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1. Introduction

To do:

• Appendix on complex analysis.
• Puppe sequences
• Quasifibrations
• ENRs
• Exercise on operator norms?
• Exercise on continuity of the spectral radius?
• Functional calculus as an application of Stone-Weierstrass?
• Extended example: the complement of the Mandelbrot set is connected.

2. Basic Concepts

Definition 2.1. [defn-topology]
A topology on a set X is a set τ of subsets of X (called τ -open sets, or just open sets) such that:

T0: The empty set and the whole set X are both open.
T1: If we have a family (Ui)i∈I of open sets, then the union U =

⋃
i∈I Ui is also open.

T2: If we have two open sets U0 and U1, then U0 ∩ U1 is also open.

A topological space is a set X equipped with a specified topology.

Example 2.2. [eg-R-topology]
Consider the set X = R. We say that a subset U ⊆ X is open if for all x ∈ U there exists ε > 0 such

that (x− ε, x+ ε) ⊆ U , and we let τ be the family of all subsets satisfying this condition. For example, the
set (a, b) is open for any a < b, because if x ∈ (a, b) then we can put ε = min(x− a, b− x) > 0 and we find
that (x− ε, x+ ε) ⊆ (a, b). However, the set [a, b] is not open, because the defining condition is violated when
x = a or x = b. The empty set is open (because there is nothing to check) and R itself is open (because we
can always take ε = 1). Now suppose we have a family of open sets Ui, and we put U =

⋃
i Ui. Suppose that

x ∈ U , so x ∈ Ui for some i. As Ui is open we can find ε > 0 with (x− ε, x+ ε) ⊆ Ui ⊆ U . It follows that U is
open. Next, suppose we have open sets U0 and U1 and a point x ∈ U0 ∩U1. As x ∈ U0 and U0 is open, there
exists ε0 > 0 such that (x− ε0, x+ ε0) ⊆ U0. Similarly, there exists ε1 > 0 such that (x− ε1, x+ ε1) ⊆ U1. It
follows that if we put ε = min(ε0, ε1) then (x− ε, x+ ε) ⊆ U0∩U1. This means that U0∩U1 is again open, so
all the axioms are satisfied, and the collection τ is a topology on R. We call it the standard topology on R.

Example 2.3. [eg-Rn-topology]

Let X be any subset of Rn (possibly Rn itself). For any x ∈ Rn we write ‖x‖ =
(∑

i x
2
i

)1/2
, and

OBε(x) = {y ∈ Rn : ‖y − x‖ < ε}
Bε(x) = {y ∈ Rn : ‖y − x‖ ≤ ε}.

We say that a subset U ⊆ X is open if for all x ∈ U there exists ε > 0 such that OBε(x) ∩ X ⊆ U . This
defines a topology on X, which we again call the standard topology. The proof that it is a topology is the
same as for X = R, but with the set OBε(x) ∩X replacing the interval (x− ε, x+ ε). Note that Cn can be
identified with R2n, so this procedure gives a topology on any subset of Cn as well.

Example 2.4. [eg-Sn]
One example that we will use repeatedly is the n-sphere:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑
i

x2
i = 1}.

This is a subset of Rn, so it has a topology as described in Example 2.3. We will identify S1 with {z ∈ C :
|z| = 1} by the correspondence (x0, x1) 7→ x0 + ix1.

Example 2.5. [eg-mandelbrot]
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We now briefly introduce a space M ⊂ C that we will later revisit several times as an example of various
different phenomena in topology. It is called the Mandelbrot set. For any c ∈ C, we can define a function
qc : C→ C by qc(z) = z2 + c. Using this we define a sequence of values

f0(c) = 0

f1(c) = qc(f0(c)) = qc(0) = c

f2(c) = qc(f1(c)) = qc(c) = c2 + c

f3(c) = qc(f2(c)) = c4 + 2c3 + c2 + c

f4(c) = qc(f3(c)) = c8 + 4c7 + 6c6 + 6c+5c4 + 2c3 + c2 + c.

and so on. The explicit formulae rapidly become unmanageable, but we will not need them. We remark,
however, that fn(c) is a polynomial of degree 2n−1 in c. We put

M = {c ∈ C : |fn(c)| ≤ 2 for all n}.

This is a subset of C ' R2 so it has a topology as described in Example 2.3. The structure of M is extremely
intricate. The black region in the picture below is an initial approximation, but much finer structure is
revealed if you blow up a small region on the boundary of the set.

Example 2.6. [eg-binary-seq]
A binary sequence is a sequence x = (x0, x1, . . . ) with xi ∈ {0, 1} for all i. Let X be the set of all binary

sequences. For x ∈ X and n ∈ N put

Cn(x) = {y : yi = xi for all i < n}.

Say that U ⊆ X is open if for each x ∈ U there exists n ∈ N such that Cn(x) ⊆ U . For example, consider
the sets

U = {x : x0 = x2 = x4 = x6 = 0}
V = {x : x2i = 0 for all i}
W = {x : xi = 1 for at least five indices i}.

If x ∈ U then C7(x) ⊆ U , so U is open. However, V is not open. To see this, let em be the sequence given
by (em)m = 1 and (em)i = 0 for i 6= m. The zero sequence is in V , but for any n we have e2n ∈ Cn(0)\V , so
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Cn(0) 6⊆ V . On the other hand, if x ∈ W then we can find i1 < i2 < · · · < i5 such that xi1 = · · · = xi5 = 1,
and then Ci5+1(x) ⊆W ; so W is open.

We next claim that the above definition gives a topology on X. Indeed, the empty set is open (because
there is nothing to check) and the whole space is open (because we can take n = 0). Now suppose we have a
family of open sets Ui, and we put U =

⋃
i Ui. Suppose that x ∈ U , so x ∈ Ui for some i. As Ui is open we

can find n with Cn(x) ⊆ Ui ⊆ U . It follows that U is open. Next, suppose we have open sets U0 and U1 and
a point x ∈ U0∩U1. As x ∈ U0 and U0 is open, there exists n0 such that Cn0(x) ⊆ U0. Similarly, there exists
n1 such that Cn1(x) ⊆ U1. It follows that if we put n = max(n0, n1) then Cn(x) = Cn0(x)∩Cn1(x) ⊆ U0∩U1.
This means that U0 ∩ U1 is again open, so all the axioms are satisfied.

Example 2.7. [eg-sierpinski]
Take X = {0, 1}. We declare that the sets ∅, {1} and X are open, but that {0} is not. This gives a

topology on X called the Sierpinski topology ; the set X equipped with this topology is called the Sierpinski
space.

Remark 2.8. [rem-finite-topologies]
There is a close link between the theory of topologies on finite sets and the algebraic theory of partially

ordered sets, and this has some applications in theoretical computer science. However, we will not emphasise
such examples in these notes.

Maybe we should have a section on frames and locales. If so, edit this remark.

Example 2.9. [eg-discrete]
Let X be any set. We can define a topology on X by declaring that all subsets are open. This is called

the discrete topology. We can define a different topology by declaring that the only open sets are ∅ and X
itself. This is called the indiscrete topology.

Remark 2.10. [rem-de-morgan]
Arguments in topology very often involve manipulations with intersections and unions of infinite families

of subsets. For these it is important to recall the following identities, known as De Morgan’s laws:

(a) If A0 and A1 are subsets of X, then (A0 ∪A1)c = Ac0 ∩Ac1.

(b) More generally, if we have any family of subsets Ai ⊆ X (for i ∈ I, say) then
(⋃

i∈I Ai
)c

=
⋂
i∈I A

c
i .

(c) If A0 and A1 are subsets of X, then (A0 ∩A1)c = Ac0 ∪Ac1.

(d) More generally, if we have any family of subsets Ai ⊆ X (for i ∈ I, say) then
(⋂

i∈I Ai
)c

=
⋃
i∈I A

c
i .

All these are just logical reformulations of the relevant definitions. For example, consider (d). We have

x ∈
⋂
i∈I Ai ⇔ For all i ∈ I we have x ∈ Ai

x ∈
(⋂

i∈I Ai
)c ⇔ x 6∈

⋂
i∈I Ai

⇔ For some i ∈ I we have x 6∈ Ai
⇔ For some i ∈ I we have x ∈ Aci
⇔ x ∈

⋃
i∈I A

c
i .

Definition 2.11. [defn-top-omni]
Let X be a topological space.

(a) An open neighbourhood of a point x ∈ X is an open set U ⊆ X such that x ∈ U . More generally, a
neighbourhood of x is a set Y that contains an open neighbourhood of x.

(b) An interior point of a set Y ⊆ X is a point x ∈ Y such that Y is a neighbourhood of x. Equivalently,
a point x ∈ Y counts as an interior point if there is an open set U such that x ∈ U ⊆ Y .

(c) We write
◦
Y or int(Y ) for the set of interior points of Y , otherwise known as the interior of Y . Note

that this depends on the ambient space X, so we will sometimes write intX(Y ) to avoid ambiguity.
(d) A closure point of a set Y ⊆ X is a point x ∈ X such that every open neighbourhood of x meets

Y (or equivalently, every neighbourhood of x meets Y ).
(e) We write Y or cl(Y ) or clX(Y ) for the set of closure points of Y , otherwise known as the closure

of Y .
(f) A set Y ⊆ X is closed if and only if its complement Y c = X \ Y is open.
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(g) The boundary of a set Y ⊆ X is the set bdyX(Y ) = clX(Y ) ∩ clX(Y c).

Remark 2.12. [rem-clopen]
One point that may cause confusion is that it is possible for a set to be both open and closed, and it is

also possible for a set to be neither open nor closed. More specifically:

(a) In the space R, the set [0, 1) = {x : 0 ≤ x < 1} is neither open nor closed. Similarly, Q is neither
open nor closed in R.

(b) In any topological space X, the sets ∅ and X are both open and closed.
(c) If X is any set with the discrete topology, then every subset of X is both open and closed.
(d) Let X be the space of binary sequences as in Example 2.6, and put Y = {x : x0 = 0} and

Z = {x : x0 = 1}. Then Y and Z are both open, so X \ Y and X \ Z are closed. However
X \ Y = Z and X \ Z = Y , so Y and Z are closed as well as open.

Proposition 2.13. Let X be a topological space, and let Y be a subset of X.

(a) The set int(Y ) is open; it is the union of the collection of all open sets U such that U ⊆ Y .
(b) The set Y itself is open if and only if int(Y ) = Y .
(c) The set cl(Y ) is closed; it is the intersection of the collection of all closed sets F such that Y ⊆ F .
(d) The set Y itself is closed if and only if cl(Y ) = Y .

Proof. Just by translating the definition, we see that int(Y ) is the union of the collection of all open
sets U such that U ⊆ Y . The union of any family of open sets is again open, so int(Y ) is open in X. In
particular, if int(Y ) = Y then Y is open. Conversely, if Y is open then it is a neighbourhood of each of its
points, so every element of Y is an interior point of y, so Y = int(Y ).

Next, note that x is not a closure point of Y if and only if there is some open neighbourhood N of x such
that N∩Y = ∅, or equivalently N ⊆ Y c. This means that cl(Y )c = int(Y c), or equivalently cl(Y ) = int(Y c)c.
We can thus prove (c) and (d) by applying (a) and (b) to Y c. �

Remark 2.14. [rem-closed-axioms]
Because the closed sets are just the complements of the open sets and vice versa, we can specify a

topology completely by describing the closed sets instead of describing the open sets. The closed sets must
have the following properties:

Z0: The empty set and the whole set X are both closed.
Z1: If we have a family (Fi)i∈I of closed sets, then the intersection F =

⋂
i∈I Fi is also closed.

Z2: If we have two closed sets F0 and F1, then F0 ∪ F1 is also closed.

These are equivalent to the axioms in Definition 2.1, because (
⋃
i Ui)

c
=
⋂
i U

c
i and (U0 ∩ U1)c = U c0 ∪ U c1 .

Remark 2.15. [rem-bdy-closed]
We now see that clX(Y ) and clX(Y c) are closed, so the boundary bdy(Y ) = clX(Y ) ∩ clX(Y c) is also

closed.

Example 2.16. [eg-cofinite]
Let X be any set, and declare that a subset F ⊆ X is closed if and only if it is either finite or all of

X. It is easy to see that the above axioms are satisfied, so this defines a new topology on X, called the
cofinite topology. If X itself is finite then the cofinite topology is the same as the discrete topology, but not
in general.

Example 2.17. [eg-three-points]
Now consider the set X = {0, 1, 2}. One can check that this admits 29 different topologies. To describe

these, note that the sets of size 0 or 3 are automatically open, and that a set of size 2 is open if and only
if the complementary set of size one is closed. We will abuse language slightly and say that a point x ∈ X
is open (or closed) if the singleton set {x} is open (or closed). Thus, we can describe a topology on X by
listing the open points and the closed points. If x and y are two distinct points and the remaining point is
z, then {z} = ({x}∪ {y})c. It follows that if x and y are both open then z is closed, and if x and y are both
closed then z is open. By a systematic check of cases, we obtain the following list of possibilities:

(a) The indiscrete topology has no open or closed points.
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(b) For the discrete topology, every point is both open and closed.
(c) For each point x ∈ X, there is a topology where x is the only open point and there are no closed

points.
(d) For each point x ∈ X, there is a topology where x is the only closed point and there are no open

points.
(e) For each point x ∈ X, there is a topology where x is open but not closed, and the other two points

are closed but not open.
(f) For each point x ∈ X, there is a topology where x is closed but not open, and the other two points

are open but not closed.
(g) For each point x ∈ X, there is a topology where x is both open and closed, and the other two

points are neither open nor closed.
(h) For each pair of points x 6= y, there is a topology where x is the only open point, and y is the only

closed point.
(i) For each pair of points x 6= y, there is a topology where x is the only open point, and y is the only

point that is not closed.

Note that in cases (c) to (g) we have three choices for x, and in cases (h) and (i) we have six choices for the
pair (x, y); this gives 2 + 5× 3 + 2× 6 = 29 topologies altogether.

Example 2.18. [eg-zariski]
Readers who are familiar with commutative algebra can consider the following example. Let P =

R[x1, . . . , xn] denote the ring of all polynomial functions on Rn. Given an ideal I ≤ P , we put

V (I) = {x ∈ Rn : f(x) = 0 for all f ∈ I}.
One can check that

V (P ) = ∅
V (0) = Rn

V (
∑
i

Ii) =
⋂
i

V (Ii)

V (I0I1) = V (I0 ∩ I1) = V (I0) ∪ V (I1).

It follows that the sets of the form V (I) are the closed sets for a new topology on Rn, which is called the
Zariski topology. Nothing here really depends on the fact that we work over R; there is a Zariski topology
on Kn for any field K. This is of central importance in algebraic geometry. In the case n = 1, the Zariski
topology is the same as the cofinite topology.

Definition 2.19. [defn-dense]
A subset Y ⊆ X is dense if Y = X.

This can be reformulated as follows:

Lemma 2.20. [lem-dense]
Y is dense in X if and only if Y meets every nonempty open subset of X.

Proof. First suppose that Y is dense. Let U be a nonempty open subset of X. As U 6= ∅ we can
choose a point x ∈ U , so that U is an open neighbourhood of x. As Y is dense we have Y = X, so x ∈ Y ,
which means that every neighbourhood of x meets Y . In particular U meets Y , as required.

Suppose instead that Y meets every nonempty open set. Consider a point x ∈ X. Then any open
neighbourhood of x is a nonempty open set, so it meets Y . This means that x is a closure point of Y , so
x ∈ Y . As x was arbitrary this means that Y = X as required. �

Example 2.21. [eg-dense]
The set Q is dense in R. Indeed, any nonempty open subset U ⊆ R contains an interval (a, b) for some

a < b. We can choose an integer n > 0 such that 1/n < b− a, and then let k be the largest integer such that
k/n ≤ a. We then find that (k + 1)/n ∈ Q ∩ U , so Q meets U as required. We also see that for sufficiently

large m we have (k + 1)/n+
√

2/m ∈ U , and using this that R \Q is also dense.
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We next explore a convenient way of describing and analysing topologies.

Definition 2.22. [defn-basis]
A topological basis on X is a collection β of subsets of X such that:

B0: For every x ∈ X there exists some U ∈ β such that x ∈ U . (Equivalently, the union of all the sets
in β is X.)

B1: If U0 and U1 are in β and x ∈ U0 ∩ U1 then there exists V ∈ β with x ∈ V ⊆ U0 ∩ U1.

If β is such a collection, we write τ(β) for the larger collection of all sets V ⊆ X with the following property:
for all x ∈ V there exists U ∈ β with x ∈ U ⊆ V .

Example 2.23. [eg-basis]

(a) If we let β be the collection of all intervals (a, b) ⊆ R, then β is a topological basis on R and τ(β)
is just the standard topology on R.

(b) Now instead let X be a subset of Rn, and let β be the collection of all sets of the form OBε(x)∩X
for x ∈ X and ε > 0, as in Example 2.3. It is clear that axiom B0 is satisfied. For B1, suppose we
have x ∈ OBε0(x0) ∩OBε1(x1). Put δi = εi − ‖xi − x‖ > 0 and δ = min(δ0, δ1). Using the triangle
inequality ‖xi − y‖ ≤ ‖xi − x‖ + ‖x − y‖ we see that x ∈ OBδ(x) ⊆ OBε0(x0) ∩ OBε1(x1), which
proves B1. We again see from the definitions that τ(β) is the standard topology on X.

x0 x1

x

ε0 ε1

OBε0(x0) OBε1(x1)

OBδ(x)

(c) In Example 2.6, the set β = {Cn(x) : x ∈ X, n ∈ N} is a topological basis, and τ(β) is just the
topology considered previously.

Part (b) above used the triangle inequality for Rn. For completeness, we record a proof.

Lemma 2.24. [lem-triangle]
For vectors u, v ∈ Rn we have |〈u, v〉| ≤ ‖u‖‖v‖ (the Cauchy-Schwartz inequality) and ‖u+v‖ ≤ ‖u‖+‖v‖

(the Triangle Inequality).

Proof. The most direct way to prove the first inequality is to check that

〈u, v〉2 +
∑

1≤i<j≤n

(uivj − ujvi)2 = ‖u‖2‖v‖2.

Indeed, we have

〈u, v〉2 = (
∑
i

uivi)
2 =

∑
i

u2
i v

2
i + 2

∑
i<j

uiujvivj .

On the other hand, we have∑
i<j

(uivj − ujvi)2 =
∑
i<j

u2
i v

2
j +

∑
i<j

u2
jv

2
i − 2

∑
i<j

uiujvivj .
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The first two sums here can be combined and reindexed as
∑
i 6=j u

2
i v

2
j , and the last sum cancels with the

last term in our previous equation, leaving

〈u, v〉2 +
∑
i<j

(uivj − ujvi)2 =
∑
i

u2
i v

2
i +

∑
i6=j

u2
i v

2
j =

∑
i,j

u2
i v

2
j = ‖u‖2‖v‖2

as claimed. This means that 〈u, v〉2 ≤ ‖u‖2‖v‖2, and by taking square roots we obtain 〈u, v〉 ≤ |〈u, v〉| ≤
‖u‖‖v‖. This in turn gives

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, v〉+ 2〈u, v〉 = ‖u‖2 + ‖v‖2 + 2〈u, v〉
≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2,

so ‖u+ v‖ ≤ ‖u‖+ ‖v‖. �

The following result should now come as no surprise.

Proposition 2.25. [prop-basis]
Let β be a topological basis on a a set X. Then:

(a) τ(β) is a topology on X.
(b) β ⊆ τ(β).
(c) A set U lies in τ(β) if and only if it is the union of some family of elements of β.
(d) If τ ′ is any topology on X such that β ⊆ τ ′, then τ(β) ⊆ τ ′.

Proof.

(a) The empty set is open (because there is nothing to check). We next claim that X is open. Indeed,
if x ∈ X then axiom B0 gives us a set U ∈ β with x ∈ U ⊆ X, as required. Now suppose we have
a family of open sets Ui, and we put U =

⋃
i Ui. Suppose that x ∈ U , so x ∈ Ui for some i. As Ui

is open we can find V ∈ β with x ∈ V ⊆ Ui ⊆ U . It follows that U is open. Next, suppose we have
open sets U0 and U1 and a point x ∈ U0 ∩ U1. As x ∈ U0 and U0 is open, there exists V0 ∈ β such
that x ∈ V0 ⊆ U0. Similarly, there exists V1 ∈ β such that x ∈ V1 ⊆ U1. Now axiom B1 gives us
a set V ∈ β with x ∈ V ⊆ V0 ∩ V1 ⊆ U0 ∩ U1. This means that U0 ∩ U1 is again open, so all the
axioms are satisfied.

(b) Suppose that U ∈ β. For each x ∈ U we must find V ∈ β with x ∈ V ⊆ U ; but we can just take
V = U .

(c) This is just a translation of the definition.
(d) If τ ′ is a topology containing β then it contains the union of any family of elements of β, so it

contains all of τ(β) by part (c).

�

Example 2.26. [eg-padic-basis]
Fix a prime number p. Take X = Z and

β = {n+ piZ : n ∈ Z, i ∈ N}.
As 0 + p0Z = Z, we see that B0 is satisfied. Next, note that x ∈ n + piZ if and only if x = n (mod pi), in
which case n+ piZ = x+ piZ. Thus, if x ∈ (n0 + pi0Z)∩ (n1 + pi1Z) we can put i = max(i0, i1) and we find
that x+ piZ ∈ β and (x+ piZ) ⊆ (n0 + pi0Z)∩ (n1 + pi1Z). This means that B1 is also satisfied, so we have
a topological basis. The corresponding topology τ(β) is called the p-adic topology on Z; it is important in
algebraic number theory.

Definition 2.27. [defn-basis-for]
Suppose we are given a topology θ on a set X, and also a topological basis β on the same set. We say

that β is a basis for θ if θ = τ(β). In this context we refer to the elements of β as basic open sets.

Proposition 2.28. [prop-basis-for]
Let X be a topological space, and let β be a collection of open subsets. Then the following are equivalent:

(a) β is a basis for the topology
(b) β contains a basis for the topology
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(c) For every open set U and every point x ∈ U there exists V ∈ β such that x ∈ V ⊆ U .

Proof. We will write θ for the originally given topology, so β ⊆ θ. It is clear that (a) implies (b).
Now suppose that β contains a subset β′ that is a basis for θ. Let U be a set that is open with respect
to θ = τ(β′). By the definition of τ(β′), we see that for every x ∈ U there exists V ∈ β′ ⊆ β such that
x ∈ V ⊆ U . This shows that (b) implies (c). Now suppose that (c) holds. By taking U = X we see that the
sets in β cover X, so axiom B0 is satisfied. Similarly, given sets U0, U1 ∈ β ⊆ θ we can take U = U0 ∩ U1 to
see that axiom B1 is satisfied. This shows that β is a topological basis. This means that we have a topology
τ(β), and after examining the definition we see that (c) says that θ ⊆ τ(β). On the other hand, we have
β ⊆ θ by hypothesis, and every set in τ(β) is the union of some family of sets in β, so τ(β) ⊆ θ. We thus
have θ = τ(β), so (a) holds. �

It is sometimes convenient to go one step further, as follows.

Definition 2.29. [defn-subbasis]
A topological subbasis on X is just a collection σ of subsets of X. Given such a collection, we put

β(σ) = {U1 ∩ . . . ∩ Un : U1, . . . , Un ∈ σ}.
We allow the case n = 0, in which case the intersection is interpreted as X, so X ∈ β(σ). Given this, it is
easy to see that β(σ) is a topological basis on X. We also abbreviate τ(β(σ)) as τ(σ); this is the smallest
topology on X that contains σ. If we are given a topology θ and it works out that τ(σ) = θ, we say that σ
is a subbasis for θ.

Example 2.30. [eg-subbasis]

(a) Put

σ = {(−∞, a) : a ∈ R} ∪ {(a,∞) : a ∈ R}.
Note that for x ∈ R and ε > 0 we have

(x− ε, x+ ε) = (−∞, x+ ε) ∩ (x− ε,∞) ∈ β(σ).

Using this, we see that σ is a subbasis for the standard topology on R.
(b) Let X be the space of binary sequences as in Example 2.6, and let τ be the topology discussed

there. For n ∈ N and b ∈ {0, 1} put Unb = {x ∈ X : xn = b}. If x ∈ Unb then Cn+1(x) ⊆ Unb, so
we see that Unb is open. Now put

σ = {Unb : n ∈ N, b ∈ {0, 1}} ⊆ τ.
Recall that the sets Cm(y) form a basis for τ , and note that

Cm(y) = U0,y0 ∩ · · · ∩ Um,ym ∈ β(σ).

Using this, we see that σ is a subbasis for τ .
(c) Let X be any set, and let τ be the cofinite topology on X. Put σ = {{x}c : x ∈ X}. If U is a

nonempty open set then X \ U is finite, say X \ U = {x1, . . . , xn}. We then have

U = {x1}c ∩ · · · ∩ {xn}c ∈ β(σ).

Using this, we see that σ is a subbasis for τ .

We can now use the terminology of subbases to introduce a topology on an arbitrary real vector space
V . This is not very useful unless V has finite dimension, and in that case we can identify V with Rn for
some n, so Example 2.3 gives us a topology on V . The real point here, however, is to describe the topology
in a way that is independent of the choice of isomorphism V ' Rn.

Definition 2.31. [defn-linear-topology]
Let V be any vector space over R. For any linear map φ : V → R and any a, b ∈ R we put

U(φ, a, b) = {x ∈ V : a < φ(x) < b}.
The collection of all sets of this form is a subbasis for a topology on V , which we call the linear topology.

11



Proposition 2.32. [prop-linear-topology]
The linear topology on Rn is the same as the standard topology described in Example 2.3.

Proof. Let τS be the standard topology, which has basis

βS = {OBε(x) : x ∈ Rn, ε > 0}.
Let σL be the family of all sets of the form U(φ, a, b), which is a subbasis for the linear topology τL.

Let V be a set in τS , and consider a point x ∈ V . As V ∈ τS , we have OBε(x) ⊆ V for some ε > 0. We
can define linear maps πi : Rn → R by πi(u) = ui, and using these we can define a set

N =

n⋂
i=1

U(πi, xi − ε/
√
n, xi + ε/

√
n) ∈ τL.

Note that y ∈ N iff |xi − yi| < ε/
√
n for all n, and if so, we have

‖x− y‖ =
√∑n

i=1 |xi − yi|2 <
√∑n

i=1 ε
2/n = ε,

so y ∈ OBε(x) ⊆ V . We thus have N ⊆ V , so x is in the τL-interior of V . As x was arbitrary, we have
V ∈ τL. This means that τS ⊆ τL.

In the other direction, suppose we have a set W = U(φ, a, b) ∈ σL. Here φ is a linear map Rn → R, so
it have the form φ(x) = 〈x, u〉 for some u ∈ Rn. If u = 0 then W is either Rn (if a < 0 < b) or ∅ (otherwise),
so W ∈ τS . We may therefore assume that u 6= 0. Suppose we have a point x ∈W , so 〈x, u〉 ∈ (a, b). Put

δ = min(〈x, u〉 − a, b− 〈x, u〉),
and ε = δ/‖u‖. If ‖y−x‖ < ε then the Cauchy-Schwartz inequality gives |φ(y)−φ(x)| = |〈y−x, u〉| ≤ δ and
so φ(y) ∈ (a, b). We thus have OBε(x) ⊆ W , so x is in the τS-interior of W . As x was arbitrary, we have
V ∈ τS . This means that σL ⊆ τS , so τL ⊆ τS . �

If we have a suitable notion of distance between points of a set X, we can use it to define a topology by
a straightforward generalisation of Example 2.3. We next explain this in more detail.

Definition 2.33. [defn-metric]
A metric on a space X is a function d : X ×X −→ [0,∞] satisfying the following axioms:

M0: For all x ∈ X we have d(x, x) = 0.
M1: For all x, y ∈ X we have d(x, y) = d(y, x).
M2: For all x, y, z ∈ X we have d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).
M3: For all x, y ∈ X, if d(x, y) = 0 then x = y.

In axiom M2 we use the convention ∞ + x = ∞ = x +∞ for all x ∈ [0,∞] if necessary. A semimetric is
a function that satisfies M0 to M2, but not necessarily M3. A (semi)metric space is a set equipped with a
specified (semi)metric.

Remark 2.34. [rem-semimetric-quotient]
Suppose that X is a semimetric space. Let E be the relation on X given by xEy if and only if d(x, y) = 0.

It follows easily from the semimetric axioms that this is an equivalence relation. Let X be the quotient set.
If x0Ex1 and y0Ey1 it follows from the triangle inequality that d(x0, y0) = d(x1, y1). We therefore have an
induced map d : X × X → [0,∞), which is easily seen to give a metric on X. Most questions about the
semimetric space X reduce easily to questions about the metric space X. However, it is occasionally useful
to be able to work in the more general semimetric context.

Definition 2.35. [defn-metric-topology]
If d is a (semi)metric on X then we put

OBε(x) = {y ∈ X : d(x, y) < ε}
Bε(x) = {y ∈ X : d(x, y) ≤ ε}

βd = {OBε(x) : x ∈ X, ε > 0}.
The set OBε(x) is called the open ball of radius ε around x, and Bε(x) is called the closed ball. The set βd
is a basis for a topology τd on X, called the (semi)metric topology.
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Remark 2.36. [rem-metric-topology]
The proof that βd is a topological basis is essentially the same as Example 2.23(b). Axiom B0 is

satisfied because x ∈ OB1(x) ∈ βd for all x ∈ X. For B1, suppose we have x ∈ OBε0(x0) ∩ OBε1(x1). Put
δi = εi − d(xi, x) > 0 and δ = min(δ0, δ1). Using axiom M2 for d we see that

d(xi, y) ≤ d(xi, x) + d(x, y) = εi − δi + d(x, y).

If d(x, y) < δ this gives d(xi, y) < εi, so we have x ∈ OBδ(x) ⊆ OBε0(x0) ∩OBε1(x1), which proves B1.

Remark 2.37. Open balls are open by the definition of the semimetric topology. We claim that closed
balls are closed (as one would expect from the terminology). To see this, suppose that y ∈ Bε(x)c. This
means that the number δ = d(x, y)− ε is strictly positive. If there were a point z ∈ Bε(x)∩OBδ(y) we would
have

d(x, y) ≤ d(x, z) + d(z, y) < ε+ δ = d(x, y),

which is impossible. It follows that Bε(x) ∩ OBδ(y) = ∅, so OBδ(y) ⊆ Bε(x)c, so y is in the interior of
Bε(x)c. As y was arbitrary this means that Bε(x)c is open, so Bε(x) is closed, as claimed. It is also clear
that when ε < δ we have

OBε(x) ⊆ Bε(x) ⊆ OBδ(x) ⊆ Bδ(x).

It is often the case that OBε(x) is the interior of Bε(x), and that Bε(x) is the closure of OBε(x). However,
both of these statements can fail, for example when X = Z (with the metric d(n,m) = |n−m|) and x = 0
and ε = 1.

Example 2.38. [eg-Rn-metric]
We can now define a metric on Rn by

d(x, y) = ‖x− y‖ =

√∑
i

(xi − yi)2,

and the associated topology is the standard one. Here axioms M0, M1 and M3 are clear, and M2 follows
from Lemma 2.24.

Example 2.39. [eg-lanes]
We can define a different metric on R2 (called the lane metric) by

d((x, y), (x′, y′)) =

{
|y − y′| if x = x′

|y|+ |x− x′|+ |y′| if x 6= x′.

The heuristic picture here is that there is a main road along the x-axis, and vertical lanes covering the whole
plane. If x = x′ then you can travel a distance |y− y′| along a vertical lane from (x, y) to (x′, y′); otherwise,
you need to travel a distance |y| from (x, y) to the main road, then |x − x′| along the main road, then |y′|
along another lane to reach (x′, y′).

Axioms M0, M1 and M3 are clear for this metric. For M2, suppose we have points a = (x, y) and
a′ = (x′, y′) and a′′ = (x′′, y′′). Put u = d(a, a′) + d(a′, a′′)− d(a, a′′), so we must show that u ≥ 0.

(a) If x = x′ = x′′ then u = |x′′−x|−|x′′−x′|−|x′−x|, which is nonnegative by the triangle inequality.
(b) Suppose instead that x = x′ 6= x′′. Note that

|y| = |(y − y′) + y′| ≤ |y − y′|+ |y′|.

We have

u = |y − y′|+ (|y′|+ |x′ − x′′|+ |y′′|)− (|y|+ |x− x′′|+ |y′′|)
= |y − y′|+ |y′| − |y| ≥ 0.

(c) The case where x 6= x′ = x′′ is essentially the same as (b).
(d) Suppose that x 6= x′ 6= x′′ but x′′ = x. We then have

u = (|y|+ |x− x′|+ |y′|) + (|y′|+ |x′ − x′′|+ |y′′|)− |y − y′′|
≥ |y|+ |y′′| − |y − y′′| ≥ 0.

13



(e) Finally, suppose that x, x′ and x′′ are all different. We then have

u = (|y|+ |x− x′|+ |y′|) + (|y′|+ |x′ − x′′|+ |y′′|)− (|y|+ |x− x′′|+ |y′′|)
= 2|y′|+ (|x− x′|+ |x′ − x′′| − |x− x′′|) ≥ 0.

Example 2.40. [eg-matrix-metric]

Let Mn(R) denote the set of n×n matrices over R. We can identify this with Rn2

, which gives a metric
and thus a topology. The metric can be related nicely to the algebra of matrices, as we now describe. Recall
that the trace of a matrix A ∈ Mn(R) is defined by trace(A) =

∑n
i=1Aii, and the transpose is the matrix

AT with entries (AT )ij = Aji. One checks that trace(ATA) =
∑n
i=1

∑n
j=1A

2
ij , and thus that

d(A,B) =
√

trace((A−B)T (A−B)).

We can restrict this definition to give a metric and thus a topology on any subset of Mn(R). Some interesting
examples include the following:

O(n) = {A ∈Mn(R) : ATA = 1}
o(n) = {A ∈Mn(R) : AT +A = 0}

SLn(R) = {A ∈Mn(R) : det(A) = 1}
SO(n) = On ∩ SLn(R)

GL+
n (R) = {A ∈Mn(R) : det(A) > 0}

GLn(R) = {A ∈Mn(R) : det(A) 6= 0}
RPn = {A ∈Mn+1(R) : AT = A = A2, trace(A) = 1}.

Various topological properties of these spaces will be described in Example 5.21. Note that RPn is often
defined in a rather different way, as a quotient of the sphere Sn. This will be reconciled with our definition
in Examples 5.24 and 5.69.

We will also consider complex analogues of these spaces. In this context we need to use the hermitian
transpose A†, given by (A†)ij = Aji. We put

U(n) = {A ∈Mn(C) : A†A = 1}

u(n) = {A ∈Mn(C) : A† +A = 0}
SLn(C) = {A ∈Mn(C) : det(A) = 1}
SU(n) = Un ∩ SLn(C)

GLn(C) = {A ∈Mn(C) : det(A) 6= 0}

CPn = {A ∈Mn+1(C) : A† = A = A2, trace(A) = 1}.

Example 2.41. [eg-trivial-metrics]
Let X be any set, and define d(x, y) = 0 when x = y, and d(x, y) = 1 when x 6= y. This defines a

metric on X, for which the corresponding topology is the discrete topology (i.e. every subset of X is open).
Alternatively, we can define d′(x, y) = 0 for all x and y. This is a semimetric on X, for which the associated
topology is the indiscrete topology (only ∅ and X are open).

Example 2.42. [eg-binary-metric]
Let X be the set of binary sequences, as in Example 2.6. For x, y ∈ X we define d(x, y) as follows. If

x = y we put d(x, y) = 0. Otherwise, we let i be the least integer such that xi 6= yi, and put d(x, y) = 2−i. It
is clear that d(x, y) = d(y, x) and that d(x, y) ≥ 0, with equality if and only if x = y. Now suppose we have
a third sequence z. If xn = yn for n < i and yn = zn for n < j, it is clear that xn = zn for n < min(i, j).
Using this we see that

d(x, z) ≤ max(d(x, y), d(y, z)) ≤ d(x, y) + d(y, z).

It follows that d is a metric on X. Moreover, if 2−n < ε ≤ 21−n then OBε(x) = Cn(x). It follows from this
that the metric topology is the same as the topology considered earlier.
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Example 2.43. [eg-padic-metric]
Fix a prime number p. For n,m ∈ Z we define d(n,m) as follows. If n = m we put d(n,m) = 0.

Otherwise there is a largest integer v such that n −m is divisible by pv, and we put d(n,m) = p−v. It is
clear that d(n,m) = d(m,n) and that d(m,n) ≥ 0, with equality if and only if m = n. Now suppose we
have a third integer k. If n − m is divisible by pv and m − k is divisible by pw, we see that the integer
n− k = (n−m) + (m− k) is divisible by pmin(v,w). Using this we see that

d(n, k) ≤ max(d(n,m), d(m, k)) ≤ d(n,m) + d(m, k).

It follows that d is a metric on Z. Moreover, if p−v < ε ≤ p1−v then OBε(n) = n+ pvZ. It follows from this
that the metric topology is the same as the p-adic topology considered earlier described in Example 2.26.

Although metrics can be very convenient, they are less canonical than the associated topologies. In
particular, it often happens that there are many different metrics that define the same topology. We next
investigate this phenomenon.

Proposition 2.44. [prop-truncated-metric]
Let d be a semimetric on a set X, let c be a positive constant, and put d′(x, y) = min(d(x, y), c). Then

d′ is another metric on X, which defines the same topology.

Note that if we have a metric that sometimes takes the value ∞, then we can use this proposition to
replace it by one that is always finite. The intuition is as follows. We can think of d(x, y) as the time it
takes to walk from x to y. Suppose we have a teleportation device that takes a time c to warm up, and we
walk or teleport depending only on which is faster; then d′(x, y) is the travel time from x to y.

Proof. It is clear that d′ satisfies M0 and M1, and it satisfies M3 if and only if d does. The only issue
is the triangle inequality. Consider three points x, y, z ∈ X. If d(x, y) ≥ c or d(y, z) ≥ c then d′(x, y) = c
or d′(y, z) = c so d′(x, y) + d′(y, z) ≥ c, but visibly d′(x, z) ≤ c so the triangle inequality holds. This leaves
only the case where d(x, y) < c and d(y, z) < c, so d′(x, y) = d(x, y) and d′(y, z) = d(y, z). Here the triangle
inequality for d gives d(x, z) ≤ d′(x, y) + d′(y, z) and from the definitions d′(x, z) ≤ d(x, z), so the triangle
inequality for d′ is again valid.

We have now shown that d′ is a semimetric, but we still need to understand the topology τd′ that it
defines. Put OBε(x) = {y : d(x, y) < ε} and OB′ε(x) = {y : d′(x, y) < ε}. If ε ≤ c then OB′ε(x) = OBε(x),
and if ε ≥ c then OB′ε(x) = X. It follows that OB′ε(x) is always open with respect to τd. Conversely, if
y ∈ OBε(x) and δ = min(c, ε− d(x, y)) then the set OB′δ(y) = OBδ(y) is contained in OBε(x). This shows
that OBε(x) is open in τd′ , and from this we conclude that τd = τd′ as claimed. �

Definition 2.45. [defn-strong-equiv]
Let d and d′ be two semimetrics on the same set X. We say that d and d′ are weakly equivalent if

the corresponding topologies τd and τd′ are the same. We say that they are strongly equivalent if there are
constants A,A′ > 0 such that d(x, y) ≤ Ad′(x, y) and d′(x, y) ≤ A′d(x, y) for all x, y ∈ X.

Lemma 2.46. [lem-weak-equiv]
Let d and d′ be two semimetrics on the same set X, and write OB and OB′ for open balls defined using

d and d′ respectively. Then d and d′ are weakly equivalent iff

(a) For each x ∈ X and ε > 0 there exists δ > 0 such that OBδ(x) ⊆ OB′ε(x); and
(b) For each x ∈ X and ε > 0 there exists δ > 0 such that OB′δ(x) ⊆ OBε(x).

Proof. Suppose that (a) holds. Consider a set U ∈ τd′ . Then for each x ∈ U there exists ε > 0 such
that OB′ε(x) ⊆ U , but then (a) means that there exists δ > 0 with OBδ(x) ⊆ OB′ε(x) ⊆ U , so x is in the
τd-interior of U . Using this we see that τd′ ⊆ τd. Similarly, if (b) holds then τd ⊆ τd′ . Conversely, suppose
that τd = τd′ . Now OB′ε(x) is open with respect to d′, so it must be open with respect to d, and it contains
x, so there must exist δ as in (a). A symmmetrical argument shows that (b) also holds. �

Lemma 2.47. [lem-strong-equiv]
If d and d′ are strongly equivalent, then they are weakly equivalent (so they give the same topology).

Proof. Let A and A′ be as in the definition. Then in part (a) of Lemma 2.46 we can take δ = ε/A′,
and in part (b) we can take δ = ε/A. �
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Definition 2.48. [defn-standard-norms]
We can define norms and metrics on Rn as follows:

‖x‖1 =
∑
i

|xi| d1(x, y) = ‖x− y‖1

‖x‖2 =

(∑
i

x2
i

)1/2

d2(x, y) = ‖x− y‖2

‖x‖∞ = max{|xi| : 1 ≤ i ≤ n} d∞(x, y) = ‖x− y‖∞.
Thus, ‖x‖2 is the norm that we previously denoted by the undecorated symbol ‖x‖.

{x ∈ R2 : ‖x‖1 ≤ 1} {x ∈ R2 : ‖x‖2 ≤ 1} {x ∈ R2 : ‖x‖∞ ≤ 1}

Lemma 2.49. [lem-Rn-strong-equiv]
The metrics d1, d2 and d∞ on Rn are all strongly equivalent to each other, and so define the same

topology.

Proof. Suppose x, y ∈ Rn. Put zi = |xi − yi| (for i = 1, . . . , n) and rk = ‖x − y‖k = ‖z‖k (for
k = 1, 2,∞). It will be enough to show that

r2 ≤
√
nr∞ ≤

√
nr1 ≤ nr2.

Clearly zi ≤ max{z1, . . . , zn} = r∞ for all i, so

r2
2 =

∑
i

z2
i ≤

∑
i

r2
∞ = nr2

∞,

so r2 ≤
√
nr∞.

Next, note that r∞ = zj for some j, so r∞ is one of the terms in the sum that defines r1, and all these
terms are nonnegative, so r∞ ≤ r1, so

√
nr∞ ≤

√
nr1.

Finally, put wi = zi − r1/n, so w2
i = z2

i − 2zir1/n+ r2
1/n

2. We then have
n∑
i=1

w2
i =

n∑
i=1

z2
i − 2r1n

−1
n∑
i=1

zi + r2
1n
−2

n∑
i=1

1

= r2
2 − 2r1n

−1r1 + r2
1n
−2.n

= r2
2 − r2

1/n.

As
∑
i w

2
i is clearly nonnegative, we conclude that r2

2 − r2
1/n ≥ 0 so r2

1/n ≤ r2
2 so r1 ≤

√
nr2 so

√
nr1 ≤ nr2,

as claimed. �

We can generalise the above as follows.

Definition 2.50. [defn-product-metric]
Let X and Y be metric spaces, and write dX and dY for the associated metrics. We can define three

different metrics on X × Y as follows:

d1((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′)

d2((x, y), (x′, y′)) =
√
dX(x, x′)2 + dY (y, y′)2

d∞((x, y), (x′, y′)) = max(dX(x, x′), dY (y, y′)).

In other words, if we put
u = (dX(x, x′), dY (y, y′)) ∈ R2
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then dk((x, y), (x′, y′)) = ‖u‖k. By essentially the same argument as in Lemma 2.49 we see that these are
all strongly equivalent and so determine the same topology on X × Y . Unless otherwise specified, we will
generally use d∞ by default.

