ Pj with a+ b = 1. As Pi =
√
Qi and Pj =

√
Qj we can

choose n and m such that an+1 ∈ Qi and bm+1 ∈ Qj . Now (a+ b)n+m+1 = 1, and all terms in the expansion
of the left hand side lie in Qj or Qj , so Qi +Qj = A. As

⋂
iQi = 0, the Chinese Remainder Theorem now

75



gives A '
∏
iA/Qi. As

√
Qi = Pi and Pi is maximal we see that A/Qi is local, with maximal ideal Pi/Qi,

which is nilpotent. �

22. Finite extensions and integral extensions

Throughout this section, A will denote a noetherian ring.
To do:

• Finite etale extensions.
• Balmer approach to degree.

Definition 22.1. Let B be an A-algebra, and let b be an element of B. There is an evaluation homomorphism
εb : A[t]→ B given by εb(f) = f(b). We write A[b] for the image of this homomorphism, which is easily seen
to be the smallest A-subalgebra of B containing b.

Proposition 22.2. [prop-integral-tfae]
For A, B and b as above, the following are equivalent:

(a) There is a monic polynomial f(t) over A with f(b) = 0.
(b) The subalgebra A[b] ≤ B is finitely generated as an A-module.
(c) There is a subalgebra C ≤ B such that b ∈ C and C is finitely generated as an A-module.
(d) There is a finitely generated A[b]-module M that is finitely generated as an A-module and satisfies

annA[b](M) = 0.

Proof.

(a)⇒(b): Suppose that bn +
∑n
i=0 aib

i = 0. Let M be the submodule of B generated by {bi | 0 ≤ i < n}. The
relation shows that bM ≤M , and it follows easily that M = A[b].

(b)⇒(c): Take C = A[b].
(c)⇒(d): Take M = C.
(d)⇒(a): Suppose that M is as in (d). Choose generators m1, . . . ,mn for M as an A-module. We then have

bmi =
∑
j aijmj for some coefficients aij ∈ A. This can be written as an equation bm = Am in

Mn for some matrix A ∈Mn(R). Let f(t) be the characteristic polynomial of A, which is monic of
degree n over R. The equation xm = Am gives (bI − A)m = 0, and we can multiply on the left by
adj(bI − A) to get f(b)m = 0 in Mn, so f(b)mi = 0 for all i, so f(b) ∈ annA[b](M) = 0, so f(b) = 0
as required.

�

Definition 22.3. [defn-integral]

We say that b ∈ B is integral over A if the above conditions are satisfied. We write Ã for the set of
integral elements, and call this the integral closure of A in B.

Remark 22.4. [rem-gaussian-integral]

If B itself is finitely generated as an A-module, then it is clear that all elements are integral and so Ã = B.
For example, this applies when A = Z and B = Z[i] = {a+ bi | a, b ∈ Z}. Explicitly, any element z = a+ ib
satisfies f(z) = 0, where f(t) = t2 − 2at+ a2 + b2.

Lemma 22.5. [lem-integral-tensor]
Let B be an A-algebra, let C and D be A-subalgebras of B that are finitely generated as A-modules, and

let CD denote the smallest A-subalgebra containing C and D. Then CD is also finitely generated as an
A-module. In particular, if A[c] and A[d] are finitely generated then so is A[c, d].

Proof. Let {ci | i < n} be a generating set for C, and let {dj | j < m} be a generating set for D. Put

E =
∑
i,j

Acidj =
∑
i

Dci =
∑
j

Cdj .

This is both an C-submodule and a D-submodule of CD and it contains 1 so it is equal to CD. It is clearly
finitely generated. �
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Lemma 22.6. [lem-integral-chain]
Suppose we have ring maps A→ B → C such that B is finitely generated as an A-module and C is finitely

generated as a B-module. Then C is also finitely generated as an A-module.

Proof. Choose generating sets so thatB =
∑
i<nAbi and C =

∑
j<mBcj . We then have C =

∑
i<n

∑
j<mAbicj .

