The Mandelbrot Set

$\begin{aligned} & \text { and we say that } z \text { is attractive if }|\lambda(z)|<1 . \text { We put } \\ & M_{n}^{n}=\left\{c \in C \mid p_{c} \text { has an attractive periodic point of period } n\right\}\end{aligned}$
It can be shown that M^{\prime} is open and contained in M. It s an important conjiecture that M^{\prime} is the largest open set contained
in M, but this has not yet been proved.

Some connecied components of M^{\prime} are shown in the picture below.

The map $\mu: M_{i}^{\prime} \rightarrow D i$ sist $\mu(\mu)$

$f_{k}(z)=-\frac{T}{4}-\frac{20}{9}\left(\sinh \left(\frac{2 \pi \pi_{i}}{3}+\frac{1}{3} \operatorname{arcsinh}\left(\frac{88-27 i}{80} \frac{1}{80}\right)\right)-\frac{1}{4 \sqrt{5}}\right)^{2}$

For any $\in \in M$, we can conster the flied dula sest