We next discuss some questions about sequences.

Definition 2.51. [defn-converge]
Let X be a topological space, let x = (xn)n∈N be a sequence of points in X, and let a be another point

in X. We say that the sequence converges to a if for every open neighbourhood U of a, there exists N ∈ N
such that xn ∈ U whenever n ≥ N . We say that x is convergent if there is some point in X to which it
converges.

Remark 2.52. [rem-R-convergence]
It is easy to see that this reduces to the usual notion of convergence if X = R.

Lemma 2.53. [lem-metric-convergence]
Let X be a metric space, let x = (xn)n∈N be a sequence of points in X, and let a be another point in X.

Then the following are equivalent.

(a) The sequence (xn)n∈N converges to a in X.
(b) For every ε > 0 there exists N ∈ N such that d(xn, a) < ε whenever n ≥ N .
(c) The sequence (d(xn, a))n∈N converges to 0 in R.

Proof. If (a) holds then (b) also holds, just by taking U = OBε(a) in Definition 2.51. Conversely, if (b)
holds and we are given an open neighbourhood U of a then (by the definition of the metric topology) we
can find ε > 0 such that OBε(a) ⊆ U . We can then take N as in (b) and we find that for n ≥ N we have
xn ∈ OBε(a) ⊆ U ; so (a) holds.

Finally, it is immediate from the definition of convergence in R (and the fact that d is nonnegative)
that (b) and (c) are equivalent. �

Corollary 2.54. [cor-unique-limits]
Let x be a sequence in a metric space X. Then x converges to at most one point in X.

Proof. Suppose that x converges to a and also to b. For any ε > 0 we can findN such that d(a, xn) < ε/2
when n ≥ N , and we can also find M such that d(xm, b) < ε/2 when n ≥M . now put L = max(N,M) and
observe that d(a, b) ≤ d(a, xL)+d(xL, b) < ε/2+ ε/2 = ε. As this holds for all ε > 0 we must have d(a, b) = 0
and thus a = b. �

Definition 2.55. [defn-subsequence]
Let (xn)n∈N be a sequence in X. By a subsequence we mean a sequence of the form (xnk)k∈N, where

nk ∈ N for all k with n0 < n1 < n2 < · · · (and so nk ≥ k).

Lemma 2.56. [lem-subsequence-limit]
If x converges to a and y is a subsequence of x, then y also converges to a.

Proof. We have yk = xnk for some strictly increasing sequence of integers nk. Let U be an open
neighbourhood of a. By assumption, there exists N such that xn ∈ U for all n ≥ N . Now for k ≥ N we
have nk ≥ k ≥ N and so yk = xnk ∈ U . Thus, y also converges to a. �

Definition 2.57. [defn-sequentially-closed]
Let X be a topological space, and let Y be a subset of X. We say that Y is sequentially closed if for

every sequence y in Y and every limit a ∈ X for y, we actually have a ∈ Y .

Proposition 2.58. [prop-sequentially-closed]
In any topological space, every closed set is sequentially closed. In any metric space, every sequentially

closed set is closed.

Proof. First let X be arbitrary, and suppose that Y is closed. Let y be a sequence in Y that converges
to a ∈ X. Then for any open neighbourhood U of a there exists N such that yn ∈ U whenever n ≥ N . In
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particular we have yN ∈ U ∩ Y , so U ∩ Y 6= ∅. This means that x is a closure point of Y , but Y is closed,
so x ∈ Y as required.

Now suppose that X is a metric space, and consider the converse. Let Y be a sequentially closed subset
of X. Let x be a closure point of Y . Then for each n ∈ N we have an open neighbourhood OB2−n(x) of
x which must meet Y , so we can choose yn ∈ Y with d(yn, x) < 2−n. This gives a sequence y = (yn)n∈N,
which clearly converges to x. By hypothesis, we must have x ∈ Y . As x was an arbitrary closure point of
Y , we deduce that Y is closed. �

2.1. Countability properties. We next consider various countability properties that a topological
space may or may not enjoy. See Section 35.1 for a review of basic facts about countability.

Definition 2.59. [defn-nbhd-basis]
Let X be a topological space, and let x be a point of X. A neighbourhood basis at x is set β of

neighbourhoods of x such that for any neighbourhood U of x there is a set V ∈ β such that V ⊆ U .

Remark 2.60. [rem-nbhd-basis]
We have not insisted that the neighbourhoods in β must be open, because that would be inconvenient

for certain applications. However, if β is a neighbourhood basis at x then it is easy to see that the set
β′ = {int(V ) : V ∈ β} is a neighbourhood basis consisting of open neighbourhoods.

Definition 2.61.

(a) We say that X is separable if it has a countable dense subset.
(b) We say that X is C1 or first countable if each point x ∈ X has a countable neighbourhood basis.
(c) We say that X is C2 or second countable if there is a countable basis for the topology on X.

Proposition 2.62. [prop-metric-first-countable]
Any metric space is first countable. Moreover, any separable metric space is second countable.

Proof. Let X be a metric space. For each point x ∈ X the balls OB2−n(x) (for n ∈ N) form a countable
neighbourhood basis for x, so X is first countable. Now suppose we have a countable dense subset Y ⊆ X,
and put β = {OB2−n(y) : y ∈ Y }, which is again countable. Consider an open set U ⊆ X and a point
x ∈ X. As U is open, there exists n ∈ N such that OB2−n(x) ⊆ U . As Y is dense, there exists y ∈ Y with
y ∈ OB2−n−1(x), or equivalently x ∈ OB2−n−1(y). Moreover, for z ∈ OB2−n−1(y) we have

d(x, z) ≤ d(x, y) + d(y, z) < 2−n−1 + 2−n−1 = 2−n,

so z ∈ U . Thus, OB2−n−1(y) is a set in β that contains x and is contained in U . It follows that β is a
countable basis for X, as required. �

Proposition 2.63. [prop-second-countable]
Any second countable space is both separable and first countable.

Proof. Let X be a second countable space, and let β be a countable basis for the topology. For each
nonempty set U ∈ β, choose a point yU ∈ U , then put Y = {yU : U ∈ β, U 6= ∅}, so Y is countable.
Consider an arbitrary point x ∈ X. For any open neighbourhood V of x we can find a basic open set U
with x ∈ U ⊆ V , and then yU ∈ U ∩ Y , so U ∩ Y 6= ∅. This means that x is a closure point of Y , but x was
arbitrary, so Y = X, or in other words Y is dense. Thus, X is separable.

It is also clear that {U ∈ β : x ∈ U} is a countable basis of neighbourhoods for x, so X is first
countable. �

Proposition 2.64. [prop-subspace-second-countable]
Any subspace of a second countable space is second countable.

Proof. If β is a countable basis for the topology on X and Y ⊆ X then {U ∩Y : U ∈ β} is a countable
basis for the subspace topology on Y . �

Example 2.65. [prop-binary-countable]
In Example 2.6 we defined the space X of binary sequences and the subsets

Cn(x) = {y ∈ X : xi = yi for all i < n},
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which form a basis β for a topology on X.
Say that x ∈ X is eventually zero if there exists n such that xi = 0 for all i ≥ n. Let Y be the subset of

sequences that are eventually zero. This is countable; in fact, we can define an explicit bijection f : Y → N
by f(x) =

∑
i xi2

i, with the inverse being given by binary expansion. For any x ∈ X and n ∈ N we can
define ζn(x) ∈ Y by

ζn(x)i =

{
xi if i < n

0 if i ≥ n.
Note that Cn(x) = Cn(ζn(x)), so β = {Cn(y) : n ∈ N, y ∈ Y }, so β is countable. This means that X is
second countable, and therefore also first countable and separable. In fact, the set Y meets every basic open
set, so it is dense as well as countable.

Example 2.66. [eg-padic-countable]
In Example 2.26 we exhibited a basis

β = {n+ piZ : n ∈ Z, i ∈ N}
for the p-adic topology on Z. It is clear that β is countable, so with this topology Z is second countable,
and therefore also first countable and separable. Of course separability is trivial here, because Z itself is
countable.

Example 2.67. [eg-Rn-countable]
Given vectors a, b ∈ Qn, we put

U(a, b) = {x ∈ Rn : ai < xi < bi for all i} =

n∏
i=1

(ai, bi).

We then put β = {U(a, b) : a, b ∈ Qn}. This is a countable family of open subsets of Rn, and it is not hard
to check that it is a basis for the standard topology. This means that Rn is second countable. The set Qn
is countable and dense.

Example 2.68. [eg-lanes-countable]
Let X denote R2 equipped with the lane metric described in Example 2.39, so

d((x, y), (x′, y′)) =

{
|y − y′| if x = x′

|y|+ |x− x′|+ |y′| if x 6= x′.

We claim that X is not separable. Indeed, let A be any countable subset of X, and let B denote the image
of A under the vertical projection (x, y) 7→ x. Then B will also be countable, so it cannot be all of R, so
we can choose u ∈ R \ B. We then find that the point (u, 1) has distance at least one from all points in A,
so it is not a closure point of A, so A is not dense. As X is not separable, it cannot be second countable.
However, it is first countable by Proposition 2.62.

For the next example, we will need the notion of the supremum of a subset of R. We pause to recall
some basic facts about this.

Definition 2.69. [defn-sup]
Consider a subset A ⊆ R.

(a) An upper bound for A is a number u ∈ R such that a ≤ u for all a ∈ A. We say that A is bounded
above if there exists an upper bound.

(b) A lower bound for A is a number v ∈ R such that v ≤ a for all a ∈ A. We say that A is bounded
below if there exists a lower bound.

(c) Suppose that A is nonempty and bounded above. Then there exists a unique upper bound u for
A with the property that u ≤ u′ for any other upper bound u′. We write sup(A) for u, and call it
the least upper bound (or supremum) of A.

(d) Suppose that A is nonempty and bounded below. Then there exists a unique lower bound v for A
with the property that v ≥ v′ for any other lower bound v′. We write inf(A) for v, and call it the
greatest lower bound (or infimum) of A.
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(e) If A is not bounded above, we will sometimes write sup(A) = ∞. Similarly, if A is not bounded
below, we sometimes write inf(A) = −∞. By default we also take sup(∅) = −∞ and inf(∅) = +∞.
However, in any argument that only involves subsets of [a, b], we may make a temporary convention
that inf(∅) = b and sup(∅) = a.

It is not obvious that numbers u and v as in (c) and (d) exist, but this is one of the key properties of R.
We have included a proof in Appendix 34.

Example 2.70. [eg-not-separable]
Consider the set X of all sequences x = (x0, x1, x2, . . . ) with xi ∈ [0, 1] for all i. We will make this a

metric space using the metric

d(x, y) = sup{|xi − yi| : i ∈ N}.
We claim that this is not separable. To see this, let P denote the set of all subsets of N, and recall that this
is uncountable. Define a function σ : X → P by σ(x) = {i ∈ N : xi > 1/2}. (We do not claim that this is
continuous in any sense.) For any countable subset Y ⊆ X, note that σ(Y ) is a countable subset of P , so it
cannot be all of P , so we can choose A ⊆ N such that A 6= σ(y) for all y ∈ Y . Define x ∈ X by

xi =

{
1 if i ∈ A
0 if i 6∈ A.

Consider a sequence y ∈ Y . As σ(y) 6= A, one of the following must hold:

(a) There exists i with i ∈ σ(y) but i 6∈ A, so yi > 1/2 and xi = 0, so |xi − yi| > 1/2; or
(b) There exists i with i ∈ A but i 6∈ σ(y), so yi ≤ 1/2 and xi = 1, so |xi − yi| ≥ 1/2.

Either way we find that d(x, y) ≥ 1/2. Thus, the ball OB1/3(x) is an open neighbourhood of x not meeting
Y , so Y is not dense in X.

Lemma 2.71. Let X be a first countable space, and let x be a point of X. Then there is a basis of
neighbourhoods for x of the form (Un)n∈N with Ui+1 ⊆ Ui for all i.

Proof. By the definition of first countability we can choose a countable basis of open neighbourhoods
for x, and as it is countable we can index it as (Vn)n∈N say. We then put Un = V0 ∩ · · · ∩ Vn. This certainly
gives a sequence of open neighbourhoods of x with Ui+1 ⊆ Ui for all i. If W is an arbitrary neighbourhood
of x then by assumption we have x ∈ Vn ⊆W for some n, but this implies that x ∈ Un ⊆W . It follows that
(Un)n∈N is again a neighbourhood basis. �

Recall from Definition 2.57 that a subset Y ⊆ X is sequentially closed if Y contains every limit in X of
every sequence in Y . Closed sets are always sequentially closed.

Proposition 2.72. Let X be a first countable space. Then any sequentially closed subset of X is closed.

Proof. Let Y ⊆ X be a sequentially closed subset, and let x be a closure point of Y ; we must show
that x ∈ Y . Choose a nested neighbourhood basis (Un)n∈N for x as in Lemma 2.71. As x is a closure point
of Y , each set Un must meet Y , so we can choose yn ∈ Un ∩ Y for all n. As the sets Un are nested, we have
ym ∈ Un for all m ≥ n. As the sets Un form a neighbourhood basis, this means that the sequence (yn)n∈N
converges to x. As yn ∈ Y and Y is sequentially closed, we see that x ∈ Y as required. �

Exercise 2.1. [ex-open]
For which of the following pairs of sets Yi ⊆ Xi is Yi open in Xi?

X0 = R Y0 = R \ Z = {x ∈ R : x 6∈ Z}
X1 = [−1, 1] Y1 = [0, 1]

X2 = Q Y2 = Q ∩ [−
√

2,
√

2]

X3 = R Y3 = {x ∈ R : x 6= 1/n for any n ∈ N+}
X4 = {1/n : n ∈ N+} Y4 = {1/(n+ 1) : n ∈ N+}
X5 = [0, 1] ∪ [2, 3] Y5 = [0, 1].
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Solution: The set Yi is open in Xi for i ∈ {0, 2, 4, 5}. For i = 2 one should note that Y2 can also be

described as Q∩ (−
√

2,
√

2) (because ±
√

2 6∈ Q). For i = 1 and i = 3, one should note that 0 is in Yi but no
interval (−ε, ε) is contained in Yi.

Exercise 2.2. [ex-findex]
Find examples of the following situations:

(a) A set X ⊂ R which is equal to its boundary.
(b) A set X ⊂ R which is not the closure of its interior.
(c) A set X ⊂ R which is the interior of its closure.
(d) A set X ⊂ Q which is both open and closed in Q.
(e) An infinite, bounded, closed set X ⊂ R with empty interior.
(f) Subsets X,Y ⊂ R with X ∩ Y 6= X ∩ Y
(g) A sequence of open sets Un ⊂ R for n ∈ N whose intersection is not open.

Solution: Many solutions are possible. Some examples are as follows.

(a) We need X to be closed with empty interior, so we can take X = Z or X = {0} or X = ∅.
(b) We can take X = (0, 1), so int(X) = X = (0, 1) 6= [0, 1] = cl(int(X)). Alternatively, we can take

X = Z so int(X) = ∅ so cl(int(X)) = ∅ 6= X.
(c) We can take X = (0, 1), so cl(X) = [0, 1] and int(cl(X)) = (0, 1) = X. Alternatively, we can just

take X = ∅.
(d) We can take X = (−∞, π)∩Q = (−∞, π]∩Q. The first description shows that this is closed in Q,

and the second shows that it is open. Alternatively, we can take X = {x ∈ Q : x2 < 2}.
(e) We can take X = {1/n : n ∈ Z+}∪{0}. The Cantor set (which will be discussed in Example 3.25)

is another commonly used example.
(f) We can take X = (−∞, 0) and Y = (0,∞), so X ∩ Y = X ∩ Y = ∅ but X ∩ Y = {0}.
(g) Un = (−2−n, 2−n).

Exercise 2.3. [ex-topology]
Let τ denote the usual topology on R. Which of the following collections of subsets of R form topologies

?

(a) σ0 = {U ⊆ R : U ⊆ Q}
(b) σ1 = {U ⊆ R : U ∩Q = V ∩Q for some V ∈ τ}
(c) σ2 = {[a,∞) : a ∈ R} ∪ {∅,R}
(d) σ3 = {(a,∞) : a ∈ R} ∪ {∅,R}
(e) σ4 = {U ⊆ R : 1 ∈ U}
(e) σ5 = {U ⊆ R : 0 6∈ U or 1 ∈ U}
(f) σ6 = {U ⊆ R : x ∈ U ⇐⇒ x+ 1 ∈ U}

Solution:

(a) The collection σ0 is not a topology, because R 6∈ σ0, so axiom T0 fails.
(b) The collection σ1 is a topology.
(c) The collection σ2 is not a topology. The sets [ε,∞) for ε > 0 lie in σ2, but their union does not:⋃

ε>0

[ε,∞) = (0,∞) 6∈ σ

This contradicts axiom T1.
(d) The collection σ3 is a topology. Axiom T0 holds by definition. Axiom T1 holds essentially because⋃

I

(ai,∞) = (inf
I
ai,∞)

Suppose we have a family (Ui)i∈I of sets in σ3. We want to know that U =
⋃
I Ui ∈ σ3. For some

i we may have Ui = ∅; these terms can be discarded without affecting the union. For other i we
may have Ui = X; if so then U = X ∈ σ3. If there are no i for which Ui = X then the question
reduces to the equation above. Similarly, T2 holds because of the equation

(a,∞) ∩ (b,∞) = (max(a, b),∞)
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apart from a little fiddling with exceptional cases.
(e) The collection σ4 does not contain the empty set, so it is not a topology.
(f) The collection σ5 is a topology.
(g) The collection σ6 is a topology.

Exercise 2.4. [ex-metric]
Which of the following pairs (X, d) is a metric space ?

(a) X = Rn, d(x, y) =
∑n
k=1 k|xk − yk|

(b) X = R, d(x, y) = (x− y)2

(c) X = R, d(x, y) =

{
min(|x− y|, 1) if x− y ∈ Q
1 if x− y 6∈ Q

(d) X = Rn, d(x, y) = mink |xk − yk|
(e) X = Q. If x = y we take d(x, y) = 0, otherwise we can write x− y as 2na/b where a and b are odd

integers and n is also an integer. In this case we take d(x, y) = 2−n.
(f) X = Z, d(x, x) = 0. If x 6= y write x− y = 3na where a is an integer not divisible by 3, and take

d(x, y) = 3n.

Solution:

(a) Yes.
(b) No. The triangle inequality M2 fails for x = −1, y = 0, z = 1 for example.
(c) Yes. To prove this, it helps to show first that

d(x, y) = min(|x− y|, 1)

gives a metric on R (in fact, it induces the same topology as the usual metric). This is theorem 9.1
in the book.

(d) This is certainly not a metric space, as we have

d((1, 0), (0, 1)) = 0 but (1, 0) 6= (0, 1)

contrary to axiom M3. It is not even a semimetric space, as the triangle inequality fails for x = (0, 0),
y = (1, 0) and z = (1, 1).

(e) Yes.
(f) No. The triangle inequality fails for x = 0, y = 1 and z = 3.

Exercise 2.5. [ex-fourteen]
For this question we use the notation

iA = interior of A

kA = closure of A

cA = complement of A

It is interesting to ask what sets we can get by starting with a given set A and repeatedly applying the
operators i, k, and c.

(a) “Simplify” the following expressions:

ccA kkA iiA cicA ckcA

(b) Prove that if A is the closure of some open set U , then A = kiA.
(c) Prove that kikiA = kiA for any A, and hence that ikikB = ikB for any B.
(d) Prove that for any set A, at most fourteen different sets (including A itself) can be obtained from

A by repeatedly applying the operations i,k, and c. Seven of these are “roughly the same as A”
and the other seven “roughly the same as cA”.

(e) Find a subset A ⊂ R such that all fourteen of these sets are different. Hints: If you take care of
the first seven, the other seven will probably take care of themselves. You will want to build A out
of several different chunks spaced out along the real line.

Solution:
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(a)

ccA = A

kkA = kA

iiA = iA

cicA = kA

ckcA = iA.

(b) As U ⊆ A and U is open, we have U ⊆ iA. This implies that A = kU ⊆ kiA. On the other hand,
we have iA ⊆ A so kiA ⊆ kA = kkU = kU = A. Thus kiA = A.

(c) Applying the above to the case U = iB, we find that kikiB = kiB for any B. Applying this in
turn with B = cC we get cikikC = kikicC = kicC = cikC and thus ikikC = ikC.

(d) A typical set obtained from A by applying the operations i, k and c is something like kkciccikkkciA.
We use the equations ci = kc and ck = ic to sweep the c’s to the right, and then cancel them using
c2 = identity. This leaves kkkkiiiiA. We then use k2 = k and i2 = i to eliminate repetitions,
giving kiA. In the general case, we are left with a string of alternating i’s and k’s, followed either
by A or by cA. If the string of i’s and k’s has length > 3, then we can use kiki = ki or ikik = ik
to shorten it. This leaves us with 14 possibilities:

A cA

iA icA

kA kcA

ikA ikcA

kiA kicA

kikA kikcA

ikiA ikicA

The sets on the left are in some sense roughly the same size as A; they are at least bounded if A
is bounded, for example. The ones on the right are roughly the same size as cA.

(e)

A = A0 ∪A1 ∪A2 ∪A3

A0 = Q ∩ (0, 1)

A1 = [2, 5] \ (Q ∩ (3, 4))

A2 = {6 + 1/n : n ∈ Z+}
A3 = [8, 10] \ {9 + 1/n : n ∈ Z+}.

Exercise 2.6. [ex-boundary]
Now write

bA = boundary of A = kA ∩ kcA

(a) “Simplify” the following expressions:

k(A ∪B) i(A ∩B) c(A ∩B) A ∩ (B ∪ C) bcA kbA

(b) Prove that if A is closed, then ibA = ∅, and thus that b2A = bA.
(c) Prove that b3A = b2A for any set A.
(d) Find a set A ⊂ R with A 6= bA 6= b2A.
(e) Show that bA = ∅ if and only if A is both open and closed.

Solution:
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(a)

k(A ∪B) = kA ∪ kB
i(A ∩B) = iA ∩ iB
c(A ∩B) = cA ∪ cB

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

bcA = bA

kbA = bA

(b) Suppose A is closed. Then bA = A ∩ kcA ⊆ A, so ibA ⊆ iA. On the other hand,

ibA ⊆ bA = A ∩ kcA ⊆ kcA = ciA

Thus ibA ⊆ iA ∩ ciA = ∅, so ibA = ∅. This implies that bbA = kbA ∩ kcbA = bA ∩ cibA = bA.
(c) For general A, we know that B = bA is closed so by part (b) b2B = bB, in other words b3A = b2A.
(d)

A = Q bA = R b2A = ∅
(e) For any A we have bA = kA ∩ ciA = kA \ iA, and it is always the case that iA ⊆ A ⊆ kA. From

this we deduce that bA = ∅ iff iA = A = kA iff A is both open and closed.

3. Continuous Maps

Definition 3.1. [defn-preimage]
Let f : X → Y be any function. Given a subset A ⊆ X we write f(A) = {f(a) : a ∈ A} ⊆ Y , and call

this the image of A under f . Given a subset B ⊆ Y we write f−1(B) = {a ∈ X : f(a) ∈ B}, and call this
the preimage of B under f .

Proposition 3.2. [prop-preimage]
Let f : X −→ Y be a function. Then for any sets A,B ⊆ Y we have

(a) f−1(A ∩B) = f−1(A) ∩ f−1(B)
(b) f−1(A ∪B) = f−1(A) ∪ f−1(B)
(c) f−1(Y \A) = X \ f−1(A)
(d) f(f−1(B)) ⊆ B, with equality if f is surjective.
(e) A ⊆ f−1(f(A)), with equality if f is injective.

Proof. This is all trivial once one has untangled the notation. For (a), we note that

x ∈ f−1(A ∩B)⇔ f(x) ∈ A ∩B
⇔ (f(x) ∈ A) and (f(x) ∈ B)

⇔ (x ∈ f−1(A)) and (x ∈ f−1(B))

⇔ x ∈ f−1(A) ∩ f−1(B).

The next two parts are similar. For part (d), if y ∈ f(f−1(B)) then y = f(a) for some a ∈ f−1(B), and the
fact that a ∈ f−1(B) means precisely that f(a) ∈ B, so y ∈ B as required. Now suppose that f is surjective,
and consider the reverse inclusion. For b ∈ B we certainly have b = f(a) for some a ∈ X. As f(a) = b ∈ B
we have a ∈ f−1(B), and therefore b = f(a) ∈ f(f−1(B)) as required. Part (e) is similar to (d). �

Definition 3.3. [defn-cts]
Let X and Y be topological spaces, and let f be a function from X to Y . We say that f is continuous

if for each open set V ⊆ Y , the preimage f−1(V ) is open in X.

Remark 3.4. [rem-cts-closed]
Using Proposition 3.2(c) we see that continuity can also be defined in terms of closed sets: a function

f : X → Y is continuous if and only if for every closed subset G ⊆ Y , the preimage f−1(G) is closed in X.

Proposition 3.5. [prop-comp-cts]
If f : X −→ Y and g : Y −→ Z are continuous then so is g ◦ f : X −→ Z.
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Proof. For any open set W ⊆ Z we see from the definitions that (g ◦ f)−1(W ) = f−1(g−1(W )). Here
g−1(W ) is open (because g is continuous), and thus f−1(g−1(W )) is open (because f is continuous). We
conclude that g ◦ f is continuous as claimed. �

Remark 3.6. [rem-cat-top]
Throughout this book we will use the language of category theory, which is reviewed in Appendix 36.

The above proposition (together with the trivial fact that identity maps are continuous) means that we have
a category Spaces, whose objects are topological spaces, and whose morphisms are the continuous functions.

Remark 3.7. [rem-cat-metric]
Similarly one can define a category MetricSpaces, whose objects are metric spaces, and whose mor-

phisms from X to Y are the functions f : X → Y that are continuous with respect to the corresponding
metric topologies. There is a functor U : MetricSpaces → Spaces that sends each metric space X to
the same set equipped with the metric topology. Here MetricSpaces(X,Y ) is exactly the same set as
Spaces(UX,UY ), and the map

U : MetricSpaces(X,Y )→ Spaces(UX,UY )

is just the identity. Thus, the functor U is full and faithful. It is not hard to check that the topology on the
Sierpinski space (Example 2.7) does not arise from any metric (or even any semimetric). It follows that the
functor U is not essentially surjective, so it is not an equivalence.

Proposition 3.8. [prop-cts-subbasis]
Let f : X → Y be a function between topological spaces. Suppose that σ is a subbasis for the topology on

Y , and that for all V ∈ σ the preimage f−1(V ) is open in X. Then f is continuous.

Proof. Recall that β(σ) is the set of subsets of the form V = V1 ∩ · · · ∩ Vr, with V1, . . . , Vr ∈ σ. For
such V we have f−1(V ) =

⋂r
i=1 f

−1(Vi), and the sets f−1(Vi) are open by assumption, so f−1(V ) is open.
Next, τ(β(σ)) is the set of subsets W ⊆ Y that can be written as the union of some family (Wj)j∈J , with
Wj ∈ β(σ) for all j. This means that f−1(W ) is the union of the sets f−1(Wj), each of which is open by
our first step, so f−1(W ) is open in X. We have assumed that τ(β(σ)) is the given topology on Y , and the
claim now follows. �

Proposition 3.9. [prop-cts-metric]
Let f : X → Y be a function between metric spaces. Then f is continuous (with respect to the metric

topologies) if and only if for every x ∈ X and ε > 0 there exists δ > 0 such that d(x, x′) < δ implies
d(f(x), f(x′)) < ε.

Proof. First suppose that f is continuous. Given x ∈ X and ε > 0 we observe that OBε(f(x)) is an
open set in Y containing f(x), so the set U = f−1(OBε(x)) is an open subset of X containing x. This
means that U must contain OBδ(x) for some δ > 0, so for d(x, x′) < δ we have x′ ∈ U and therefore
f(x′) ∈ OBε(f(x)), or equivalently d(f(x), f(x′)) < ε as required.

Conversely, suppose that f satisfies the ε-δ condition. Suppose that V is open in Y , and that x ∈ f−1(V ).
This means that f(x) is a point in the open set V , so there exists ε > 0 such that OBε(f(x)) ⊆ V . By
hypothesis, we can find δ > 0 such that d(x, x′) < δ implies d(f(x), f(x′)) < ε, and thus f(x′) ∈ OBε(f(x)) ⊆
V , and thus x′ ∈ f−1(V ). This means that OBδ(x) ⊆ f−1(V ), so x is in the interior of f−1(V ). As x was
an arbitrary element of f−1(V ), we conclude that f−1(V ) is open, as required. �

Proposition 3.10. [prop-cts-misc]
The following maps are continuous (metric topologies used everywhere):

σ : R2 −→ R σ(x, y) = x+ y

µ : R2 −→ R µ(x, y) = xy

ν : R \ {0} −→ R \ {0} ν(x) = 1/x

ρ : [0,∞) −→ [0,∞) ρ(x) =
√
x

max,min: R2 −→ R
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Proof. For definiteness, we use the metric d = d∞ on R2, so d((x, y), (x′, y′)) = max(|x− x′|, |y − y′|).
It is easy to see that

d(σ(x, y), σ(x′, y′)) = |(x− x′) + (y − y′)| ≤ |x− x′|+ |y − y′| ≤ 2d((x, y), (x′, y′)),

and thus that σ is continuous. Next, we claim that

d(max(x, y),max(x′, y′)) ≤ d((x, y), (x′, y′)).

To see this, put

f(x, y, x′, y′) = d((x, y), (x′, y′))− d(max(x, y),max(x′, y′))

= max(|x− x′|, |y − y′|)− |max(x, y)−max(x′, y′)|,

so the claim is that f(x, y, x′, y′) ≥ 0 for all (x, y, x′, y′) ∈ R4. It is clear that f(x, y, x′, y′) = f(x′, y′, x, y) =
f(y, x, y′, x′), and using these symmetries we reduce to the case where y, x′ and y′ are all less than or equal
to x. In that case we have

max(|x− x′|, |y − y′|) ≥ |x− x′| = x− x′

|max(x, y)−max(x′, y′)| = x−max(x′, y′) ≤ x− x′

f(x, y, x′, y′) ≥ (x− x′)− (x− x′) ≥ 0

as claimed. It follows that the map max: R2 → R is continuous (because we can take δ = ε in the criterion
of Proposition 3.9). We can also see that the map min: R2 → R is continuous, either by a parallel argument,
or by using the identity min(x, y) = −max(−x,−y).

Next, suppose we have a point (x, y) ∈ R2 and a constant ε > 0. Put δ = min(ε/(|x| + |y| + 1), 1). If
d((x, y), (x′, y′)) < δ we find that

d(µ(x, y), µ(x′, y′)) = |x′y′ − xy| = |(x′ − x)y + (y′ − y)x+ (x′ − x)(y′ − y)|
≤ |x′ − x||y|+ |y′ − y||x|+ |x′ − x||y′ − y| < δ|y|+ δ|x|+ δ2

≤ δ(|x|+ |y|+ 1) ≤ ε.

It follows from this that µ is continuous. Now consider ν. Suppose we have x ∈ R \ {0} and ε > 0. Put
δ = min(|x|/2, ε|x|2/2), and suppose that d(x′, x) < δ. We have the triangle inequality

|x| = |(x− x′) + x′| ≤ |x− x′|+ |x′| < |x|/2 + |x′|,

which can be rearranged to give |x′| > |x|/2. We also have

d(ν(x), ν(x′)) =

∣∣∣∣x′ − xxx′

∣∣∣∣ ≤ 2

|x|2
|x− x′| < 2

|x|2
δ ≤ ε.

It follows that ν is also continuous. Finally, consider ρ. Suppose we have x ≥ 0 and ε > 0. If x = 0 we
just take δ = ε2 > 0; then for x′ ∈ [0,∞) with |x − x′| < δ we have 0 ≤ x′ < ε2 and so 0 ≤

√
x′ < ε, so

|ρ(x′)− ρ(x)| < ε as required. Suppose instead that x > 0. Put δ = ε
√
x. For all x′ ≥ 0 we note that

(
√
x′ −

√
x)(
√
x′ +

√
x) = x′ − x,

so

|
√
x′ −

√
x| = |x′ − x|√

x′ +
√
x
≤ |x

′ − x|√
x

.

Thus, if |x′ − x| < δ we have |ρ(x′)− ρ(x)| < ε, as required. �

Corollary 3.11. [cor-CX-ops]
Let X be any space, and let f, g : X → R be continuous maps. Then the maps

fg, f + g,max(f, g),min(f, g) : X → R

are all continuous. Moreover, if f(x) 6= 0 for all x ∈ X then 1/f : X → R is also continuous, and if f(x) ≥ 0
for all x then

√
f is continuous.
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Proof. Consider the map h : X → R2 given by h(x) = (f(x), g(x)). Consider a basic open set V =
OBε(a, b) ⊂ R2 (where ε > 0 and a, b ∈ R). We have h(x) ∈ V iff max(|f(x) − a|, |g(x) − b|) < ε iff
f(x) ∈ OBε(a) and g(x) ∈ OBε(b), so h−1OBε(a, b) = (f−1OBε(a)) ∩ (g−1OBε(b)). As f and g are
continuous, the sets f−1OBε(a) and g−1OBε(b) are open, so the same is true of h−1OBε(a, b). Thus, the
map h is continuous by Proposition 3.8. It follows by Proposition 3.5 that the maps f+g = σ ◦h, fg = µ◦h,
max(f, g) = max ◦h and min(f, g) = min ◦h are also continuous. Similarly, if f is everywhere nonzero then
we can regard f as a continuous map X → R \ {0} and ν : R \ {0} → R is continuous so 1/f = ν ◦ f is also
continuous. The proof for

√
f is essentially the same. �

Proposition 3.12. [eg-poly-cts]
Let f : R→ R be a polynomial function; then f is continuous.

Proof. One approach is to start with the fact that constant maps and the identity map are continuous,
and then prove that polynomials of degree d are continuous by induction on d using Corollary 3.11. Here,
however, we will explain a more direct proof, using the criterion in Proposition 3.9.

As f is polynomial, we can write it in the form f(x) =
∑n
i=0 aix

i say. Suppose we are given x ∈ R and
ε > 0. We have

f(x+ u) =

n∑
i=0

ai(x+ u)i =
n∑
i=0

i∑
j=0

(
i
j

)
aix

i−juj ,

which can be rewritten as
∑n
j=0 bju

j for certain numbers bj . Note in particular that f(x) = f(x+ 0) = b0.

Put δ = min(1, ε/
∑n
j=1 |bj |). If |u| < δ then |u| < 1 so |uj | ≤ |u| for all j > 0, so

|f(x+ u)− f(x)| =

∣∣∣∣∣∣
 n∑
j=0

bju
j

− b0
∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

bju
j

∣∣∣∣∣∣ ≤
n∑
j=1

|bj ||u| < ε

as required. �

Proposition 3.13. [prop-lin-cts]
Let V and W be vector spaces over R, and let f : V → W be a linear map. Then f is continuous with

respect to the linear topologies on V and W .

Proof. We first recall the basic definitions: for each linear map ψ : W → R and each pair of real
numbers a, b with a < b, we put

U(ψ, a, b) = {w ∈W : a < ψ(w) < b}.
We then let σW denote the family of all sets of this form, and we let τW denote the topology with σW as a
subbasis. Now it is clear that f−1(U(ψ, a, b)) = U(ψ ◦ f, a, b) ∈ σV , so the preimage under f of any subbasic
open set is a subbasic open set in V . It follows by Proposition 3.8 that f is continuous. �

Definition 3.14. [defn-seq-cts]
Let X and Y be topological spaces. We say that a map f : X → Y is sequentially continuous if it has

the following property: for every sequence x in X and every point a ∈ X such that x converges to a, the
sequence (f(xn))n∈N converges to f(a).

Proposition 3.15. [prop-seq-cts]
Any continuous map is sequentially continuous. Conversely, if X is first countable, then any sequentially

continuous map from X to Y is continuous. (In particular, this holds if X is a metric space.)

Proof. First let X and Y be arbitrary, and let f : X → Y be continuous. Consider a sequence x in X
converging to a point a ∈ X. Consider a neighbourhood V of f(a). Then the set U = f−1(V ) ⊆ X is open
(because f is continuous) and contains a. It follows that there is some N ∈ N such that xn ∈ U whenever
n ≥ N . By the definition of U , this means that f(xn) ∈ V whenever n ≥ N . This means that the sequence
(f(xn))n∈N converges to f(a), as required.

Now suppose that X is first countable, and consider the converse. Let F be a closed subset of Y . By
Remark 3.4, it will be enough to show that f−1(F ) is closed. Thus, by Proposition 2.72, it will be enough
to show that f−1(F ) is sequentially closed. Consider a sequence (xn)n∈N in f−1(F ) converging to a point
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a ∈ X. As f is sequentially continuous, we see that f(xn) converges to f(a) in Y . As xn ∈ f−1(F ), we
see that the points f(xn) lie in the closed set F , so the limit f(a) must also lie in F , so a ∈ f−1(F ) as
required. �

Definition 3.16. [defn-lipschitz]
Let f : X → Y be a function between metric spaces. We say that f is Lipschitz if there is a constant

K > 0 (called a Lipschitz constant) such that d(f(x), f(x′)) ≤ Kd(x, x′) for all x, x′ ∈ X.

Proposition 3.17. [prop-lipschitz]
If f : X → Y is Lipschitz, then it is continuous.

Proof. Let K be a Lipschitz constant. Then in the criterion of Proposition 3.9, we can just take
δ = ε/K. �

Example 3.18. [eg-not-lipschitz]
To see that this argument is not reversible, consider the map f : R+ → R+ given by f(x) = x2. Then

for x 6= y we have
d(f(x), f(y)

d(x, y)
=
|x2 − y2|
|x− y|

= |x+ y|,

which can be arbitrarily large. This means that f is not Lipschitz. It is, however, continuous by Example 3.12.

Remark 3.19. [rem-cat-lipschitz]
Let X, Y and Z be metric spaces. We write Lipschitz(X,Y ) for the set of Lipschitz maps from X to

Y , and Lipschitz1(X,Y ) for the subset of maps where d(f(x), f(x′)) ≤ d(x, x′), so that 1 is a Lipschitz
constant for f . It is then clear that

Lipschitz1(X,Y ) ⊆ Lipschitz(X,Y ) ⊆MetricSpaces(X,Y ).

Moreover, if f : X → Y has Lipschitz constant K and g : Y → Z has Lipschitz constant L, then LK is a
Lipschitz constant for g ◦ f : X → Z; and we also have 1X ∈ Lipschitz1(X,X). This means that we have
wide subcategories

Lipschitz1 ⊆ Lipschitz ⊆MetricSpaces .

Definition 3.20. [defn-homeo]
A map f : X −→ Y is a homeomorphism if and only if it is bijective and both f and f−1 are continuous.

Two spaces X and Y are homeomorphic if and only if there is a homeomorphism from one to the other.

Proposition 3.21. [prop-interval-homeo]
There are homeomorphisms

(0, 1)
f−→ (0,∞)

g−→ R
given by

f(x) =
x

1− x
f−1(y) =

y

1 + y

g(y) =
y − y−1

2
g−1(z) =

√
1 + z2 + z

gf(x) =
2x− 1

2x(1− x)
(gf)−1(z) =

z +
√

1 + z2

1 + z +
√

1 + z2
.

Proof. First note that the definition of f(x) is meaningful, because the denominator 1 − x does not
vanish for x ∈ (0, 1). Similarly, the definition of g(y) is meaningful, and the expression for gf(x) can
be checked by straightforward algebra. We also have a well-defined function f1 : (0,∞) → R given by
f1(y) = y/(1 + y), and for y > 0 we can divide the inequalities 0 < y < 1 + y by the positive number
1 + y to obtain 0 < f1(y) < 1, so we can regard f1 as a map (0,∞) → (0, 1). It is again straightforward
algebra to check that f1(f(x)) = x and f(f1(y)) = y, so f : (0, 1) → (0,∞) is a bijection with inverse f1.

Next, for any z ∈ R we know that 1 + z2 > z2 ≥ 0 so
√

1 + z2 is defined and
√

1 + z2 >
√
z2 = |z| ≥ 0, so√

1 + z2+z > |z|+z = 2 max(0, z) ≥ 0. We can thus define a function g1 : R→ (0,∞) by g1(z) =
√

1 + z2+z.

Note that (
√

1 + z2 + z)(
√

1 + z2 − z) = 1, and from this it follows that g(g1(z)) = z. It is also easy to see
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that when y ∈ (0,∞) we have g(y)2 + 1 = ((y+ y−1)/2)2 and (y+ y−1)/2 > 0 so
√
g(y)2 + 1 = (y+ y−1)/2;

from this it follows that g1(g(y)) = y. Thus, the function g : (0,∞) → R is a bijection with inverse g1. It
follows that gf is a bijection with inverse

(gf)−1(z) = f1(g1(z)) =
z +
√

1 + z2

1 + z +
√

1 + z2
.

By repeated use of Corollary 3.11, we see that all the functions considered are continuous. As f and f−1 = f1

are both continuous, we see that f is a homeomorphism. Similarly, g and gf are both homeomorphisms, by
the same argument. �

Remark 3.22. There are also homeomorphisms

exp: R→ (0,∞)

log : (0,∞)→ R
tan: (−π/2, π/2)→ R

tanh: R→ (−1, 1).

However, one needs various digressions in real analysis to justify these.

Example 3.23. [eg-three-homeo]
In Example 2.17 we discussed the 29 possible topologies on the set X = {0, 1, 2}. For example, under

case (c) we had the three topologies

γ0 = {∅, {0}, {0, 1, 2}}
γ1 = {∅, {1}, {0, 1, 2}}
γ2 = {∅, {2}, {0, 1, 2}}.

We can define a homeomorphism f : (X, γ0) → (X, γ1) by f(0) = 1 and f(1) = 2 and f(2) = 0. The same
function f also gives a homeomorphism (X, γ1) → (X, γ2), so all the spaces (X, γi) are homeomorphic to
each other. By a straightforward extension of this, we see that the 29 different topologies fall into nine
homeomorphism types, corresponding to the nine cases (a) to (i) in Example 2.17.

Example 3.24. [eg-padic-cts]
Give Z the p-adic topology as in Examples 2.26 and 2.43. Consider the maps

σ : Z2 −→ Z σ(x, y) = x+ y

µ : Z2 −→ Z µ(x, y) = xy

max,min: Z2 −→ Z

We claim that σ and µ are continuous, whereas max and min are not. Indeed, it is clear that if x = x′

(mod pv) and y = y′ (mod pv) then x + y = x′ + y′ (mod pv) and also xy = x′y′ (mod pv). Now use the
p-adic metric d on Z, and the metric

d((x, y), (x′, y′)) = max(d(x, x′), d(y, y′))

on Z× Z. The above congruences then tell us that

d(σ(x, y), σ(x′, y′)) ≤ d((x, y), (x′, y′))

d(µ(x, y), µ(x′, y′)) ≤ d((x, y), (x′, y′)),

so σ and µ are Lipschitz and therefore continuous.
Now put V = pZ = {n ∈ Z : n = 0 (mod p)}, which is open in Z, and put

U = max−1(V ) = {(n,m) ∈ Z2 : max(n,m) = 0 (mod p)}.

Now (1, p) ∈ U , but every basic open neighbourhood of (1, p) contains points of the form (1 +pn, p) for large
n, and max(1 + pn, p) = 1 + pn 6= 0 (mod p) so (1 + pn, p) 6∈ U . This shows that U is not open, so max is
not continuous. A similar argument works for min.
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Example 3.25. [eg-shift-maps]
Let X be the space of binary sequences, as in Examples 2.6 and 2.42. Define left and right shift maps

L,R : X → X by

L(x0, x1, x2, x3, . . . ) = (x1, x2, x3, x4 . . . )

R(x0, x1, x2, x3, . . . ) = (0, x0, x1, x2, . . . ).