�

Proposition 22.7. [prop-double-integral]

Ã is an A-subalgebra of B, and every element that is integral over Ã is also integral over A.

Proof. It is clear that Ã contains the image of A. If c, d ∈ Ã then A[c] and A[d] are finitely generated
A-modules, so the same is true of A[c, d], so any element of A[c, d] is integral. In particular c± d and cd are

integral. It follows that Ã is a subalgebra, as claimed.

Now suppose that b ∈ B is integral over Ã. We then have a monic polynomial h(t) = tp +
∑
k<p ckt

k such

that ck ∈ Ã for all k, and h(b) = 0. Put C = A[c0, . . . , cn−1], and note that this is finitely generated as an
A-module. Now C[b] is finitely generated as a C-module, and therefore also as an A-module; so b is integral
over A. �

Example 22.8. [eg-cyclotomic]
Let U denote the group of roots of unity in C, so

U = {z ∈ C | zn = 1 for some n > 0} = {e2πim/n | m,n ∈ Z, n > 0}.
Let A denote the set of Z-linear combinations of elements of U . This is easily seen to be a subring of C,
called the ring of cyclotomic integers. Each element of U is a root of some monic polynomial tn − 1, so it is
integral over Z. It follows that A is an integral extension of Z, but it is clearly not finitely generated as a
Z-module.

Definition 22.9. Suppose that the map A→ B is the inclusion of a subring.

We say that B is an integral extension of A if every element of B is integral, so Ã = B. On the other

hand, we say that A is integrally closed in B if Ã = A. If A is an integral domain, we say that A is integrally
closed if it is integrally closed in its field of fractions.

Example 22.10. [eg-invariant-integral]
Let B be an integral domain, and let G be a finite group of automorphisms of B. Put

A = BG = {a ∈ B | γ(a) = a for all γ ∈ G},
and note that this is a subring of B. We claim that B is integral over A. To see this, consider an element
b ∈ B, and put φb(t) =

∏
γ∈G(t− γ(b)) ∈ B[t]. This is clearly a monic polynomial, of degree |G|. Now note

that each automorphism γ ∈ G gives rise to an automorphism of B[t] by the rule γ(
∑
i ait

i) =
∑
i γ(ai)t

i,
and we have B[t]G = A[t]. It is easy to see that γ(φb(t)) = φb(t) for all γ, so φb(t) ∈ A[t]. Moreover, φb(t)
has a factor t− b (corresponding to γ = 1), so φb(b) = 0. This proves that b is integral over A, as claimed.

Proposition 22.11. If A is a unique factorisation domain, then it is integrally closed.

Proof. Let K be the field of fractions. If x ∈ K is integral over A then we have a relation xn =
∑n−1
i=0 aix

i

with ai ∈ A. For each prime p this gives vp(x
n) ≥ min(vp(aix

i) | i < n), so there exists i < n with
vp(ai) + ivp(x) ≤ nvp(x). As ai ∈ A we have vp(ai) ≥ 0, and it follows that vp(x) ≥ 0. As this holds for all
p we must have x ∈ A. �

Proposition 22.12. If U is a multiplicative subset of A, then the integral closure of A[U−1] in B[U−1] is

Ã[U−1].

Proof. First suppose that x ∈ B is integral over A, so there is an A-subalgebra C ≤ B that is a finitely gen-
erated A-module and contains x. Then C[U−1] is an A[U−1]-subalgebra of B[U−1] that is finitely generated
over A[U−1] and contains a/u for all u ∈ U ; so all such elements a/u are integral.

Conversely, suppose we have an element y ∈ B[U−1] that is integral over A[U−1], so there is a relation

yn+
∑n−1
i=0 biy

i = 0 with bi ∈ A[U−1] after multiplying together all the denominators that appear, we find that
there are elements u ∈ U and x ∈ B and a0, . . . , an−1 ∈ A such that y = x/u and bi = ai/u. After multiplying
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the given relation by un we find that the element r = xn +
∑
i biu

n−ixi ∈ A becomes zero in A[U−1]. This
means that there is an element v ∈ U with vr = 0 in A, which implies that (vx)n +

∑
i bi(uv)n−i(vx)i = 0

in A. This shows that vx ∈ Ã, so y = (vx)/(uv) ∈ Ã[U−1]. �

Corollary 22.13.

(a) If B is an integral extension of A, then B[U−1] is an integral extension of A[U−1].
(b) If A is integrally closed in B, then A[U−1] is integrally closed in B[U−1].
(c) Suppose that A is a domain with field of fractions K and A is integrally closed in K. Then A[U−1]

is again a domain with field of fractions K that is integrally closed in K.

Proof. Clear from the Proposition. �

Proposition 22.14. Suppose that B is an integral domain and A is a subring of B, and that AM is integrally
closed in BM for all maximal ideals M . Then A is integrally closed in B.

Proof. Suppose that b ∈ B and b is integral over A. Put I = {a ∈ A | ab ∈ A}; we must show that I = A.
For any maximal ideal M we see that b is an element of BM that is integral over AM , so b ∈ AM , so there
is an element a ∈ A \M with ab ∈ A, so I 6≤M . As I is not contained in any maximal ideal, we must have
I = A as required. �

Proposition 22.15. [prop-int-field]
Suppose that B is an integral domain and that A is a subring such that B is integral over A. Then A is

a field if and only if B is a field.

Proof. First suppose that A is a field. For any element x ∈ B \ {0} choose a monic polynomial f(t) =∑n
i=0 ait

i ∈ A[t] of minimal degree such that f(x) = 0. Put g(t) = −
∑n
i=1 ait

i−1, so a0 = g(x)x. By
minimality of f we have g(x) 6= 0, and by assumption we have x 6= 0, and B is a domain so a0 6= 0.
Moreover, a0 ∈ A and A is a field so we have an inverse a−1

0 ∈ A, and we find that a−1
0 g(x) is an inverse for

x in B. Thus B is a field. �

Corollary 22.16. [cor-int-max]
Suppose that φ : A → B makes B into an integral A-algebra, and that Q is a prime ideal in B. Then Q

is maximal in B if and only if the ideal φ∗(Q) = {a ∈ A | φ(a) ∈ Q} is maximal in A.

Proof. It is easy to see that φ induces an injective homomorphism from A/φ∗(Q) to B/Q, which makes B/Q
into an integral extansion of A/φ∗(Q). The proposition tells us that B/Q is a field if and only if A/φ∗(Q)
is a field. �

Proposition 22.17. [prop-zar-fibre]
Let φ : A→ B be an integral extansion of integral domains, and consider the resulting map φ∗ : zar(B)→

zar(A). Given P ∈ zar(B) put

K(P ) = field of fractions of A/P

F (P ) = {Q ∈ zar(B) | φ∗(Q) = P}.
Then

(a) F (P ) is naturally identified with max(AP ⊗A B) and with zar(K(P )⊗A B).
(b) F (P ) is always nonempty, so φ∗ is surjective.
(c) If Q0, Q1 ∈ F (P ) with Q0 ⊆ Q1 then Q0 = Q1.
(d) If B is a finitely generated A-module then F (P ) is finite.

Proof. It will be harmless to assume that φ is just the inclusion of a subring, so φ∗(Q) = Q ∩ A for all
Q. Proposition 8.16 allows us to identify K(P ) with AP /PP . We have a commutative diagram of ring
homomorphisms as follows:

A
��

φ

��

// // AP
��

φP

��

// // K(P )

��
B // // BP = AP ⊗A B // // BP /PBP = K(P )⊗A B

78



Using Propositions 5.45 and 8.18, we get natural bijections

zar(AP ) = {P ′ ∈ zar(A) | P ′ ≤ P}
zar(K(P )) = zar(AP /PP ) = {P}

zar(BP ) = {Q ∈ zar(B) | Q ∩ (A \ P ) = ∅} = {Q ∈ zar(B) | Q ∩A ≤ P}
zar(BP /BPP ) = {Q ∈ zar(B) | Q ∩A ≤ P and Q ≥ BP}

= {Q ∈ zar(B) | Q ∩A = P} = F (P ).