We claim that these are continuous. Indeed, if we use the metric defined in Example 2.42, we find that
d(R(x), R(y)) = d(x, y)/2, whereas d(L(x), L(y)) ≤ 2d(x, y), so both L and R are Lipschitz. Now define
F : X → R by

F (x) =

∞∑
i=0

2xi/3
i.

We claim that this is also continuous. To see this, consider an open set V ⊆ R and a point x ∈ F−1(V ). As
F (x) ∈ V and V is open we can find ε > 0 such that OBε(F (x)) ⊆ V . We can then find n ∈ N such that
31−n < ε. Suppose that y ∈ Cn(x); then

d(F (y), F (x)) = |F (y)− F (x)| =

∣∣∣∣∣
∞∑
i=n

2(xi − yi)/3i
∣∣∣∣∣ ≤

∞∑
i=n

2|xi − yi|/3i ≤
2

3n

∞∑
j=0

3−j

=
2

3n
1

1− 1/3
=

1

3n−1
< ε,

so F (y) ∈ V . This shows that Cn(x) ⊆ F−1(V ), and we conclude that F−1(V ) is open, as required. The
image of F is known as the Cantor set.

Proposition 3.26. [prop-linear-iso]
Let V be a vector space over R of dimension n <∞. Then V (with the linear topology) is homeomorphic

to Rn (with the linear topology, which is the same as the standard topology).

Proof. By standard linear algebra, there is a linear isomorphism f : Rn → V . Now f−1 is also linear,
so f and f−1 are both continuous with respect to the linear topologies, so they are homeomorphisms. We
also know from Proposition 2.32 that the linear topology on Rn is the same as the standard one. �

Remark 3.27. [rem-not-homeo]
It is surprisingly difficult to prove that two spaces are not homeomorphic, even in cases where this seems

visually obvious. To address such questions in a systematic way, we need methods from algebraic topology,
most of which are outside the scope of this book. However, we will prove some non-homeomorphism results
by ad hoc methods, for example in Section 8.1.

Exercise 3.1. [ex-dense]

(a) Give an example of a countable dense subset of R.
(b) Prove that two continuous functions f and g from R to R which agree on a dense set are equal.
(c) Suppose that f : R −→ R is continuous and that f(x) + f(y) = f(x+ y) for all x and y in R. Prove

that f(x) = f(1)x for all x.

Solution:

(a) Q is a countable dense subset of R.
(b) Suppose that X ⊆ R is dense, and that we are given two continuous functions f and g from R to

R which agree on X. Put h(x) = f(x)− g(x), which gives a continuous function by Corollary 3.11.
It follows that the set Y = h−1({0}) is closed in R. For x ∈ X we have f(x) = g(x) so h(x) = 0,
which means that X ⊆ Y . As Y is closed, it follows that X ⊆ Y , but X is dense, so X = R, so
Y = R. This means that h(R) = 0, or equivalently f = g.

(c) Suppose that f : R −→ R is continuous and that f(x) + f(y) = f(x + y) for all x and y in R.
Put g(x) = f(x) − f(1)x. Corollary 3.11 tells us that g is continuous, and it is easy to see that
g(x + y) = g(x) + g(y). In particular, we have g(0) = g(0 + 0) = g(0) + g(0), which means that
g(0) = 0. We can use this to start an induction to show that g(nx) = n g(x) for all n ∈ N.

30



By construction we also have g(1) = f(1) − f(1) = 0. This means that for n > 0 we have
n g(1/n) = g(1) = 0, so g(1/n) = 0. It follows in turn that g(m/n) = 0 for all m ∈ N, or in other
words g(q) = 0 for all nonnegative rationals q. This gives g(−q) = g(q) + g(−q) = g(0) = 0, so
g(Q) = 0. As g is continuous and Q is dense, we deduce that g = 0, so f(x) = f(1)x for all x as
claimed.

3.1. Spaces of continuous functions. It is an important idea that various sets of continuous functions
can themselves be regarded as topological spaces. A very general and powerful version of this idea will be
discussed in Section 23. For the moment we will consider some more restricted versions.

Definition 3.28. [defn-CXY-metric]
Let X be a topological space, and let Y be a metric space. Let C(X,Y ) be the set of continuous functions

from X to Y . For f, g ∈ C(X,Y ) we put

d(f, g) = sup{d(f(x), g(x)) : x ∈ X}.
Note that we are taking the supremum of a set that may be unbounded, so the result may be infinite. We
will often write C(X) for C(X,R).

Proposition 3.29. [prop-CXY-metric]
The above definition gives a metric on C(X,Y ). (The corresponding topology is called the topology of

uniform convergence.)

Proof. Axioms M0 and M1 are clear. For the triangle inequality, suppose we have elements f, g, h ∈
C(X,Y ). For each x ∈ X we can apply the triangle inequality in Y together with the inequalities
d(f(x), g(x)) ≤ d(f, g) and d(g(x), h(x)) ≤ d(g, h) to get

d(f(x), h(x)) ≤ d(f(x), g(x)) + d(g(x), h(x)) ≤ d(f, g) + d(g, h).

This means that d(f, g) + d(g, h) is an upper bound for the values d(f(x), h(x)), so it is at least as large as
the least upper bound, so d(f, h) ≤ d(f, g) + d(g, h). This proves M2. Finally, if d(f, g) = 0 then we must
have d(f(x), g(x)) = 0 for all x, so f(x) = g(x) by axiom M3 for Y , so f = g. �

Example 3.30. [eg-function-metrics]
Now consider the set X = C([0, 1],R). We can define metrics d1, d2 and d∞ on X by dp(f, g) = ‖f−g‖p,

where

‖f‖1 =

∫ 1

x=0

|f(x)| dx

‖f‖2 =

(∫ 1

x=0

f(x)2 dx

)1/2

‖f‖∞ = sup{|f(x)| : 0 ≤ x ≤ 1}.
Thus d∞ is as in Definition 3.28, but the other two are different. In Corollary 10.33 we will prove the
well-known fact that ‖f‖∞ is finite, and it follows that the other two are finite as well. These metrics are not
strongly equivalent, and in fact they define different topologies (all of which are used for different purposes
in functional analysis). To see this, suppose that a ∈ [0, 1/2], and let fa be the function whose graph is a
triangle with vertices (0, 0), (a, 1) and (2a, 0).

0

1

0 a 2a 1
x

f(x)
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We find that

‖fa‖1 = a

‖fa‖2 =
√

2a/3

‖fa‖∞ = 1.

Using this we see that ‖fa‖∞/‖fa‖2 and ‖fa‖2/‖fa‖1 can both be arbitrarily large.
We can use similar formulae to define semimetrics on various spaces of functions that are integrable

but not continuous. Often these are not metrics. For example, if f is the function given by f(0) = 1 and
f(x) = 0 for 0 < x ≤ 1 then f 6= 0 but d2(f, 0) = 0. In this context it is usual to use Remark 2.34 to pass
to a quotient set where there is a genuine metric.

We now pause briefly to discuss a common theme in Definition 2.48 and Example 3.30.

Definition 3.31. [defn-norm]
Let K be R or C, and let V be a vector space over K. A norm on V is a map φ : V → [0,∞) such that

N0: φ(tx) = |t|φ(x) for all t ∈ K and x ∈ V .
N1: φ(x+ y) ≤ φ(x) + φ(y) for all x, y ∈ V .
N2: φ(x) = 0 if and only if x = 0.

A seminorm is a function that satisfies N0 and N1 but not necessarily N2. We write

B(V, φ) = {x ∈ V : φ(x) ≤ 1}
S(V, φ) = {x ∈ V : φ(x) = 1}

OB(V, φ) = {x ∈ V : φ(x) < 1}.

We also write dφ(x, y) = φ(x− y). If φ is clear from the context, we just write B(V ), S(V ) and OB(V ) for
the spaces described above, and we may also write ‖x‖ rather than φ(x).

It is clear that Definition 2.48 and Example 3.30 are instances of this construction. More generally, it
is clear that for any seminorm φ the function dφ is a semimetric, and that dφ is a metric iff φ is a norm. In
this context there is a useful criterion for continuity of linear maps, as follows:

Proposition 3.32. [prop-bounded-continuous]
Let V and W be vector spaces equipped with norms, and let f : V → W be a linear map. Then f is

continuous iff there is a constant K such that ‖f(x)‖ ≤ K for all x ∈ B(V ).

Proof. Suppose there exists K as described. For any x ∈ V \ {0} we put u = x/‖x‖ so ‖u‖ = 1, so
‖f(u)‖ ≤ K. We also have ‖f(u)‖ = ‖f(x)/‖x‖‖ = ‖f(x)‖/‖x‖, so we see that ‖f(x)‖ ≤ K‖x‖. This also
holds trivially when x = 0. We thus have

d(f(x), f(y)) = ‖f(x)− f(y)‖ = ‖f(x− y)‖ ≤ K‖x− y‖ = K d(x, y),

so f is Lipschitz and therefore continuous.
Conversely, suppose that f is continuous. In the standard metric criterion for continuity (Proposition 3.9)

we can take x = 0 and ε = 1; we conclude that there exists δ > 0 such that ‖f(x)‖ < 1 whenever ‖x‖ < δ.
It follows that the number K = 1/δ has the required property. �

We will see in Corollary 10.37 that if V is finite-dimensional, then any linear map f : V → W is
continuous.

Definition 3.33. [defn-operator-norm]
Let K be R or C, and let V andW be normed vector spaces over K. We write Homc(V,W ) or Homc

K(V,W )
for the set of continuous linear maps from V to W . For f ∈ Homc(V,W ) we put

‖f‖op = sup{‖f(v)‖ : v ∈ V, ‖v‖ ≤ 1},
noting that this is finite by Proposition 3.32. We call this the operator norm of f . It is clear that ‖f(v)‖ ≤
‖fop‖‖v‖ for all v ∈ V . Where there is no danger of confusion, we will write ‖f‖ rather than ‖f‖op. We will
also write V ∗ = Homc(V,K), and call this the continuous dual of V .
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Proposition 3.34. [prop-operator-norm]
Homc(V,W ) is a vector space, and the operator norm is a norm. Moreover, for continuous linear maps

U
g−→ V

f−→W we have ‖fg‖op ≤ ‖f‖op‖g‖op.

Proof. Suppose that f, g ∈ Homc(V,W ). It is clear that the map h = f + g is linear, and for v ∈ V we
have

‖h(v)‖ = ‖f(v) + g(v)‖ ≤ ‖f(v)‖+ ‖g(v)‖ ≤ ‖f‖op‖v‖+ ‖g‖op‖v‖ = (‖f‖op + ‖g‖op)‖v‖.

This proves that f + g ∈ Homc(V,W ) with ‖f + g‖op ≤ ‖f‖op + ‖g‖op. Similarly, for t ∈ K we have
tf ∈ Homc(V,W ) with ‖tf‖op = |t|‖f‖op. This proves that Homc(V,W ) is a vector space and that the
operator norm is at least a seminorm. It is also clear that ‖f‖op can only vanish if f = 0, so in fact we have
a norm.

Now suppose we have continuous linear maps U
g−→ V

f−→W . For u ∈ U we have

‖fg(u)‖ ≤ ‖f‖op‖g(u)‖ ≤ ‖f‖op‖g‖op‖u‖,

so ‖fg‖op ≤ ‖f‖op‖g‖op as claimed. �

It is sometimes useful to define a topology using not just a single metric, but a whole family of them.

Definition 3.35. [defn-metrics-topology]
Let D = (di)i∈I be a family of semimetrics on X. Put

U(i, ε, x) = {y ∈ X : di(x, y) < ε}.

More generally, for any finite subset J ⊆ I we put

U(J, ε, x) = {y ∈ X : dj(x, y) < ε for all j ∈ J} =
⋂
j∈J

U(j, ε, x).

Note that U({i}, ε, x) = U(i, ε, x) and

x ∈ U(J ∪K,min(ε, δ), x) ⊆ U(J, ε, x) ∩ U(K, δ, x).

Now put

σD = {U(i, ε, x) : i ∈ I, ε > 0, x ∈ X}
βD = {U(J, ε, x) : J ⊆ I finite , ε > 0, x ∈ X}.

We let τD be the topology with subbasis σD, and note that βD is a basis for this topology.

Proposition 3.36. [prop-metrics-topology]
Let D = (di)i∈I be a family of semimetrics as above, and suppose that the index set I is countable. Then

there is a single semimetric d on X that defines the same topology as D.

Proof. We will assume that I is infinite; the finite case is similar but easier and is left to the reader.
We can then choose a bijection from N to I, so it will be harmless to assume that I = N. We then put
d(x, y) =

∑
n min(2−n, dn(x, y)), and note that this is a convergent sum, with d(x, y) ≤ 2. It is clear that

d(x, y) = d(y, x) ≥ 0 and d(x, x) = 0. For any three points x, y, z Proposition 2.44 tells us that

min(2−n, dn(x, z)) ≤ min(2−n, dn(x, y)) + min(2−n, dn(y, z))

and by adding these inequalities we see that d(x, z) ≤ d(x, y) + d(y, z). Thus, d is a semimetric. (It is also
clear that d(x, y) = 0 iff dn(x, y) = 0 for all n, so quite often d will be a metric even if the dn individually
are only semimetrics.)

Suppose that V is d-open, and that x ∈ V . We can then find δ > 0 such that y ∈ V whenever d(x, y) < δ.
Choose m > 0 such that 2−m < δ. Put J = {0, 1, . . . ,m} and ε = (δ − 2−m)/(m+ 1). If dj(x, y) < ε for all
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j ∈ J we have

d(x, y) =

∞∑
j=0

min(2−j , dj(x, y))

≤
m∑
j=0

dj(x, y) +

∞∑
j=m+1

2−j

<

 m∑
j=0

δ − 2−m

m+ 1

+ 2−m = δ,

so y ∈ V . This proves that U(J, ε, x) ⊆ V , and we conclude that V is D-open.
Conversely, suppose that V is D-open, and that x ∈ U . We can thus find a finite set J ⊂ N and a

number δ > 0 such that U(J, ε, x) ⊆ V . Let m be the largest element of J and put ε = min(δ, 2−m). Suppose
that d(x, y) < ε. For each j ∈ J we have min(2−j , dj(x, y)) ≤ d(x, y) < ε but 2−j ≥ 2−m ≥ ε so we must
have dj(x, y) < ε. As this holds for all j ∈ J , we have y ∈ V . This proves that OBε(x) ⊆ V , and we conclude
that V is d-open, as required. �

The definition of τD can be simplified if the semimetrics in D are all comparable with each other, as
shown by the following result.

Lemma 3.37. [lem-comparable-semimetrics]
Suppose we have a sequence of semimetrics d0, d1, . . . on X such that for all x and y we have

d0(x, y) ≤ d1(x, y) ≤ d2(x, y) ≤ · · · .

Then the subbasis σD = {U(n, ε, x) : n ∈ N, ε > 0, x ∈ X} for τD is actually a basis.

Proof. The inequalities di+1 ≥ di imply that U(J, ε, x) = U(max(J), ε, x). �

Example 3.38. [eg-locally-uniform]
For each n ∈ N we can define a semimetric dn on C(R) by

dn(f, g) = sup{|f(x)− g(x)| : x ∈ [−n, n]}.

The topology determined by this family of semimetrics is called the topology of locally uniform convergence
on C(R). It is clear here that di(x, y) ≤ di+1(x, y), so Lemma 3.37 is applicable.

Example 3.39. [eg-smooth-space]
Recall that a function f : R→ R is said to be smooth (or infinitely differentiable) if there are continuous

functions f (k)(x) for all k ≥ 0 such that f (0) = f and each f (k) is differentiable with derivative f (k+1). We
write C∞(R) for the set of all smooth functions. For n,m ∈ N we put

‖f‖n,m = sup{|f (n)(x)| : x ∈ [−m,m]},

and dn,m(f, g) = ‖f − g‖n,m. This family of semimetrics gives a topology τ on C∞(R), called the topology
of locally uniform convergence of all derivatives.

Example 3.40. [eg-holomorphic-metric]
Put U = {z ∈ C : |z| < 1}, and let H(U) denote the space of holomorphic functions on U . For any r

with 0 < r < 1 we put

‖f‖r = sup{|f(z)| : |z| = r} = sup{|f(z)| : |z| ≤ r}.
(The two definitions are the same by the Maximum Modulus Principle from complex analysis.) The second
description shows that if ‖f‖r = 0 then f = 0 on the disc {z : |z| < r} and so all derivatives of f vanish
on that disc, so the Taylor series of f is zero, so f = 0. Given this, it is not hard to see that the function
dr(f, g) = ‖f − g‖r gives a metric on H(U), and that dr(f, g) ≤ ds(f, g) whenever 0 < r < s < 1. By
considering the functions fn(z) = zn, we see that ‖f‖s/‖f‖r can be arbitrarily large, so we have a family of
inequivalent metrics. The most useful topology on H(U) is the one determined by the whole family.
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3.2. Operators. Let A and B be spaces of functions of some kind. Continuous maps F : A → B are
often called operators, and continuous functions G : A → R are often called functionals. We now discuss
some examples.

Example 3.41. Let C([0, 1]) be the space of continuous functions f : [0, 1]→ R, with the metric d∞ as
in Example 3.30. We can define maps I,Rn, Tn : C([0, 1])→ R (for n > 0) by

I(f) =

∫ 1

0

f(x) dx

Rn(f) =
1

n

n∑
k=1

f

(
2k − 1

2n

)

Tn(f) =
1

n

(
1

2
f(0) +

n−1∑
k=1

f(k/n) +
1

2
f(1)

)
(so Rn(f) and Tn(f) are the approximations to I(f) given by the rectangle rule and the trapezium rule,
respectively). We claim that these maps are all Lipschitz (with constant one) and thus continuous. To see
this, consider a pair of functions f, g ∈ C([0, 1]), and put h = f − g and , so r = ‖h‖∞ = d(f, g) ∈ R. In the
case of I, we have

|I(f)− I(g)| = |I(h)| =
∣∣∣∣∫ 1

0

h(x) dx

∣∣∣∣ ≤ ∫ 1

0

|h(x)| dx ≤
∫ 1

0

r dx = r = d(f, g),

as required. In the case of Rn, the real point is again to prove that |Rn(h)| ≤ r. For this we note that
|h((2k − 1)/(2n))| ≤ r for all k by the definition of r, so

|Rn(h)| = n−1

∣∣∣∣∣
n∑
k=1

h((2k − 1)/(2n))

∣∣∣∣∣ ≤ n−1
n∑
k=1

|h((2k − 1)/(2n))| ≤ n−1
n∑
k=1

r = r,

as required. The proof for Tn is similar.

Example 3.42. [eg-integral-continuous]
We next define J : C([0, r])→ C([0, r]) by

J(f)(x) =

∫ x

t=0

f(t) dt.

If d(f, g) ≤ ε we have

|J(f)(x)− J(g)(x)| =
∣∣∣∣∫ x

t=0

f(t)− g(t) dt

∣∣∣∣ ≤ ∫ x

t=0

|f(t)− g(t)| dt ≤
∫ x

t=0

ε = xε ≤ rε.

It follows that J is Lipschitz (with Lipschitz constant r) and therefore continuous. This is the simplest
possible example of an integral operator ; these are important in the general theory of differential equations.

Example 3.43. [eg-integral-continuous-ii]
Now consider instead the space C(R), and define J : C(R)→ C(R) by the same formula as above. If we

give C(R) the topology of uniform convergence (corresponding to the metric d∞), then J is not continuous.
To see this, note that the sequence of constant functions 1/n converges to zero, but J(1/n)(x) = x/n (which
is unbounded) so d(J(1/n), J(0)) =∞, so J(1/n) 6→ J(0).

However, we claim that J is continuous with respect to the topology of locally uniform convergence, as
described in Example 3.38. Recall that this is determined by the increasing family of semimetrics dn, where

dn(f, g) = sup{|f(x)− g(x)| : x ∈ [−n, n]}.

As in the previous example, we have dn(J(f), J(g)) ≤ ndn(f, g).
Consider an open set U ⊆ C(R), and an element f ∈ J−1(U). We then have J(f) ∈ U so there exists

n > 0 and ε > 0 such that p ∈ U whenever dn(J(f), p) < ε. If dn(f, g) < ε/n we find that dn(J(f), J(g)) < ε
so J(g) ∈ U so g ∈ J−1(U). This shows that J−1(U) is open, as required.
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Example 3.44. [eg-shift-operator]
Fix a constant a ∈ R. We can define a shift operator Sa : C(R)→ C(R) by (Sa(f))(x) = f(x− a). For

example, we have Sπ/2(cos) = sin and Sπ(cos) = − cos and S1(exp) = e−1. exp. It is clear that Sa is bijective,
with inverse S−a. We also have d∞(Sa(f), Sa(g)) = d∞(f, g), so Sa is an isometric isomorphism from C(R)
to itself. This means that it is a homeomorphism with respect to the topology of uniform convergence. One
can also check that it is a homeomorphism with respect to the topology of locally uniform convergence, but
we will leave this as an exercise for the reader.

Example 3.45. [eg-evaluation]
Consider a space X and a point a ∈ X. We can define an evaluation functional eva : C(X) → R by

eva(f) = f(a). For example, consider the space X = [0, 2π] and the function f(x) = x2/6. We then have

evπ(sin) = 0

evπ(cos) = −1

evπ(f) = π2/6.

It is clear that

| eva(f)− eva(g)| = |f(a)− g(a)| ≤ sup{|f(x)− g(x)| : x ∈ X} = d(f, g).

This means that 1 is a Lipschitz constant for eva, so eva is continuous.

Example 3.46. [eg-diff-discts]
Let C1([0, 1]) denote the set of differentiable functions from [0, 1] to R. We can use the metric d∞(f, g) =

sup{|f(x) − g(x)| : x ∈ [0, 1]} to make this a topological space, just as with C([0, 1]). We can then
define D : C1([0, 1]) → C([0, 1]) by D(f) = f ′. However, this is not continuous. To see this, put fn(x) =
sin(2πn2x)/n, so f ′n(x) = 2πn cos(2πn2x). We find that d(fn, 0) = 1/n but d(D(fn), 0) = 2πn, so fn → 0
but D(fn) 6→ D(0).

Example 3.47. [eg-diff-cts]
Now consider instead the space C∞(R) with the topology discussed in Example 3.39. We can again

define D : C∞(R) → C∞(R) by D(f) = f ′. We claim that in this context, D is continuous. Indeed, by
Proposition 3.8 it will suffice to check that the preimage under D of the subbasic open set

U((n,m), ε, f) = {g : dn,m(f, g) < ε}
is open. Suppose that p ∈ D−1(U((n,m), ε, f)), so the number δ = ε− dn,m(p′, f) is strictly positive. Note
that by definition we have dn,m(q′, p′) = dn+1,m(q, p). Thus, if dn+1,m(q, p) < δ then

dn,m(q′, f) ≤ dn,m(q′, p′) + dn,m(p′, f) = dn+1,m(q, p) + (ε− δ) < δ + (ε− δ) = ε.

This proves that U((n + 1,m), p, δ) ⊆ D−1(U((n,m), ε, f)), and we conclude that D−1(U((n,m), ε, f)) is
open as required.

We now discuss another context in which differentiation is continuous.

Example 3.48. [eg-holomorphic-diff]
Let H(U) be the set of functions that are holomorphic on the open unit disc in C, topologised using the

family of metrics
dr(f, g) = ‖f − g‖r = sup{|f(z)− g(z)| : |z| ≤ r}

(for 0 < r < 1) as in Example 3.40. We claim that D : H(U) → H(U) is continuous. The key point is as
follows: suppose we have 0 < r < s < 1 and |z| ≤ r. Standard complex analysis then gives the integral
formula

f ′(z) =
1

2πi

∮
|w|=s

f(w)

(z − w)2
dw.

The length of the contour where |w| = s is 2πs. For z on this contour we have |f(w)| ≤ ‖f‖s and |w−z| ≥ s−r,
so 1/|w − z|2 ≤ 1/(s− r)2. From this we deduce that

|f ′(z)| ≤ 1

2π
2πs

‖f‖s
(s− r)2

=
s

(s− r)2
‖f‖s.

36



As z was an arbitrary point with |z| ≤ r, this means that ‖f ′‖r ≤ s(s− r)−2‖f‖s.
Now suppose we have an open set V ⊆ H(U), and an element f ∈ D−1(V ). As V is open there exists

r and ε such that p ∈ V whenever ‖p − f ′‖r < ε. Choose any s with r < s < 1, and put δ = (s − r)2ε/s.
If ‖g − f‖s < δ we deduce that ‖g′ − f ′‖r < ε and so g′ ∈ V , so g ∈ D−1(V ). This proves that D−1(V ) is
open, as required.

4. Other Properties of Maps

Definition 4.1. [defn-more-maps]
Let f : X → Y be a map between topological spaces.

(a) We recall for convenience of comparison that f is said to be continuous if for every open set V ⊆ Y ,
the preimage f−1(V ) is open in X.

(b) We say that f is an embedding if it is injective and continuous, and every open set U ⊆ X has the
form U = f−1(V ) for some open subset V ⊆ Y .

(c) We say that f is a quotient map if it is surjective and continuous, and whenever V ⊆ Y and f−1(V )
is open in X, the set V is itself open in Y .

(d) We say that f is proper if it is continuous, and for any compact subset K ⊆ Y , the preimage
f−1(K) is compact. (Compactness will not be defined until Section 10, but we record the definition
of properness here to keep it together with other similar properties of maps.)

(e) We say that f is open if for every open set U ⊆ X, the image f(U) is open in Y .
(f) We say that f is closed if for every closed set F ⊆ X, the image f(F ) is closed in Y .

Remark 4.2. [rem-more-maps-complement]
As open sets are precisely the complements of closed sets, and preimages of complements are complements

of preimages, we see that (a) to (c) can be reformulated as follows:

(a’) f is continuous if and only if for every closed set G ⊆ Y the preimage f−1(G) is closed in X. (This
was already discussed in Remark 3.4.)

(b’) f is an embedding if it is injective and continuous, and every closed set F ⊆ X has the form
F = f−1(G) for some closed subset G ⊆ Y .

(c’) f is a quotient map if and only if it is surjective and continuous, and whenever G ⊆ Y and f−1(G)
is closed in X, the set G is itself closed in Y .

We cannot reformulate (e) and (f) in the same way, because the image of the complement need not be the
same as the complement of the image.

Proposition 4.3. [prop-more-maps]

Every homeomorphism has all the above properties. Moreover, if we have maps X
f−→ Y

g−→ Z which both
have one of the above properties, then gf : X → Z also has the same property.

Remark 4.4. This means that we have a wide subcategory of Spaces whose morphisms are all the
embeddings, and similarly for all the other classes of maps.

Proof. This is clear from the definitions. �

We can generalise this slightly as follows.

Proposition 4.5. [prop-retraction]

Suppose we have continuous maps X
j−→ Y

p−→ X with pj = 1X (but not necessarily jp = 1Y ). Then j is
an embedding and p is a quotient map.

Proof. First, if j(x) = j(x′) then we can apply p to both sides and use pj = 1X to see that x = x′.
Thus, j is injective. Similarly, if x ∈ X then x = p(y) for some y, namely y = j(x). Thus p is surjective.
Now suppose we have an open set U ⊆ X. As p is continuous, the set V = p−1(U) is open in Y . We also
have j−1(V ) = j−1(p−1(U)) = (pj)−1(U) = 1−1

X (U) = U , so we see that U = j−1(V ) for some open set V .
This means that j is an embedding. Finally, suppose we have subset U ′ ⊆ X such that the set V ′ = p−1(U ′)
is open in Y . As j is continuous we deduce that j−1(V ′) is open in X. However, just as before we have
j−1(V ′) = U ′, so U ′ is open in X. This proves that p is a quotient map as claimed. �
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Example 4.6. [eg-retraction-not-open]
Consider the following example:

X = [0, 1]× {0} ⊂ R2 j(t, 0) = (t, 0)

T = [1/2, 1)× {1} ⊂ R2

Y = X ∪ T p(t, 0) = p(t, 1) = (t, 0).

X Yj

p

The conditions of Proposition 4.5 are satisfied, so j is an embedding and p is a retraction. Moreover, T is
both open and closed in Y , but p(T ) is neither open nor closed in X. This shows that a quotient map need
not be open or closed.

Proposition 4.7. [prop-open-embedding]
Let f : X → Y be an injective continuous map. If f is either open or closed, then f is an embedding.

Proof. First suppose that f is open. If U ⊆ X is open then the set V = f(U) is open in Y (because f
is open) and U = f−1(V ) (because f is injective). Thus f is an embedding. If we suppose instead that f is
closed, then we can argue in the same way, using Remark 4.2(b’) instead of Definition 4.1(b). �

We will show in Proposition 8.5 that any injective continuous map f : R → R is open, and thus is an
embedding.

Proposition 4.8. [prop-quotient-map]
Let f : X → Y be a surjective continuous map. If f is either open or closed, then f is a quotient map.

Proof. First suppose that f is open. Let V be a subset of Y such that the preimage U = f−1(V )
is open in X. As f is an open map, it follows that f(U) is open in Y . As f is surjective, we have
f(U) = f(f−1(V )) = V , so V is open in Y . This proves that f is a quotient map. If we suppose instead
that f is closed, then we can argue in the same way, using Remark 4.2(c’) instead of Definition 4.1(c). �

Proposition 4.9. [prop-cts-bij]
Let f : X → Y be a bijective continuous map. If f is open, or closed, or an embedding, or a quotient

map, then f is a homeomorphism (and therefore f−1 is continuous).

Proof. As f is bijective, there is an inverse function g : Y → X, and we need to show that g is
continuous. First suppose that f is an embedding. Let U be open in X. As f is an embedding, we have
U = f−1(V ) for some open set V ⊆ Y . As f and g are mutually inverse bijections, this can be rewritten
as V = f(U) or V = g−1(U), so g−1(U) is open in Y . As U was an arbitrary open subset of X, this shows
that g is continuous. This completes the argument when f is an embedding. If f is open or closed then it
is an embedding by Proposition 4.7, so that case is covered as well. Suppose instead that f is a quotient
map. Consider again an open set U ⊆ X and put V = g−1(U) = f(U) ⊆ Y . Note that f−1(V ) = U , which
is open. As f is a quotient map, this means that V is open. In other words, g−1(U) is open for all open
U ⊆ X, so g : Y → X is continuous. �

Proposition 4.10. [prop-embedding-first]

Let X
f−→ Y

g−→ Z be continuous maps, and suppose that gf : X → Z is an embedding. Then f is also an
embedding.

38



Proof. The map f is continuous by hypothesis. If f(x) = f(x′) then certainly gf(x) = gf(x′), but gf
is assumed to be injective, so x = x′. This shows that f is injective. Now suppose that U ⊆ X is open. As
gf is an embedding, there is an open set W ⊆ Z such that U = (gf)−1(W ) = f−1(g−1(W )). Here the set
V = g−1(W ) ⊆ Y is open (because g is assumed continuous) and U = f−1(V ). This means that f is an
embedding as claimed. �

Remark 4.11. [rem-hol-open]
Let U be an open disc in C, and let f : U → C be a nonconstant holomorphic map; then f is open. A

detailed proof can be found in almost any textbook on complex analysis; here we will just give a sketch. Let
γ be a simple closed curve in U . For any a ∈ C such that f ◦ γ does not pass through a, let n(γ, a) be the
number of preimages of a inside γ counted with appropriate multiplicity. It is then a standard fact (known
as the Argument Principle) that

n(γ, a) =
1

2πi

∮
γ

f ′(z)

f(z)− a
dz.

If we move a slightly then the integral will only change slightly, but the integral is constrained to be an
integer so it cannot change at all. In particular, if n(γ, a) > 0 then n(γ, b) > 0 for b sufficiently close to a;
this proves that f is open as claimed.

Remark 4.12. Further results showing that certain classes of maps are open include Corollary 5.30,
Lemma 5.72, Theorem 15.8 and Remark 28.15.

5. Constructs

5.1. Subspaces.

Definition 5.1. [defn-subspace-topology]
Let τ be a topology on a set X, and let Y be a subset of X. We declare that a subset V ⊆ Y is open

in Y if and only if it has the form V = U ∩ Y for some set U ⊆ X that is open in X. This is easily seen to
give a topology on Y , which we call the subspace topology, and denote by τ |Y . By a subspace of X we mean
a subset considered as a topological space using the subspace topology.

Lemma 5.2. [lem-subspace-closed]
A subset G ⊆ Y is closed (for the subspace topology) if and only if it has the form G = F ∩ Y for some

set F ⊆ X that is closed in X.

Proof. If G is closed, it must have the form G = Y \ V , where V is open in Y . This means that
V = U ∩ Y for some open set U ⊆ X. Put F = X \ U ; this is closed in X, and we find that G = F ∩ Y as
required. We leave it to the reader to check that this argument is reversible. �

Remark 5.3. [rem-embedding]
Let Y be a subset of X, and consider it as a topological space using the subspace topology. Write j (or jY

or jY X) for the inclusion map Y −→ X. For any subset A ⊆ X, the preimage j−1(A) is just A∩Y . It follows
that j is an embedding (as in Definition 4.1(c)). We can also reformulate that definition as follows. Suppose
we have a map f : X → Y of topological spaces, and we put X ′ = f(X) ⊆ Y , considered as a topological
space using the subspace topology. We can then regard f as a function f : X → X ′, and f : X → Y is an
embedding if and only if f : X → X ′ is a homeomorphism. In more pernickety notation, we could introduce
a new symbol f ′ for the restricted map X → X ′, and then we would have f = j ◦ f ′, and we would say that
f is an embedding if and only if f ′ is a homeomorphism.

Proposition 5.4. [prop-maps-to-subspace]
Let X be a topological space, and let Y be a subspace of X. Let Z be another topological space, and let

f be a map from Z to Y . Then f is continuous (with respect to the subspace topology on Y ) if and only if
the map j ◦ f : Z → X is continuous. Thus, continuous maps from Z to Y biject with continuous maps from
Z to X with image contained in Y .

Proof. By definition, f is continuous if and only if f−1(V ) is open in Z for every set V ⊆ Y that is
open in the subspace topology. The relevant sets V are precisely those of the form U ∩Y = j−1(U) for some
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set U that is open in X, and we have f−1(j−1(U)) = (j ◦ f)−1(U). Thus, f is continuous if and only if
(j ◦ f)−1(U) is open for all open sets U ⊆ X, and this is equivalent to the continuity of j ◦ f . The rest of
the statement follows directly from this. �

Proposition 5.5. [prop-subspace-basis]
If β is a basis for θ then the set

β|Y = {V ∩ Y : V ∈ β}
is a basis for θ|Y . Moreover, the corresponding result also holds for subbases.

Proof. First suppose that U ∈ τ(β|Y ). This means that for each y ∈ U we can choose Uy ∈ β|Y with
y ∈ Uy ⊆ U . As Uy ∈ β|Y we can choose Vy ∈ β with Uy = Vy ∩ Y . Let V be the union of all the sets Vy, so
V ∈ τ(β) = θ. We also find that V ∩Y is the union of all the sets Vy ∩Y = Uy, or in other words V ∩Y = U ,
which means that U ∈ θ|Y . As U was an arbitrary set in τ(β|Y ), we conclude that τ(β|Y ) ⊆ θ|Y .

In the opposite direction, suppose that U ∈ θ|Y . This means that we can choose V ∈ τ with U = V ∩Y .
If y ∈ U then certainly y ∈ V , and V ∈ θ = τ(β), so we can find Vy ∈ β with y ∈ Vy ⊆ V . We now put
Uy = Vy ∩ Y ∈ β|Y , and observe that y ∈ Uy ⊆ V ∩ Y = U . As y was an arbitrary element of U , it follows
that U ∈ τ(β|Y ). We conclude that θ|Y ⊆ τ(β|Y ), which completes the proof of the statement for bases.
The statement for subbases is similar, and is left to the reader. �

Proposition 5.6. [prop-subspace-metric]
Let X be a set equipped with a metric d and thus an associated topology τd. Let Y be a subset of X. We

can then restrict the metric to get a metric d′ on Y , and form the associated topology τd′ on Y ; or we can
use the subspace topology τd|Y . These are the same topology.

Proof. We will write OB and OB′ for open balls with respect to d and d′, so OB′ε(y) = OBε(y) ∩ Y
for all y ∈ Y and ε > 0.

Suppose that V ∈ τd′ . For each y ∈ V there exists εy > 0 such that OB′εy (y) ⊆ V . If we put

U =
⋃
y∈Y OBεy (y) we find that U ∈ τd and U ∩ Y = V so V ∈ τd|Y .

Conversely, suppose that V ∈ τd|Y , so there is a set U ∈ τd such that V = U ∩ Y . Now for any y ∈ Y
there exists ε > 0 such that OBε(y) ⊆ U , but this implies that OB′ε(y) ⊆ V . It follows that V ∈ τd′ . �

Proposition 5.7. [prop-rel-open]

(a) Suppose that Y is open in X. Then the open subsets for the subspace topology are precisely the sets
that are open in X and contained in Y .

(b) Suppose that Y is closed in X. Then the closed subsets for the subspace topology are precisely the
sets that are closed in X and contained in Y .

Proof.

(a) Suppose that Y is open in X. The open sets for the subspace topology are precisely the sets
Y ∩ U , where U is open in X. In this case it is clear that Y ∩ U is open in X and contained in Y .
Conversely, suppose that V is open in X and contained in Y . From the definition of the subspace
topology we see that V ∩ Y is open in Y , but V ∩ Y is just the same as V .

(b) This is essentially the same as (a).

�

Proposition 5.8. [prop-subspace-closure]
If Z ⊆ Y then we have clY (Z) = clX(Z) ∩ Y .

Proof. As clX(Z) is closed in X, we see from Lemma 5.2 that clX(Z) ∩ Y is closed in Y . This set
also contains Z, and clY (Z) is by definition the smallest set that is closed in Y and contains Z, so we
see that clY (Z) ⊆ clX(Z) ∩ Y . On the other hand, clY (Z) is closed in the subspace topology on Y , so
it has the form clY (Z) = F ∩ Y for some set F that is closed in X. This means that Z ⊆ clY (Z) ⊆ F ,
and clX(Z) is the smallest set that is closed in X and contains Z. It follows that clX(Z) ⊆ F and so
clX(Z) ∩ Y ⊆ F ∩ Y = clY (Z). This now proves the claim. �
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Proposition 5.9 (Patching). [prop-patching]
Let f : X → Y be a function between topological spaces. Suppose that X is the union of some family

of subsets (Xi)i∈I , and that the restriction fi = f |Xi : Xi → Y is continuous (with respect to the subspace
topology on Xi and the original topology on Y ) for all i.

(a) If the sets Xi are all open in X, then f is continuous.
(b) If the sets Xi are all closed, and the index set I is finite, then f is again continuous.

This result is used extensively to define continuous functions in homotopy theory, as we will start to see
in Section 27. It is also often used in complex algebraic geometry, where many functions are initially given
by different formulae over different open subsets of projective space.

Proof.

(a) Suppose that the sets Xi are open in X. Consider an open set V ⊆ Y . As fi is continuous, we
see that f−1

i (V ) is open in Xi with respect to the subspace topology. By Proposition 5.7(a), this

means that f−1
i (V ) is open in X. On the other hand, it is clear that f−1

i (V ) is just the same as

f−1(V ) ∩Xi and X =
⋃
iXi so f−1(V ) =

⋃
i f
−1
i (V ). This means that f−1(V ) is the union of a

family of sets that are open in X, so f−1(V ) is open in X. As V was an arbitrary open subset of
Y , we conclude that f is continuous.

(b) Suppose that the sets Xi are closed in X, and that the index set I is finite. Consider a closed set
G ⊆ Y . As fi is continuous, we see (via Remark 3.4) that f−1

i (G) is closed in Xi with respect to

the subspace topology. By Proposition 5.7(b), this means that f−1
i (G) is closed in X. On the other

hand, it is clear that f−1
i (G) is just the same as f−1(G)∩Xi andX =

⋃
iXi so f−1(G) =

⋃
i f
−1
i (G).

This means that f−1(G) is the union of a finite family of sets that are closed in X, so f−1(G) is
closed in X. As G was an arbitrary closed subset of Y , we conclude that f is continuous.

�

Example 5.10. [eg-closed-patching]
Put X = ([0, 4]× [1, 2])∪ ([2, 3]× [0, 3]), which is the standard net for a cube, as shown on the left below.

X5

X4

X0 X1 X2 X3

We can write this as a union of six squares as follows:

X0 = [0, 1]× [1, 2] X1 = [1, 2]× [1, 2] X2 = [2, 3]× [1, 2]

X3 = [3, 4]× [1, 2] X4 = [2, 3]× [0, 1] X5 = [2, 3]× [2, 3].

We define maps fi : Xi → R3 by

f0(x, y) = (x, 2− y, 1)

f1(x, y) = (1, 2− y, 2− x)

f2(x, y) = (3− x, 2− y, 0)

f3(x, y) = (0, 2− y, x− 3)

f4(x, y) = (3− x, 1, 1− y)

f5(x, y) = (3− x, 0, y − 2).

One can check that fi and fj agree on Xi ∩Xj for all i and j. For example, we have X0 ∩X1 = {(1, y) :
1 ≤ y ≤ 2} and f0(1, y) = (1, 2− y, 1) = f1(1, y). Using part (b) of the proposition we see that the maps fi
can be patched together to give a continuous map f : X → R3. The image of f is the surface of a cube, as
on the right above.
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5.2. Products.

Definition 5.11. [defn-product-set]
Suppose we have a family of sets (Xi)i∈I . The product set is the set X =

∏
i∈I Xi of all indexed families

(xi)i∈I where xi ∈ Xi for all i. We write πi for the map X → Xi that sends a family (xi)i∈I to the i’th
entry xi. We call this the i’th projection map.

Remark 5.12. [rem-maps-to-product]
Consider a map f : W →

∏
i∈I Xi. We can compose with the projections πi :

∏
i∈I Xi → Xi to get a

family of maps fi = πi ◦ f : W → Xi. Conversely, given such a family of maps fi : W → Xi, we can define
f : W →

∏
i∈I Xi by f(w) = (fi(w))i∈I . These constructions are visibly inverse to each other.

Example 5.13. [eg-product-sets]

(a) If I = {0, 1} then we just have two sets X0 and X1, and X = X0×X1 is just the set of ordered pairs
(x0, x1) with x0 ∈ X0 and x1 ∈ X1. The projection maps are π0(x0, x1) = x0 and π1(x0, x1) = x1.
Any map f : W → X has the form f(x) = (f0(x), f1(x)) for some f0 : W → X0 and f1 : W → X1.
We will use the abbreviated notation f = (f0, f1).

(b) Similarly, if I = {0, 1, 2} then X is the set of triples (x0, x1, x2) with x0 ∈ X0 and x1 ∈ X1 and
x2 ∈ X2.

(c) If all the sets Xi are the same (equal to Y , say) then
∏
iXi can be identified with the set of all

functions from I to Y .
(d) If I = N and Xn = [−n, n] then

∏
nXn is the set of all sequences x = (x0, x1, . . . ) for which

|xn| ≤ n for all n.

Definition 5.14. [defn-product-space]
Now suppose we have a family of topological spaces (Xi)i∈I . We write τi for the topology on Xi, and

then we put

σ = {π−1
i (U) : i ∈ I, U ∈ τi}.

This is a subbasis for a topology on
∏
iXi, which we call the product topology. By the product space we

mean the product set equipped with the product topology.

Remark 5.15. [rem-proj-cts]
It is immediate from the definitions that the projection maps πi are continuous.