This proves claim (a).
Next, note that PP is the unique maximal ideal in the local ring AP . We can also identify F (P ) with

{Q′ ∈ zar(BP ) | Q′ ∩ AP = PP }, or in other words with {Q′ ∈ zar(BP ) | Q′ ∩ AP is maximal }. However,
Corollary 22.16 tells us that Q′∩AP is maximal if and only if Q′ is maximal, so F (P ) bijects with max(BP ).
The map A → B is injective, so AP → BP is injective, so BP 6= 0, so max(BP ) 6= ∅, so F (P ) 6= ∅, which
proves claim (b). Moreover, if M0,M1 ∈ max(BP ) with M0 ≤ M1 then maximality clearly implies that
M0 = M1; this proves claim (c). Finally, if B is finitely generated as an A-module then K(P ) ⊗A B is
finite-dimensional over the field K(P ), so it is an artinian ring, so the set F (P ) = zar(K(P )⊗A B) is finite
by Theorem 21.7. �

Example 22.18. Consider the case where A = Z and B = Z[i]. Standard arguments from number theory,
which we will not explain here, give the following.

(a) F (0) = {0}
(b) F (A.2) = B.(1 + i) = B.(1− i)
(c) If p is a prime congruent to 1 mod 4 then there are integers a, b with p = a2 + b2, and F (A.p) =
{B.(a+ ib), B.(a− ib)}.

(d) If p is a prime congruent to 3 mod 4 then F (A.p) = {B.p}.

In the context of Example 22.10, we can be more precise about the relationship between zar(A) and
zar(B).

Proposition 22.19. Let B be an integral domain with a finite group G of automorphisms, and put A =
{a ∈ B | γ(a) = a for all γ ∈ G}. Then the inclusion φ : A→ B induces a bijection zar(B)/G→ zar(A).

Proof. We saw in Example 22.10 that φ is an integral extension, so φ∗ : zar(B) → zar(A) is surjective by
Proposition 22.17.

For γ ∈ G we have γφ = φ, so φ∗γ∗ = φ∗ : zar(B) → zar(A). It follows that φ∗ induces a map
zar(B)/G→ zar(A), which must again be surjective.

Now suppose we have two prime ideals Q,Q′ ∈ zar(B) with φ∗(Q) = φ∗(Q′) = P say. Put I =⋂
γ∈G γ(Q) ≤ B. Consider an element b ∈ I, and put φb(t) =

∏
γ∈G(t − γ(b)) as before. All the ele-

ments γ(b) lie in Q, so φb(t) − tn ∈ Q[t]. On the other hand, we know that φb(t) ∈ B[t]G = A[t], and
Q ∩ A = P , so φb(t) − tn ∈ P [t] ⊆ Q′[t]. We can now substitute t = b and recall that φb(b) = 0 to get
bn ∈ Q′. As Q′ is prime, it follows that b ∈ Q′. We now conclude that the ideal I =

⋂
γ γ
∗(Q) is contained

in Q′. Using Corollary 5.35, we deduce that one of the ideals γ∗(Q) must be contained in Q′. Now both Q
and γ∗(Q′) lie in F (P ), so part (c) of Proposition 22.17 tells us that γ∗(Q′) = Q. It follows that the map
zar(B)/G→ zar(A) is bijective as claimed. �

The significance of the following result will become clearer when we define the Krull dimension of com-
mutative rings

Proposition 22.20. [prop-going-up]
Let φ : A→ B be an integral extension. Suppose we have a chain of prime ideals P0 < · · · < Pn in A, and

another chain of prime ideals Q0 < · · · < Qm in B, where m ≤ n, and Qi ∩A = Pi for 0 ≤ i ≤ m. Then we
can choose further prime ideals Qm+1, . . . , Qn in B such that Q0 < · · · < Qn, and Qi ∩A = Pi for all i.

Proof. First consider the special case where n = 1 and m = 0. As Q0∩A = P0, we have an integral extension
A/P0 → B/Q0 of integral domains. We can apply Proposition 22.17 to this extension; we learn that there
is a prime ideal Q1 ∈ zar(B/Q0) with Q1 ∩A/P0 = P1/P0. This must have the form Q1 = Q1/Q0 for some
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Q1 ∈ zar(B) with Q1 ∩ A = P1. This completes the proof of the special case, and we can use that as the
induction step in an an obvious inductive proof of the general case. �

23. Noether normalisation and the Nullstellensatz

Fix a field K, and write Pn for the polynomial ring K[x0, . . . , xn−1].

Theorem 23.1. [thm-normalisation]
Let A be a nontrivial finitely generated algebra over K. Then there is a subalgebra P ⊆ A such that P is

isomorphic to Pd for some d, and A is finitely generated as a P -module.

We pause to explain the geometric meaning of this result. Suppose that K = C and A = Pm/I(X)
for some algebraic subset X ⊆ Cm. The theorem gives an inclusion Pd → A, corresponding to a map
f : X → Cd. The fact that A is integral over Pd means that f is surjective with finite fibres, which indicates
that X is d-dimensional over C.

The proof depends on the following result.

Definition 23.2. [defn-ess-monic]

We say that a polynomial f ∈ A[t] is essentially monic in t if it has the form f =
∑d
i=0 ait

i for some d,
where ad is invertible.

Lemma 23.3. For any nonzero element f ∈ Pn there is an automorphism α of Pn such that α(f) is
essentially monic as a polynomial in x0.

Proof. We can write f as a K-linear combination of monomials
∏n−1
t=0 x

it
t . Let b be an integer that is strictly

larger than any of the exponents it that occur in this representation.

Now define α : Pn → Pn by α(x0) = x0, and α(xi) = xi+xb
i

0 for 0 < i < n. We also define β : Pn → Pn by

β(x0) = x0, and β(xi) = xi − xb
i

0 for 0 < i < n; this is an inverse for α, proving that α is an automorphism.
Next, for 0 ≤ k < bn there is a unique sequence (i0, . . . , in−1) such that 0 ≤ it < b for all t, and∑
t itb

t = k (this is essentially the base b representation of k). We put mk =
∏
t x

it
t , so the list m0, . . . ,mpn−1

contains all monomials that have degree less than b in each of the variables x0, . . . , xn−1. We therefore have

f =
∑bn−1
k=0 ckmk for some sequence of coefficients ck ∈ K that are not all zero. It is easy to see that

α(mk) = xk0 + terms of degree less than k in x0 .

Thus, if we let m be the largest integer with cm 6= 0, we have

α(f) = cmx
m
0 + terms of degree less than m in x0 ,

so α(f) is essentially monic in x0. �

Proof of Theorem 23.1. Suppose that A can be generated as a K-algebra by n elements, so we have a
surjective homomorphism φ : Pn → A say. We may assume inductively that theorem holds for any K-
algebra that can be generated by n − 1 elements. If φ is injective then it is an isomorphism so we can just
take P = A. Suppose instead that φ is not injective, so we can choose a nonzero polynomial f ∈ Pn with
φ(f) = 0. After replacing f by α(f) and φ by φ ◦ α−1 for some automorphism φ, we may assume that f is
essentially monic in x0, of degree m say. Now put R = K[x1, . . . , xn−1] and Q = Pn/f , so {xi0 | 0 ≤ i < m}
is a finite basis for Q as an R-module. As φ is surjective with φ(f), it induces a surjective homomorphism
φ : Q → A. It follows that A is finitely generated as a module over the subring B = φ(R). As R ' Pn−1,
our induction hypothesis gives a subalgebra P ⊆ B that is isomorphic to Pd for some d, such that B is
finitely generated as a P -module. It follows that A is also finitely generated as a P -module, which proves
the theorem. �

We next want to prove that the integer d occuring in Theorem 23.1 is independent of the choice of P . For
this it is convenient to introduce the following notation:

Definition 23.4. For any monomial m =
∏d−1
t=0 x

it
t , the total degree is |m| =

∑
t it. We write BrPd for the

set of all monomials of total degree at most r, and FrPd for the K-linear span of BrPd.
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Lemma 23.5. Suppose that A is a finitely generated module over Pd, and that φ : Pm → A is a homomor-
phism of K-algebras. Then there is a polynomial f(t) of degree d such that the leading coefficient is positive,
and dimK(φ(FrPm)) ≤ f(r) for all r.