Proposition 5.16. [prop-maps-to-product]
Consider a topological space W and a map f : W →

∏
i∈I Xi. Then f is continuous (with respect to the

product topology) if and only if the maps fi = πi ◦ f : W → Xi are all continuous. Thus, continuous maps
f : W →

∏
i∈I Xi biject with families of continuous maps fi : W → Xi.

Proof. Proposition 3.8 tells us that f is continuous if and only if the preimages of all the subbasic open
sets π−1

i (U) (for i ∈ I and U open in Xi) are open in W . Now f−1(π−1
i (U)) = f−1

i (U), and fi is continuous

if and only if f−1
i (U) is open in W whenever U is open in Xi. It follows that f is continuous if and only if

all the maps fi are continuous. In combination with Remark 5.12 this gives a bijection between continuous
maps f : W →

∏
i∈I Xi and families of maps fi : W → Xi, as claimed �

Remark 5.17. [rem-product-categorical]
This proposition means that the product space is a product in the sense of category theory, as discussed

in Appendix 36.

Corollary 5.18. [cor-product-map]
Suppose we have a family of continuous maps fi : Xi → Yi, and we define

f =
∏
I

fi :
∏
I

Xi →
∏
I

Yi

by f((xi)i∈I) = (fi(xi))i∈I . Then f is also continuous.
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Proof. By the proposition, it will suffice to show that πj ◦ f :
∏
iXi → Yj is continuous for all j.

However, πj ◦ f is just the same as fj ◦ πj , and fj and πj are continuous, so fj ◦ πj is continuous by
Proposition 3.5. The maps considered are conveniently displayed in the following diagram:∏

I Xi
f

//

πj

��

∏
I Yi

πj

��

Xj
fj

// Yj .

�

Proposition 5.19. [prop-product-metric]
Let X0 and X1 be metric spaces. We can then form a product metric on X0 ×X1 as in Definition 2.50

and use the associated metric topology on X0 ×X1, or we can take the metric topologies on X0 and X1 and
form the product topology on X0 ×X1. In fact, these two topologies are the same.

Proof. Let τm be the metric topology, and let τp be the product topology. For definiteness, we use the
product metric given by

d((x0, x1), (y0, y1)) = max(d(x0, y0), d(x1, y1)).

(As remarked in Definition 2.50, either of the other two variants would give the same topology.) With this
convention we have

OBε(x0, x1) = OBε(x0)×OBε(x1) = π−1
0 (OBε(x0)) ∩ π−1

1 (OBε(x1)),

which is open in τp. As these balls form a basis for τm, we see that τm ⊆ τp. On the other hand, consider

an open set U0 ⊆ X0, which gives a subbasic open set π−1
0 (U0) = U0 × X1 for τp. If (x0, x1) ∈ U0 × X1

then x0 lies in the open set U0 so we can find ε > 0 such that OBε(x0) ⊆ U0, and it follows easily that
OBε(x0, x1) ⊆ U0×X1. This means that the sets U0×X1 are open with respect to τm, as are all sets of the
form X0×U1 (for U1 open in X1) by a symmetrical argument. These two families of sets give a subbasis for
τp, so we conclude that τp ⊆ τm. �

Example 5.20. [eg-CX-ops]
In Corollary 3.11 we showed that if f and g are continuous maps from X to R, then the maps f + g,

fg, max(f, g) and min(f, g) are also continuous. The first step in the proof was to introduce the function
h = (f, g) : X → R × R, and to check that this is continuous. This can now be seen as a special case of
Proposition 5.16.

Example 5.21. [eg-matrix-maps]
Consider the map f : R3 → R3 given by

f(x, y, z) = (x+ y + z, xy + yz + zx, xyz).

We claim that this is continuous. Indeed, we have f = (f0, f1, f2), where

f0(x, y, z) = x+ y + z f1(x, y, z) = xy + yz + zx f2(x, y, z) = xyz,

so it will suffice to show that each map fi is continuous. There are projection maps

π0(x, y, z) = x π1(x, y, z) = y π2(x, y, z) = z

which are continuous by construction. We can describe f0 as π0 + π1 + π2, and Corollary 3.11 tells us that
the sum of any two continuous real-valued functions is again continuous, so we see that f0 is continuous. The
same Corollary also tells us that the product of any two continuous real-valued functions is again continuous,
and using this repeatedly we see that the maps f1 = π0π1 +π1π2 +π2π0 and f2 = π0π1π2 are also continuous,
as claimed.

By a more general argument along the same lines, we see that any multivariate polynomial map Rn → Rm
is continuous.

We can get many more interesting examples by identifying Mn(R) with Rn2

. In particular, we find that
the map det : Mn(R) → R is polynomial and therefore continuous. The set GLn(R) of invertible matrices
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is the preimage under det of the open set R \ {0}, so GLn(R) is open in Mn(R). The set SLn(R) is the
preimage under det of the closed set {1}, so SLn(R) is closed in Mn(R). Similarly, we have a continuous
map f : Mn(R)→Mn(R) given by f(A) = ATA. The set O(n) of orthogonal matrices is the preimage of the
closed set {I} under f , so O(n) is closed in Mn(R), as is the intersection SO(n) = SLn(R)∩O(n). Similarly,
we can define continuous maps as follows:

g : Mn(R)→Mn(R) g(A) = AT −A
h : Mn(R)→Mn(R) h(A) = A2 −A
k : Mn(R)→ R k(A) = trace(A)− 1.

The space RPn−1 is defined as g−1{0} ∩ h−1{0} ∩ k−1{0}; this is the intersection of three closed sets and so
is again closed in Mn(R).

Example 5.22. [eg-matrix-inversion]
Now consider the inversion map χ : GLn(R) → GLn(R), given by χ(A) = A−1; we will show that this

is continuous. A standard formula says that A−1 = adj(A)/ det(A), where adj(A)ij is (−1)ij times the
determinant of the matrix obtained by deleting the i’th column and j’th row from A. In other words, we
can write χ as the composite

GLn(R)
(det,adj)−−−−−→ R× ×GLn(R)

ν×1−−→ R× ×GLn(R)
mult−−−→ GLn(R).

(Here R× denotes R \ {0}, and ν is given by x 7→ 1/x as in Proposition 3.10.) We use the obvious subspace
topologies on R× and GLn(R). Proposition 5.4 tells us that a map to R× is continuous if and only if it
is continuous when regarded as a map to R. Similarly, a map to GLn(R) is continuous if and only if it is

continuous when regarded as a map to Mn(R) ' Rn2

. Using this we see that the maps det : GLn(R)→ R×
and adj : GLn(R) → GLn(R) and mult : R× ×Mn(R) → Mn(R) are continuous. We also saw in Proposi-
tion 3.10 that ν is continuous. It follows using Proposition 5.16 and Corollary 5.18 that (det, adj) and ν × 1
are continuous, and so we can compose to see that χ is continuous as claimed.

Example 5.23. [eg-GL-two]
Consider the space

X = R+ × R× R× × S1 = {(u, v, w, x, y) ∈ R5 : u > 0, w 6= 0, x2 + y2 = 1}.

We can define a map f : X →M2(R) by

f(u, v, w, x, y) = u

[
1 v
0 1

] [
w 0
0 1

] [
x −y
y x

]
=

[
uwx+ uvy uvx− uwy

uy ux

]
.

One can check that this is actually a homeomorphism X → GL2(R), with inverse given by

f−1

[
a b
c d

]
=

(√
c2 + d2,

ac+ bd

c2 + d2
,
ad− bc
c2 + d2

,
d√

c2 + d2
,

c√
c2 + d2

)
.

By restricting attention to the subspace where u = w2 = 1 and v = 0, we obtain a homeomorphism
g : S0 × S1 = {1,−1} × S1 → O(2), given by

g(w, x, y) =

[
wx −wy
y x

]
g−1

[
a b
c d

]
= (ad− bc, d, c).

We can also put

Y = R+ × R+ × R2 × S1 × S3 = {y ∈ R10 : y0, y1 > 0, y2
4 + y2

5 = y2
6 + y2

7 + y2
8 + y2

9 = 1},

and we can define h : Y →M2(C) by

h(y) =

[
y0 y2 + iy3

0 y1

] [
y4 + iy5 0

0 1

] [
y6 + iy7 y8 + iy9

−y8 + iy9 y6 − iy7

]
.

It can be shown that this is again a homeomorphism from Y to GL2(C), although in this case it is less easy
to give a tidy formula for the inverse.

44



Example 5.24. [eg-Sn-RPn]
Recall that

Sn = {x ∈ Rn+1 : ‖x‖ = 1}
RPn = {A ∈Mn+1(R) : AT = A = A2, trace(A) = 1}.

Here we topologise Mn+1(R) using the metric d2(P,Q) =
√

trace((P −Q)(P −Q)T ) as in Example 2.40; as

explained there, this is the same metric as we get by identifying Mn+1(R) with R(n+1)2 in the obvious way.
We define a map f : Sn → Mn+1(R) by f(x)ij = xixj ; this is now easily seen to be continuous. We

claim that f(x) ∈ RPn. To prove this, it is convenient to regard elements of Rn+1 as column vectors; we
then have 〈x, y〉 = xT y and f(x) = xxT . From this we get f(x)T = xTTxT = f(x) and also

f(x)2 = x(xTx)xT = x.〈x, x〉.xT = ‖x‖2 f(x) = f(x).

Moreover, we have trace(f(x)) =
∑
i x

2
i = ‖x‖2 = 1. We have thus defined a continuous map f : Sn → RPn.

If y is another point in Rn+1 we have

f(x)y = x(xT y) = 〈x, y〉x.

Next, we claim that f : Sn → RPn is surjective. Indeed, suppose we have B ∈ RPn. As trace(B) = 1 we
have B 6= 0, so we can find w ∈ Rn+1 such that Bw 6= 0. Put x = (Bw)/‖Bw‖ ∈ Sn and A = f(x) ∈ RPn.
It will be enough to show that A = B, or equivalently that d2(A,B) = 0, or equivalently that the matrix
C = A − B satisfies trace(CCT ) = 0. For this, we first note that Bx = (B2w)/‖Bw‖ = (Bw)/‖Bw‖ = x.
We saw in the previous paragraph that Ay = 〈x, y〉x, so BAy = 〈x, y〉Bx = 〈x, y〉x = Ay. This holds for all
y, so BA = A. Taking transposes gives ATBT = (BA)T = AT , but AT = A and BT = B so we see that
AB = A also. It follows that

CCT = (A−B)(A−B) = A2 −AB −BA+B2 = A−A−A+B = B −A,

so trace(CCT ) = trace(B)− trace(A) = 1− 1 = 0 as required. (This argument is efficient, but may seem a
little miraculous. As an alternative one can check that Rn+1 splits orthogonally as img(B)⊕ ker(B), choose
orthonormal bases adapted to this splitting, and proceed from there.)

We next observe that f(−x) = f(x), so f is not injective. We claim that this is the only source of
non-injectivity. Indeed, for any x, y ∈ Sn we have

trace(f(x)f(y)) =
∑
i,j

f(x)ijf(y)ij =
∑
i,j

xiyixjyj = 〈x, y〉2,

and thus that

d2(f(x), f(y)) = trace((f(x)− f(y))2)1/2 = trace(f(x)− f(x)f(y)− f(y)f(x) + f(y))1/2 =
√

2(1− 〈x, y〉2).

As x and y are unit vectors, we see from the Cauchy-Schwartz inequality that 1− 〈x, y〉2 can only vanish if
y = ±x. It follows that we have f(x) = f(y) iff x = ±y.

Example 5.25. [eg-rref]
Now define a map φ : Mn(R) → Mn(R) by sending each matrix A to its row reduced echelon form. In

other words, φ(A) is characterised by the following properties:

(a) The linear span of the rows of φ(A) is the same as the linear span of the rows of A.
(b) For each nonzero row in φ(A), the first nonzero entry (called the pivot) is equal to one, and lies to

the right of any pivots in previous rows.
(c) All entries above a pivot are zero.
(d) Any zero rows come after all the nonzero rows.

We claim that the map φ is not continuous. Indeed, we have φ(0) = 0, but φ(εI) = I for all ε 6= 0. Consider
the set U = Mn(R) \ {I}, which is open. The preimage φ−1(U) contains 0, but it does not contain OBε(0)
for any ε > 0. This means that φ−1(U) is not open, so φ is not continuous.

We have defined the product topology using a subbasis, but for some purposes it is more convenient to
have a basis. For this, we need a preliminary definition.
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Definition 5.26. Suppose we have a family of spaces Xi indexed by a set I, and a subset J ⊆ I. We
then write πIJ or πJ for the map

∏
I Xi →

∏
J Xi that sends each family (xi)i∈I to the subfamily (xj)j∈J .

For example, if I = {0, 1, 2, 3, 4, 5} and J = {0, 2, 5} we just have

π{0,2,5}(x0, x1, x2, x3, x4, x5) = (x0, x2, x5).

Lemma 5.27. [lem-proj-cts]
The maps πJ are continuous.

Proof. This is immediate from Proposition 5.16, as πj ◦ πJ = πj :
∏
I Xi → Xj for all j ∈ J . �

Proposition 5.28. [prop-product-basis]
The following sets are bases for the product topology:

β = {π−1
J (U) : J ⊆ I is finite and U is open in

∏
J

Xi}

β′ = {π−1
J

∏
j∈J

Uj

 : J ⊆ I is finite and Uj is open in Xj for all j ∈ J}.

Remark 5.29. [rem-bt-prime]
We can redescribe β′ as the collection of all products

∏
i∈I Ui, where Ui is open in Xi for all i, and

Ui = Xi for all but finitely many indices i.

Proof. We write τ for the product topology on
∏
I Xi, and σ for the standard subbasis that generates

τ . It is clear (by considering sets J of size one) that σ ⊆ β′. Next, suppose we have a finite subset J ⊆ I
and open sets Uj ⊆ Xj for all j ∈ J . The subset

∏
J Uj can then be expressed as the intersection of the

finite family of open sets π−1
j (Uj), so

∏
J Uj is open in

∏
J Xj . Given this, we see that β′ ⊆ β. On the other

hand, as πJ is continuous we see that β ⊆ τ , so we now know that σ ⊆ β′ ⊆ β ⊆ τ . As τ is the smallest
topology that contains σ, it is therefore also the smallest topology that contains β or β′. All that is now left
is to check that β and β′ are actually topological bases. From Remark 5.29 it is clear that the intersection
of any two sets in β′ is again in β′, which implies that β′ is a topological basis. Now suppose we have sets
π−1
J (U) and π−1

K (V ) in β. The set L = J ∪K is then finite, and the set

W = (πLJ )−1(U) ∩ (πLK)−1(V )

is open in
∏
K Xi. One checks that π−1

J (U) ∩ π−1
K (V ) = π−1

L (W ) ∈ β. This means that the intersection of
any two sets in β is again in β, so β is also a topological basis. �

Corollary 5.30. [cor-projections-open]
The projection maps πj :

∏
iXi → Xj are open (but not closed in general). They are also quotient maps

(except in the trivial case where Xj 6= ∅ but Xi = ∅ for some i 6= j.)

Proof. If we just have a product X0 ×X1 of two factors, we note that open sets of the form U0 × U1

form a basis for the topology, and πi(U0×U1) is either Ui or empty (in a trivial case). Either way, it is open,
and it follows that πi is an open map.

We now treat the general case, which is essentially the same idea, but needs more notation. Write
X =

∏
iXi. Consider an open set V ⊆ X, and a point xj ∈ πj(V ). This means that there exists a point

x ∈ V whose j’th coordinate is xj . As V is open, there is a set U ∈ β′ with x ∈ U ⊆ V . As in Remark 5.29,
we can describe U as

∏
i Ui for some family of open sets Ui ⊆ Xi, with Ui = Xi for all but finitely many

indices i. As x ∈ U we have xi ∈ Ui for all i. Now define f : Xj → X by

f(y) =

{
xi if i 6= j

y if i = j.

We find that f(Uj) ⊆ U ⊆ V , so πj(f(Uj)) ⊆ π(V ), but πj ◦ f = 1 so xj ∈ Uj ⊆ π(V ). This proves that
π(V ) is a neighbourhood of xj , as required.
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For an example showing that πj need not be closed, consider the set F = {(x, y) ∈ R2 : xy = 1}. This
is closed in R2, but

π0(F ) = π1(F ) = R \ {0},
which is not closed in R.

If each set Xi (for i 6= j) is nonempty, we can choose xi ∈ Xi for all i, and then define f : Xj → X as
above. We again have πj ◦ f = 1Xj , and it follows from Proposition 4.8 (or from Proposition 4.5) that πj is
a quotient map. �

Example 5.31. [eg-binary-seq-product]
Suppose we give the set {0, 1} the discrete topology, and let τ ′ denote the resulting product topology

on the set X =
∏∞
k=0{0, 1} of binary sequences. We claim that this is the same as the topology τ defined in

Example 2.6. Indeed, the basic open set Cn(x) for τ can be described as π−1
J (U), where J = {0, 1, . . . , n−1}

and U is the single point (x0, . . . , xn−1), which is open in the discrete space
∏n−1
i=0 {0, 1}. This means that

the basic open sets for τ are τ ′-open. Conversely, suppose we have a basic open set V = π−1
J (U) for τ ′ (so

J is a finite subset of N). Put n = max(J) + 1, and note that whenever x ∈ V we have Cn(x) ⊆ V . Using
this we see that V is τ -open, as required.

Proposition 5.32. [prop-sub-product]
If Yi ⊆ Xi for each i ∈ I then the two obvious topologies on

∏
I Yi (as a product of subspaces of the Xi

or as a subspace of the product
∏
I Xi) are the same.

Proof. Put X =
∏
I Xi and Y =

∏
I Yi. We write τ for the product topology on X, and σ for the

standard subbasis that generates τ . Similarly, we write τ ′ for the product topology on Y , and σ′ for the
standard subbasis that generates τ ′. Proposition 5.5 tells us that σ|Y is a subbasis for τ |Y , so it will suffice
to show that σ|Y = σ′. Let πi be the projection X → Xi, and let π′i be the projection Y → Yi. The subbasis
σ consists of the sets π−1

i (U), where i ∈ I and U is open in Xi. This means that σ|Y consists of the sets

Y ∩ π−1
i (U), which are the same as the sets (π′i)

−1(Yi ∩ U). Moreover, the sets Yi ∩ U are precisely the
subsets of Yi that are open with respect to the subspace topology. It follows that σ|Y = σ′ as required. �

Remark 5.33. [rem-embedding-product]
In the light of Remark 5.3, the above proposition can be restated as follows: If we have a family of

embeddings fi : Yi → Xi, then the product map
∏
I fi :

∏
i Yi →

∏
iXi is also an embedding.

Proposition 5.34. [prop-product-closure]
Suppose we have a family of spaces Xi and subsets Yi ⊆ Xi, giving a subset Y =

∏
I Yi in X =

∏
I Xi.

(a) If each set Yi is closed in Xi, then Y is closed in X.
(b) More generally, we always have clX(Y ) =

∏
I clXi(Yi).

Proof. (a) Suppose that Yi is closed for all i. As πi is continuous, it follows that π−1
i (Yi) is closed

in X. The intersection of any family of closed sets is again closed, so
⋂
I π
−1
i (Yi) is closed, but that

intersection is visibly equal to Y .
(b) Now let the sets Yi be arbitrary. Part (a) tells us that the set Z =

∏
I clXi(Yi) is closed and it

clearly contains Y , so it must contain clX(Y ). Conversely, suppose that z ∈ Z. Let U be any
neighbourhood of z. By the standard relationship between topologies and their bases, we can find
a set V in the basis β′ (from Proposition 5.28) such that z ∈ V ⊆ U . By the definition of β′, there
is a finite set J and open sets Vj ⊆ Xj (for j ∈ J) such that V =

⋂
j∈J π

−1
j (Vj). For i 6∈ J we put

Vi = Xi, so now V =
∏
I Vi and Vi is a neighbourhood of zi for all i. As z ∈ Z we must also have

zi ∈ clXi(Yi), which means that Vi∩Yi must be nonempty, containing some point yi say. This gives
a point y = (yi)i∈I lying in Y ∩ V ⊆ Y ∩ U . In particular, we see that Y ∩ U is always nonempty,
so z ∈ clX(Y ). This gives the required reverse inclusion.

�

Proposition 5.35. [prop-product-seq-gen]
Let (Xi)i∈I be a family of topological spaces, and let x = (xn)n∈N be a sequence in the product space

X =
∏
I Xi. Then x converges to a point a ∈ X if and only if (πi(xn))n∈N converges to πi(a) for all i ∈ I.
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Proof. First, we know that the maps πi are continuous and therefore (by Proposition 3.15) sequentially
continuous. Thus, if (xn)n∈N converges to a then (πi(xn))n∈N converges to πi(a).

Conversely, suppose that (πi(xn))n∈N converges to πi(a) for all i ∈ I. Consider a neighbourhood U of
a in X. Using Proposition 5.28 we see that there is a finite set J ⊆ I and a family of open sets Uj ⊆ Xj

for j ∈ J such that a ∈ π−1
J (
∏
j Uj) ⊆ U . This means that for each j ∈ J , the set Uj is a neighbourhood of

πj(a) in Xj . By hypothesis the sequence (πj(xn))n∈N converges to πj(a), so there exists Nj ∈ N such that
πj(xn) ∈ Uj whenever n ≥ Nj . As J is finite we have a well-defined integer N = max{Nj : j ∈ J}. For
n ≥ N we have

xn ∈
⋂
j∈J

π−1
j (Uj) = π−1

J (
∏
J

Uj) ⊆ U.

As U was arbitrary this means that (xn) converges to a, as required. �

5.3. Disjoint Unions.

Definition 5.36. [defn-coproduct-set]
Suppose we have a family of sets (Xi)i∈I . The disjoint union or coproduct set is the set of all pairs (i, x),

where i ∈ I and x ∈ Xi. We write
∐
i∈I Xi for this set. For each i ∈ I we have a map ιi : Xi →

∐
i∈I Xi

given by ιi(x) = (i, x).

Remark 5.37. [rem-maps-from-coproduct]
Consider a map f :

∐
i∈I Xi → Y . We can compose with the inclusions ιi : Xi →

∐
i∈I Xi to get a

family of maps fi = f ◦ ιi : Xi → Y . Conversely, given such a family of maps fi : Xi → Y , we can define
f :
∐
i∈I Xi → Y by f(i, x) = fi(x). These constructions are visibly inverse to each other.

Remark 5.38. [rem-union-disjoint]
Suppose that the sets Xi are all subsets of some other set X. We can then define a surjective map

m :
∐
i∈I Xi →

⋃
i∈I Xi by m(i, x) = x. If the sets Xi are disjoint, then m is a bijection. In this situation it

is common to silently identify
∐
i∈I Xi with

⋃
i∈I Xi.

Remark 5.39. For any subset U ⊆
∐
i∈I Xi we have subsets Ui = ι−1

i (Ui) ⊆ Xi, and it is easy to see
that U =

∐
i∈I Ui. Thus, subsets of

∐
i∈I Xi biject with families (Ui)i∈I with Ui ⊆ Xi for all i.

Definition 5.40. [defn-coproduct-space]
Now suppose we have a family of topological spaces (Xi)i∈I . We declare that a subset U ⊆

∐
i∈I Xi is

open if and only if the set Ui = ι−1
i (U) is open in Xi for all i. This defines a topology on

∐
i∈I Xi, which we

call the coproduct topology. By the coproduct space we mean the coproduct set equipped with the coproduct
topology.

Remark 5.41. [rem-coproduct-closed]
Consider a family of subsets Fi ⊆ Xi and the corresponding subset F =

∐
i Fi ⊆

∐
iXi, so Fi = ι−1

i (F ).
It is easy to see that F is closed in the coproduct topology iff Fi is closed in Xi for all i. Note here that the
index set I may be infinite, in which case we have a situation where certain infinite unions of closed sets are
automatically closed.

Remark 5.42. [rem-coproduct-misc]
It is clear that the maps ιi are continuous. Moreover, the subset ιi(Xi) (with the subspace topology) is

homeomorphic to Xi and is both open and closed in
∐
i∈I Xi.

Proposition 5.43. [prop-maps-from-coproduct]
Consider a topological space Y and a map f :

∐
i∈I Xi → Y . Then f is continuous (with respect to the

coproduct topology) if and only if the maps fi = f ◦ ιi : Xi → Y are all continuous. Thus, continuous maps
f :
∐
i∈I Xi → Y biject with families of continuous maps fi : Xi → Y .

Proof. The map f is continuous if and only if for every open set V ⊆ Y , the preimage f−1(V ) is open
in the coproduct topology. This means by definition that the sets ι−1

i (f−1(V )) must be open in Xi, or in

other words f−1
i (V ) must be open. Thus, f is continuous if and only if all the fi are continuous. �
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Remark 5.44. [rem-coproduct-categorical]
This proposition means that the coproduct space is a coproduct in the sense of category theory, as in

Definition 36.80.

Corollary 5.45. [cor-coproduct-map]
Suppose we have a family of continuous maps fi : Xi → Yi, and we define

f =
∐
I

fi :
∐
I

Xi →
∐
I

Yi

by f(i, x) = (i, fi(x))). Then f is also continuous.

Proof. By the proposition, it will suffice to show that f◦ιj : Xj →
∐
i Yi is continuous for all j. However,

f ◦ ιj is just the same as ιj ◦ fj , and ιj and fj are continuous, so ιj ◦ fj is continuous by Proposition 3.5.
The maps considered are conveniently displayed in the following diagram:

Xj

ιj

��

fj
// Yj

ιj

��∐
I Xi

f
//
∐
I Yi.

�

Proposition 5.46. [prop-union-disjoint]
Suppose that the sets Xi are open disjoint subsets of some larger space X, equipped with their subspace

topologies. Then the map m : (i, x) 7→ x gives a homeomorphism∐
I

Xi −→
⋃
I

Xi ⊆ X.

Remark 5.47. It is necessary to assume here that the subsets Xi are open, as we see by considering
the example where X = R and X0 = (−∞, 0) and X1 = [0,∞). Here m gives a continuous bijection
X0 qX1 → X, but m−1 is not continuous, so m is not a homeomorphism.

Proof. Put A =
∐
I Xi and B =

⋃
iXi. Note that B is the union of a family of open sets in X, so B

is open in X. The map m certainly gives a bijection A → B. The composite m ◦ ιi is just the inclusion of
Xi in B, which is continuous. It follows that m is continuous. Now suppose we have a open subset U ⊆ A.
This must have the form U =

∐
I Ui, where Ui is open in Xi. As Xi is open in X, this means that Ui is

open in X, and thus that the set m(U) =
⋃
I Ui is also open in X (and therefore in B). Using this we see

that m−1 is also continuous, and thus that m is a homeomorphism. �

5.4. Quotients. We start by recalling the basic facts about equivalence relations and quotient sets;
then we will discuss topologies on such sets.

Definition 5.48. [defn-relation]
A relation on a set X is a subset R ⊆ X ×X. In this context, we write xRy instead of (x, y) ∈ R.

Definition 5.49. [defn-equivalence]
A relation E on X is an equivalence relation if it satisfies the following axioms:

E0: (reflexivity) For all x ∈ X we have xEx.
E1: (symmetry) For all x, y ∈ X with xEy we also have yEx.
E2: (transitivity) For all x, y, z ∈ X with xEy and yEz we also have xEz.

Remark 5.50. [rem-generated-equivalence]
Let R be any relation on X. Define a new relation R′ by

xR′y ⇔ (x = y or xRy or yRx).

Then define R so that xRy iff there exists a chain x = u0, u1, . . . , ur = y with uiR
′ui+1 for 0 ≤ i < r. We

find that R is an equivalence relation, and that it is the smallest equivalence relation containing R.
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Definition 5.51. [defn-quotient-set]
Let X be a set, and let E be an equivalence relation on X. For any point x ∈ X, we define

qE(x) = [x]E = {x′ ∈ X : xEx′}.
(The subscript E will be dropped if there is no danger of confusion.) We call the set [x]E the equivalence
class of x. We write X/E for the set of all equivalence classes, and call this the quotient set of X by E.
Note that qE gives a surjective map X → X/E, which we call the quotient map.

Example 5.52. [eg-mod-five]
Take X = Z, and put E = {(n, n+ 5m) : n,m ∈ Z} ⊆ Z2, so that pEq if and only if p− q is divisible

by 5. This is easily seen to be an equivalence relation. There are equivalence classes [0], [1], [2], [3] and [4],
and every other equivalence class is equal to precisely one of these. For example, we have [555] = [5] = [0]
and [6] = [1] and so on. Thus Z/E is a finite set of size five.

Example 5.53. [eg-trivial-equiv]
The sets E = X2 and ∆ = {(x, x) : x ∈ X} are both equivalence relations on X. The relation E has

only one equivalence class, namely the set X itself, so X/E is a single point. The equivalence classes for ∆
are just the sets of the form {x} for some x ∈ X, so X/∆ can be identified with X itself.

Example 5.54. [eg-glue-ends]
We can define an equivalence relation E on [0, 1] by

E = {(t, t) : 0 ≤ t ≤ 1} ∪ {(0, 1), (1, 0)}.
The equivalence classes are the singletons [t] = {t} for 0 < t < 1, together with the set [0] = [1] = {0, 1}.
Intuitively, the quotient set [0, 1]/E can be thought of as the result of taking the interval [0, 1] and gluing
the two ends together. Later we will introduce a topology that reflects this idea.

Example 5.55. [eg-collapse]
Let X be a set, and let Y be a nonempty subset. The set E = ∆ ∪ Y 2 ⊆ X2 is then an equivalence

relation. Each point x ∈ X \ Y gives an equivalence class {x}, and there is one more equivalence class,
namely the set Y . It is conventional to write X/Y for X/E, and ∞ for Y considered as a point of X/Y ,
so as sets we just have X/Y ' (X \ Y ) q {∞}. We say that X/Y is obtained from X by collapsing Y to a
point. Example 5.54 is the special case where X = [0, 1] and Y = {0, 1}.

For completeness, we should mention a technical issue. It is common to use this construction in situations
where Y is not known in advance and might be empty. To ensure that this case is covered in a useful way, it
is usual to modify the definition as follows. We take ∞ to be an arbitrary point disjoint from X, and define
a relation E = {∞} × Y on X q {∞}. The equivalence relation E generated by E is

E = ∆Xq{∞} ∪ (Y q {∞})2

= (∆X ∪ Y 2)q ({∞} × Y )q (Y × {∞})q {(∞,∞)}
⊆ X2 q ({∞} × Y )q (Y × {∞})q {(∞,∞)} = (X q {∞})2.

We then define X/Y = (X q {∞})/E. This is the same as before when Y is nonempty, but gives X/∅ =
X q {∞}. There are compelling reasons from category theory to consider this as the right definition.

Example 5.56. [eg-equaliser-relation]
Let f : X → Y be any map of sets, and put

E = eq(f) = {(x, x′) ∈ X2 : f(x) = f(x′)} ⊆ X2.

This is easily seen to be an equivalence relation on X. For each point y ∈ img(f) ⊆ Y we find that f−1{y}
is an equivalence class, and that this construction gives a bijection img(f)→ X/E.

Proposition 5.57. [prop-equivalence]
Let E be an equivalence relation on a set X. Note that every element of X/E is an equivalence class

and so is a subset of X.

(a) If x ∈ X and y ∈ X/E then x lies in y if and only if y = [x].
(b) If y, y′ ∈ X/E then either y = y′ or y ∩ y′ = ∅.
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(c) Each element x ∈ X lies in precisely one equivalence class, namely [x].

Proof. (a) Let y be an equivalence class. If y = [x] = {x′ : xEx′} then x ∈ y by axiom E0.
Conversely, let x be any element of y. As y is an equivalence class, we must have y = [u] for some
u. By the definition of [u] we must have uEx and so also xEu (by E1). If xEv then we can use
uEx and E2 to see that also uEv; this shows that [x] ⊆ [u]. Essentially the same argument shows
that [u] ⊆ [x], so y = [x] as required.

(b) Now let y and y′ be two equivalence classes. If y∩y′ 6= ∅ then we can choose x ∈ y∩y′ and part (a)
shows that y = [x] = y′.

(c) This is just a paraphrase of (a).
�

Corollary 5.58. [cor-quotient-induced]
Let E be an equivalence relation on a set X, and let f be a function from X to another set Y . This

gives another equivalence relation eq(f) as in Example 5.56.

(a) If f(x) = f(x′) whenever xEx′ (or equivalently, E ⊆ eq(f)), then there is a unique map f : X/E →
Y such that f = f ◦ qE.

(b) Otherwise, there is no map f : X/E → Y such that f = f ◦ qE.
(c) Suppose that f exists. Then f is surjective if and only if f is surjective.
(d) Similarly, f is injective if and only if E = eq(f).
(e) If f is surjective and eq(f) = E, then f is bijective and the inverse is just

f
−1

(y) = f−1{y} = {x ∈ X : f(x) = y} ∈ X/E.

Proof.

(a) Suppose that f(x) = f(x′) whenever xEx′, or equivalently whenever [x] = [x′]. Given y ∈ X/E we
can choose x ∈ X such that y = [x], and then define f(y) = f(x); the hypothesis shows that this
is well-defined. We have (f ◦ qE)(x) = f([x]) = f(x) for all x, so f ◦ qE = f . As qE is surjective, it
is clear that f is uniquely determined by this property.

(b) Conversely, suppose that f factors as f ◦ qE for some map f . Whenever xEx′ we then have
qE(x) = qE(x′) and so f(x) = f(qE(x)) = f(qE(x′)) = f(x′). By taking the contrapositive we
obtain statement (b) above.

(c) Suppose that f is surjective. Then for any y ∈ Y we can find x ∈ X with f(x) = y, which means
that f([x]) = y, so y is in the image of f . This means that f is surjective. Conversely, suppose
that f is surjective. As qE is always surjective and f = f ◦ qE , we see that f is surjective.

(d) Suppose instead that eq(f) = E. If a, a′ ∈ X/E and f(a) = f(a′), we can choose x, x′ such that
a = [x] and a′ = [x′], and we see that f(x) = f(x′). This means that (x, x′) ∈ eq(f) = E, so xEx′,
so [x] = [x′], so a = a′. It follows that f is injective. Conversely, suppose that f is injective. This
means that for a, a′ ∈ X/E we have (f(a) = f(a′) iff a = a′). It follows that for x, x′ ∈ X we have
(f([x]) = f([x′]) iff [x] = [x′]), or in other words (f(x) = f(x′) iff xEx′), so eq(f) = E.

(e) Now suppose that f is surjective and eq(f) = E, so f is bijective by (c). Consider a point y ∈ Y ,
and put a = f−1{y} ⊆ X. As f is surjective, this is nonempty, so we can choose x ∈ a. If x′ is
another point in X we have f(x′) = y iff (x, x′) ∈ eq(f) = E iff x′ ∈ [x]. It follows that a = [x], so

a ∈ X/E. It is clear that f(a) = y, so a = f
−1

(y) as claimed.

�

Proposition 5.59. [prop-quotient-top]
Let X be a set with a topology τ , and let E be an equivalence relation on X. The family

τ/E = {V ⊆ X/E : q−1
E (V ) ∈ τ}

is then a topology on X/E, with respect to which the map qE is continuous. (We will call τ the quotient
topology on X/E.)
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Proof. Firstly, we have q−1(X/E) = X and q−1(∅) = ∅, and both of these are open in X. It follows
that X/E and ∅ are open in X/E. Next, consider a family (Vi)i∈I of sets in τ/E. This means that the
sets q−1(Vi) are open in X, so the union

⋃
I q
−1(Vi) is open in X. However, this union is just the same as

q−1(
⋃
I Vi), so

⋃
I Vi ∈ τ/E. Now suppose that the index set I is finite. It follows that

⋂
I q
−1(Vi) is then

open in X, but this is just the same as q−1(
⋂
I Vi), which proves that

⋂
I Vi ∈ τ/E. Thus, all the axioms for

a topology are satisfied. It is tautological that this makes qE continuous. �

Proposition 5.60. [prop-quotient-test]
Let X be a topological space, and let E be an equivalence relation on X. Let g be a function from X/E

to another space Y . Then g is continuous (with respect to the quotient topology) if and only if g ◦ q : X → Y
is continuous.

Proof. The map g is continuous if and only if for every open set V ⊆ Y , the preimage g−1(V ) is open
in the quotient topology, or equivalently q−1(g−1(V )) is open in X. Here q−1(g−1(V )) = (g ◦ q)−1(V ), so
the stated condition is equivalent to continuity of g ◦ q, as required. �

Proposition 5.61. [prop-maps-from-quotient]
Let X be a topological space, let E be an equivalence relation on X, and let f be a continuous map from

X to another space Y . Suppose that f(x) = f(x′) whenever xEx′, or equivalently that E ⊆ eq(f).

(a) There is a unique map f : X/E → Y such that f = f ◦ qE, and this map is continuous.
(b) The map f is injective if and only if E = eq(f).
(c) The map f is surjective if and only if f is surjective.
(d) The map f is a quotient map if and only if f is a quotient map.
(e) The map f is a homeomorphism if and only if f is a quotient map and E = eq(f).

Proof.

(a) The map f exists and is unique by Corollary 5.58, and is continuous by Proposition 5.60.
(b),(c) These are already part of Corollary 5.58, and are just repeated for ease of reference.

(d) In view of (c) we can assume that both f and f are surjective here. Suppose that f is a quotient

map. Let W be a subset of Y for which f
−1

(W ) is open in X/E; we must show that W is open. As

q is continuous and f
−1

(W ) is open, we see that q−1(f
−1

(W )) is open in X. As f = f ◦ q, this set
is just f−1(W ). As f is a quotient map and f−1(W ) is open, we see that W is open as required.
This means that f is a quotient map.

Conversely, suppose we start with the assumption that f is a quotient map. Let W be a subset

of Y for which f−1(W ) is open. This set is the same as q−1(f
−1

(W )); by the definition of the

quotient topology we deduce that f
−1

(W ) is open in X/E. As f is a quotient map this means that
W is open in Y . We conclude that f is a quotient map, as required.

(e) This now follows from the previous parts together with Proposition 4.9.

�

Example 5.62. [eg-complex-exp]
We can introduce an equivalence relation E on R by

xEy ⇔ (x− y ∈ Z),

so R/E is just the quotient group R/Z. We then define a map f : R → S1 = {z ∈ C : |z| = 1} by
f(x) = exp(2πix). It is a standard fact from complex analysis that this is continuous, and that f(x+ n) =
f(x)f(n) = f(x) for all n ∈ Z. This means that whenever xEy we have f(x) = f(y), so there is an induced
continuous map f : R/E → S1. Further standard facts say that every z ∈ S1 can be written as exp(2πix)
for some x (so f is surjective), and that exp(2πix) = exp(2πiy) if and only if x − y ∈ Z (so eq(f) = E).
All these facts are reviewed in Section 34.3, where we also prove that f is an open map. Proposition 4.8
therefore tells us that f is a quotient map, and it follows using Proposition 5.61(e) that f : R/Z → S1 is a
homeomorphism. We can also define f : C → C \ {0} by the same formula f(x) = exp(2πix), and prove in
the same way that C/Z is homeomorphic to C \ {0}.
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Example 5.63. [eg-R-mod-Q]
Now consider instead the relation E on R given by

xEy ⇔ (x− y ∈ Q).

We claim that the quotient topology on R/E is the indiscrete topology. Indeed, let V be a nonempty open
set in R/E. As q : R→ R/E is continuous and surjective we see that the set U = q−1(V ) ⊆ R is nonempty
and open an satisfies q(U) = V . Choose a point x ∈ U , and then choose ε > 0 such that (x− ε, x+ ε) ⊆ U .
Consider an arbitrary number y ∈ R. As Q is dense in R (by Example 2.21) we can find a rational number
a in the interval (x− y − ε, x− y + ε), so a+ y ∈ (x− ε, x+ ε) ⊆ U , so q(a+ y) ∈ q(U) = V . On the other
hand, from the definition of E we have q(y) = q(a + y), so q(y) ∈ V . As y was arbitrary this means that
V = R/E. Thus, the only nonempty open set in R/E is R/E itself, so the topology is indiscrete as claimed.

Group actions are an important source of equivalence relations and quotient spaces, as we now explain.
We first recall some basic definitions, to fix the terminology and notation.

Definition 5.64. [defn-G-set]
Let G be a group. A G-set is a set X with a given action of G, so for all g ∈ G and x ∈ X we have an

element gx ∈ X, defined in such a way that

• When g is the identity element 1 ∈ G, we have 1x = x for all x.
• For all g, h ∈ G and x ∈ X we have (gh)x = g(hx).

For any G-set X and x ∈ X we put

stabG(x) = {g ∈ G : gx = x}
orbG(x) = {gx : g ∈ G}

We call these the stabiliser and the orbit of x, and we note that stabG(x) is a subgroup of G. We say that
the action is free if stabG(x) = {1} for all x. Next, we introduce an equivalence relation EG on X by

EG = {(x, gx) : x ∈ X, g ∈ G} ⊆ X2,

so
xEGy iff x ∈ orbG(y) iff y ∈ orbG(x) iff orbG(x) = orbG(y),

so the equivalence classes are precisely the orbits. We write X/G for X/ ∼G and call this the orbit set. We
say that the action is transitive if X/G is a singleton, or equivalently X 6= ∅ and for all x, y ∈ X there exists
g ∈ G with gx = y.

Definition 5.65. [defn-G-space]
A G-space is a topological space with an action of G such that for each g ∈ G, the map αg : X → X

given by αg(x) = gx is continuous. In this context we will equip the set X/G with the quotient topology,
and call it the orbit space.

Remark 5.66. [rem-action-homeo]
If the maps αg are all continuous then in fact they are all homeomorphisms, because αg−1 is an inverse

for αg.

Remark 5.67. [rem-G-space-functors]
As explained in Example 36.90, G-sets can be identified with functors from the one-object category bG

to the category of sets, and similarly G-spaces are functors from bG to the category of spaces.

Remark 5.68. [rem-topological action]
For the moment we are treating G as a discrete set. In many cases G will also have a natural topology,

and in that context it is natural to ask for the action map G×X → X (given by (g, x) 7→ gx) to be continuous
with respect to the product topology. We will postpone detailed consideration of this situation, however.

Postpone or omit?

Example 5.69. [eg-Sn-RPn-quot]
In Example 5.24 we defined a surjective map f : Sn → RPn and showed that f(x) = f(y) iff y = ±x.

We can let the group C2 = {1,−1} act on Sn by multiplication, and we see that f induces a continuous
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bijection f : Sn/C2 → RPn with fq = f . In fact, this is a homeomorphism. One way to prove this is as
follows. Let e0, . . . , en be the standard basis for Rn+1, and put

Uk = {A ∈ RPn : Aek 6= 0}.
It is easy to see that these are open in RPn, and that RPn = U0 ∪ · · · ∪Un. We can define a continuous map
sk : Uk → Sn by sk(A) = (Aek)/‖Aek‖. By examining the proof of Example 5.24 we see that f(sk(A)) = A

for all A ∈ Uk, so q ◦ sk is the restriction of f
−1

to Uk. In particular, these restrictions are all continuous.

As the sets Uk are open and cover RPn, it follows that f
−1

itself is continuous, so f is a homeomorphism.

Example 5.70. [eg-lens-space]
Put Cd = {z ∈ C : zd = 1}, which is a group under multiplication. We can let this act on S2n−1 = S(Cn)

by multiplication, and this action is free. More generally, given integers p1, . . . , pn we can define a less obvious
action on S2n−1 by

z.(x1, . . . , xn) = (zp1x1, . . . , z
pnxn).

We claim that this is free iff the integers pk are all coprime to d. Indeed, if m > 1 is a common factor of d
and pk and ek is the k’th basis vector and z = e2πi/m ∈ Cd then z.ek = ek, proving that the action is not
free. Conversely, suppose that all the pk are coprime to d and that z ∈ Cd and x ∈ S2n−1 with z.x = x. We
can then find k with xk 6= 0 and the equation z.x = x gives (zpk −1)xk = 0 so zpk = 1. We also have zd = 1.
Moreover, as (d, pk) = 1 there exist integers s, t with sd+ tpk = 1, which gives

z = zsd+tpk = (zd)s (zpk)t = 1,

proving that the action is free.
In this case where the action is free, we write L(p1, . . . , pn) for the orbit space. Spaces of this type are

called Lens spaces, and they have been studied extensively.

Example 5.71. [eg-fta-orbits]
We can let the permutation group Σn act on Cn by the rule

σ.(z1, . . . , zn) = (zσ−1(1), . . . , zσ−1(n)).

In a slightly different notation, if we write z(i) instead of zi then z becomes a function from the set N =
{1, . . . , n} to C, and the rule is σ.z = z ◦ σ−1. We then have

τ.(σ.z) = τ.(z ◦ σ−1) = z ◦ σ−1 ◦ τ−1 = z ◦ (τσ)−1 = (τσ).z

as required. This formulation makes it easy to see why inversion is necessary. Note that the action is not
free (unless n ≤ 1) because the stabiliser of the zero vector is all of Σn. We let q be the quotient map
Cn → Cn/Σn

Now let Pn denote the set of polynomials of the form

f(t) = a0 + a1t+ · · ·+ an−1t
n−1 + tn

with ai ∈ C. We give this the obvious topology so that it is homeomorphic to Cn. Now define φ : Cn → Pn
by

φ(z)(t) =

n∏
i=1

(t− zi).

This is clearly continuous. It is also clear that this product is unchanged if we reorder the numbers zi, so
φ(σ.z) = φ(z) for all σ and z, so there is an induced continuous map φ : Cn/Σn → Pn with φq = φ. It turns
out that this is a homeomorphism.

Indeed, the Fundamental Theorem of Algebra says that every polynomial f(t) ∈ Pn has a root, say
zn, so f(t) = (t − zn)g(t) for some g(t) ∈ Pn−1. By an obvious induction based on this we can write
f(t) =

∏n
i=1(t− zn) for some list z = (z1, . . . , zn), so f = φ(z). This proves that φ is surjective, and so φ is

surjective.
Next, suppose that φ(z) = f say. For any complex number u, the number of times that u occurs in the

list z is the order of vanishing of f(t) at t = u. If we also have φ(w) = f we see that w must contain the
same entries as z, repeated the same number of times. It follows that there exists a permutation σ with
σ.z = w, so q(z) = q(w). It follows from this that φ is also injective, so it is a continuous bijection. It is
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also true that the inverse is continuous, but we do not yet have an efficient method to prove this. Refer
forward to a proof.

We saw in Example 4.6 that quotient maps need not be open in general. However, the situation is better
for quotient maps arising from group actions, as we now show.

Lemma 5.72. [lem-quotient-open]
For any G-space X, the quotient map q : X → X/G is open. If G is finite then q is also closed.

In fact, it is common for q to be closed even when G is infinite, but more subtle criteria are needed for
this. We will not discuss details here.

Proof. Let U be an open subset of X, and put V = q(U) ⊆ X/G. We must show that this is open in
the quotient topology on X/G, or equivalently that q−1(V ) is open in X. Now we have

x ∈ q−1(V )⇔ q(x) ∈ V = q(U)

⇔ q(x) = q(y) for some y ∈ U
⇔ x = gy for some y ∈ U and g ∈ G

⇔ x ∈
⋃
g∈G

gU,

so q−1(V ) =
⋃
g∈G gU . As the maps x 7→ gx are homeomorphisms, we see that gU is open, so q−1(V ) is open

as required. Now suppose that G is finite. For any closed set F ⊆ X we again have q−1(q(F )) =
⋃
g∈G gF ,

which is a finite union of closed sets and thus is again closed. As q is a quotient map, we deduce that q(F )
is closed in X/G, as claimed. �

6. The Hausdorff Property

Definition 6.1. [defn-hausdorff]
A space X is Hausdorff if and only if for every pair x, y ∈ X with x 6= y there are open sets U, V such

that x ∈ U and y ∈ V and U ∩ V = ∅. We will refer to (U, V ) as a Hausdorff pair for (x, y).

x

U

y

V

X

Proposition 6.2. [prop-metric-hausdorff]
A semimetric space is Hausdorff if and only if it is a metric space; in particular R is Hausdorff.

Proof. Let X be a set equipped with a semimetric d and the corresponding topology. First suppose
that d is a metric. Given distinct points x, y ∈ X we put ε = d(x, y)/2 > 0 and U = OBε(x) and V = OBε(y),
so U and V are open and x ∈ U and y ∈ V . If z ∈ U ∩ V then we have d(x, z) < ε and d(z, y) < ε so
d(x, y) ≤ d(x, z) + d(z, y) < 2ε = d(x, y), which is a contradiction. It follows that U ∩ V = ∅, and thus that
X is Hausdorff.

Now suppose instead that d is not a metric, so there is some pair x, y with x 6= y but d(x, y) = 0. If U is
any neighbourhood of x then U must contain OBε(x) for some ε > 0, but that implies that y ∈ U , so there
cannot be any neighbourhood V of y that is disjoint from U . Thus, X is not Hausdorff. �

Example 6.3. [eg-hausdorff]
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(a) If X is an infinite set with the cofinite topology (Example 2.16) then any two nonempty open sets
have nonempty intersection, and it follows from this that X is not Hausdorff.

(b) Consider Rn with the Zariski topology as in Example 2.18. We will assume the standard fact
that a polynomial f ∈ R[x1, . . . , xn] vanishes everywhere on Rn if and only if all the coefficients
of f are zero. If V (I) and V (J) are proper closed subsets of Rn then the ideals I and J must be
nonzero. If we choose f ∈ I \ {0} and g ∈ J \ {0} we see that fg is a nonzero polynomial that
vanishes everywhere on V (I) ∪ V (J), so V (I) ∪ V (J) is again a proper subset of Rn. By taking
complements, we see that the intersection of any two nonempty open sets is nonempty. This clearly
means that the Zariski topology is not Hausdorff. Examples related to this one are probably the
most important application of non-Hausdorff spaces in other areas of mathematics.

(c) More obviously, any indiscrete space with at least two points is not Hausdorff.
(d) If E is an equivalence relation on a Hausdorff space X, it can easily happen that X/E is not

Hausdorff. This holds for the quotient group R/Q discussed in Example 5.63, for example. In
many applications, the appropriate response is to find a larger equivalence relation E such that
X/E is Hausdorff, and work with X/E instead.

Proposition 6.4. [prop-hausdorff-constructs]
Subspaces, products and coproducts of Hausdorff spaces are Hausdorff.

Proof.

(a) Let X be a Hausdorff space, and let Y be a subset with the subspace topology. Suppose that y0

and y1 are distinct points in Y . By assumption there is a Hausdorff pair (U0, U1) for (y0, y1) in X,
and it follows that (U0 ∩ Y,U1 ∩ Y ) is a Hausdorff pair for (y0, y1) in Y .

(b) Let (Xi)i∈I be a family of Hausdorff spaces, and put X =
∏
I Xi. Let x and y be distinct points in

X. As x 6= y we must have xi 6= yi for some i. As Xi is Hausdorff there is a Hausdorff pair (U, V )
for (xi, yi) in Xi. It follows that (π−1

i (U), π−1
i (V )) is a Hausdorff pair for (x, y) in X.

(c) Now instead consider the coproduct X ′ =
∐
I Xi. Let x′ and y′ be distinct points in X ′, say

x′ = (i, u) and y′ = (j, v). If i 6= j then (ιi(Xi), ιj(Xj)) is a Hausdorff pair for (x′, y′). Otherwise,
u and v are distinct points in the Hausdorff space Xi, so we can find a corresponding Hausdorff
pair (U, V ), and we find that (ιi(U), ιi(V )) is the required Hausdorff pair for (x′, y′).

�

Proposition 6.5. [prop-finite-subspace]
Let X be a Hausdorff space, and let Y be a finite subset. Then Y is closed in X, and the subspace

topology on Y is discrete.

Proof. Consider a point y ∈ Y . For any x ∈ {y}c we can choose a Hausdorff pair (U, V ) for (x, y), and
we see that U is an open neighbourhood of x contained in {y}c. It follows that {y}c is open, so {y} is closed.
If Y = {y1, . . . , yn} then Y =

⋃n
i=1{yi} which is a finite union of closed sets and thus is closed. The same

argument shows that every subset Z ⊆ Y is closed, which means that the subspace topology is discrete. �

Proposition 6.6. [prop-closed-diagonal]
A space X is Hausdorff if and only if the diagonal ∆ = {(x, x) : x ∈ X} is a closed subset of X ×X

(or equivalently ∆c is open).

Proof. Recall that sets of the form U × V (with U and V open in X) form a basis for the product
topology. Moreover, we have (U × V ) ∩∆ = {(x, x) : x ∈ U ∩ V }, so U × V is contained in ∆c if and only
if U ∩ V = ∅. Thus, Hausdorff pairs for (x, y) biject with basic neighbourhoods of (x, y) that are contained
in ∆c. The claim is clear from this. �

Lemma 6.7. [lem-unique-limits]
If X is Hausdorff (and in particular, if X is a metric space) then any sequence in X converges to at

most one point.

Proof. Suppose that x converges to both a and b, where a 6= b. As X is Hausdorff we can choose
disjoint open sets A and B with a ∈ A and b ∈ B. As x converges to a we can find N ∈ N such that
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xi ∈ A for all i ≥ N . As x converges to b we can find M ∈ N such that xi ∈ B for all i ≥ M . Now
xmax(N,M) ∈ A ∩B = ∅, which is a contradiction. �

Example 6.8. [eg-germs]
Consider the set X = C([0, 1]) of continuous functions u : [0, 1] → R. We introduce an equivalence

relation E on X by

uEv ⇔ ( There exists ε > 0 such that u(x) = v(x) for all x ∈ [0, ε] ).

The equivalence classes are called germs. The set of germs is very useful in differential geometry, but it is not
obvious how to give it a nontrivial topology. Here we will just show that some naive approaches do not work

well. Suppose we use the metric d1(u, v) =
∫ 1

0
|u(x) − v(x)| dx to give a topology on X, and then consider

the quotient topology on X/E. We claim that this is indiscrete. The proof will use the map pn : [0, 1]→ R
as shown below:

0

1

0 1
2n

1
n 1

x

pn(x)

Consider a nonempty closed set G ⊆ X/E, and put F = q−1(G) ⊆ X. As G 6= ∅, there is at least one point
u ∈ F . Let v be any other point in X, and put wn = pnu+ (1− pn)v. As pn(x) = 1 for x < 1/(2n), we see
that q(wn) = q(u) ∈ G, so wn ∈ F for all n. We also have (wn − v)(t) = pn(t)(u(t)− v(t)), which is zero for
t > 1/n and bounded by ‖u− v‖∞ for t ≤ 1/n, so d1(wn, v) ≤ ‖u− v‖∞/n→ 0. As F is closed we deduce
that v ∈ F . As v was arbitrary this means that F = X and so G = X/E. It follows that X/E is indiscrete,
as claimed.

Now suppose that we use instead the topology on X defined by the metric d∞(u, v) = max{|u(x)−v(x)| :
x ∈ [0, 1]}. We can define f : X → R by f(u) = u(0), and we find that this is continuous with respect to d∞
(but not with respect to d1). It is clear that when uEv we have f(u) = f(v), so there is an induced map
f : X/E → R which is continuous with respect to the new quotient topology on X/E. One can check that

the open sets in X/E are precisely the sets f
−1

(U) where U is open in R. This means that the topology on
X/E is still very coarse, and does not really distinguish between X/E and the much smaller set R.

Definition 6.9. [dfn-graph]
The graph of a function f : X −→ Y is the set

Γ(f) = {(x, f(x)) : x ∈ X} ⊆ X × Y.

Proposition 6.10. [prop-closed-graph]
Suppose that f : X → Y is continuous and that Y is Hausdorff. Then Γ(f) is closed in X × Y .

Proof. The map f × 1: X × Y → Y × Y is continuous, and the diagonal ∆ ⊆ Y × Y is closed by
Proposition 6.6, so (f × 1)−1(∆) is closed in X × Y . On the other hand, we have

(f × 1)−1(∆) = {(x, y) ∈ X × Y : (f(x), y) ∈ ∆} = {(x, y) : y = f(x)} = Γ(f).

�

There are some important results giving converses to the above proposition under various additional
conditions. However, the converse is not valid in general, as the example below will show.

Example 6.11. [eg-closed-graph]
Define f : R −→ R by

f(x) =

{
1/x if x 6= 0

0 if x = 0.
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This is clearly not continuous. The graph can also be described as Γ(f) = Y ∪ {(0, 0)}, where Y = {(x, y) :
xy = 1}. The multiplication map µ : R2 −→ R is continuous, so the set Y = µ−1{1} is closed, so Γ(f) is
closed.

7. Connectedness

Definition 7.1. [defn-separation]
A separation of a space X is a pair of open subsets A,B such that X = A ∪ B and A ∩ B = ∅. A

separation is trivial if A = ∅ or B = ∅. The space X is connected if and only if it is nonempty and has no
nontrivial separation.

Remark 7.2. [rem-separation]
If X = A ∪ B with A ∩ B = ∅ then A = Bc and B = Ac. Thus, A is open iff B is closed, and A is

closed iff B is open. In particular, if A and B give a separation then they are both open and so they are
both closed as well.

Example 7.3. [eg-separation]

(a) The sets (−∞, 0) and (0,∞) give a nontrivial separation of R \ {0}.
(b) Recall that GLn(R) is the space of invertible n× n matrices over R. Put

GL+
n (R) = {A ∈ GLn(R) : det(A) > 0} GL−n (R) = {A ∈ GLn(R) : det(A) < 0}.

As the determinant map is continuous, these sets are open. They give a separation of GLn(R),
which is nontrivial (for n > 0). In Example 8.10 we will show that GL+

n (R) and GL−n (R) are
connected, so this separation cannot be refined any further.

(c) Consider Q with its topology as a subspace of R. For any irrational number α, the sets (−∞, α)∩Q
and (α,∞) ∩Q give a nontrivial separation.

(d) Let X be the space of binary sequences as in Example 2.6. For any n ∈ N, the sets An = {x :
xn = 0} and Bn = {x : xn = 1} give a nontrivial separation of X.

(e) We shall show later (in Corollary 7.19) that Rn is connected.

Proposition 7.4. [prop-interval-connected]
The space [0, 1] is connected.

Proof. Let A and B give a separation of [0, 1]. After exchanging A and B if necessary, we may assume
that 0 ∈ A. Put P = {x ∈ (0, 1] : [0, x) ⊆ A}. As A is open it must contain some neighbourhood of 0, so
P 6= ∅. It is also clear that P is bounded above by 1. As explained in Appendix 34, it follows that P has a
least upper bound, which we denote by p = sup(P ) ∈ (0, 1]. We claim that [0, p) ⊆ A (so p ∈ P ). Indeed,
if 0 ≤ x < p then x cannot be an upper bound for P , so there exists a ∈ P with x < a, so x ∈ [0, a) ⊆ A
as required. Next, recall that B is open and A = Bc so A is closed. As [0, p) ⊆ A we see that p is a closure
point for A and so p ∈ A. If p = 1 then this means that A = [0, 1] and the separation is trivial, as required.
Suppose instead that p < 1. As p ∈ A and A is open in [0, 1] we see that there must be some neighbourhood
(p− ε, p+ ε) of p contained in A. It then follows that p+ ε ∈ P , which contradicts the fact that p = sup(P ).
We must therefore have p = 1 after all. �

Corollary 7.5 (The Intermediate Value Theorem). [cor-IVT]
Suppose we have real numbers a < b and a continuous function f : [a, b] → R. Suppose that there are

numbers c, d ∈ [a, b] and y ∈ R with f(c) ≤ y ≤ f(d). Then there exists x ∈ [a, b] with f(x) = y.

Proof. If not, the open sets f−1((−∞, y)) and f−1((y,∞)) would give a nontrivial separation of the
interval [a, b]. This is impossible because [a, b] is homeomorphic to [0, 1] and so is connected. �

Remark 7.6. One can prove along similar lines that sets such as R and [a, b) are connected. However,
we prefer to leave this until we have a slightly more efficient method available.

It will now be convenient to introduce some slightly more flexible terminology.
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Definition 7.7. [defn-relative-separation]
Suppose we have a topological space X and a nonempty subset Y . A relative separation is a pair of open

sets A,B ⊆ X such that Y ⊆ A∪B and A∩B ∩ Y = ∅. Such a relative separation is trivial if A∩ Y = ∅ or
B ∩ Y = ∅. (Equivalently, the separation is trivial if Y ⊆ B or Y ⊆ A.)

Proposition 7.8. [prop-relative-separation]
The set Y (considered with the subspace topology) is connected if and only if every relative separation is

trivial.

Proof. This is a straightforward translation of the definitions. �

Proposition 7.9. [prop-connected-closure]
Let X be a topological space, and let Z be a connected subspace. Then any subspace Y with Z ⊆ Y ⊆ Z

is also connected. In particular, Z is connected.

Proof. Let A and B be a relative separation for Y . We then have Z ⊆ Y ⊆ A ∪ B and A ∩ B ∩ Z ⊆
A∩B ∩ Y = ∅, so A and B also give a relative separation for Z. As Z is connected this must be trivial. We
may therefore assume without loss of generality that A ∩ Z = ∅. This means that Z ⊆ Ac, but Ac is closed,
so Y ⊆ Z ⊆ Ac, so A ∩ Y = ∅. Thus, our original relative separation of Y is trivial, as required. �

Proposition 7.10. [prop-connected-union]
Let X be a space, and let Y and Z be connected subspaces of X such that Y ∩ Z 6= ∅. Then Y ∪ Z is

again connected.

Proof. Let A and B give a relative separation of Y ∪ Z. It then follows that they also give a relative
separation of Y , which must be trivial, so either Y ⊆ A or Y ⊆ B. Similarly we have Z ⊆ A or Z ⊆ B. If
Y ⊆ A and Z ⊆ A then Y ∪Z ⊆ A and so the original relative separation is trivial. Similarly, if Y ⊆ B and
Z ⊆ B then the original relative separation is again trivial. Otherwise we must have Y ⊆ A and Z ⊆ B or
vice versa, but either possibility would give Y ∩ Z ⊆ A ∩B = ∅, contrary to assumption. Thus the original
relative separation is trivial as required. �

Proposition 7.11. [prop-image-connected]
Let f : X → Y be a continuous map, and let X ′ be a connected subset of X. Then the image Y ′ = f(X ′)

is again connected.

Proof. Let C and D give a relative separation of Y ′. As f is continuous, it follows that the sets A =
f−1(C) and B = f−1(D) are open in X. We also have X ′ ⊆ f−1(f(X ′)) = f−1(Y ′) ⊆ f−1(C ∪D) = A ∪B
and X ′ ∩A∩B ⊆ f−1(Y ′)∩ f−1(C)∩ f−1(D) = f−1(Y ′ ∩C ∩D) = f−1(∅) = ∅. This means that A and B
give a relative separation of the connected set X ′, which must therefore be trivial. We may assume without
loss of generality that X ′ ⊆ A = f−1(C), which gives Y ′ = f(X ′) ⊆ f(f−1(C)) ⊆ C. This proves that our
original relative separation of Y ′ is trivial, as required. �

Corollary 7.12. [cor-quotient-connected]
Let X be a connected space, and let E be an equivalence relation on X. Then the quotient X/E is again

connected.

Proof. Apply the proposition with X ′ = X and Y = X/E and f = qE . �

Proposition 7.13. [prop-product-connected]
Let (Xi)i∈I be a family of connected spaces. Then the product X =

∏
I Xi is again connected.

The proof for the general case (where the index set I may be infinite) looks somewhat involved, so we
will start with a simpler case for motivation.

Lemma 7.14. [lem-product-connected]
Let X and Y be connected spaces; then X × Y is also connected.

Proof. As X and Y are connected they must be nonempty, so we can choose u ∈ X and v ∈ Y say. Let
A and B give a separation of X×Y . The point (u, v) must lie in either A or B, and we may assume without
loss of generality that (u, v) ∈ A. Now consider the sets Cu = {y : (u, y) ∈ A} and Du = {y : (u, y) ∈ B}.
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These are easily seen to give a separation of the connected space Y , and v ∈ Cu so we must have Cu = Y
and Du = ∅. Now fix y ∈ Y and put Ey = {x ∈ X : (x, y) ∈ A} and Fy = {x ∈ X : (x, y) ∈ B}. These
are easily seen to give a separation of the connected space Y . Moreover, we have y ∈ Y = Cu so (u, y) ∈ A
so u ∈ Ey. We must therefore have Ey = X and Fy = ∅. This means that X × {y} ⊆ A but y was arbitrary
so A = X × Y . �

Proof of Proposition 7.13. Let A and B give a separation of X. For any finite subset J ⊆ I, we
put

AJ = {x ∈ X : there exists a ∈ A such that xi = ai for all i 6∈ J}.
We will prove by induction on |J | that AJ = A. It is clear that A ⊆ AJ for all J , and that A∅ = A, so
the induction starts. Now consider the case J = {j}. If x ∈ A{j} we can choose a ∈ A such that ai = xi
for all i 6= j. We can then define f : Xj → X by f(u)j = u and f(u)i = ai = xi for all i 6= j. This is
clearly continuous, so the sets f−1(A) and f−1(B) form a separation of the connected space Xj , which must
therefore be trivial. We have f(aj) = a ∈ A, so aj ∈ f−1(A) 6= ∅, so we must have f−1(A) = Xj . In
particular we have xj ∈ f−1(A), so the point x = f(xj) lies in A. This proves that A{j} = A as required.
Now suppose that AJ = A, and consider a point y ∈ AJ∪{k} for some k 6∈ J . Choose a ∈ A such that xi = ai
for i 6∈ J ∪{k}. Define y ∈ X by yi = xi for i 6= k, and yk = ak. We find that y ∈ AJ = A, and x only differs
from y in the k’th place, so x ∈ A{k} = A. It follows that AJ = A for all finite J , as claimed. Similarly, we
can define BJ in the same way, and we find that BJ = B.

The sets Xi are assumed to be connected, so they are nonempty, so X is nonempty. It follows that at
least one of A and B is nonempty, so without loss of generality we can assume that we have a point x ∈ A.
As A is open, it must therefore contain a basic open neighbourhood of x. Thus, there is a finite set J ⊆ I
and a family of open sets Uj ⊆ Xj with xj ∈ Uj such that the set U =

⋂
j∈J Uj is contained in A. Now let y

be an arbitrary point in X. Define z ∈ X by zi = xi for i ∈ J , and zi = yi for i 6∈ J . We then have z ∈ U so
z ∈ A. It follows from this that y ∈ AJ = A. Thus, we find that A = X, so the original separation is trivial
as required. �

Proposition 7.15. [prop-component-equivalence]
Let X be a topological space. Define a relation E on X by xEy iff (there is a connected set Y ⊆ X with

{x, y} ⊆ Y ). Then E is an equivalence relation.

Proof. First, for any point x ∈ X the singleton {x} is connected, so xEx. Next, it is immediate
that xEy iff yEx. Now suppose that xEy and yEz. This means that there are connected sets Y and Z
with {x, y} ⊆ Y and {y, z} ⊆ Z. Note that Y ∩ Z contains y and so is nonempty. We therefore see from
Proposition 7.10 that Y ∪ Z is connected. As {x, z} ⊆ Y ∪ Z we deduce that xEz as required. �

Definition 7.16. [defn-components]
The equivalence classes for the above relation are called the connected components (or just components)

of X.

Proposition 7.17. [prop-components-closed]
The components of X are closed connected sets. Moreover, they are maximal in the following sense: if

C is a component and D is a connected set containing C, then D = C.

Proof. First, let C be a component. Then C must be nonempty, so we can choose x ∈ C. Let A and
B give a relative separation of C. After exchanging A and B if necessary, we may assume that x ∈ A. Now
let y be any other point in C. By the definition of the equivalence relation, we can find a connected set Y
with {x, y} ⊆ Y . The definition also implies that all points in Y are equivalent to x, so Y ⊆ [x] = C. It
follows that A and B give a relative separation of the connected set Y , which must therefore be trivial. As
x ∈ A∩Y 6= ∅, it follows that Y ⊆ A, so in particular y ∈ A. As y was an arbitrary element of C, this means
that C ⊆ A, so the relative separation (A,B) of C is trivial. This means that C is connected, as claimed.

Now let D be any other connected set containing C. If z ∈ D then D is a connected set containing x
and z, which means that xEz. However, C is the full equivalence class of x, so we conclude that z ∈ C. This
shows that D = C.

In particular, Proposition 7.9 shows that C is connected, so we can take D = C and conclude that
C = C, so C is closed. �
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Corollary 7.18. [cor-open-components]
If X has only finitely many components, then the components are open as well as closed, and X is

homeomorphic to the coproduct of the components.

Proof. Let the components be C1, . . . , Cn, so X is the disjoint union of these sets. If we fix k then the
set Cck =

⋃
i 6=k Ci is a finite union of closed sets and so is still closed, and it follows that Ck is open. The

last statement now follows from Proposition 5.46. �

Corollary 7.19. [cor-Rn-connected]
The space Rn is connected.

Proof. Using Proposition 7.13 we reduce to the case n = 1. If a, b ∈ R with a < b then the interval
[a, b] is homeomorphic to [0, 1] and so is connected, so a and b lie in the same component. This means that
there is only one component, namely R itself, so R is connected. �

Remark 7.20. [eg-QZ-components]

Now consider the space Q. For any x, y ∈ Q with x < y, the number u = x + (y − x)/
√

2 is irrational
with x < u < y. It follows that the sets U = (−∞, u) ∩Q and V = (u,∞) ∩Q give a separation with x ∈ U
and y ∈ V . It follows that x and y cannot lie in the same component, so the component of x is just {x}.
Thus, Q has infinitely many components, and they are closed but not open. In the space Z it is again true
that the components are singletons and that there are infinitely many of them, but in this case the singletons
are open as well as closed.

The above example is quite typical of countable Hausdorff spaces, which might lead one to think that
a countable Hausdorff space with more than one point cannot be connected. This is not true, as shown by
the next example.

Example 7.21. [eg-countable-conected]
Consider the set

X0 = Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}.
This inherits a topology from R, which we call τ . We say that a subset U ⊆ X0 is σ0-open if there is a
τ -open set U∗ with Q ∩ U∗ ⊆ U ⊆ U∗. This gives a new topology σ0 on X0. Note that any τ -open set is
σ0-open, which implies that σ0 is Hausdorff. Also, if Q ⊆ U ⊆ X0 then we can take U∗ = R to see that U is
σ0-open. In particular, if T is any subset of X0 \Q then we find that the set T ∪Q is σ0-open, so T is open
with respect to the subspace topology σ0|X0\Q. This means that this subspace topology is just the discrete
topology.

Next, for u = a + b
√

2 ∈ X0 we define u∗ = a − b
√

2, and we let X be the quotient set in which u is
identified with u∗ for all u. The operation u 7→ u∗ is not continuous with respect to σ0, but that does not
prevent us from constructing a quotient topology on X, which we call σ. We claim that X is countable,
Hausdorff and connected. Countability is clear.

For the rest, we put

Uε(u) = {u} ∪ (Q ∩ (u− ε, u+ ε)).

These sets form a basis of neighbourhoods of u in X0. Note that Uε(u
∗) is usually different from Uε(u)∗, but

nonetheless the set

Vε(u) = Uε(u) ∪ Uε(u∗)
is the same as Uε(u) ∪ Uε(u)∗ and so is invariant under t 7→ t∗. These sets form a basis of ∗-invariant
neighbourhoods of {u, u∗}. Moreover, if π(u) 6= π(v) in X then {u, u∗} and {v, v∗} will be disjoint, so Vε(u)
and Vδ(v) will be disjoint when ε and δ are sufficiently small. Using this, we see that X is Hausdorff.

To prove that X is connected, we need a more precise version of the above argument. Let η(u, v) denote
the minimum possible distance between a member of {u, u∗} and a member of {v, v∗}. It is not hard to see
that Vε(u) ∩ Vδ(v) 6= ∅ iff ε + δ < η(u, v). By letting δ tend to zero, we see that π(v) lies in the closure of
π(Vε(u)) iff η(u, v) ≤ ε. Thus, the preimage of the closure of π(Vε(u)) is the set

Fε(u) = {v : η(u, v) ≤ ε}.
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We next claim that for all points u = a+ b
√

2 and v = c+ d
√

2 in X0, and all ε > 0, the set Fε(u)∩Fε(v) is
nonempty.

To see this, choose rational numbers p, q with |p − (u + v)/2| < ε/2 and |q
√

2 − (u − v)/2| < ε/2. We

then put z = p+ q
√

2 ∈ X0, and we find that |z − u| < ε and |z∗ − v| < ε, so z ∈ Fε(u) ∩ Fδ(v) as required.
Now suppose we have a separation (A,B) of X, so the sets A0 = π−1(A) and B0 = π−1(B) give a

∗-invariant separation of X0. Suppose for a contradiction that both A0 and B0 are nonempty, say with
u ∈ A0 and v ∈ B0. As A0 and B0 are open and invariant, we can choose ε > 0 such that Vε(u) ⊆ A0

and Vε(v) ⊆ B0. As A0 and B0 are also closed, this gives Fε(u) ⊆ A0 and Fε(v) ⊆ B0, which means that
Fε(u) ∩ Fε(v) = ∅, contrary to what we proved above. Thus, the separation must actually be trivial, as
required.

Exercise 7.1. [ex-clconn]
Find a connected subset X ⊆ Rn (for some n) such that int(X) is not connected.

Solution: Let X ⊆ R2 be the union of the x-axis with two open discs of radius 1/2 centred at (−1, 0) and
(1, 0).

Then X is connected but the interior of X is just the union of the two discs, which is not connected.

Exercise 7.2. [ex-puncture]
Suppose that X ⊆ R2 is connected and x ∈ int(X). Prove that X \ {x} is connected.

Solution: As x ∈ int(X) we have a small open disc D centred at x and contained in X. Put X ′ = X \ {x}
and D′ = D\{x}, and note that D′ is connected. Suppose that U and V are open in R2 and have X ′ ⊆ U∪V
and U ∩ V ∩ X ′ = ∅. It follows that D′ ⊆ U ∪ V and D′ ∩ U ∩ V = ∅. As D′ is connected we must have
D′ ⊆ U or D′ ⊆ V , and we may assume without loss of generality that D′ ⊆ U . It follows that the set
U∗ = U ∪ {x} is open. Next, as D′ ∩ U ∩ V = ∅ we deduce that D′ ∩ V = ∅, so V cannot contain any open
disc centred at x. As V is open it follows that x 6∈ V . We now have X ⊆ U∗ ∪ V with U∗ ∩ V ∩X = ∅ and
U∗ ∩X 6= ∅. As X is connected it follows that X ⊆ U∗, and so X ′ ⊆ U . This implies that X ′ is connected,
as claimed.

Exercise 7.3. [ex-quasi]
Let X be a topological space. Define a relation F on X by xFy iff (there is no separation X = A∪B into

disjoint open sets such that x ∈ A and y ∈ B). Prove that this is an equivalence relation. We will call the
equivalence classes quasicomponents. Show that each quasicomponent is closed. Show that each component
is contained in a quasicomponent.

Solution: We need to prove that the relation F is reflexive, symmetric and transitive. The first two are
immediate. For transitivity, suppose that xFy and yFz. Suppose that X = A ∪ B is a separation into
disjoint open sets. By assumption either x, y ∈ A or x, y ∈ B, and also either y, z ∈ A or y, z ∈ B. On the
other hand, A and B are disjoint so it cannot happen that y ∈ A and y ∈ B; thus the only possibilities are
x, y, z ∈ A or x, y, z ∈ B. In either case, x and z lie in the same half of the partition. Thus xFz as required.

The quasicomponent C containing x is the set of points y such that for every open and closed set A
containing x, we also have y ∈ A. In other words,

C =
⋂
{A : x ∈ A and A is open and closed}

This is the intersection of a family of closed sets, hence is closed.
Now write xEy if there is a connected set containing x and y, so the E-equivalence classes are by

definition the components. Suppose that xFy, say x, y ∈ Z with Z ⊆ X connected. Consider a separation
X = A ∪ B as before. Then the separation Z = (Z ∩ A) ∪ (Z ∩ B) is trivial, so wlog Z ∩ B = ∅ and so
Z ⊆ A. Thus x, y ∈ A. As this happens for every separation X = A ∪ B, we see that xFy. It follows that
the component D = {y : yEx} containing x is a subset of the quasicomponent C = {y : yFx}. Thus
every component is contained in a quasicomponent, as claimed.
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Exercise 7.4. [ex-totdis]
A space X is said to be totally disconnected if the only connected subsets are single points.

(a) Prove that Q (considered as a subspace of R) is totally disconnected.
(b) Fix a prime p, and consider Z with the p-adic topology, as in Example 2.26. Prove that this is also

totally disconnected.

Solution:

(a) Let Y ⊆ Q be connected. By definition this means that Y is nonempty, so we can choose y ∈ Y .
We claim that Y = {y}. If not, then there is some z ∈ Y with z 6= y and then the number

x = y + (z − y)/
√

2 is irrational and lies strictly between y and z. This means that (−∞, x) ∩ Y
and (x,∞) ∩ Y form a nontrivial separation of Y , contrary to the assumption. Thus Q is totally
disconnected as claimed.

(b) Now consider Z with the p-adic topology. For any k ≥ 0 and any a ∈ {0, 1, . . . , pk − 1} the set
Uk,a = {m : m = a (mod pk)} is then a (basic) open set. It is easy to see that U ck,a is the union

of the open sets Uk,b for b ∈ {0, . . . , pk − 1} with b 6= a. This means that U ck,a is open, so Uk,a is
closed as well as being open. Now suppose we have a connected set Y ⊆ X, so we can choose a
point y ∈ Y . We claim that Y = {y}. If not, there is some point z ∈ Y with 0 6= z − y ∈ Z, so
for sufficiently large k we see that z − y is not divisible by pk. This means that there is some set
Uk,a with y ∈ Uk,a and z ∈ U ck,a. This means that (Uk,a, U

c
k,a) gives a nontrivial separation of Y ,

contrary to hypothesis. The claim follows.

8. Path Connectedness

Definition 8.1. [defn-pi-zero]

(a) A path from x0 to x1 in a space X is a continuous map u : [0, 1] −→ X such that u(0) = x0 and
u(1) = x1.

(b) For any point x ∈ X, we write cx for the constant map [0, 1] → X with value x, so cx is a path
from x to x.

(c) If u is a path from x0 to x1 then we define u(t) = u(1− t), which gives a path from x1 to x0, called
the reverse of u.

(d) If v is another path that runs from x1 to x2, we define v ∗ u : [0, 1]→ X by

(v ∗ u)(t) =

{
u(2t) if 0 ≤ t ≤ 1/2

v(2t− 1) if 1/2 ≤ t ≤ 1.

This is continuous by Proposition 5.9 applied to the sets [0, 1/2] and [1/2, 1], so it gives a path from
x0 to x2.

(e) Write xEy iff there exists a path from x to y in X. Parts (b) to (d) show that this is an equivalence
relation. The equivalence classes are called path components. We write π0(X) for the set X/E of
path components.

(f) We say that X is path connected if it is nonempty and any two points can be joined by a path, so
there i precisely one path component, namely X itself.

Note that in the definition of v ∗ u, we use u first, then v. This is consistent with the idea that a path
from x0 to x1 is like a map from x0 to x1, and that joining paths is analogous to composition. This idea will
be explored further in Section 28.

Proposition 8.2. [prop-path-connected]
Any path connected space is connected.

Proof. Let X be a path connected space, and let (U, V ) be a separation of X. By definition, a path
connected space must be nonempty, so we can choose a point a ∈ X, and we may assume that a ∈ U . For
any other point x ∈ X, we can choose a path u from a to x. Now the sets u−1(U) and u−1(V ) give a
separation of the connected space [0, 1] with 0 ∈ u−1(U), so we must have u−1(U) = [0, 1] and u−1(V ) = ∅.
In particular we have 1 ∈ u−1(U) so x = u(1) ∈ U . As x was arbitrary this gives U = X, so the separation
is trivial as required.
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Example 8.3. [eg-convex-connected]
We say that a subset X ⊆ Rn is convex if whenever a, b ∈ X and 0 ≤ t ≤ 1 the point (1− t)a+ tb also

lies in X. If so, we have a path from a to b given by u(t) = (1− t)a+ tb, showing that X is path connected,
and thus connected (provided that X 6= ∅).

Lemma 8.4. [lem-convex-classify]
The convex subsets of R are the sets of the following types:

(a) The empty set, single points and R itself.
(b) Semi-infinite intervals (−∞, a), (−∞, a], [a,∞) and (a,∞) for a ∈ R.
(c) Finite intervals (a, b), [a, b), (a, b] and [a, b] where a, b ∈ R and a < b.

Proof. Let X ⊆ R be convex. First note that if p, q ∈ X and p < x < q we can put t = (x− p)/(q− p)
and we find that 0 < t < 1 and x = (1− t)p+ tq, so x ∈ X by convexity.

Now suppose for the moment that X is nonempty and bounded above and below. We then have numbers
a = inf(X) and b = sup(X) with a ≤ b, so X ⊆ [a, b]. If a = b then we must have X = {a}. Suppose instead
that a < b. Consider a point x ∈ (a, b). Then x is strictly less than b = sup(X), so x is not an upper bound
for X, so there exists q ∈ X with x < q ≤ b. Similarly, there exists p ∈ X with a ≤ p < x. As p < x < q
with p, q ∈ X we see that x ∈ X. This proves that (a, b) ⊆ X ⊆ [a, b], so X has one of the types in (c).

Now suppose instead that X has neither an upper bound nor a lower bound. For any x ∈ R, we note
that x is not an upper bound for X, so there exists q ∈ X with x < q. Similarly there exists p ∈ X with
p < x. As p < x < q with p, q ∈ X we see that x ∈ X. As x was arbitrary we see that X = R, which is
covered by case (a).

Finally, suppose that X has an upper bound but not a lower bound, or vice-versa. By a mixture of the
methods above, we see that X is covered by case (b). �

Proposition 8.5. [prop-convex-open]
Let U ⊆ R be a nonempty convex open set, and let f : U → R be a continuous injective map. Then f(U)

is also convex and open, and f : U → f(U) is a homeomorphism. Moreover, f is either strictly increasing
or strictly decreasing.

Proof. As U is nonempty and open, we can choose a, b ∈ U with a < b. As f is injective we have
f(a) 6= f(b). As −f is also continuous and injective, we can reduce to the case where f(a) < f(b). Now
suppose we have another pair of points x, y ∈ U with x < y. Put u(t) = (1− t)a+ tx and v(t) = (1− t)b+ ty
for 0 ≤ t ≤ 1. By convexity, we have u(t), v(t) ∈ U , and it is also clear that u(t) < v(t) for all t. Now put
w(t) = f(v(t))− f(u(t)), and note that w(0) = f(b)− f(a) > 0. As u(t) < v(t) and f is injective we see that
w(t) 6= 0 for all t, and it follows by the Intermediate Value Theorem that w(1) > 0, so f(x) < f(y). Thus,
the map f is strictly increasing.

Now suppose again that we have x, y ∈ U with x < y. If p ∈ R with f(x) ≤ p ≤ f(y) then the
Intermediate Value Theorem tells us that there exists z ∈ [x, y] such that f(z) = p, so f([x, y]) ⊇ [f(x), f(y)].
On the other hand, as f is strictly increasing we have f([x, y]) ⊆ [f(x), f(y)], so f([x, y]) = [f(x), f(y)]. As
all points of the form (1 − t)f(x) + tf(y) (for t ∈ [0, 1]) lie in [f(x), f(y)], we deduce that f(U) is convex.
As f is injective it follows that f((x, y)) = (f(x), f(y)). Now, every open subset V ⊆ U (including U itself)
can be written as a union of such open intervals (x, y), so f(V ) is the union of the corresponding intervals
(f(x), f(y)), so f(V ) is open. It follows that f(U) is open and that f : U → f(U) is a continuous bijection
and an open map, and therefore a homeomorphism. �

Proposition 8.6. [prop-product-path-connected]
Let (Xi)i∈I be a family of path connected spaces. Then the product X =

∏
I Xi is also path connected.

Proof. Let x and y be points in X. As Xi is path connected, we can choose a path ui from xi to yi in Xi.
We then define u(t) = (ui(t))i∈I . This gives a map u : [0, 1] → X, which is continuous by Proposition 5.16,
giving a path from x to y. �

Proposition 8.7. [prop-image-path-connected]
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Let f : X → Y be a continuous map, and let X ′ be a path connected subset of X. Then the image
Y ′ = f(X ′) is also path connected.

Proof. Suppose we have points y0, y1 ∈ Y ′. As Y ′ = f(X ′) we can find points x0, x1 ∈ X ′ with
f(xi) = yi. As X ′ is path connected we can find a map u : [0, 1] → X ′ with u(0) = x0 and u(1) = x1. Now
put v = f ◦ u : [0, 1]→ Y ′; we find that this gives the required path from y0 to y1. �

Example 8.8. [eg-Sn-connected]
For n > 0 the sphere Sn = {x ∈ Rn : ‖x‖ = 1} is path connected (and thus connected). To see this,

consider points x, y ∈ Sn with y 6= −x. Define u : [0, 1] → Rn+1 by u(t) = (1 − t)x + ty. As y 6= −x, we
claim that this does not pass through zero. This should be clear geometrically. For an algebraic proof, one
can check by expanding everything out that

4‖u(t)‖2 = (2t− 1)2‖x− y‖2 + ‖x+ y‖2 ≥ ‖x+ y‖2,

which implies the claim. We can thus define a path v from x to y in Sn by v(t) = u(t)/‖u(t)‖. For the
exceptional case where y = −x, we simply choose a point z ∈ Sn \{x,−x} (which is possible because n > 0);
then the general case gives paths from x to z and from z to −x, which we can join to give a path from x to
−x.

Example 8.9. [eg-RPn-connected]
In Example 5.24 we exhibited a continuous surjection from Sn to RPn. Using this and Proposition 8.7,

we see that RPn is also path connected.

Example 8.10. [eg-GLnR-connected]
Consider the space GLn(R) and the open subspaces

GL±n (R) = {A ∈ GLn(R) : ±det(A) > 0}.

We claim that these are both path connected. As a first step, let U be the path component containing the
identity matrix, so U ⊆ GL+

n (R). If u is a path from I to A and v is a path fom I to B then the map
t 7→ u(t)−1 gives a path from I to A−1 and the map t 7→ u(t)v(t) gives a path from I to AB. It follows that
U is a subgroup of GL+

n (R).
Now let e1, . . . , en be the standard basis vectors for Rn, so we can define a matrix A by describing the

columns Aei. Consider the following matrices:

(a) For 1 ≤ i ≤ n and t > 0 we define Di(t)ei = tei, and Di(t)ek = ek for k 6= i.
(b) For 1 ≤ i, j ≤ n and t ∈ R we define Eij(t)ei = ei + tej and Eij(t)ek = ek for k 6∈ {i, j}.
(c) For 1 ≤ i, j ≤ n and 0 ≤ t ≤ π we define Rij(t)ei = cos(t)ei + sin(t)ej and Rij(t)ej = − sin(t)ei +

cos(t)ej and Rij(t)ek = ek for k 6∈ {i, j}.
It is visible from the definitions that these lie in U . Now let A be an arbitrary matrix in GL+

n (R). We find
that:

(p) Ei(t)A is the result of multiplying the i’th row by t.
(q) Eij(t)A is the result of adding t times the i’th row to the j’th row.
(r) Rij(π/2)A is the result of exchanging the i’th and j’th rows and multiplying one of them by minus

one.
(s) Rij(π)A is the result of multiplying the i’th and j’th rows by minus one.