Proof. Choose a finite set X that contains 1 and generates A as a module over Pd. Let FrA denote the
K-linear span of FrPd.X, so A =

⋃
r FrA. Choose an integer p large enough that X.X ⊆ FpA, and choose

q such that φ(xi) ∈ FqA for all i. Note that

FqA.Fn(p+q)A = spanK(BqPd.X.Bnp+nqPd.X) = spanK(Bnp+(n+1)qPd.X.X)

⊆ spanK(B(n+1)(p+q)Pd.X) = F(n+1)(p+q)A.

Using this, we can prove by induction that φ(FrPm) ≤ F(p+q)rA. It is standard that |BrPd| =
(
r + d
d

)
,

and it follows that

dim(φ(FrPm)) ≤
(

(p+ q)r + d
d

)
|X|,

which is polynomial of degree d in r. �

Proposition 23.6. [prop-noether-dim]
Let A be a K-algebra, and suppose that A has subalgebras P ' Pd and P ′ ' Pd′ such that A is finitely

generated as a module over each of these subalgebras. Then d = d′.

Proof. Let φ : P → A and φ′ : P ′ → A be the inclusions. The Lemma tells us that dim(φ′(FrPd′)) ≤
f(r) for some polynomial f of degree d whose leading coefficient is positive. However, φ′ is injective, so

dim(φ′(FrPd′)) = dim(FrPd′) =

(
d′ + r
d′

)
, which is polynomial of degree d′, again with positive leading

coefficient. This is only consistent if d′ ≤ d. By exchanging the roles of P and P ′, we deduce that d = d′. �

Definition 23.7. [defn-noether-dim]
The number d occuring in Theorem 23.1 will be called the noether dimension of A. Proposition 23.6 tells

us that this is well defined.

Proposition 23.8. [prop-nsatz-a]
Let K be a field, and let L be a finitely generated K-algebra that is also a field. Then L is finitely generated

as a K-module. In particular, if K is algebraically closed, then the map K → L is an isomorphism.

Proof. By Theorem 23.1, we can choose an integer d ≥ 0 and a subalgebra P ≤ L such that P ' Pd and L
is a finitely generated P -module. This means that L is integral over P , and L is a field, so P is a field by
Proposition 22.15. This can only happen if d = 0, so P = K and L is a finitely generated K-module. �

Corollary 23.9. [cor-nsatz-b]
Let K be a field, let A be a finitely generated K-algebra, and let M be a maximal ideal in A. Then A/M

is finite-dimensional over K. In particular, if K is algebraically closed then the natural map K → A/M is
an isomorphism.

Proof. Just apply the Proposition to the field L = A/M . �

Proposition 23.10. Suppose that A is a finitely generated algebra over a field K. Then Rad(A) = Nil(A).

Proof. By Proposition 5.19, we always have Nil(A) ⊆ Rad(A), for any commutative ring A. Conversely,
suppose that a ∈ A but a 6∈ Nil(A). Put A′ = A[a−1] ' A[b]/(ab − 1), and note that this is nontrivial,
and finitely generated as a K-algebra. We can therefore choose a maximal ideal M ′ ∈ max(A′), and we
find that A′/M ′ is finite-dimensional over K. Now put M = M ′ ∩ A, so we have natural injective maps
K → A/M → A′/M ′. This implies that A/M is an integral domain that is finite-dimensional over K, so it
is a field, so M is maximal. It is clear that a 6∈M , so a 6∈ Rad(A) by Proposition 5.50. �
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