By a minor adjustment of the standard row-reduction algorithm, we can perform a sequence of operations
of types (p), (q) and (r) to convert A to a diagonal matrix A′ in which all the diagonal entries are ±1. None
of these operations change the sign of the determinant, and det(A) > 0 so we must have det(A′) > 0, so the
number of −1’s on the diagonal must be even. We can thus perform operations of type (s) to convert A′ to
I. Because all of these operations are given by left-multiplying by matrices in U , we find that there exists
B ∈ U with BA = I, so A = B−1. As U is a subgroup we deduce that A ∈ U . As A was an arbitrary element
of GL+

n (R) we deduce that GL+
n (R) = U , so GL+

n (R) is path connected as claimed. Now let J be the matrix
with Je1 = −e1 and Jek = ek for k > 1. It is then clear that the map A 7→ JA gives a homeomorphism
GL+

n (R)→ GL−n (R) (with inverse again given by A 7→ JA) so GL−n (R) is also path connected.
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Example 8.11. [eg-GLnC-connected]
Now consider the space GLn(C) = {A ∈ Mn(C) : det(A) 6= 0}. We claim that this is path connected

(and thus connected). This could be proved by a similar method to that used for GL+
n (R), but we will instead

explain a rather different approach. Consider a point A ∈ GLn(C), and let λ1, . . . , λr be the eigenvalues of
A. As A is invertible, these are all nonzero.

λ1

λ2

λ3

µ1

µ2

µ3

ν

Put µi = −λi/|λi| ∈ S1, and then choose any point ν ∈ S1 different from µ1, . . . , µr. Put u(t) =
tνI + (1 − t)A ∈ Mn(C) (for 0 ≤ t ≤ 1). The eigenvalues of u(t) are the numbers tν + (1 − t)λi, which lie
on the line segments joining λi to ν. Our choice of ν ensures that these line segments do not pass through
the origin, so u(t) is invertible, so we have defined a path u : [0, 1] → GLn(C) joining A to νI. Now choose
θ such that ν = exp(iθ), and define v(t) = exp(i(1 − t)θ)I; this gives a path joining νI to I. We conclude
that any point A ∈ GLn(C) can be joined to the identity, and it follows that GLn(C) is path connected as
claimed.

Example 8.12. [eg-FnC-connected]
Consider the space

Fn(C) = {z ∈ Cn : zi 6= zj for all i 6= j}.

Put e1 = (1, 2, 3, . . . , n) ∈ Fn(C), and let E1 be the path component of e1. We will show that E1 is
all of Fn(C), so Fn(C) is path connected. Indeed, for any permutation σ of {1, . . . , n} we can put eσ =
(σ(1), . . . , σ(n)), so eσ ∈ Fn(C). Consider a transposition τ = (p q). Put a = (σ(p) + σ(q))/2 and b =
(σ(p)− σ(q))/2, and define u : [0, 1]→ Cn by

u(t)k =


σ(k) if k 6∈ {p, q}
a+ eπitb if k = p

a− eπitb if k = q.

The following picture illustrates the case where n = 7, σ is the identity permutation, p = 6, q = 3 and
t = 0.2.
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u(t)1 u(t)2

u(t)3

u(t)4 u(t)5

u(t)6

u(t)7

We find that when j 6= k we have u(t)j 6= u(t)k, so u(t) ∈ Fn(C) for all t. We also have u(0) = eσ
and u(1) = eστ , so eσ and eστ lie in the same path component. As every permutation can be written as a
product of transpositions, we see that all the points eσ lie in E1.

Next, put

Uσ = {z ∈ Cn : Re(zσ(1)) < Re(zσ(2)) < · · · < Re(zσ(n))}.
We find that Uσ is open and convex and contains the point eσ, so every point in Uσ can be connected by a
linear path to eσ and so lies in E1.

Now consider a general point z ∈ Fn(C). This gives us a finite collection of points i(zj−zk)/|zj−zk| ∈ S1

for 1 ≤ j, k ≤ n with j 6= k. Choose θ such that eiθ is not one of these points. This means that none of the
numbers e−iθzj − e−iθzk is purely imaginary, so the numbers e−iθz1, . . . , e

−iθzn have distinct real parts, so
e−iθz ∈ Uσ for some σ, so e−iθz ∈ E1. The path v(t) = e−itθz connects z to e−iθz in Fn(C), so z ∈ E1 as
claimed.

Example 8.13. [eg-wild-sin]
Consider the spaces

X0 = {(0, y) : −1 ≤ y ≤ 1}
X1 = {(x, sin(1/x)) : x > 0}
X = X0 ∪X1 ⊂ R2.

X1X1X0

We claim that X is connected but not path connected. Indeed, we have a continuous surjection (0,∞)→
X1 given by x 7→ (x, sin(1/x)), so X1 is connected, and X is the closure of X1 in R2, so X is connected.
Now consider a path u : [0, 1] → X, given by u(t) = (v(t), w(t)) say. Put A = v−1{0}, which is closed in
[0, 1]. We claim that it is also open. Indeed, suppose v(t) = 0, and suppose for the moment that w(t) < 1.
As w is continuous there is some ε > 0 such that w(s) < 1 for s in the set N = (t − ε, t + ε) ∩ [0, 1]. If
v(s) = 2/((4n+ 1)π) for some n ≥ 0 we see that w(s) = sin(1/v(s)) = 1, which cannot happen for s ∈ N . It
follows that v(N) is contained in the set

V = [0,∞) \ {2/((4n+ 1)π) : n ∈ N}.

Moreover, N is connected and contains t, so v(N) is connected and contains v(t) = 0. It is clear that the
only connected subset of V containing 0 is {0}, so v(N) = 0, so N ⊆ A, so t is an interior point of A. This
argument does not work if w(t) = 1, but in that case we can use a very similar argument based on the
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inequality w(t) > −1. We therefore see that A is both open and closed, as claimed. This means that A and
Ac give a separation of the connected space [0, 1], so either A = ∅ or A = [0, 1]. This means that no path
can cross between X0 and X1, so X is not path connected.

We next explain how to consider π0 as a functor. All the relevant concepts are reviewed in Appendix 36.

Proposition 8.14. [prop-pi-zero-functor]
The construction π0 can be made into a functor Spaces→ Sets, in such a way that π0(f)([x]) = [f(x)]

for all continuous maps f : X → Y and all points x ∈ X. Moreover, this functor preserves all products and
coproducts.

In this context we will typically write f∗ rather than π0(f) (as in Remark 36.36).

Proof. For each object X ∈ Spaces, we have already defined π0(X) ∈ Sets. Now suppose we have
a continuous map f : X → Y . If [x0] = [x1] in π0(X), then there exists a path u : [0, 1] → X joining x0

to x1, and then the path f ◦ u : [0, 1] → Y joins f(x0) to f(x1), so [f(x0)] = [f(x1)] in π0(Y ). We thus
have a well-defined map f∗ : π0(X) → π0(Y ) given by f∗([x]) = [f(x)]. If f = 1X it is clear from this that
f∗ = 1π0(X). Similarly, if we have a second map g : Y → Z then

(gf)∗([x]) = [g(f(x))] = g∗[f(x)] = g∗(f∗([x]))

so (gf)∗ = g∗f∗ : π0(X)→ π0(Z). We have thus defined a functor, as claimed.
Now consider a family of spaces (Xi)i∈I . Put P =

∏
iXi, and let pi : P → Xi be the i’th projection.

(This would normally be denoted by πi, but we wish to avoid confusion with the notation π0 for the set of
path components.) Note that pi induces a map (pi)∗ : π0(P )→ π0(Xi). We can put these together to define
a map φ : π0(P ) →

∏
i∈I π0(Xi) by φ(a) = ((pi)∗(a))i∈I . We claim that φ is a bijection. Indeed, suppose

we have an element b ∈
∏
i π0(Xi), or equivalently a family of elements bi ∈ π0(Xi) for i ∈ I. We can then

choose elements xi ∈ Xi such that bi = [xi], and put x = (xi)i∈I ∈ P and a = [x] ∈ π0(P ). We then have
(pi)∗(a) = (pi)∗([x]) = [pi(x)] = [xi] = bi for all i, so φ(a) = (bi)i∈I = b. This shows that φ is surjective.
Now suppose we have two elements a, a′ ∈ π0(P ) with φ(a) = φ(a′). We can then choose x, x′ ∈ X with
a = [x] and a′ = [x′]. Here x is a family (xi)i∈I of points xi ∈ Xi, and x′ is a family (x′i)i∈I of points x′i ∈ Xi.
We have φ(a) = ([xi])i∈I , and this is the same as φ(a′) = ([x′i])i∈I . We must therefore have [xi] = [x′i] for
all i, so we can choose a path ui : [0, 1] → Xi with ui(0) = xi and ui(1) = x′i. We can then use these to
define a path u : [0, 1] → P by u(t) = (ui(t))i∈I ; this is continuous by Proposition 5.16. We have u(0) = x
and u(1) = x′, so we have a = [x] = [x′] = a′. This proves that φ is also injective, so it is a bijection. This
means that the functor π0 preserves products as claimed.

Now put Q =
∐
iXi, and consider instead the set π0(Q). If x ∈ Xi we have a point [x] ∈ π0(Xi) and

thus a point (i, [x]) ∈
∐
i π0(Xi). On the other hand, we also have (i, x) ∈ Q and thus [(i, x)] ∈ π0(Q). If

(i, [x]) = (i, [y]) then we can choose a path u : [0, 1] → Xi joining x to y, and this gives a path t 7→ (i, u(t))
joining (i, x) to (i, y), so [(i, x)] = [(i, y)]. Conversely, suppose we have a path v : [0, 1]→ Q joining (i, x) to
(j, y). The set {i} ×Xi is both open and closed in Q, so the preimage A = u−1({i} ×Xi) is both open and
closed in [0, 1]. It also contains zero and so is nonempty. As [0, 1] is connected we must have A = [0, 1], so
v(t) ∈ {i}×Xi for all t. This means that i = j and y ∈ Xi and that there is a continuous map u : [0, 1]→ Xi

such that v(t) = (i, u(t)) for all t. In particular, u joins x to y, so (i, [x]) = (i, [y]) = (j, [y]). We thus
have a bijection ψ :

∐
i π0(Xi) → π0(Q) given by ψ(i, [x]) = [(i, x)], which means that π0 also preserves

coproducts. �

8.1. Non-homeomorphism results. [subsec-non-homeo]
As mentioned previously, it is often hard to prove that two spaces are not homeomorphic, even in

cases where this seems to be clear. However, we can use the functor π0 to prove some results of this
type. The most obvious approach is this: if f : X → Y is a homeomorphism, then functoriality means
that f∗ : π0(X) → π0(Y ) is a bijection, so |π0(X)| = |π0(Y )|. Thus, if we have spaces X and Y with
|π0(X)| 6= |π0(Y )|, then they cannot be homeomorphic.

Example 8.15. If X = R \ Z =
⋃
n∈Z(n, n+ 1) and Y = R \ {0} then π0X is infinite but |π0Y | = 2 so

X is not homeomorphic to Y .

68



Example 8.16. We saw in Example 8.10 that GLn(R) is not path-connected, but Mn(R) is a vector
space and thus is path-connected, so GLn(R) is not homeomorphic to Mn(R).

This method is unfortunately inadequate to prove many other visually obvious facts such as that S1 is
not homeomorphic to R or that R2 is not homeomorphic to R3. At least the first of these can be proved by
a small adaptation of the method, however.

Proposition 8.17. S1 is not homeomorphic to R.

Proof. Suppose for a contradiction that f : R −→ S1 is a homeomorphism. Put a = f(0) ∈ S1. Because
f is injective we have f(t) 6= a when t 6= 0 so f gives a continuous map f : R\{0} −→ S1 \{a}. Similarly, f−1

gives a continuous map f−1 : S1 \ {a} −→ R \ {0}. These maps are clearly inverse to each other, so R \ {0} is
homeomorphic to S1 \ {a}. This is a contradiction, because it is easy to see that S1 \ {a} is path-connected
but R \ {0} is not. �

More generally, if X is homeomorphic to Y and a1, . . . , an are n distinct points in X then there exist
n distinct points b1, . . . , bn in Y such that X \ {a1, . . . , an} is homeomorphic to Y \ {b1, . . . , bn}. Indeed, if
f : X −→ Y is a homeomorphism, we can just take bi = f(ai). Using this, we can prove a number of other
non-homeomorphism results.

Proposition 8.18. [0, 1] is not homeomorphic to S1.

Proof. If [0, 1] were homeomorphic to S1, then (0, 1) = [0, 1] \ {0, 1} would be homeomorphic to
S1 \ {b1, b2} for some b1, b2. This is a contradiction, because (0, 1) is path-connected whereas S1 \ {b1, b2} is
always disconnected for any pair {b1, b2} of distinct points. �

Proposition 8.19. R is not homeomorphic to R2, because R is disconnected by the removal of any
point, whereas there is no point in R2 whose removal disconnects the space. Similarly, there are precisely
two points whose removal fails to disconnect [0, 1], but every point in [0, 1]2 has that property, so [0, 1] is not
homeomorphic to [0, 1]2. �

Proposition 8.20. (0, 1) is not homeomorphic to [0, 1), because [0, 1) \ {0} is connected and thus not
homeomorphic to (0, 1) \ {b} for any b. �

Proposition 8.21. Put X = {(x, y) ∈ R2 : xy = 0} = (R × {0}) ∪ ({0} × R). Then X is not
homeomorphic to R, because X \ {(0, 0)} has four path components and thus is not homeomorphic to R \ {b}
for any b. �

These ideas can be extended to give some numerical invariants of spaces.

Definition 8.22. Let X be a metric space. We write

a(X) = max{|Y | : Y ⊆ X and X \ Y is path-connected }
= the greatest number of points that can be removed without disconnecting X

b(X) = min{|Y | : Y ⊆ X and X \ Y is disconnected }
= the least number of points that need to be removed to disconnect the space X.

These invariants can be infinite: for example a(R2) = ∞, because the plane remains connected after
the removal of any finite set of points. However, we will principally be interested in cases in which they are
finite.

Proposition 8.23. If X is homeomorphic to X ′ then a(X) = a(X ′) and b(X) = b(X ′).

Proof. Let f : X −→ X ′ be a homeomorphism. If Y ⊆ X and X \ Y is path-connected then we put
Y ′ = f(Y ) ⊆ X ′. As f is a bijection we have |Y ′| = |Y |. We also note that f gives a homeomorphism
X \ Y −→ X ′ \ Y ′, so X ′ \ Y ′ is path-connected. We must therefore have a(X ′) ≥ |Y ′| = |Y |. By taking
the maximum over all possible Y ’s, we see that a(X ′) ≥ a(X). By applying this argument to f−1 : X ′ −→ X
instead of f : X −→ X ′, we also see that a(X) ≥ a(X ′). This means that a(X) = a(X ′). The argument for b
is similar. �
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Now consider the letters of the alphabet (drawn with infinitely thin lines) as subsets of R2. We can try
to use the invariants a and b to classify them. If we just consider the letters A to F , we have the following
table:

A B C D E F

a(R) 3 2 2 1 3 3

b(R) 1 2 1 2 1 1

We see that the letters A, E and F have the same invariants, but otherwise there are no coincidences. It
is possible to remove a single point from E to get a space with three components (and similarly for F ) but
this is not possible for A, so A is not homeomorphic to E or F . It is not hard to exhibit a homeomorphism
between E and F . To be horribly explicit, we could use the following formal definitions:

E = ({0} × [0, 2]) ∪ ([0, 1]× {0, 1, 2}) ⊂ R2

F = ({0} × [0, 2]) ∪ ([0, 1]× {1, 2}) ⊂ R2.

Let X be the union of the top two horizontal lines and the top half of the vertical line in E, so X =
({0} × [1, 2]) ∪ ([0, 1]× {1, 2}). We can then define a homeomorphism f : E −→ F by

f(x, y) =


(x, y) if (x, y) ∈ X
(0, (y + 1/2)) if (x, y) ∈ {0} × [0, 1]

((1− x)/2, 0) if (x, y) ∈ [0, 1]× {0}.

The conclusion is that E is homeomorphic to F , and no other pair of different letters in {A,B,C,D,E, F}
are homeomorphic to each other.

9. Local Connectedness

Definition 9.1. [defn-locally-connected]
Let X be a topological space. We say that X is locally connected if it satisfies the following conditions:

(a) The family of all connected open sets forms a basis for the topology.
(b) Some family of connected open sets forms a basis for the topology.
(c) For every point x ∈ X and every open neighbourhood U of x, there is a connected open neighbour-

hood V of x with V ⊆ U .

(Proposition 2.28 shows that these three conditions are equivalent.) Similarly, we say that X is locally path
connected if it satisfies the following equivalent conditions:

(d) The family of all path connected open sets forms a basis for the topology.
(e) Some family of path connected open sets forms a basis for the topology.
(f) For every point x ∈ X and every open neighbourhood U of x, there is a path connected open

neighbourhood V of x with V ⊆ U .

Remark 9.2. As every path connected open set is connected, it is clear that every locally path connected
space is locally connected.

Proposition 9.3. [prop-Rn-locally-connected]
The space Rn is locally path connected, and thus locally connected.

Proof. The open balls OBε(x) form a basis for the topology, and they are convex and therefore con-
nected by Example 8.3. �
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Remark 9.4. [rem-locally-connected]
In Q the only connected subsets are the singletons (by Exercise 7.4), and these have empty interior. It

follows that Q is not locally connected. On the other hand, in a discrete space (such as Z), every point is a
connected neighbourhood of itself; so discrete spaces are locally connected.

Proposition 9.5. [prop-subspace-locally-connected]
Let X be a topological space, and let U be an open subspace.

(a) If X is locally connected, then so is U .
(b) If X is locally path connected, then so is U .

Proof. This is clear, because the open subsets of U are just the open subsets of X that are contained
in U . �

Proposition 9.6. [prop-product-locally-connected]
Let I be a finite set, and let (Xi)i∈I be a family of spaces indexed by I. Put X =

∏
i∈I Xi.

(a) If each Xi is locally connected, then so is X.
(b) If each Xi is locally path connected, then so is X.

Proof. For part (a), let βi denote the family of connected open sets in Xi, and suppose that this gives
a basis for all i. Let β denote the family of all products

∏
I Ui, where Ui ∈ βi for all i. Proposition 5.28 tells

us that β is a basis for the product topology, and all the sets in β are connected by Proposition 7.13, so X
is locally connected as claimed. Essentially the same argument works for (b). �

Proposition 9.7. [prop-local-components]

(a) If X is locally connected, then the components of X are both open and closed in X.
(b) If X is locally path connected, then the path components of X are the same as the components, and

they are both open and closed in X.

Proof.

(a) Suppose that X is locally connected. Consider a component C, and a point x ∈ C. As X is locally
connected we can find a connected open set V with x ∈ V , and from the definition of components
we see that V ⊆ C, so x is in the interior of C. As x was an arbitrary point of C, it follows that
C is open. We also know from Proposition 7.17 that C is closed.

(b) Suppose instead that X is locally path connected. Consider a path component C. By essentially
the same argument as above, we see that C is open. Now Cc is the union of all the other path
components, each of which is open for the same reason, so Cc is open, so C is closed. Now pick a
point x ∈ C, and let D be the connected component containing x. As C is connected and contains
x we see that C ⊆ D (so in particular D does not really depend on the choice of x). Now C and Cc

give a relative separation of the connected set D, which must therefore be trivial. As x ∈ C∩D 6= ∅,
we must have C ⊆ D and thus C = D. This shows that the path components are the same as the
components, and they are both open and closed.

�

Corollary 9.8. If X is connected and locally path connected, then it is path connected.

Proof. As X is connected there is only one component, but the proposition tells us that the components
are the same as the path components, so there is only one path component. �

Exercise 9.1. [ex-lconn]
Suppose that f : X −→ Y is continuous and surjective, and that X is locally connected. Need Y be locally

connected?

Solution: No. Let X be the discrete space N, which is locally connected ({n} is a connected neighbourhood
of n contained in every neighbourhood of n). Let Y be {1/n : n ∈ N, n > 0} ∪ {0}. The map f : X −→ Y
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defined by

f(n) =

{
0 if n = 0

1/n if n > 0

is surjective and continuous (trivially, because N is discrete). The point 0 ∈ Y has no connected neighbour-
hoods, so Y is not locally connected.

10. Compactness

Definition 10.1. [defn-open-cover]
An open cover of a space X is a family (Ui)i∈I such that

⋃
i∈I Ui = X. A finite subcover is a subfamily

(Ui)i∈J for some finite subset J of I, such that
⋃
j∈J Uj = X.

Example 10.2. [eg-cover-Rn]
The intervals Un = (n− 1, n+ 1) give an open cover of R. Any finite subfamily of these can only cover

a bounded part of R, so there is no finite subcover.

Example 10.3. [eg-cover-Sn]
Put

Sn = {x ∈ Rn+1 :

n∑
i=0

x2
i = 1}

U+
i = {x ∈ Sn : xi > 0}

U−i = {x ∈ Sn : xi < 0}.

Thus Sn is the unit sphere in (n + 1)-dimensional euclidean space, and the sets U±i are open hemispheres.
The collection U+

0 , . . . , U
+
n , U

−
0 , . . . , U

−
n is then a finite open cover of Sn.

Definition 10.4. [defn-compact]
A space X is compact if every open cover of X has a finite subcover.

For proofs about compactness, it is convenient to have some slightly more flexible terminology.

Definition 10.5. [defn-cover-misc]
Let X be a space, and let Y be a subset of X. Given a family of subsets (Ui)i∈I (not necessarily open)

we say that the family covers Y if Y ⊆
⋃
i∈I Ui. Now suppose that the family (Ui)i∈I is fixed. For any

subset J ⊆ I we say that J covers Y if the subfamily (Uj)j∈J covers Y , or equivalently Y ⊆
⋃
j∈J Uj . We

say that Y is finitely covered if there is some finite subset J that covers Y .

Remark 10.6. [rem-cover-misc]
If Y is covered by J and Z is covered by K then Y ∪ Z is covered by J ∪K. It follows that if Y and

Z are both finitely covered then so is Y ∪ Z. Thus, if X is covered by the whole family, then every finite
subset is finitely covered.

Example 10.7. [eg-finite-compact]
It follows directly from the above remark that every finite space is compact.

Example 10.8. [eg-cofinite-compact]
Let X be any nonempty set with the cofinite topology (as in Example 2.16). We claim that X is compact.

Indeed, let (Ui)i∈I be an open cover. Choose a point a ∈ X, and an index ia such that a ∈ Uia . Now Uia is
a nonempty open set, so the complement Y = X \ Uia must be finite, and thus covered by some finite set
J ⊆ I. Now X is covered by the finite set J ∪ {ia}, as required.

Proposition 10.9. [prop-interval-compact]
The space [0, 1] is compact.

Proof. Let (Ui)i∈I be an open cover. Let P be the set of all t such that [0, t] is finitely covered. We
can choose i such that 0 ∈ Ui, and Ui is open so there exists ε > 0 with [0, ε) ⊆ Ui, which means that
ε/2 ∈ P . This means that P is nonempty and bounded above by 1, so we can put p = sup(P ), and we find
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that 0 < ε/2 ≤ p ≤ 1. Now choose j such that p ∈ Uj . As Uj is open in [0, 1] we see that Uj contains
(p − δ, p + δ) ∩ [0, 1] for some δ > 0. Now p − δ cannot be an upper bound for P , so we can find q ∈ P
with p− δ < q, so [0, q] is covered by some finite set J . Now put K = J ∪ {j} and observe that this covers
[0, p+ δ)∩ [0, 1], so [0, p+ δ)∩ [0, 1] ⊆ P . This can only be consistent with the fact that p = sup(P ) if p = 1.
We conclude that K covers all of [0, 1], as required. �

Proposition 10.10. [prop-compact-subspace]
A subspace Y ⊆ X is compact in the subspace topology if and only if the following holds: for every family

of open subsets of X that covers Y , some finite subfamily covers Y .

Proof. First suppose that Y is compact in the subspace topology. Let (Ui)i∈I be a family of open
subsets of X that covers Y . Then the sets Vi = Ui ∩ Y form an open cover of Y . As Y is compact there
must exist a finite subset J ⊆ I such that Y =

⋃
j∈J(Uj ∩Y ), but this means that Y ⊆

⋃
j∈J Uj as required.

Conversely, suppose that Y satisfies the condition in the proposition. Let (Vi)i∈I be an open cover of
Y . By the definition of the subspace topology, there must be open sets Ui ⊆ X such that Vi = Ui ∩ Y . As
the sets Vi give a cover of Y , we must have Y ⊆

⋃
i∈I Ui. By hypothesis, there must exist a finite set J ⊆ I

such that Y ⊆
⋃
j∈J Uj , or equivalently Y =

⋃
j∈J Vj . This shows that Y is compact. �

It is sometimes convenient to have a formulation of compactness in terms of closed sets rather than open
sets.

Definition 10.11. [defn-fip]
A collection F = (Fi)i∈I of subsets of a space X has the finite intersection property (FIP) if for every

finite set of indices J ⊆ I, the intersection
⋂
i∈J Fi is nonempty.

Proposition 10.12. [prop-fip]
Let X be a topological space. Then X is compact if and only if every family (Fi)i∈I of closed sets with

FIP has
⋂
i∈I Fi 6= ∅.

Proof. Suppose that X is compact. Let (Fi)i∈I be a family of closed subsets with FIP. Put Ui = X \Fi,
which is open. Given any finite subset J ⊆ I we have

X \
⋃
j∈J

Uj =
⋂
j∈J

(X \ Uj) =
⋂
j∈J

Fj 6= ∅,

so
⋃
j∈J Uj 6= X. In other words, no finite subfamily of the open sets Ui can cover X. As X is compact,

this means that the whole family cannot cover X either. This means that X \
⋃
i∈I Ui is nonempty, or

in other words
⋂
i∈I Fi 6= ∅, as required. We leave it to the reader to check that the whole argument is

straightforwardly reversible. �

Proposition 10.13. [prop-closed-compact]
Suppose that X is compact, and that Y is closed in X. Then Y is also compact.

Proof. Let (Ui)i∈I be a family of open subsets of X that cover Y . Let I0 consist of I together with
an extra point 0, and put U0 = X \ Y . This gives a larger family of open sets that covers all of X. As X is
compact, it follows that there is some finite subset J0 with

⋃
j∈J0 Uj = X. Clearly U0 does not contribute

to covering Y , so we can put J = J0 \ {0} ⊆ I and conclude that Y ⊆
⋃
j∈J Uj as required. �

Definition 10.14. [defn-precompact]
Let X be a topological space, and let Y be a subspace. We say that Y is precompact in X if Y is compact

in the subspace topology.

Remark 10.15. [rem-precompact]
Suppose that Z ⊆ Y ⊆ X and Y is precompact. We claim that Z is also precompact. Indeed, Z is a

closed subset of the compact set Y , so it is again compact as required.

There is a partial converse to Proposition 10.13 as follows.

Proposition 10.16. [prop-compact-closed]
Let X be a Hausdorff space, and let Y be a compact subspace. Then Y is closed in X.
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Proof. Put U = X \ Y ; it will suffice to show that this is open. Consider a point x ∈ U . For each
y ∈ Y we have x 6= y, so (by the Hausdorff property) we can find disjoint open sets Vy,Wy with x ∈ Vy
and y ∈ Wy. The family (Wy)y∈Y covers Y , so (by compactness) there exists a finite subset J ⊆ Y such
that Y is contained in the set W ∗ =

⋃
y∈JWy. Now put V ∗ =

⋂
y∈J Vy. As Vy ∩Wy = ∅, we find that

V ∗ ∩ Y ⊆ V ∗ ∩W ∗ = ∅, so V ∗ ⊆ U . Moreover, as V ∗ is the intersection of a finite family of open sets
containing x, we see that V ∗ is an open set containing x. This shows that x is an interior point of U . This
holds for any x ∈ U , so U is open as required.

For example, consider the case where Y is the boundary of a square in R2, and x is the centre of the
square. Let a, b, c and d be the midpoints of the edges. For y ∈ {a, b, c, d} we could choose Vy and Wy as
shown below.

Wa

Va

a

xY

Wb

Vb b

Wc

Vc

c
Wd

Vdd

We could then take J = {a, b, c, d} and V ∗ and W ∗ would be as follows:

W∗

V ∗

xY

�

Remark 10.17. [rem-compact-intrinsic]
Suppose we have a space X and subsets Z ⊆ Y ⊆ X (which we consider with their subspace topologies).

If we ask whether Z is closed, we need to specify whether we mean closed in Y or closed in X. For example,
if X = R and Y = (0,∞) and Z = (0, 1] then Z is closed in Y but not in X. However, compactness of Z
is an intrinsic property of the space Z. We can use the last two propositions to deduce compactness from
closedness or vice-versa in various different settings, and thus relate closedness in various different ambient
spaces. This theme will crop up repeatedly in later sections.

Proposition 10.18. [rem-union-compact]
Let X be any space, and let Y1, . . . , Yn be compact subspaces of X. Then

⋃n
i=1 Yi is also compact.

Proof. This is clear from Remark 10.6. �

Proposition 10.19. [prop-image-compact]
Let f : X → Y be a continuous map, and let X ′ be a compact subspace of X. Then the image Y ′ = f(X ′)

is a compact subspace of Y .

Proof. Let (Vi)i∈I be a family of open subsets of Y that covers Y ′. Put Ui = f−1(Vi), which is open
because f is continuous. If x ∈ X ′ then f(x) ∈ Y ′ ⊆

⋃
I Vi, so f(x) ∈ Vi for some i, so x ∈ Ui for some

i. This shows that the family (Ui)i∈I covers X ′, but X ′ is compact, so some finite subfamily (Uj)j∈J must
cover X ′. Now consider a point y ∈ Y ′ = f(X ′). We can choose x ∈ X ′ with f(x) = y, then we can choose
j ∈ J with x ∈ Uj = f−1(Vj). This means that f(x) ∈ Vj , or in other words y ∈ Vj . This works for any
y ∈ Y ′, so we see that Y ′ ⊆

⋃
j∈J Vj , so we have the required finite subcover for Y ′. �
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Corollary 10.20. [cor-image-compact]
Let Y be a topological space, and suppose that there exists a compact space X and a continuous surjective

map f : X → Y . Then Y is also compact.

Proof. Just take X ′ = X in the proposition. �

Corollary 10.21. [cor-quotient-compact]
Let X be a compact space, and let E be an equivalence relation on X. Then the quotient space X/E is

compact.

Proof. Apply the previous corollary to the quotient map X → X/E. �

We can now prove the following very convenient result. Part (d) is often used to check that various
explicitly constructed maps are homeomorphisms.

Proposition 10.22. [prop-comp-to-haus]
Let X and Y be spaces such that X is compact and Y is Hausdorff, and let f : X → Y be a continuous

map. Then:

(a) f is always a closed map.
(b) If f is injective then it is an embedding.
(c) If f is surjective then it is a quotient map.
(d) If f is bijective then it is a homeomorphism.

Proof. Let F be a closed subset of X. Proposition 10.13 tells us that F is compact, so Proposition 10.19
tells us that f(F ) is compact, so Proposition 10.16 tells us that f(F ) is closed in Y . This proves (a). Parts (b),
(c) and (d) then follow by Propositions 4.7 to 4.9. �

Lemma 10.23. [lem-compact-basis]
Let X be a space, and let β be a basis for the topology. Suppose that every cover of X by basic open sets

has a finite subcover. Then X is compact.

Proof. Let (Ui)i∈I be a cover of X by arbitrary open sets. For each x ∈ X we can then choose an
index ix such that x ∈ Uix . As β is a basis we can then choose Vx ∈ β with x ∈ Vx ⊆ Uix . The family
(Vx)x∈X is then a cover of X by basic open sets. By hypothesis, we can find a finite subset J ⊆ X such
that X =

⋃
y∈J Vy. Now put J ′ = {iy : y ∈ J}, which is a finite subset of I. As Uiy ⊇ Vy we see that⋃

j∈J′ Uj ⊇
⋃
y∈J Vy = X, which gives the required finite subcover. �

Proposition 10.24. [prop-tychonov-binary]
Let X and Y be compact spaces. Then X × Y is also compact.

Proof. Let β be the family of sets of the form U × V , where U is open in X and V is open in Y . This
is a basis for the product topology on X×Y . Consider a family of basic open sets (Ui×Vi)i∈I that covers all
of X×Y . For each x ∈ X we put I(x) = {i ∈ I : x ∈ Ui}. Now for any y ∈ Y we must have (x, y) ∈ Ui×Vi
for some i, so i ∈ I(x) and y ∈ Vi. This means that Y =

⋃
i∈I(x) Vi, but Y is compact, so there is a finite

subset J(x) ⊆ I(x) with Y =
⋃
j∈J(x) Vj . Now put Wx =

⋂
j∈J(x) Uj . This is the intersection of a finite

family of open sets containing x, so it is an open set containing x. Thus, the family (Wx)x∈X is an open
cover of the compact space X, so there a finite subset K ⊆ X with X =

⋃
t∈KWt. Put J =

⋃
t∈K J(t),

which is a finite subset of I. We claim that X×Y =
⋃
j∈J(Uj ×Vj). To see this, consider an arbitrary point

(x, y) ∈ X × Y . As the sets (Wt)t∈K cover X, we can choose t ∈ K with x ∈ Wt. As the sets (Vj)j∈J(t)

cover Y , we can choose j ∈ J(t) such that y ∈ Vj . From the definition of Wt we have Wt ⊆ Uj , so x ∈ Uj ,
so (x, y) ∈ Uj × Vj as required.

This now shows that every cover of X ×Y by basic open sets has a finite subcover, so X ×Y is compact
by Lemma 10.23. �

Corollary 10.25. [cor-tychonov-finite]
Let (Xi)i∈I be a finite family of compact spaces. Then the product

∏
i∈I Xi is also compact.

Proof. This follows easily by induction from the proposition. �
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It is an important fact that the restriction to finite families is not really necessary here: the product
of any family of compact spaces is compact. This is called Tychonov’s Theorem, and it will be proved as
Theorem 21.25 using the theory of ultrafilters. For the moment we will explain how to prove one special
case by more elementary means.

Proposition 10.26. [prop-tychonov-profinite]
Suppose that for each n ∈ N we have a finite set Xn with the discrete topology. Then the product

X =
∏∞
n=0Xn is compact.

Proof. We will suppose that (Ui)i∈I is an open cover with no finite subcover, and derive a contradiction.
We will say that a subset Y ⊆ X is bad if it is not finitely covered, so X itself is bad by assumption. Note
that if Y ∪ Z is bad, then either Y or Z must be bad.

Next, for any finite sequence x = (x0, . . . , xr), we put

C(x) = {y ∈ X : yi = xi for all i ≤ r}.
Note that C(0) ∪ C(1) = X and this is bad, so either C(0) or C(1) must be bad. We can thus choose
x0 ∈ {0, 1} such that C(x0) is bad. Next, we have C(x0, 0) ∪ C(x0, 1) = C(x0) and this is bad, so we can
choose x1 such that C(x0, x1) is bad. Similarly, we can choose x2 such that C(x0, x1, x2) is bad. Continuing
in this way, we obtain an infinite sequence x such that all the sets C(x0, . . . , xr) are bad. Now the sets Ui
cover X, so we have x ∈ Ui for some i. Moreover, the set Ui is open, so we have Cn(x) ⊆ Ui for some i,
so certainly Cn(x) is finitely covered. However Cn(x) is just the same as C(x0, . . . , xn−1), which is bad by
construction; this is the required contradiction. �

Corollary 10.27. [cor-binary-compact]
It follows using Example 5.31 that the space of binary sequences is compact. �

We can now characterise the compact subspaces of Rn.

Proposition 10.28. [prop-Rn-compact]
Let Y be a subset of Rn. Then Y is compact if and only if it is bounded and closed.

Proof. First suppose that Y is compact. Put Uk = (−k, k)n, so (Uk)k∈N is an open cover of Rn. As Y
is compact there must exist a finite subset J ⊆ N with Y ⊆

⋃
j∈J Uj . If we put r = max(J) this means that

Y ⊆ (−r, r)n, so Y is bounded. We also know from Proposition 10.16 that Y is closed.
Conversely, suppose that Y is bounded and closed. As Y is bounded, it is contained in [−r, r]n for

some r > 0. As [−r, r] is homeomorphic to [0, 1], it is compact (by Proposition 10.9). It follows by
Corollary 10.25 that [−r, r]n is compact. Now Y is a closed subset of a compact space, so it is compact by
Proposition 10.13. �

Example 10.29. [eg-Sn-compact]
The sets Bn = {x ∈ Rn : ‖x‖ ≤ 1} and Sn−1 = {x ∈ Rn : ‖x‖ = 1} are both bounded and closed, so

they are compact.

Example 10.30. [eg-mandelbrot-compact]
Consider the Mandelbrot set M ⊆ C ' R2, as defined in Example 2.5. We will show that this is bounded

and closed, and thus is compact. Recall that

M = {c ∈ C : |fn(c)| ≤ 2 for all n},
where f0(c) = 0 and fk+1(c) = fk(c)2 + c. Here fk : C→ C is a polynomial function, so it is continuous. The
disc D = {c ∈ C : |c| ≤ 2} is closed, so f−1

n (D) is also closed. The set M is the intersection of the closed
sets f−1

n (D), so it is also closed. Moreover, we have f1(c) = c so M ⊆ f−1
1 (D) = D, so M is bounded.

Example 10.31. [eg-On-compact]
Recall the spaces

O(n) = {A ∈Mn(R) : ATA = I}
RPn−1 = {A ∈Mn(R) : AT = A = A2, trace(A) = 1}.
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Here as usual we identifyMn(R) with Rn2

, giving the metric d2(A,B) =
√

trace((A−B)T (A−B)) explained
in Example 2.40. We explained in Example 5.21 that O(n) and RPn−1 are closed in Mn(R). For A ∈ O(n)
we have d2(A, 0) = trace(ATA)1/2 = trace(I)1/2 =

√
n, so O(n) is also bounded. Similarly, for A ∈ RPn−1

we have ATA = A2 = A and so d2(A, 0) =
√

trace(A) = 1; it follows that RPn is bounded. Thus, both
O(n) and RPn are compact.

On the other hand, by considering matrices of the form [ 1 a
0 1 ] we see that SL2(R) is unbounded and so

is not compact.

Corollary 10.32. [cor-R-compact]
Let X be a nonempty compact subset of R. Then the numbers a = inf(X) and b = sup(X) are finite and

{a, b} ⊆ X ⊆ [a, b].

Proof. It follows from the proposition that X is bounded, so a and b are finite. It is clear from the
definition of sup and inf that X ⊆ [a, b]. Next, as a is the greatest lower bound for X we see that a+ ε (for
ε > 0) is not a lower bound, so the set [a, a + ε) ∩X is nonempty. This means that a is a closure point of
X, but X is compact and therefore closed, so a ∈ X. Essentially the same argument shows that b ∈ X as
well. �

Corollary 10.33. [cor-CX-bounded]
Let X be a nonempty compact space, and let f : X → R be continuous. Then there exist real numbers a

and b such that

• a ≤ f(z) ≤ b for all z ∈ X.
• a = f(x) for some x ∈ X
• b = f(y) for some y ∈ X

In other words, the function f is bounded and attains its bounds.

Proof. Proposition 10.19 tells us that f(X) is a nonempty compact subset of R. We can thus apply
Corollary 10.32 to the set f(X), and the claim follows directly. �

We next discuss a generalisation of Lemma 2.49, which showed that the metrics d1, d2 and d∞ on Rn
are all equivalent.

Proposition 10.34. [prop-norm]
Let φ : Rn → [0,∞) be a norm, as in Definition 3.31. Then

(a) There are constants k,K > 0 such that k‖x‖2 ≤ φ(x) ≤ K‖x‖2 for all x ∈ Rn.
(b) The metric dφ(x, y) = φ(x− y) on Rn is strongly equivalent to the usual metric d2.
(c) The map φ is continuous with respect to the usual topology on Rn.
(d) There is a homeomorphism f : Bn → B(Rn, φ) given by f(x) = φ(x)x/‖x‖2 for x 6= 0, and f(0) = 0.

This satisfies φ(f(x)) = ‖x‖2, and it restricts to give homeomorphisms Sn−1 → S(Rn, φ) and
OBn → OB(Rn, φ).

Proof. Let ei be the i’th basis vector (0, . . . , 1, . . . 0). Write ai = φ(ei) and K =
∑
i ai. For x ∈ Rn it

is clear that |xi| =
√
x2
i ≤

√∑
j x

2
j = ‖x‖2. Using the axioms for a norm we deduce that

φ(x) = φ(
∑
i

xiei) ≤
∑
i

|xi|φ(ei) ≤
∑
i

‖x‖2ai = K‖x‖2.

This proves half of (a).
Now suppose we have two points x, y ∈ Rn. We can apply axiom N1 to the pair y, x− y to see that

φ(x) ≤ φ(y) + φ(x− y) ≤ φ(y) +K‖x− y‖2,
so φ(x)−φ(y) ≤ K‖x− y‖2. A symmetrical argument shows that we also have φ(y)−φ(x) ≤ K‖x− y‖2, so
|φ(x)−φ(y)| ≤ K‖x−y‖2. This means that the map φ : Rn → R is Lipschitz, and therefore continuous, so (c)
holds. Now consider φ as a continuous function from the compact space Sn−1 to R, and apply Corollary 10.33
to see that there are numbers a, b ∈ R with {a, b} ⊆ φ(Sn−1) ⊆ [a, b]. Axiom N2 tells us that 0 6∈ φ(Sn−1)
so we must have a > 0. For any x ∈ Rn we can write x = ‖x‖2u with u ∈ Sn−1 and then φ(u) ≥ a and so
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φ(x) = ‖x‖2φ(u) ≥ a‖x‖2. We can thus complete the proof of (a) by taking k = a. By applying (a) to x− y
we deduce (b).

Now define m : Rn \ {0} → (0,∞) by m(x) = φ(x)/‖x‖2. This is continuous and strictly positive, so
1/m is also continuous. Note also that m(tx) = m(x) for all t 6= 0, and that k ≤ m(x) ≤ K for all x. We
can thus define continuous maps

Rn \ {0} f1−→ Rn \ {0} g1−→ Rn \ {0}

by f1(x) = x/m(x) and g1(x) = xm(x). We find that these are inverse to each other, so they are home-
omorphisms. Note also that φ(f1(x)) = φ(x)/m(x) = ‖x‖2 and similarly ‖g1(x)‖2 = φ(x). Note also that
‖f1(x)‖ ≤ ‖x‖/k and ‖g1(x)‖ ≤ K‖x‖.

Now define f : Rn → Rn by f(x) = f1(x) for x 6= 0, and f(0) = 0. Define g : Rn → Rn in the same
way. We claim that f is continuous. To see this, consider a sequence (xj)j∈N in Rn converging to a ∈ Rn
say. If a 6= 0 then we must xj 6= 0 for all sufficiently large j, and it follows from the continuity of f1 that
f(xk)→ f(a). If a = 0 then we must have ‖xj‖ → 0 and it follows from the inequality ‖f(xj)‖ ≤ ‖xj‖/k that
f(xj)→ 0 = f(0). This shows that that f is sequentially continuous and therefore continuous. The map g is
also continuous by the same argument, and it is inverse to f , so it is a homeomorphism. As φ(f(x)) = ‖x‖2
and ‖g(x)‖2 = φ(x), we see that f restricts to give homeomorphisms Sn−1 → S(Rn, φ) and Bn → B(Rn, φ)
and OBn → OB(Rn, φ). �

Example 10.35. We can apply Proposition 10.34 to the norm φ(x, y) = max(‖x‖2, ‖y‖2) on Rp+q =
Rp × Rq; it gives us a homeomorphism Bp ×Bq ' Bp+q.

Corollary 10.36. [cor-norm]
Let V be a finite-dimensional vector space over R, and let φ be a norm on V , giving a metric dφ and

thus a topology τφ on V . Then τφ is the same as the linear topology (as in Definition 2.31).

Proof. Put n = dim(V ). The proposition shows that any norm on Rn gives the standard topology,
which is the same as the linear topology by Proposition 2.32. After choosing a basis we can identify V with
Rn; this identifies norms on V with norms on Rn, and identifies the linear topology on V with the linear
topology on Rn, so the claim follows. �

Corollary 10.37. [cor-linear-finite]
Let f : V →W be a linear map between normed vector spaces, and suppose that V has finite dimension.

Then f is continuous.

Proof. If W is also finite-dimensional, this follows easily from the previous corollary. For the general
case, let i : f(W ) → W be the inclusion, and let f0 denote f considered as a map V → f(W ). The special
case shows that f0 is continuous with respect to the norm topologies, and it is clear that i is continuous, so
the same is true of f = if0. �

We now discuss a lemma that will be useful in various places below.

Lemma 10.38 (Tube Lemma). [lem-tube]
If U ⊆ X × Y is open and Z ⊆ Y is compact then the set

V = {x ∈ X : {x} × Z ⊆ U}.

is open in X.

Proof. Suppose that x ∈ V , so {x} × Z ⊆ U . For each z ∈ Z we have (x, z) ∈ U so we can choose an
open neighbourhood Az of x and an open neighbourhood Bz of z such that Az × Bz ⊆ U . Now (Bz)z∈Z is
a family of open sets in Y that covers the compact set Z, so we can find a finite subset J ⊆ Z such that
Z ⊆

⋃
z∈J Bz. Put A∗ =

⋂
z∈J Az, which is an open neighbourhood of x in X. If x′ ∈ A∗ and z′ ∈ Z then

we must have z′ ∈ Bz for some z ∈ J , and then x′ ∈ A∗ ⊆ Az so (x′, z′) ∈ Az × Bz ⊆ U . This means that
A∗×Z ⊆ U , so A∗ ⊆ V , showing that x is in the interior of V . This holds for any point x ∈ V , so V is open.

In the following illustration we have X = Y = Z = [0, 1] and J = {a, b, c}.

78



U

(x,a)

Aa

Ba

U

(x,b)

Ab

Bb

U (x,c)

Ac

Bc U

A∗

�

Exercise 10.1. Let X be a compact Hausdorff space, and C(X) the set of continuous functions u : X −→
R. Define two maps b and t (“bottom” and “top”) from C(X) to R by

b(u) = min{u(x) : x ∈ X}
t(u) = max{u(x) : x ∈ X}.

Prove that t and b are continuous.

Solution: Suppose we have two functions u, v ∈ C(X). For all x we have

u(x) = v(x) + (u(x)− v(x)) ≤ v(x) + |u(x)− v(x)| ≤ v(x) + ‖u− v‖ ≤ t(v) + ‖u− v‖.
This holds for all x, so we must have t(u) ≤ t(v)+‖u−v‖. By symmetry, we also have t(v) ≤ t(u)+‖v−u‖ =
t(u) + ‖u − v‖. It follows that |t(u) − t(v)| ≤ ‖u − v‖ = d(u, v). It follows that t is a Lipschitz map, with
Lipschitz constant 1, so it is continuous. It also follows (using the identity b(u) = −t(−u)) that b is
continuous.

11. Space-filling-curves

[sec-peano]
We now turn briefly to the theory of space-filling curves. This is useful as an extended example illustrating

many of the ideas that we have studied so far. It is also important as a warning that continuous functions can
be more wild than one might naively think. In particular, one might imagine that the image of a continuous
map k : [0, 1]→ [0, 1]2 is necessarily one-dimensional, in some sense. However, we will construct an example
(due to Peano) where k is actually surjective. (Note, however, that k cannot be a homeomorphism, by
Proposition 8.19.) The general idea is not too hard to understand. The pictures below show two different
maps k4, k6 : [0, 1]→ [0, 1]2:

Close inspection shows that k6 follows roughly the same route as k4, but with more squiggles. It also passes
close to every point in the square. By adding even more squiggles we can define maps kn for n > 6 that pass
even closer to all the points in the square. If we arrange the squiggling in the right way then the functions
kn will converge to a continuous function k : [0, 1] → [0, 1]2 whose image is dense. As [0, 1] is compact, the
image will also be closed, so it will be all of [0, 1]2. To carry out this programme, we need a good way
to organise the combinatorial structure of the squiggles. To do this, it turns out to be convenient to work
everywhere in base three.

Definition 11.1. [defn-ternary]
We put T = {0, 1, 2}, and call this the set of ternary digits. We then put X =

∏∞
k=1 T . We give T

the discrete topology and X the product topology. (This has many features in common with the space
of binary sequences, which we have discussed in various places.) We also define a map f : X → [0, 1] by
f(x) =

∑∞
k=1 xk/3

k.
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We claim that the map f is continuous and surjective. This just means that every number in [0, 1] has
a ternary expansion, analogous to the usual decimal representation. Just as decimal representations are
unique apart from the usual ambiguity about infinite strings of nines, we will show that ternary expansions
are unique apart from a similar ambiguity about infinite strings of twos. To formalise this, we need some
further definitions.

Definition 11.2. [defn-ternary-relation]
We put

X0 = {x ∈ X : x 6= 0 but xk = 0 for k � 0}.

Every element x ∈ X0 then has a unique representation x = (u, t, 0∞) where u is a finite (possibly empty)
sequence of ternary digits and t ∈ {1, 2}. We define a map g : X0 → X by

g(u, t, 0∞) = (u, t− 1, 2∞).

We then define

R = {(x, y) ∈ X2 : x = y or (x ∈ X0 and y = g(x)) or (y ∈ X0 and x = g(y))} ⊆ X2.

Proposition 11.3. [prop-ternary]
The set R is an equivalence relation on X and a closed subset of X2. The map f is a quotient map with

(f(x) = f(y) iff (x, y) ∈ R), so it induces a homeomorphism X/R→ [0, 1].

Proof. Suppose we x ∈ X and ε > 0. Choose m ∈ N such that 3−m < ε, and put

U = {y ∈ X : yi = xi for all i ≤ m}.

As T is discrete, we see that U is an open neighbourhood of x in the product topology. If y ∈ U we have
yk − xk = 0 for k ≤ m and |yk − xk| ≤ 2 for k > m so

|f(y)− f(x)| =

∣∣∣∣∣
∞∑

k=m+1

(yk − xk)/3k

∣∣∣∣∣ ≤
∞∑

k=m+1

2/3k = 3−m < ε.

From this it is clear that f is continuous. Next, suppose we have a rational number q of the form q = a/3m

for some integer a with 0 < a < 3m. We can then write a in base three, say as a =
∑m−1
j=0 aj3

j with aj ∈ T .
If we put

x = (am−1, am−2, . . . , a0, 0
∞) ∈ X0

we find that f(x) = q. It follows that f(X0) is dense in [0, 1]. On the other hand, we know from Proposi-
tion 10.26 that X is compact, so f(X) is compact and therefore closed in [0, 1]; it follows that f is surjective.
Using Proposition 10.22 we deduce that f is a quotient map. Now put

eq(f) = {(x, y) ∈ X2 : f(x) = f(y)},

which is a closed subset of X2 and an equivalence relation. In view of Proposition 5.61, it will suffice to
check that R = eq(f). Using the fact that

∑∞
k=m+1 2/3k = 1/3m, we see that fg = f : X0 → [0, 1], and

it follows that R ⊆ eq(f). For the converse, suppose that (x, y) ∈ eq(f). If x = y then clearly (x, y) ∈ R.
Suppose instead that x 6= y, and let m be the smallest index where xm 6= ym. After exchanging x and y if
necessary, we may assume that xm > ym, so xm − ym − 1 ≥ 0. After rearranging the equation f(x) = f(y)
using

∑∞
k=m+1 2/3k = 1/3m, we obtain

xm − ym − 1

3m
+

∞∑
k=m+1

xk
3k

+

∞∑
k=m+1

2− yk
3k

= 0.

Here all the terms on the left hand side are nonnegative, so they must vanish individually. We therefore
have xm = ym + 1, and for k > m we have xk = 0 and yk = 2. This means that x ∈ X0 and y = g(x), so
(x, y) ∈ R as required. �
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Definition 11.4. [defn-peano-curve]
We define χ : T → T by χ(t) = 2 − t (so χ2 = 1). We then define a map k : X → X2 by k(x) =

(k0(x), k1(x)), where

k0(x) = (x1, χ
x2(x3), χx2+x4(x5), χx2+x4+x6(x7), . . . )

k1(x) = (χx1(x2), χx1+x3(x4), χx1+x3+x5(x6), . . . )

or equivalently

k0(x)i = χ
∑
j<i x2j (x2i−1)

k1(x)i = χ
∑
j≤i x2j−1(x2i).

Proposition 11.5. [prop-peano-curve]
The map k : X → X2 is a homeomorphism. Moreover, there is a unique map k : [0, 1] → [0, 1]2 making

the following diagram commute:

X

f
����

k // X2

f2

����

[0, 1]
k

// [0, 1]2.

This map k is a quotient map. In particular, it is continuous and surjective.

Proof. First note that k0(x)i depends only on x1, . . . , x2i−1, so there is a commutative diagram of the
form

X
k0 //

π
��

X

πi

��

T 2i−1

k0,i

// T.

Here the map π is continuous (by an easy argument recorded as Lemma 5.27) and k0,i is automatically
continuous because T is discrete. This means that πi ◦ k0 is continuous for all i, so k0 is continuous by
Proposition 5.16. The map k1 is also continuous by essentially the same argument, and it follows that the
combined map k : X → X2 is continuous. Next, note that as χ2 = 1 we have χχ(t) = χt for all t ∈ T . Using
this, it is straightforward to check that k is a bijection with inverse

k−1(y, z) = (y1, χ
y1(z1), χz1(y2), χy1+y2(z2), χz1+z2(y3), · · · )

or equivalently

k−1(y, z)2k−1 = χ
∑
j<k zj (yk)

k−1(y, z)2k = χ
∑
j≤k yj (zk).

The same line of argument used for k also shows that k−1 is continuous, so k is a homeomorphism.
Now suppose we have x, y ∈ X with f(x) = f(y). We claim that fk0(x) = fk0(y). Using Proposi-

tion 11.3, we reduce easily to the case where x = (u, t, 0∞) ∈ X0 and y = g(x) = (u, t − 1, 2∞). Suppose

for the moment that t occurs in an odd-numbered position, say as x2m−1. Put vi = χ
∑
j<i u2j (u2i−1) (for

1 ≤ i < m) and r =
∑m−1
i=1 u2i. We find that

k0(x) = (v, χr(t), χr(0)∞)

k0(y) = (v, χr(t− 1), χr(2)∞).

If r is even we find that k0(x) = (v, t, 0∞) ∈ X0 and k0(y) = (v, t − 1, 2∞) = g(k0(x)). If r is odd we
find instead that k0(y) = (v, 3 − t, 0∞) ∈ X0 and k0(x) = (v, 2 − t, 2∞) = g(k0(y)). Either way, we have
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f(k0(x)) = f(k0(y)), as required. Suppose instead that t occurs as x2m. Then vi is defined for 1 ≤ i ≤ m
and we have

k0(x) = (v, χr+t(0)∞)

k0(y) = (v, χr+t−1(2)∞).

These are the same, because χ(2) = 0. We therefore again have f(k0(x)) = f(k0(y)). A similar argument
shows that k1 has the same property, so we see that (f2 ◦ k)(x) = (f2 ◦ k)(y) whenever f(x) = f(y). As f
is surjective, it follows that there is a unique map k : [0, 1]→ [0, 1]2 making the diagram

X

f
����

k // X2

f2

����

[0, 1]
k

// [0, 1]2

commute. Here f is a quotient map, and k ◦ f is continuous (because it is the same as f2 ◦ k) so k is
continuous. As k is a homeomorphism and f is surjective, it follows easily that k is surjective. As [0, 1] is
compact and Hausdorff, it follows that k is a quotient map. �

Corollary 11.6. [cor-peano]
For every n ≥ 0 there is a continuous surjective map kn : [0, 1]→ [0, 1]n, and also a continuous surjective

map mn : R→ Rn.

Proof. The cases n = 0 and n = 1 are trivial, and the proposition gives a map k2. Next, as Z2 is
countable, we can choose a bijection p : Z→ Z2. We can then define

m2,d : [2d, 2d+ 1]→ p(d) + [0, 1]2 ⊂ R2

by m2,d(2d+ t) = p(d) +k2(t). By combining these we get a continuous surjection m2 :
∐
d[2d, 2d+ 1]→ R2.

We can then extend this over R by putting m2(2d+ 1 + s) = (1− s)m2(2d+ 1) + sm2(2d+ 2) for d ∈ Z and
s ∈ [0, 1]. Finally, we can define kn and mn for n > 2 by the recursive rules

kn = ([0, 1]
k2−→ [0, 1]× [0, 1]

1×kn−1−−−−−→ [0, 1]× [0, 1]n−1 = [0, 1]n)

mn = (R m2−−→ R× R 1×mn−1−−−−−→ R× Rn−1 = Rn).

�

12. Compactness and Completeness in Metric Spaces

We now study various special features of metric spaces.

Definition 12.1. [defn-bounded]
Let X be a metric space, and let Y be a subset of X. We say that Y is bounded if it satisfies the

equivalent conditions (a) and (b) below:

(a) There exists R ≥ 0 such that d(y, y′) < R for all y, y′ ∈ Y .
(b) For all x ∈ X there exists R ≥ 0 such that Y ⊆ BR(x), so d(x, y) ≤ R for all y ∈ Y .
(c) There exists x ∈ X and R ≥ 0 such that Y ⊆ BR(x), so d(x, y) ≤ R for all y ∈ Y .

It is an easy exercise with the triangle inequality to see that (a) and (b) are equivalent to each other, and
also to (c) except in the trivial case where X = ∅. We say that a sequence (xn)n∈N is bounded if and only
if the corresponding set {xn : n ∈ N} is bounded.

Definition 12.2. [defn-cauchy]
Now let X be a metric space. A sequence x = (xn)n∈N is Cauchy if for all ε > 0 there exists N ∈ N such

that d(xi, xj) < ε whenever i, j ≥ N .

Lemma 12.3. [lem-cauchy]
Every convergent sequence is Cauchy.
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Proof. Let x be a convergent sequence in a metric space X, converging to a point a say. The ball
OBε/2(a) is an open neighbourhood of a, so there exists N such that xi ∈ OBε/2(a) for all i ≥ N . Now if
i, j ≥ N we have d(xi, a) < ε/2 and d(a, xj) < ε/2 so

d(xi, xj) ≤ d(xi, a) + d(a, xj) < ε/2 + ε/2 = ε

as required. �

Lemma 12.4. [lem-cauchy-bounded]
Every Cauchy sequence is bounded.

Proof. Let x be a Cauchy sequence. By taking ε = 1 in the definition, we see that there exists N ∈ N
such that d(xi, xj) < 1 for all i, j ≥ N . Now put

K = max(d(x0, xN ), . . . , d(xN−1, xN ), 1).

We find that d(xi, xN ) ≤ K for all i, so the sequence is bounded. �

Lemma 12.5. [lem-cauchy-bound]
Let x be a sequence that converges to a, and suppose we have d(xn, xm) < ε for all n,m ≥ N . Then

d(xn, a) ≤ ε for all n ≥ N .

Proof. Consider a number δ > 0. As xn → a, there exists M such that d(xm, a) < δ for all m ≥ M .
After replacing M by max(M,N) if necessary, we may assume that M ≥ N . For n ≥ N we then have
d(xn, xM ) < ε and d(xM , a) < δ so d(xn, a) < ε + δ. As this holds for all δ > 0, we deduce that d(xn, a) ≤
ε. �

Lemma 12.6. [lem-cauchy-subsequence]
Let x be a Cauchy sequence, and let y be a subsequence of x. Then y is also Cauchy, and x converges to

a point a if and only if y converges to a.

Proof. We have yk = xnk for some strictly increasing sequence of atural numbers nk (so nk ≥ k).
Suppose we are given ε > 0. By the Cauchy property of x, there exists N ∈ N with d(xi, xj) < ε whenever
i, j ≥ N . Now for i, j ≥ N we have ni, nj ≥ N so d(yi, yj) = d(xni , xnj ) < ε. This shows that y is Cauchy.

We saw in Lemma 2.56 that if x converges to a, then so does y. Conversely, suppose that y converges
to a. Given ε > 0 we can then choose N such that d(xi, xj) < ε/2 for i, j ≥ N , and then we can choose
N ≥ M such that d(yi, a) < ε/2 for i ≥ N . Suppose that i ≥ nN . Now i and nN are both at least N , so
d(xi, yN ) = d(xi, xnN ) < ε/2. We also have d(yN , a) < ε/2, so d(xi, a) < ε. It follows that x converges to
a. �

Definition 12.7. [defn-complete]
A metric space X is complete if every Cauchy sequence in X is convergent.

Lemma 12.8. [lem-nondecreasing]
Let x be a sequence of real numbers that is bounded above (so there exists K ∈ R with xi ≤ K for all i)

and nondecreasing (so xi ≤ xi+1 for all i). Then x converges to sup({xi : i ∈ N}).

Proof. Put Y = {xi : i ∈ N} and y = sup(Y ) (which is well-defined because Y is nonempty and
bounded above). Suppose we are given ε > 0. As y is by definition the least upper bound of Y , we see that
y − ε is not an upper bound, so there is some number yN ∈ Y with yN > y − ε. Now for i ≥ N we have
y − ε < yN ≤ yi ≤ y, so |yi − y| < ε as required. �

Proposition 12.9. [prop-R-complete]
The metric space R is complete.

Proof. Let x be a Cauchy sequence in R. By Lemma 12.4 we can find K such that xi ∈ [−K,K] for
all i, so every subset of the xi’s has a sup and an inf. Now put

Xi = {xj : j ≥ i} yi = sup(Xi)

Yi = {yj : j ≥ i} zi = inf(Yi).
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Note that Xk+1 ⊆ Xk, so yk+1 ≤ yk, so

y0 ≥ y1 ≥ · · · ≥ yi−1 ≥ yi.
This means that the lower bounds for Yi are the same as the lower bounds for Y0, and so zi = z0 for all
i. We now claim that the sequence x converges to z0. Indeed, suppose we are given a number ε > 0. Let
M be such that |xi − xj | < ε/2 whenever i, j ≥ M . For M ≤ i ≤ j we then have Xj ⊆ [xi − ε/2, xi + ε/2]
so yj ∈ [xi − ε/2, xi + ε/2]. This shows that Yi ⊆ [xi − ε/2, xi + ε/2], so z0 = zi ∈ [xi − ε/2, xi + ε/2], so
|xi − z0| ≤ ε/2 < ε, as required. �

Remark 12.10. [rem-not-complete]
The space X = (0,∞) (with the standard metric d(x, y) = |x−y|) is not complete, because the sequence

(2−n)n∈N is a Cauchy sequence in X that has no limit in X. We saw in Proposition 3.21 that the map
g(y) = (y − y−1)/2 gives a homeomorphism (0,∞) → R, so we see that it is possible for an incomplete
metric space to be homeomorphic to a complete one. For a different perspective on the same phenomenon,
we can define a new metric d′ on R by d′(x, y) = |g−1(x)− g−1(y)|. As g is a homeomorphism, we see that
d′ is weakly equivalent to the standard metric d on R. However, the sequence (g(2−n))n∈N is Cauchy but
not convergent with respect to d′. Thus, R is complete with respect to d, but incomplete with respect to d′.
On the other hand, it is straightforward to check that if d and d′ are strongly equivalent metrics on a set X,
then X is complete with respect to d iff it is complete with respect to d′.

Proposition 12.11. [prop-binary-complete]
Let X be the space of binary sequences as in Example 2.6, with the metric describe in Example 2.42.

Then X is complete.

Proof. Let (xn)n≥0 be a Cauchy sequence in X. Note that each xn is itself a sequence, say xn =
(xn0, xn1, xn2, . . . ), with xni ∈ {0, 1} for all n and i. For each m the Cauchy condition gives us an integer Nm
such that d(xp, xq) < 2−m whenever p, q ≥ Nm. After inspecting the definition of the metric, we deduce that
xpm = xqm whenever p, q ≥ Nm, so in particular xpm = xNm,m. We write am for this value, so am ∈ {0, 1}.
This gives us a point a = (a0, a1, . . . ) ∈ X. If p ≥ max(N0, . . . , Nm) we find that d(xp, a) < 2−m, which
means that xp → a. Thus, every Cauchy sequence is convergent, as claimed. �

Proposition 12.12. [prop-padic-incomplete]
Let X denote the set Z with the p-adic metric as in Example 2.43. Then X is not complete.

Proof. Suppose for the moment that p > 2. Put

xn = (1− pn)/(1− p) =

n−1∑
i=0

pi ∈ Z.

Then xn−xm is divisible by pmin(n,m), and it follows easily that the sequence (xn)n≥0 is Cauchy. We claim,
however, that it has no limit in X. Indeed, if xn converged to a then the sequence of terms 1−pn = (1−p)xn
would converge to (1− p)a. On the other hand, it is clear that 1− pn → 1, so we would have (1− p)a = 1.
As p > 2, this is clearly impossible for a ∈ X = Z. To cover the case p = 2, just use the sequence
xn = (1− 4n)/(1− 4) instead. �

We next discuss some questions about products of metric spaces. For definiteness, we will always use
the metric on X × Y given by

d((x, y), (x′, y′)) = max(d(x, x′), d(y, y′)).

The other metrics discussed in Definition 2.50 are strongly equivalent to this one, which means that none of
the questions that we consider will depend on the choice of metric.

Proposition 12.13. [prop-product-seq]
Suppose we have a sequence (zn)n∈N in X × Y given by zn = (xn, yn), and a point c = (a, b) ∈ X × Y .

(a) The sequence z converges to c if and only if x converges to a and y converges to b.
(b) The sequence z is Cauchy if and only if x and y are both Cauchy.

Proof.
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(a) This is a special case of Proposition 5.35, but we will give a direct argument. Suppose that x
converges to a and y converges to b. Given ε > 0 there exists N such that d(xn, a) < ε whenever
n ≥ N , and there exists M such that d(yn, b) < ε whenever n ≥ M . Now if n ≥ max(N,M) we
find that

d(zn, c) = max(d(xn, a), d(yn, b)) < max(ε, ε) = ε.

It follows that z converges to c. We leave the converse to the reader.
(b) Suppose that z is Cauchy. Given ε > 0 there exists N such that d(zi, zj) < ε for all i, j ≥ N . For

such i and j we then have

d(xi, xj) ≤ max(d(xi, xj), d(yi, yj)) = d(zi, zj) < ε.

This shows that x is Cauchy, and similarly y is Cauchy. We leave the converse to the reader.

�

Corollary 12.14. [cor-product-complete]
If X and Y are complete metric spaces, then so is X × Y . �

Corollary 12.15. [cor-Rn-complete]
The space Rn is complete.

Proof. Induction on n, starting with Proposition 12.9 and using Corollary 12.14. �

Proposition 12.16. [prop-CXY-complete]
Let X be a topological space, and let Y be a complete metric space. Let C(X,Y ) be the set of continuous

functions from X to Y , with the metric d(f, g) = sup{d(f(x), g(x)) : x ∈ X} as in Definition 3.28. Then
C(X,Y ) is complete.

Proof. Let f = (fn)n∈N be a Cauchy sequence in C(X,Y ). For each ε > 0 we therefore have N(ε) ∈ N
such that d(fi, fj) < ε whenever i, j ≥ N(ε). For each x ∈ X we note that d(fi(x), fj(x)) ≤ d(fi, fj), and
thus that (fn(x))n∈N is a Cauchy sequence in Y . As Y is complete this converges to a point g(x) ∈ Y . More
precisely, if N(ε) ≤ i ≤ j we have d(fi(x), fj(x)) < ε so

d(fi(x), g(x)) ≤ d(fi(x), fj(x)) + d(fj(x), g(x)) < ε+ d(fj(x), g(x)).

We now let j tend to infinity in this inequality to see that d(fi(x), g(x)) ≤ ε whenever i ≥ N(ε). If we knew
that g was continuous, this would give us a point g ∈ C(X,Y ) with d(fn, g) < ε whenever n ≥ N(ε/2),
proving that f is convergent as required. Thus, all that is left is to verify that g is indeed continuous.

Suppose we are given x ∈ X and ε > 0. Put n = N(ε/4), so d(fn(u), g(u)) < ε/4 for all u. As fn is
continuous, we can choose δ > 0 such that d(fn(u), fn(x)) < ε/4 whenever d(u, x) < δ. For such u we then
have

d(g(u), g(x)) ≤ d(g(u), fn(u)) + d(fn(u), fn(x)) + d(fn(x), g(x)) ≤ ε/4 + ε/4 + ε/4 < ε,

as required. �

Corollary 12.17. [cor-CX-complete]
In particular, the metric space C(X,R) is complete. �

Definition 12.18. [defn-l-two]
Let l2(N) denote the set of sequences x = (x0, x1, . . . ) of real numbers for which

∑
i x

2
i < ∞. For

x ∈ l2(N) we put ‖x‖ =
√∑

i x
2
i .

Proposition 12.19. [prop-l-two]
The set l2(N) is a vector space, and the function x 7→ ‖x‖ is a norm (in the sense of Definition 3.31).

Moreover, l2(N) is complete with respect to the corresponding metric.

Proof. In this proof we will use the norm ‖x‖ =
√∑n−1

i=0 x
2
i on Rn, and recall that the metric topology

is the same as the product topology. (The corresponding fact will not hold for l2(N), however.) We define
τn : l2(N)→ Rn by τn(x) = (x0, . . . , xn−1), and note that the numbers ‖τn(x)‖ form a nondecreasing sequence
converging to ‖x‖.
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Suppose we have x, y ∈ l2(N). By straightforward expansion we have

‖τn(x− y)‖2 + ‖τn(x+ y)‖2 =

n−1∑
i=0

(xi − yi)2 +

n∑
i=0

(xi + yi)
2 = 2

n∑
i=0

x2
i + 2

n∑
i=0

y2
i ≤ 2‖x‖2 + 2‖y‖2 <∞.

By passing to the limit as n → ∞ we deduce that x + y, x − y ∈ l2(N) with ‖x + y‖2 + ‖x − y‖2 ≤
2‖x‖2 + 2‖y‖2. It is also clear that for t ∈ R we have tx ∈ l2(N) with ‖tx‖ = |t| ‖x‖. It follows that
l2(N) is a vector space under the obvious operations of addition and scalar multiplication. We next show
that the map x 7→ ‖x‖ is a norm on l2(N). All of the axioms are clear except for the triangle inequality,
which says that ‖x‖ + ‖y‖ − ‖x + y‖ ≥ 0. The usual triangle inequality for Rn (Lemma 2.24) says that
‖τn(x)‖+‖τn(y)‖−‖τn(x+y)‖ ≥ 0 for all n, and we can recover the inequality for l2(N) by letting n tend to
infinity. We thus have a norm as claimed, and a metric d(x, y) = ‖x− y‖. It is clear that for all z and i we
have |zi| ≤ ‖z‖, so |xi−yi| ≤ d(x, y). It follows that the projection πi : l

2(N)→ R is Lipschitz (with constant
1) and therefore continuous. Similarly, the truncation maps τn also satisfy d(τn(x), τn(y)) ≤ d(x, y), so they
are continuous.

Finally, we must show that l2(N) is complete. Let (xk)k∈N be a Cauchy sequence in l2(N) (so each xk
is itself a sequence, say xk = (xk0, xk1, · · · )). For any n, we recall that πn is Lipschitz so the sequence
(πn(xk))k∈N is a Cauchy sequence in R, so it converges to some point yn ∈ R. This gives a sequence
y = (yn)n∈N; we claim that this lies in l2(N), and that it is a limit for the the original sequence (xk)k∈N.
We will first observe a weaker fact. If we fix m, we have a sequence (τm(xk))k∈N in Rm, and we claim that
this converges to τm(y). Indeed, by Proposition 5.35 it will suffice to check that for all n < m the numbers
πn(τm(xk)) = πn(xk) converge to πn(τm(y)) = πn(y) = yn, and this is true by the definition of yn. Next, as
our original sequence is Cauchy, it must be bounded, so there is a constant K with ‖xk‖ ≤ K for all k. It
follows that ‖τm(xk)‖ ≤ K, and by letting k tend to infinity we deduce that ‖τm(y)‖ ≤ K. As this holds for
all m we deduce that ‖y‖ ≤ K, so y ∈ l2(N).

Now put zk = xk − y, so τm(zk)→ 0 for all m. Suppose we are given ε > 0. By the Cauchy property of
(xk)k∈N, we can find N such that d(zj , zk) = d(xj , xk) < ε/3 for all j, k ≥ N . Consider an index j ≥ N . As
‖zj‖ is the nondecreasing limit of the numbers ‖τm(zj)‖, we can choose m with ‖zj‖ < ‖τm(zj)‖+ ε/3. As
‖τm(zi)‖ → 0, we can choose k ≥ j with ‖τm(zk)‖ < ε/3. As j, k ≥ N we have ‖zj − zk‖ < ε/3. Putting this
together, we have

‖zj‖ < ε/3 + ‖τm(zj)‖
≤ ε/3 + ‖τm(zk)‖+ ‖τm(zj − zk)‖
≤ ε/3 + ‖τm(zk)‖+ ‖zj − zk‖
< ε/3 + ε/3 + ε/3 = ε.

This shows that ‖zi‖ → 0, so xi → y in l2(N) as claimed. �

Remark 12.20. [rem-l-two-I]
It is sometimes useful to generalise this as follows. Let I be an arbitrary set. For any function x : I → R

and any finite set J ⊆ I we put ‖x‖J =
√∑

j∈J x
2
j . We then put

‖x‖ = sup{‖x‖J : J ⊆ I finite } ∈ [0,∞],

and l2(I) = {x : ‖x‖ <∞}. By essentially the same argument as above we see that l2(I) is a vector space,
the map x 7→ ‖x‖ is a norm, and l2(I) is complete with respect to the corresponding metric.

The last example can be placed in a broader framework as follows:

Definition 12.21. [defn-banach-space]
A Banach space is a vector space (over R or C) equipped with a norm such that it is complete under

the resulting metric.

Example 12.22. [eg-banach-space]
Any finite-dimensional vector space is a Banach space under any norm, as we see from Corollary 10.36.

If X is any compact space, then we see from Corollary 12.17 that C(X,R) is a Banach space under the norm
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‖f‖ = sup{|f(x)| : x ∈ X}. (We need X to be compact here to ensure that ‖f‖ is finite.) Moreover, l2(I)
is a Banach space under the norm introduced in Definition 12.18.

Proposition 12.23. [prop-hom-banach]
Let V and W be normed vector spaces over K (where K is R or C). Consider the space Homc(V,W ) of

continuous linear maps from V to W , with the operator norm as in Definition 3.33. If W is a Banach space,
then Homc(V,W ) is also a Banach space. In particular, the continuous dual V ∗ = Homc(V,K) is always a
Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in Homc(V,W ). For any point v ∈ V we then have a
sequence (fn(v))n∈N in W . Using the inequality

d(fn(v), fm(v)) = ‖(fn − fm)(v)‖ ≤ ‖fn − fm‖op‖v‖ = d(fn, fm)‖v‖

we see that this is again Cauchy. As W is assumed to be complete, there is a unique limit point for the
sequence, which we denote by f(v). It is straightforward to check that the resulting map f : V → W is
linear. Moreover, as the sequence (fn)n∈N is Cauchy, it must be bounded, so there is a constant K such
that ‖fn‖op ≤ K for all n. We thus have ‖fn(v)‖ ≤ K‖v‖ for all v, and it follows that ‖f(v)‖ ≤ K‖v‖ as
well. This proves that f is continuous. All that is left is to prove that fn → f in Homc(V,W ). Suppose
we are given ε > 0. As the original sequence is Cauchy, we can choose N such that ‖fn − fm‖op ≤ ε for
all n,m ≥ N . This means that for such n and m we have ‖fn(v) − fm(v)‖ ≤ ε‖v‖ for all v ∈ V . By a
straightforward argument that we gave as Lemma 12.5, it follows that ‖fn(v)− f(v)‖ ≤ ε‖v‖ for all n ≥ N .
As this holds for all v we have d(fn, f) ≤ ε for all n ≥ N , as required. �

Proposition 12.24. [prop-complete-closed]
Let X be a complete metric space, and let Y be a subset of X (considered as a metric space in the obvious

way). Then Y is complete if and only if it is closed in X.

Proof. First suppose that Y is complete. Let y be a sequence in Y that converges to x ∈ X. As the
sequence is convergent in X, it must be Cauchy. As Y is complete and y is Cauchy, it must converge to a
point x′ ∈ Y . As limits in metric spaces are unique we must have x = x′, so x ∈ Y . Thus Y is closed (by
the criterion in Proposition 2.58).

Conversely, suppose that Y is closed. Let y be a Cauchy sequence in Y . Then y can also be regarded
as a Cauchy sequence in the complete metric space X, so it must converge to some point x ∈ X. As Y is
closed we see from Proposition 2.58 that we actually have x ∈ Y , so y is convergent in Y . This proves that
Y is complete. �

We next consider compactness and related properties in metric spaces.

Definition 12.25. [defn-totally-bounded]
Let X be a metric space, and let ε be a positive real number. An ε-net for X is a finite subset F ⊆ X

such that

X =
⋃
x∈F

OBε(x).

We say that X is totally bounded if it has an ε-net for every ε > 0.

Example 12.26. [eg-totally-bounded]

(a) The set {k/n : 0 ≤ k ≤ n} is a 1/n-net for [0, 1].
(b) Let X be the space of binary sequences as in Example 2.6, with the metric describe in Example 2.42.

Put

Fn = {x ∈ X : xi = 0 for all i > n}.
Then Fn is a 2−n-net for X.

(c) Fix a prime p, and consider Z with the p-adic metric as in Example 2.43. Then {0, 1, . . . , pn+1− 1}
is a p−n-net for Z.

It follows that all three of these spaces are totally bounded.
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Definition 12.27. [defn-lebesgue-number]
Let X be a metric space, and let (Ui)i∈I be an open covering of X. A Lebesgue number for the covering

is a number ε > 0 such that for each x ∈ X there exists i ∈ I such that OBε(x) ⊆ Ui.

Theorem 12.28. [thm-compact-metric]
Let X be a metric space, and consider the following conditions:

(a) X is compact.
(b) X is totally bounded and complete.
(c) Every sequence in X has a convergent subsequence.
(d) Every open cover of X has a Lebesgue number.

Then (a), (b) and (c) are equivalent, and they imply (d).
Perhaps do something with neighbourhoods of the diagonal?

This summarises a number of smaller results, which we will prove separately. We will gather the threads
together to prove the theorem at the end of this section.

First, however, we give a sample application.

Example 12.29. [eg-binary-compact]
Let X be the space of binary sequences as in Example 2.6. Using Example 12.26 and Proposition 12.11

we see that X is totally bounded and complete, so it is compact by the above theorem. This was already
proved by a different method in Corollary 10.27.

Lemma 12.30. [lem-compact-metric]
Let X be a compact metric space. Then X is totally bounded and complete.

Proof. First suppose that X is compact. Consider a number ε > 0. The family {OBε(x) : x ∈ X}
is an open cover, so there is a finite subcover, say {OBε(x) : x ∈ F}. This means that F is an ε-net for
X. It follows that X is totally bounded. Now let x be a Cauchy sequence in X. Put X ′n = {xi : i ≥ n}
and let Xn be the closure of X ′n. If we have a finite list of these sets, say Xn1

, . . . , Xnp , then we can put

m = max(n1, . . . , np) and we find that xm ∈
⋂p
t=1Xnt . This means that the family (Xn)n∈N has the Finite

Intersection Property. As X is compact, Proposition 10.12 tells us that
⋂
nXn 6= ∅, so we can choose

a ∈
⋂
nXn. We claim that the sequence x converges to a. To see this, consider a number ε > 0. Choose N

such that d(xi, xj) < ε/2 whenever i, j ≥ N . We also have a ∈ XN , so the ball OBε/2(a) must meet X ′N , so
we can choose n ≥ N with d(a, xn) < ε/2. Now for i ≥ N we have d(xi, xn) < ε/2 and d(xn, a) < ε/2 so
d(xi, a) < ε, as required. We now see that X is complete as claimed. �

It is now convenient to introduce more flexible terminology.

Definition 12.31. [defn-totally-bounded-aux]
Let X be a metric space, let Y be a subset of X, and let ε be a positive real number. An external ε-net

for Y in X is a finite subset F ⊆ X such that

Y ⊆
⋃
x∈F

OBε(x).

We say that Y is externally totally bounded in X if it has an external ε-net for every ε > 0.

Lemma 12.32. [lem-totally-bounded-subset]
Let X be a metric space, and let Y be a subset of X. Then Y is totally bounded if and only if it is

externally totally bounded in X.

Proof. It is clear that an ε-net gives an external ε-net, so if Y is totally bounded then it is externally
totally bounded.

Conversely, suppose that Y is externally totally bounded. For each ε > 0, let F be an external ε/2-net
for Y . We can harmlessly discard from F any points x such that OBε/2(x) ∩ Y = ∅, so we may as well
assume that there are no points of this type. Thus, for each x ∈ F we can choose α(x) ∈ Y ∩ OBε/2(x).
Put G = {α(x) : x ∈ F}, which is a finite subset of Y . We claim that it is an ε-net. Indeed, if y ∈ Y then
we can find x ∈ F such that d(y, x) < ε/2 (because F is an ε/2-net). We also have d(x, α(x)) < ε/2 and so
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d(y, α(x)) < ε by the triangle inequality. As α(x) ∈ G this means that y ∈ OBε(α(x)) ⊆
⋃
u∈GOBε(u). As

y was an arbitrary point of Y , this shows that G is an ε-net as claimed. �

Corollary 12.33. [cor-totally-bounded-subset]
Any subset of a totally bounded set is again totally bounded.

Proof. Any external ε-net for the larger set is also an external ε-net for the smaller set. �

Proposition 12.34. [prop-closure-totally-bounded]
Let X be a metric space, and let Y be a totally bounded subset of X. Then Y is also totally bounded.

Proof. Let F be an ε/2-net for Y . We claim that this is an ε-net for Y , which will prove the proposition.
Indeed, if x ∈ Y then OBε/2(x) must meet Y . We choose y ∈ OBε/2(x) ∩ Y , and note that there must exist
z ∈ F with y ∈ OBε/2(z). Now d(x, y) < ε/2 and d(y, z) < ε/2 so d(x, z) < ε as required. �

Proposition 12.35. [prop-cauchy-subseq]
Let X be a totally bounded metric space. Then every sequence in X has a subsequence that is Cauchy.

Proof. Let x be a sequence in X. For each n ∈ N, choose a 2−n-net Fn for X. For each u ∈ F0, put
I0(u) = {i : xi ∈ OB1(u)}. As F0 is finite and

⋃
u∈F0

I0(u) = N we see that there must exist u0 ∈ F0 such

that I0(u0) is infinite. We put φ(0) = min(I0(u0)) and Φ(1) = I0(u0) \ {φ(0)}, so Φ(1) is an infinite set of
integers, all of them larger than φ(0). Next, for u ∈ F1 we put I1(u) = {i ∈ Φ(1) : xi ∈ OB1/2(u)}. As F1

is finite and
⋃
u∈F1

I1(u) = Φ(1) we see that there must exist u1 ∈ F1 such that I1(u1) is infinite. We put

φ(1) = min(I1(u1)) and Φ(2) = I1(u1) \ {φ(1)}. Continuing in the same way, we define elements uk ∈ Fk
and integers φ(k) and subsets Φ(k) ⊆ N such that

(a) The set Ik(uk) = {i ∈ Φ(k) : xi ∈ OB2−k(uk)} is infinite
(b) φ(k) = min(Ik(uk))
(c) Φ(k + 1) = Ik(uk) \ {φ(k)} ⊂ Φ(k).

It follows that the function φ : N→ N is strictly increasing, so we have a subsequence (xφ(n))n∈N. We claim
that this is Cauchy. Indeed, for i, j > n we have φ(i), φ(j) ∈ Φ(n+ 1) ⊆ In(un) so xφ(i), xφ(j) ∈ OB2−n(un),
so

d(xφ(i), xφ(j)) ≤ d(xφ(i), un) + d(un, xφ(j)) < 21−n,

and the Cauchy property follows easily from this. �

Corollary 12.36. [cor-convergent-subseq]
If X is totally bounded and complete then every sequence in X has a convergent subsequence. �

Lemma 12.37. [lem-sc-tb]
Let X be a metric space in which every sequence has a convergent subsequence. Then X is totally

bounded.

Proof. If not, we can choose ε > 0 such that there is no ε-net. We then choose a sequence recursively
as follows. We start with an arbitrary point x0. If x0, . . . , xn−1 have been chosen, we observe that they

cannot give an ε-net by hypothesis, so there must exist a point xn that does not lie in
⋃n−1
i=0 OBε(xi), so

d(xi, xn) ≥ ε for all i < n. This gives us a sequence with the property that d(xi, xj) ≥ ε for all i 6= j, and it
is clear from this that no subsequence can be Cauchy, so no subsequence can be convergent. This contradicts
our assumption on X. �

Lemma 12.38. [lem-sc-lebesgue]
Let X be a metric space in which every sequence has a convergent subsequence. Then every open cover

of X has a Lebesgue number.

Proof. Let (Ui)i∈I be an open cover of X, and suppose that there is no Lebesgue number. Then, for
each n we can find a point xn such that the ball OB2−n(xn) is not contained in any of the sets Ui. The
sequence (xn)n∈N must have a subsequence (xφ(n))n∈N converging to some point x ∈ X say. As the sets Ui
cover X, we can choose i such that x ∈ Ui. As Ui is open, we have OBε(x) ⊆ Ui for some ε > 0. Now for
m sufficiently large we have 2−φ(m) < ε/2 and also d(xφ(m), x) < ε/2, so OB2−φ(m)(xφ(m)) ⊆ OBε(x) ⊆ Ui,
which contradicts the choice of xφ(m). �
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Lemma 12.39. [lem-tbl-compact]
Let X be a totally bounded metric space in which every open cover has a Lebesgue number. Then X is

compact.

Proof. Let (Ui)i∈I be an open cover of X. Let ε be a Lebesgue number for the cover, and let F be
an ε-net for X. For each x ∈ F choose ix ∈ I such that OBε(x) ⊆ Uix (which is possible because ε is a
Lebesgue number). Now put J = {ix : x ∈ F}, which is a finite subset of I. We have X =

⋃
x∈F OBε(x) ⊆⋃

x∈F Uix =
⋃
j∈J Uj , so we have a finite subcover as required. �

Proof of Theorem 12.28.

• Lemma 12.30 shows that (a) implies (b).
• Corollary 12.36 shows that (b) implies (c).
• Lemma 12.38 shows that (c) implies (d).
• Lemmas 12.38, 12.37 and 12.39 together show that (c) implies (a).

�

Example 12.40. We will consider R2 with the lane metric as defined in Example 2.39:

d((x, y), (x′, y′)) =

{
|y − y′| if x = x′

|y|+ |x− x′|+ |y′| if x 6= x′.
.

We will investigate which sets K ⊆ R2 are compact with respect to the metric topology. First, define
π : R2 → R by π(x, y) = x. For a ∈ R we also define ιa : R→ R2 by ιa(y) = (a, y). Given K ⊆ R2, we put

K(a) = ι−1
a (K) = {y ∈ R : (a, y) ∈ K}

A = π(K) = {a : K(a) 6= ∅}
B = π(K \ (R× {0})) = {a : K(a) 6⊆ {0}} ⊆ A.

These are all subsets of R, and we consider R with the usual metric and topology. We claim that if K is
compact in R2, then A is compact in R, and B is finite, and K(b) is compact in R for all b ∈ B. First, it is
easy to see that π decreases distances and so is continuous, so the set A = π(K) is compact. Similarly, ιa is a
closed embedding, so K(a) is essentially a closed subset of a compact set and so is also compact. (Of course,
this statement only has any force for a ∈ B.) Next, for b ∈ B we put r(b) = sup{|t| : t ∈ K(b)} > 0, and
U(b) = (−r(b), r(b)). Note that this is open and contains 0 but does not contain K(b). For x 6∈ B we just put
U(x) = R, and then we put U = {(x, y) ∈ R2 : y ∈ U(x)}. Next, for b ∈ B we put V (b) = {(b, y) : y 6= 0}.
The sets U and V (b) together give an open cover of K, so there must be a finite subcover. However, because
K(b) 6⊆ U(b), this finite subcover must contain all of the sets V (b). It follows that B is finite, as claimed. It
is also not hard to see that these conditions are sufficient as well as necessary for the compactness of K.

12.1. Contraction mappings. We next explain a very useful principle called the Contraction Mapping
Theorem.

Definition 12.41. [defn-contraction]
Let X be a metric space, and let f be a function from X to itself. If f has a Lipschitz constant α with

α < 1 (so d(f(x), f(y)) ≤ αf(x, y) for all x, y ∈ X), we say that f is a contraction mapping of ratio α. A
fixed point for f is a point x ∈ X with f(x) = x.

Theorem 12.42 (The Contraction Mapping Theorem). [thm-contraction]
Let X be a nonempty complete metric space, and let f : X → X be a contraction mapping of ratio α.

Then f has a unique fixed point. Moreover, if a is an arbitary point and b is the fixed point, then

d(a, b) ≤ d(a, f(a))/(1− α).

Proof. Choose a = a0 ∈ X and write r = d(a, f(a)). Then put an = f (n)(a0) for all n ≥ 0, so
an+1 = f(an). We claim that the sequence (an) is Cauchy. Indeed, by induction we see that

d(an, an+1) = d(f(an−1), f(an)) ≤ αnr
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for all n. Thus, if m ≤ n we have

d(am, an) ≤ d(am, am+1) + . . . d(an−1, an)

≤ r(αm + . . . αn−1)

≤ r
∞∑
k=m

αk = αmr/(1− α),

which easily implies the claim. Thus, as X is complete, the sequence converges to a limit b. Moreover

f(b) = f( lim
n→∞

an) = lim
n→∞

f(an) = lim
n→∞

an+1 = b,

so b is a fixed point. Suppose that c is another fixed point. Then

d(b, c) = d(f(b), f(c)) ≤ αd(b, c)

As α < 1, this implies d(b, c) = 0 and thus b = c. Thus b is the unique fixed point.
Finally,

d(a, b) = lim
n→∞

d(a0, an) ≤ lim
n→∞

1− αn

1− α
r =

d(a, f(a))

1− α
.

�

The typical strategy for using the Contraction Mapping Theorem is as follows. Suppose we want to
construct an object b with a particular property. We first find a space X of “potential solutions”, in which
we expect b to lie. We then try to define an “improvement function” f : X → X, such that f(x) is a better
potential solution than x is. If we do this correctly then the fixed points of f will be precisely the actual
solutions to our problem. If we are lucky then there will be a metric on X such that X is complete and f is
a contraction mapping. If so, the theorem will tell us that there is a unique point b ∈ X with the required
property.

For example, one can use this approach to prove quite general existence theorems for solutions to ordinary
differential equations. Here we will just illustrate the method by treating a simple special case.

Proposition 12.43. [prop-ode]
Let f : R → R be a continuously differentiable function, and suppose that there exists α < 1 such that

|f ′(x)| ≤ α for all x ∈ R. Then there is a unique continuously differentiable map u : [0, 1]→ R that satisfies
the differential equation u′(t) = f(u(t)) with boundary condition u(0) = 0.

Proof. First, for any x < y the Mean Value Theorem tells us that there exists a ∈ [x, y] such that
f(y)− f(x) = f ′(a)(y−x). It follows that |f(y)− f(x)| ≤ α|y−x|, so f is a contraction mapping of ratio α.
However, we will not apply the Contraction Mapping Theorem to f itself, but to a rather more complicated
operator defined in terms of f .

Put X = C([0, 1],R) (which is a complete metric space by Proposition 12.16). For u ∈ X and s ∈ [0, 1]
put Fu(s) =

∫ s
t=0

f(u(t)) dt and K = ‖f ◦ u‖∞. Note that

|Fu(r)− Fu(s)| =
∣∣∣∣∫ r

s

f(u(t)) dt

∣∣∣∣ ≤ ∫ r

s

|f(u(t))| dt ≤ K|r − s|.

This means that Fu : [0, 1]→ R is Lipschitz, and therefore continuous. We have therefore defined an operator
F : X → X.

Suppose that u, v ∈ X. We then have

d(Fu, Fv) = sup {|Fu(s)− Fv(s)| : s ∈ [0, 1]}

≤
∫ 1

0

|f(u(t))− f(v(t))| dt

≤ sup{|f(u(t))− f(v(t))| : t ∈ [0, 1]}
≤ α sup{|u(t)− v(t)| : t ∈ [0, 1]} = αd(u, v).
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This means that F : X → X is a contraction mapping of ratio α. It follows that there is a unique point
u ∈ X with Fu = u, so

u(s) =

∫ s

t=0

f(u(t)) dt.

We can put s = 0 here to see that u(0) = 0. We also see that

u(s+ h)− u(s)

h
=

1

h

∫ s+h

t=s

f(u(t)) dt,

which is easily seen to converge to f(u(s)) as h→ 0. This means that u is continuously differentiable, with
u′(s) = f(u(s)) as required. �

The Contraction Mapping Theorem can also be used to prove various versions of the Inverse Function
Theorem and the Implicit Function Theorem. Again, we will treat only a simple case that illustrates the
method.

Proposition 12.44. [prop-implicit-function]
Let f : Rk × Rn → Rk be a continuously differentiable map such that f(u, 0) = u+O(‖u‖2) for small u

in Rk. Then there is a ball Y = Bε(0) ⊂ Rn for some ε > 0 and a map g : Y → Rk such that f(g(y), y) = 0
for all y ∈ Y .

Proof. It will be convenient to work with the function h(x, y) = x−f(x, y) rather than f . This is again
continuously differentiable, so there are continuous maps α : Rk×Rn →Mk,k(R) and β : Rk×Rn →Mk,n(R)
such that we have

h(x+ u, y + v) = h(x, y) + α(x, y)u+ β(x, y)v +O(‖u‖2 + ‖v‖2)

(for x, u ∈ Rk and y, v ∈ Rn). The condition f(u, 0) = u + O(‖u‖2) means that α(0, 0) = 0. As α is
continuous we can choose δ > 0 such that ‖α(x, y)‖ < 1/3 whenever ‖x‖ ≤ δ and ‖y‖ ≤ δ. As β is also
continuous, and the set of such pairs (x, y) is compact, there is a constant K such that ‖β(x, y)‖ ≤ K for
all (x, y) with ‖x‖ ≤ δ and ‖y‖ ≤ δ. For such x and y we therefore have

‖h(x, y)‖ =

∣∣∣∣∫ 1

t=0

d

dt
h(tx, ty) dt

∣∣∣∣ =

∥∥∥∥∫ 1

t=0

α(tx, ty)x+ β(tx, ty)y dt

∥∥∥∥ ≤ ‖x‖/3 +K‖y‖.

Now put ε = δ/max(1, 3K) and X = {x ∈ Rk : ‖x‖ ≤ δ} and Y = {y ∈ Rn : ‖y‖ ≤ ε}. Then define
M = C(Y,X), which is a complete metric space. For g ∈ M we define Tg : Y → Rk by Tg(y) = h(g(y), y).
As y ∈ Y and g ∈ M we have ‖y‖ ≤ ε ≤ δ and ‖g(y)‖ ≤ δ so we can use the estimate ‖h(g(y), y)‖ ≤
‖g(y)‖/3 +K‖y‖ ≤ δ/3 +Kε ≤ 2δ/3. It follows that Tg ∈M , so T gives a map M →M .

Next, note that when ‖x0‖, ‖x1‖, ‖y‖ ≤ δ we have

‖h(x1, y)−h(x0, y)‖ =

∣∣∣∣∫ 1

t=0

α(tx1 + (1− t)x0, y).(x1 − x0) dt

∣∣∣∣ ≤ ∫ 1

t=0

‖α(tx1+(1−t)x0, y)‖.‖x1−x0‖ dt ≤ ‖x1−x0‖/3.

It follows that ‖Tg0 − Tg1‖ ≤ ‖g0 − g0‖/3 for all g0, g1 ∈M , so T is a contraction mapping on M . If we let
g denote the unique fixed point of T , we find that g(y) = h(g(y), y) = g(y)− f(g(y), y), so f(g(y), y) = 0 as
required. �

It is sometimes useful to know that the fixed point of f depends continuously on X. This can be
formalised as follows.

Proposition 12.45. [prop-fp-cts]
Let X be a complete metric space, and let α be a number in (0, 1). Let CMα(X) be the set of contraction

mappings of ratio α on X, and define φ : CMα(X)→ X by

φ(f) = the unique fixed point of f.

Then CMα(X) is closed in C(X,X), and φ is continuous.
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Proof. First suppose that f ∈ C(X,X) \ CMα(X). This means that there exist points x, y ∈ X with
d(f(x), f(y)) > αd(x, y). Put ε = (d(f(x), f(y))− αd(x, y))/2 > 0. If d(f, g) < ε we find that

d(g(x), g(y)) ≥ d(f(x), f(y))− d(f(x), g(x))− d(f(y), g(y)) > d(f(x), f(y))− 2ε > αd(x, y),

so g 6∈ CMα(X). This means that the complement of CMα(X) is open, so CMα(X) is closed. Next, suppose
we have f, g ∈ CMα(X). Let x be the fixed point of f , and let y be the fixed point of g. Now the last part
of Theorem 12.42 tells us that d(y, x) ≤ d(y, f(y))/(1− α). As g(y) = y, we can rewrite this as

d(y, x) ≤ d(g(y), f(y))

1− α
≤ d(f, g)

1− α
,

or in other words d(φ(f), φ(g)) ≤ d(f, g)/(1−α). This means that φ is Lipschitz and therefore continuous. �

12.2. Uniform continuity.

Definition 12.46. [defn-uniformly-cts]
Let f : X → Y be a map of metric spaces. We say that f is uniformly continuous if for all ε > 0 there

exists δ > 0 such that d(f(x), f(x′)) < ε whenever d(x, x′) < δ.

Remark 12.47. [rem-uniformly-cts]
Note here that δ is not allowed to depend on x (or x′). If δ were allowed to depend on x, this would just

reduce to the ordinary notion of continuity. Thus, any uniformly continuous map is continuous.

Remark 12.48. [rem-lipschitz-uniform]
If f : X → Y is Lipschitz, with Lipschitz constant A say, then we can just take δ = ε/A to see that f is

uniformly continuous.

Proposition 12.49. [prop-uniformly-cts]
Let f : X → Y be a continuous map of metric spaces, and suppose that X is compact. Then f is

uniformly continuous.

Proof. Suppose we are given ε > 0. For each y ∈ Y , put Uy = f−1(OBε/2(y)), which is open in X.
As x ∈ Uf(x) for all x, we see that this gives an open covering of X. Let δ be a Lebesgue number for
this covering. Now suppose we have points x and x′ in X with d(x, x′) < δ, so x′ ∈ OBδ(x). As δ is a
Lebesgue number we have OBδ(x) ⊆ Uy for some y. This means that f(x) and f(x′) lie in OBε/2(y), so
d(f(x), f(x′)) ≤ d(f(x), y) + d(y, f(x′)) < ε as required. �

As an application, we can now exhibit a countable dense subset of the space C([0, 1]).

Definition 12.50. [defn-piecewise-linear]
Consider a function f : [0, 1] → R. We say that f is piecewise-linear if there exist numbers 0 = a0 <

a1 < · · · < ar = 1 such that f |[ai,ai+1] is linear for all i. Equivalently, if we put bi = f(ai), we should have

f(x) = bi +
(x− ai)(bi+1 − bi)

(ai+1 − ai)
for all x ∈ [ai, ai+1].

a0 a1 a2 a3 a4 a5 a6

b2

b5
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We will say that f is rationally piecewise-linear if in addition, the numbers ai and bi are rational. We write
RPL for the set of all rationally piecewise-linear functions (which is easily seen to be countable).

Proposition 12.51. [prop-rpl-dense]
The set RPL is dense in C([0, 1]) (so C([0, 1]) is separable).

Proof. Suppose we are given f ∈ C([0, 1]) and ε > 0. Proposition 12.49 tells us that f is uniformly
continuous, so there exists n > 0 such that |f(x)−f(y)| < ε/5 whenever |x−y| ≤ 1/n. For each k ∈ {0, . . . , n},
let bk be a rational number with |bk − f(k/n)| < ε/5. Let g : [0, 1] → R be the function that satisfies
g(k/n) = bk for k = 0, 1, . . . , n and is linear on each interval [k/n, (k + 1)/n], so g ∈ RPL. Consider a point
x ∈ [0, 1]. Let k be the integer such that k/n ≤ x < (k + 1)/n. If k = n then we must have x = 1 and
|f(x)− g(x)| = |f(1)− bn| < ε/5 < 4ε/5. Suppose instead that k < n. As g is linear on [k/n, (k + 1)/n] we
have

|g(x)− bk| ≤ |bk+1 − bk| ≤ |bk+1 − f((k + 1)/n)|+ |bk − f(k/n)|+ |f((k + 1)/n)− f(k/n)| < 3ε/5,

so

|g(x)− f(x)| ≤ |g(x)− bk|+ |f(x)− bk| < 3ε/5 + ε/5 = 4ε/5.

As x was arbitrary, it follows that d(f, g) ≤ 4ε/5 < ε as required. �

12.3. Spaces of subsets. We next discuss ways to measure the distance between two subsets of a
given metric space X. This will allow us to consider the set of closed subsets of X as a metric space in its
own right. Later (in Definition 21.45) we will give a non-metric version by defining a topology on the space
of closed subsets of an arbitrary compact Hausdorff space.

Definition 12.52. [defn-hausdorff-metric]
Let X be a metric space.

(a) Given a point x ∈ X and a subset Y ⊆ X, we put d(x, Y ) = inf{d(x, y) : y ∈ Y }. This is
interpreted as ∞ if Y = ∅.

(b) Given subsets Y, Z ⊆ X we put

d′(Y,Z) = sup{d(y, Z) : y ∈ Y }
d(Y,Z) = max(d′(Y,Z), d′(Z, Y )).

This is interpreted as ∞ if Y = ∅ or Z = ∅.

Lemma 12.53. [lem-dbar-zero]
We have d(x, Z) = 0 if and only if x ∈ Z. Thus, we have d′(Y, Z) = 0 iff Y ⊆ Z.

Proof. Suppose that d(x, Z) = 0. This means that for all ε > 0, the number ε is not a lower bound for
{d(x, z) : z ∈ Z}, so we can choose z ∈ Z with d(x, z) < ε, so OBε(x) meets Z. This means that x ∈ Z. All
steps in this argument can be reversed, so d(x, Z) = 0 iff x ∈ Z. It follows that d′(Y, Z) = 0 iff (d(y, Z) = 0
for all y ∈ Y ) iff Y ⊆ Z. �

Lemma 12.54. [lem-dbar-lipschitz]
Suppose that d(x, y) < ∞ for all x, y ∈ X, and that Y 6= ∅. Then for all x, x′ ∈ X we have |d(x, Y ) −

d(x′, Y )| ≤ d(x, x′). The map x 7→ d(x, Y ) is therefore Lipschitz and so continuous.

Proof. The auxiliary conditions ensure that d(x, Y ) <∞ for all x, so the expression d(x, Y )− d(x′, Y )
is meaningful. For all y ∈ Y we have

d(x, Y ) ≤ d(x, y) ≤ d(x, x′) + d(x′, y).

This means that d(x, Y )−d(x, x′) is a lower bound for the numbers d(x′, y), and d(x′, Y ) is by definition the
greatest lower bound, so we have d(x, Y )− d(x, x′) ≤ d(x′, Y ), or equivalently d(x, Y )− d(x′, Y ) ≤ d(x, x′).
By reversing the roles of x and x′ we see that also d(x′, Y ) − d(x, Y ) ≤ d(x, x′), so |d(x, Y ) − d(x′, Y )| ≤
d(x, x′). �
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Lemma 12.55. [lem-hausdorff-metric]
Let P denote the set of subsets of X. Then the function d defines a semimetric on P , with d(A,B) = 0

iff A = B.

Proof. It is clear that d(A,B) = d(B,A) ≥ 0, and that d(A,A) = 0. Using Lemma 12.53 we also see
that d(Y, Z) = 0 iff (Y ⊆ Z and Z ⊆ Y ), which is equivalent to Y = Z.

This just leaves the triangle inequality. Suppose that d(A,B) = r and d(B,C) = s and ε > 0. If a ∈ A
then d(a,B) ≤ r, so there exists b ∈ B with d(a, b) < r + ε. Similarly, we then have d(b, C) ≤ s, so there
exists c ∈ C with d(b, c) < s+ ε. We have now found c ∈ C with d(a, c) < r+ s+ 2ε, so d(a,C) ≤ r+ s+ 2ε.
As ε > 0 was arbitrary, we deduce that d(a,C) ≤ r+ s. A similar argument shows that for all c ∈ C we have
d(c, A) ≤ r + r, so d(A,B) ≤ r + s as required. �

Proposition 12.56. [prop-hausdorff-metric]
Let X be a compact metric space, and let K be the set of closed subsets of X. Then d gives a metric on

K, and it is compact with respect to the metric topology.

Proof. It is immediate from Lemma 12.55 that d gives a metric on K. By Theorem 12.28, it will
suffice to show that K is totally bounded and complete with respect to d. Consider a number ε > 0. As X
is compact, there exists an ε/2-net F for X. Let G be the set of subsets of F , which is a finite subset of K.
For any A ∈ K, put B = {x ∈ F : d(x,A) ≤ ε/2}, so B ∈ G. By definition we have d′(B,A) ≤ ε/2. If
y ∈ A then (because F is an ε/2-net) there exists x ∈ F with d(x, y) < ε/2. This means that d(x,A) < ε/2,
so x ∈ B. As x ∈ B and d(x, y) < ε/2 we have d(y,B) < ε/2. As y was an arbitrary element of A, this gives
d′(A,B) ≤ ε/2 < ε. Thus, G is an ε-net in K. It follows that K is totally bounded.

Now consider a Cauchy sequence (An)∞n=0 in K. By the Cauchy property, we can choose n0 < n1 <
n2 < · · · such that d(Ai, Aj) < 2−k whenever i, j ≥ nk. Put Bi = Ani , so d(Bi, Bj) < 2−min(i,j). Then put

C = {x ∈ X : d(x,Bi) ≤ 2−i for all i}.

By construction we have d′(C,Bi) ≤ 2−i. Consider a point x ∈ Bi. Put

Dj = {y ∈ X : d(y,Bj) ≤ 2−j , d(x, y) ≤ 2−i},

and note that this is closed in X. We claim that for all k, we have
⋂
j<kDj 6= ∅. Indeed, it will be harmless

to assume that k ≥ i. We then have d(Bi, Bk) < 2−i and x ∈ Bi, so we can choose y ∈ Bk with d(x, y) < 2−i.
Now for j < k we have

d(y,Bj) ≤ d′(Bk, Bj) ≤ d(Bk, Bj) ≤ 2−min(k,j) = 2−j ,

so y ∈ Dj as required. This shows that the family (Dj)j∈N has the finite intersection property, but X is
compact, so

⋂
j Dj 6= ∅. From the definitions we have

⋂
j Dj = {y ∈ C : d(x, y) ≤ 2−i}; as this set is

nonempty, we have d(x,C) ≤ 2−i. As x was an arbitrary point in Bi, we deduce that d′(Bi, C) ≤ 2−i. We
also saw previously that d′(C,Bi) ≤ 2−i, so d(Bi, C) ≤ 2−i, so the sequence (Bi)i≥0 converges to C. It
follows by Lemma 12.6 that the original sequence (Ai)i≥0 also converges to C. �

Remark 12.57. Note that d(∅, A) =∞ for all A 6= ∅, so the empty set gives an isolated point in K. It
follows that the set K ′ = K \ {∅} is closed in K and so is again compact.

There are interesting applications of the above theory to the study of fractals and iterated function
systems. Fractals are subspaces T ⊆ Rn that are usually self-similar in some sense. One possible sense
is that T = T1 ∪ · · · ∪ Tr, where each Ti is the image of some continuous map fi : T → T . To construct
examples, we can start with a cube X = [−R,R]n and a list of maps fi : X → X (for 1 ≤ i ≤ r say). Let K ′

be the space of nonempty compact subsets of X as before, and define F : K → K by F (A) =
⋃r
i=1 fi(A).

If we can show that F is a contraction mapping, then the Contraction Mapping Theorem (Theorem 12.42)
will tell us that there is a unique point T ∈ K with T = F (T ), or in other words a unique compact subset
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T ⊆ X with the self-similarity property T =
⋃
i fi(T ). For example, we can define maps fi : R2 → R2 by

f0

[
x
y

]
=

[
0.00 0.00
0.00 0.16

] [
x
y

]
f1

[
x
y

]
=

[
0.85 0.04
−0.04 0.85

] [
x
y

]
+

[
0.00
1.60

]
f2

[
x
y

]
=

[
−0.15 0.28
0.26 0.24

] [
x
y

]
+

[
0.00
0.44

]
f3

[
x
y

]
=

[
0.20 −0.26
0.23 0.22

] [
x
y

]
+

[
0.00
1.60

]

One can check that these restrict to give contraction mappings fi : X → X, where X = [−20, 20]2. Moreover,
the resulting map F : K ′ → K ′ is again a contraction mapping, so there is a unique fixed set T as discussed.
This set T is called Barnsley’s Fern.

To verify that F is a contraction mapping, we need the following lemmas:

Lemma 12.58. [lem-matrix-lipschitz]
Let f : Rn → Rn be a map of the form f(x) = Ax + a, for some matrix A ∈ Mn(R) and some vector

a ∈ Rn. Let k be the maximum absolute value of the eigenvalues of ATA. Then
√
k is a Lipschitz constant

for f (with respect to the metric d2(x, y) = ‖x− y‖2 on Rn). In particular, if k < 1 then f is a contraction
mapping.

Proof. First, we note that the matrix B = ATA is symmetric, so by standard linear algebra, there is an
orthonormal basis u1, . . . , un for Rn and real numbers t1, . . . , tn with Bui = tiui for all i. After renumbering
the basis elements if necessary, we may assume that t1 ≤ · · · ≤ tn. Note that for any vector v we have

〈v,Bv〉 = 〈v,ATAv〉 = 〈Av,Av〉 = ‖Av‖2 ≥ 0.

Taking v = ei, we deduce that ti ≥ 0. It follows that the number k in the statement is just tn. Moreover,
we can write v as

∑n
i=1 siui say, and we find that

‖Av‖2 = 〈v,Bv〉 = 〈
∑
i

siui,
∑
i

sitiui〉 =
∑
i

s2
i ti ≤ k

∑
i

s2
i = k‖v‖2,

so ‖Av‖ ≤
√
k‖v‖. Taking v = x− y, we deduce that

d2(f(x), f(y)) = ‖A(x− y)‖ ≤
√
k‖x− y‖ =

√
k d2(x, y)
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as required. �

Lemma 12.59. [lem-IFS-contraction]
Let X be a metric space, and let f1, . . . , fr be contraction mappings on X. Let K ′ be the space of

nonempty compact subsets of X, and define F : K ′ → K ′ by F (A) =
⋃
i fi(A). Then F is also a contraction

mapping.

Proof. As fi is a contraction mapping, there exists mi ∈ (0, 1) such that d(fi(x), fi(y)) ≤ mid(x, y)
for all x and y. Put m = max(m1, . . . ,mr) ∈ (0, 1). Suppose we have distinct sets A,B ∈ K ′ and a number
t > d(A,B). This means precisely that for all a ∈ A there exists b ∈ B with d(a, b) < t, and similarly for
all b ∈ B there exists a ∈ A with d(a, b) < t. Now suppose we have a point a′ ∈ F (A). This means that
a′ = fi(a) for some i and some a ∈ A. There exists b ∈ B with d(a, b) < t, and we put b′ = fi(b) ∈ F (B).
We find that

d(a′, b′) = d(fi(a), fi(b)) ≤ mid(a, b) < mt.

Similarly, if b′ ∈ F (B) there exists a′ ∈ F (A) with d(a′, b′) < mt. It follows that d(F (A), F (B)) ≤ mt. We
can now let t approach d(A,B) to see that d(F (A), F (B)) ≤ md(A,B), so m is a Lipschitz constant for F ,
as required. �

Exercise 12.1. [ex-dbar]
Let X be a metric space, and let Y be a closed subset. Define e : X2 → [0,∞) by

e(a, b) = min(d(a, b), d(a, Y ) + d(b, Y )).

Prove that this gives a semimetric on X.

Remark 12.60. The intuition for e is as follows. We imagine that there is a new hyperspace travel
facility covering the region Y . To move from a to b, we either use the old route (of length d(a, b)) or we
travel a distance d(a, Y ) to the nearest available point in Y , then jump instantaneously to a point that is as
close as possible to b, then travel a distance d(b, Y ) to b.

Solution: It is immediate that e(a, a) = 0 and e(a, b) = e(b, a). Thus we need only show that

e(a, c) ≤ e(a, b) + e(b, c)

We need to separate four cases. For brevity we write P (a, b) to mean that d(a, b) ≤ d(a, Y ) + d(b, Y ) and
Q(a, b) to mean that d(a, b) ≥ d(a, Y ) + d(b, Y ). Note that P (a, b) implies that e(a, b) = d(a, b), and so on.

(a) Suppose that P (a, b) and P (b, c) hold. Then

e(a, c) ≤ d(a, c) ≤ d(a, b) + d(b, c) = e(a, b) + e(b, c)

(b) Suppose P (a, b) and Q(b, c). Using

d(a, Y ) ≤ d(a, b) + d(b, Y )

we get

e(a, c) ≤ d(a, Y ) + d(c, Y )

≤ d(a, b) + d(b, Y ) + d(c, Y )

= e(a, b) + e(b, c)

(c) The case when Q(a, b) and P (b, c) hold is similar.
(d) Suppose Q(a, b) and Q(b, c). Then

e(a, c) ≤ d(a, Y ) + d(c, Y )

≤ d(a, Y ) + d(b, Y ) + d(b, Y ) + d(c, Y )

= e(a, b) + e(a, c)
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13. Completion

Definition 13.1. [defn-completion]
An isometry (or isometric embedding) is a map f : X −→ Y of metric spaces such that d(f(x0), f(x1)) =

d(x0, x1) for all x0, x1 ∈ X. An isometric isomorphism is a bijective isometry. A completion of X is a
complete metric space Y together with an isometry i : X −→ Y such that i(X) is dense in Y .

Note that an isometry is automatically continuous and injective. A bijective isometry is a homeomor-
phism and the inverse is an isometry. If f : X −→ Y is an isometry, then the induced map f : X −→ f(X) (where
f(X) ⊆ Y is given the subspace topology) is a homeomorphism, hence the use of the term “embedding”.

Construction 13.2. [cons-completion]
Let X be a metric space. Write

CS(X) = { Cauchy sequences x = (xn)n∈N in X }.
For x, y ∈ CS(X) write

d(x, y) = lim
n→∞

d(xn, yn).

We will check later that this limit really exists, and that the resulting function d is a semimetric on CS(X).
We can thus introduce an equivalence relation on CS(X) by (xEy iff d(x, y) = 0), and we find (as in

Remark 2.34) that the quotient set X̃ = CS(X)/E is a metric space. We define i : X → X̃ by sending x to
the equivalence class of the constant sequence (x, x, x, . . . ).

Proposition 13.3. [prop-completion]

Everything above makes sense, and i : X −→ X̃ becomes a completion of X. Moreover, for any Cauchy

sequence x in X, the resulting sequence (i(xn))n∈N converges to [x] in X̃.

Proof. First, consider a pair of Cauchy sequences x and y. We must check that the sequence

(d(xn, yn))n∈N

is convergent, so that the definition of d(x, y) is meaningful. As R is complete it will suffice to show that the
sequence is Cauchy. Suppose we are given ε > 0. As x is Cauchy we can choose N such that d(xi, xj) < ε/2
whenever i, j ≥ N . Similarly, we can choose M such that d(yi, yj) < ε/2 whenever i, j ≥ M . Now when
i, j ≥ max(N,M) we have

d(xi, yi) ≤ d(xi, xj) + d(xj , yj) + d(yj , yi) < ε/2 + d(xj , yj) + ε/2 = d(xj , yj) + ε.

By a symmetrical argument we also have d(xj , yj) < d(xi, yi) + ε, so |d(xi, yi)− d(xj , yj)| < ε as required.
We now see that d is a well-defined function from CS(X)×CS(X) to [0,∞). We claim that it is in fact

a semimetric. Indeed, axioms M0 and M1 are clear. For the triangle inequality M2, suppose we have a third
Cauchy sequence z. The triangle inequality for X means that we have d(xi, zi) ≤ d(xi, yi)+d(yi, zi) in R. We
can then pass to the limit as i→∞ to see that d(x, z) ≤ d(x, y) +d(y, z) as required. This means that there

is a well-defined metric d on the quotient set X̃ satisfying d([x], [y]) = d(x, y) for all x, y ∈ CS(X). Now let
i′(x) be the constant sequence with value x, so that i(x) = [i′(x)]. It is clear that d(i′(x), i′(y)) = d(x, y), so

d(i(x), i(y)) = d(x, y), so the map i : X → X̃ is an isometric embedding.

We next claim that the image of i is dense. To see this, consider a point [x] ∈ X̃, and a number ε > 0.
We must show that OBε([x]) meets i(X). As x is Cauchy, we can choose N ∈ N such that d(xi, xj) < ε/2
for i, j ≥ N . In particular we see that d(xi, xN ) ≤ ε/2 for all i ≥ N , and by passing to the limit we see
that d([x], i(xN )) ≤ ε/2 < ε as required. This also proves that (i(xn))n∈N converges to [x] as claimed in the
proposition.

All that is now left is to show that the space X̃ is actually complete. Consider a Cauchy sequence

(un)n∈N in X̃. By the previous paragraph, we can choose xn ∈ X such that d(i(xn), un) < 2−n. It follows
that

d(xn, xm) = d(i(xn), i(xm)) ≤ d(i(xn), un) + d(un, um) + d(um, i(xm)) < 2−n + 2−m + d(un, um).

From this we can easily see that the sequence x is Cauchy, so it determines a point a = [x] ∈ X̃. We claim

that un → a in X̃. To see this, suppose we are given ε > 0. As x is Cauchy we can find N such that
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d(xi, xj) < ε/2 for i, j ≥ N . As in the proof of density, we see that d(i(xj), a) ≤ ε/2 for all j ≥ N . We also
have d(i(xj), uj) < 2−j , and by taking j large enough we can arrange for this to be less than ε/2, which
gives d(a, uj) < ε. This shows that uj → a so the sequence u is convergent, as required. �

Proposition 13.4. [prop-completion-adjoint]

If f : X −→ Y is an isometry and Y is a complete metric space then there is a unique isometry f̃ : X̃ −→ Y
such that f̃ ◦ i = f . It is given by

f̃([x]) = lim
n−→∞ f(xn).

Proof. Let x be a Cauchy sequence in X. Then we have d(f(xn), f(xm)) = d(xn, xm) (because f is
an isometry) and it follows directly that (f(xn))n∈N is also a Cauchy sequence in Y . As Y is complete, it

follows that this sequence converges to some point in Y . We can thus define f̂ : CS(X) → Y by f̂(x) =
limn→∞ f(xn).

Now consider another Cauchy sequence (x′n)n∈N in X. We claim that

d(f̂(x), f̂(x′)) = d(x, x′) = lim
n→∞

d(xn, x
′
n).

To prove this, it will be convenient to write b = f̂(x) and b′ = f̂(x′). Given ε > 0 we can find an integer N
such that when n ≥ N we have d(f(xn), b) < ε/2 and also d(f(x′n), b′) < ε/2. It then follows that

d(f(xn), f(x′n)) ≤ d(f(xn), b) + d(b, b′) + d(b′, f(x′n)) < d(b, b′) + ε.

By essentially the same argument we also have d(b, b′) < d(f(xn), f(x′n))+ε, so |d(f(xn), f(x′n))−d(b, b′)| < ε.
We also have d(f(xn), f(x′n)) = d(xn, x

′
n) because f is an isometry, so |d(xn, x

′
n)− d(b, b′)| < ε as required.

In particular, we now see that if [x] = [x′] then d(x, x′) = 0 and so d(f̂(x), f̂(x′)) = 0. As Y is assumed

to be a metric space (and not just a semimetric space) we conclude that f̂(x) = f̂(x′). We therefore have a

well-defined map f̃ : X̃ → Y given by f̃([x]) = f̂(x) = limn→∞ f(xn), and we see from the above that f̃ is

an isometry. Note that f̃(i(x)) is the limit of the constant sequence f(x), which is just f(x); so f̃ ◦ i = f .

Finally, suppose that g : X̃ → Y is another isometry with g ◦ i = f . For any Cauchy sequence x we have
seen that (i(xn))n∈N converges to [x], so g([x]) must be the limit of the points g(i(xn)) = f(xn); this shows

that g = f̃ as claimed. �

Remark 13.5. [rem-completion-adjoint]
The proposition can be reformulated in categorical terms as follows. Let MSI denote the category whose

objects are metric spaces, and whose morphisms are isometric embeddings. Let CMSI be the full subcategory
of complete metric spaces, and let J : CMSI → MSI be the inclusion functor. For X ∈ MSI, put CX =

X̃, so C : obj(MSI) → obj(CMSI). The proposition gives a canonical bijection i∗ : CMSI(CX, Y ) →
MSI(X, JY ) for all X ∈ MSI and Y ∈ CMSI. By Proposition 36.129, there is a unique way to define
C on morphisms such that C becomes a functor left adjoint to J . This means that CMSI is a reflective
subcategory of MSI.

Proposition 13.6. [prop-compiscl]

Let X be a complete metric space, and let Y be a subspace of X. Then the completion Ỹ is isometrically
isomorphic to the closure Y = clX(Y ).

Proof. Write i for the isometric embedding of Y in its canonical completion Ỹ . The inclusion j : Y −→ X

is an isometric embedding and X is complete so there is a unique isometric embedding j̃ : Ỹ −→ X with
j̃ ◦ i = j.

As j̃ is continuous, the set j̃−1(Y ) ⊆ Ỹ is closed and it contains i(Y ). However, i(Y ) is dense in Ỹ so

j̃−1(Y ) = Ỹ and so j̃(Ỹ ) ⊆ Y .

On the other hand, j̃(Ỹ ) is isometrically isomorphic to the complete metric space Ỹ , so it is complete.

However, a complete subspace of a metric space is closed and j̃(Ỹ ) ⊇ Y so j̃(Ỹ ) = Y . Thus j̃ : Ỹ −→ Y is an
isometric isomorphism (and thus a homeomorphism). �
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Proposition 13.7. [prop-banach-completion]

Let V be a vector space over R equipped with a norm, and let Ṽ be the completion of V with respect to

the corresponding metric. Then Ṽ has a canonical structure as a Banach space, such that the map i : V → Ṽ
is linear and preserves norms.

Proof. Let x and y be Cauchy sequences in V , and let s and t be real numbers. Put zi = sxi + tyi for
all i. We then have

d(zi, zj) = ‖s(xi − xj) + t(yi − yj)‖ ≤ s‖xi − xj‖+ t‖yi − yj‖ = sd(xi, xj) + td(yi, yj).

From this we see that z is a Cauchy sequence. It follows that we can make CS(V ) into a vector space by
defining sx+ ty = z. If we put ‖x‖ = d(x, 0) = limn→∞ ‖xn‖ we find that this is a seminorm on CS(V ) and
that d(x, y) = ‖x−y‖. Moreover, if we let i′(x) denote the constant sequence (x, x, x, . . . ) then ‖i′(x)‖ = ‖x‖.
Now put CS0(V ) = {x : ‖x‖ = 0}. We find that this is a vector subspace and that Ṽ = CS(V )/CS0(V ).
Everything else follows easily from this. �

Example 13.8. [eg-l-two-functions]

We can complete the space C([0, 1]) with respect to the norm ‖f‖2 =
√∫ 1

0
f(t)2 dt to obtain a space

known as L2([0, 1]). This is more usually defined in a different way, relying on the theory of Lebesgue
integration, which we will not cover in this book. With that theory in hand, we can define L2

0([0, 1]) to

be the set of Lebesgue-measurable functions f : [0, 1] → R for which
∫ 1

0
f(t)2 dt < ∞. For such f we put

‖f‖2 =
√∫ 1

0
f(t)2 dt; we find that this defines a seminorm. We will say that f is null if the Lebesgue measure

of f−1{0} is one. It turns out that the set N of null functions is a vector subspace of L2
0([0, 1]) and that

‖f‖2 = 0 if and only if f ∈ N . We can thus define a norm on L2
0([0, 1])/N by ‖f +N‖2 = ‖f‖2, and it can

be shown that this is complete. One can also show that C([0, 1]) is dense, so L2
0([0, 1])/N can be identified

with the completion L2([0, 1]).

14. Further separation axioms

Definition 14.1. [defn-sep-axioms]
Let X be a topological space.

(a) X is said to be T0 if for any pair of distinct points y and z, there is either a neighbourhood of y
that does not contain z, or a neighbourhood of z that does not contain y.

(b) X is said to be T1 if for any pair of distinct points y and z, there is a neighbourhood of z that does
not contain y.

(c) X is said to be T2 (or Hausdorff) if for any pair of distinct points y and z, there is a neighbourhood
U of y and a neighbourhood V of z such that U ∩ V = ∅. (This is Definition 6.1, and is just
repeated for ease of comparison.)

(d) X is said to be regular if it is T1, and for any closed set Y ⊂ X and any point z 6∈ Y there exist
disjoint open sets U and V such that Y ⊆ U and z ∈ V .

(e) X is said to be normal if it is T1, and for any disjoint closed sets Y,Z ⊂ X there exist disjoint open
sets U and V such that Y ⊆ U and Z ⊆ V .

Remark 14.2. It is easy to see that T2 implies T1, and T1 implies T0.

Lemma 14.3. [lem-T-one]
X is T1 if and only if each singleton set {y} is closed in X.

Proof. Put U = X \{y}. Note that z is distinct from y if and only if z ∈ U , and z has a neighbourhood
that does not contain y if and only if z has a neighbourhood that is contained in U . Thus, the definition
of T1 is just that every point in U is interior, or equivalently that U is open, or equivalently that {y} is
closed. �

Lemma 14.4. [lem-T-zero]
X is T0 if and only if the following condition is satisfied: whenever y and z are distinct points of X, we

have {y} 6= {z}.

100



Proof. Let y and z be distinct points of X. We first claim that {y} ⊆ {z} if and only if y ∈ {z}.
Indeed, if y ∈ {z} then {z} is a closed set containing {y}, and {y} is the smallest closed set containing {y},
so {y} ⊆ {z}. The converse implication is clear.

We now negate both sides to see that {y} 6⊆ {z} if and only if y 6∈ {z}, and this holds if and only if y is
not a closure point of {z}, or equivalently there is a neighbourhood of y that does not contain z.

After this translation the definition of T0 reads as follows: for any two distinct points y and z, we either
have {y} 6⊆ {z} or {z} 6⊆ {y}. In other words, for any two distinct points y and z, we have {y} 6= {z}, as
claimed. �

Proposition 14.5. [prop-norm-reg-haus]
Any normal space is regular, and any regular space is Hausdorff.

Proof. Any normal, regular or Hausdorff space is T1, so we may assume that all singleton sets are
closed. If we specialise the definition of regularity to the case where Y is a singleton, we get Hausdorff
condition. If we specialise the definition of normality to the case where Z is a singleton, we get the regularity
condition. �

Proposition 14.6. [prop-reg-contra]
Let X be a T1 space.

(a) X is regular if and only if the following holds: for each point y and each open neighbourhood U of
y, there exists an open set V with y ∈ V ⊆ V ⊆ U .

(b) X is normal if and only if the following holds: for each closed subset Y and each open set W
containing Y , there exists an open set U with Y ⊆ U ⊆ U ⊆W .

Proof. We will prove (b). The proof for (a) is essentially the same and is left to the reader. We can
rewrite the condition in (b) in terms of the closed set Z = W c as follows: for each pair of disjoint closed sets
Y and Z, there exists an open set U such that Y ⊆ U and U ⊆ Zc. Here the condition U ⊆ Zc is equivalent
to U ∩ Z = ∅ or Z ⊆ U

c
. If this holds we can take V = U

c
and we then have disjoint open sets U and V

with Y ⊆ U and Z ⊆ V , as in the definition of normality.
Conversely, suppose that X is normal. We then have disjoint open sets U and V with Y ⊆ U and

Z ⊆ V . This means that U is contained in the closed set V c, so U must also be contained in V c. We also
have Z ⊆ V and so V c ⊆ Zc = W , so Y ⊆ U ⊆ U ⊆W as in (b). �

Lemma 14.7. [lem-normal-open]
Let X be a normal space, and let U1, . . . , Un be a finite open cover of X. Then there exists another open

cover V1, . . . , Vn such that Vi ⊆ Ui for all i.

Proof. Suppose we have found open sets V1, . . . , Vm−1 (for some m ≤ n) such that Vi ⊆ Ui for all
i < m, and

V1 ∪ · · · ∪ Vm−1 ∪ Um ∪ · · · ∪ Un = X.

Put

U ′m = V1 ∪ · · · ∪ Vm−1 ∪ Um+1 ∪ · · · ∪ Un,
so by assumption we have U ′m ∪ Um = X. This means that the sets F ′m = X \ U ′m is closed and contained
in the open set Um. By Proposition 14.6(b), we can choose an open set Vm with F ′m ⊆ Vm ⊆ Vm ⊆ Um. As
F ′m ⊆ Vm, we see that

V1 ∪ · · · ∪ Vm ∪ Um+1 ∪ · · · ∪ Un = X.

Note that this construction works perfectly well even when m = 1, and in that case we do not need to have
chosen any sets Vi. We can thus start an induction, and after n steps we reach the stated conclusion. �

Proposition 14.8. [prop-metric-normal]
Any metric space is normal.

Proof. Let X be a metric space, and let Y and Z be disjoint closed subsets of X. We must find disjoint
open sets U and V with Y ⊆ U and Z ⊆ V . If Y = ∅ we just take U = ∅ and V = X. Similarly, if Z = ∅
we just take U = X and V = ∅. We may therefore assume that Y and Z are nonempty. We can also change
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the metric as in Proposition 2.44 if necessary, and thus assume that d(x, x′) <∞ for all x, x′ ∈ X. We can
now define d(x, Y ) and d(x, Z) as in Definition 12.52, and Lemma 12.54 tells us that these are continuous.
It follows that the expression f(x) = d(x, Z) − d(x, Y ) gives a continuous map f : X → R. We thus have
disjoint open sets

U = {x : f(x) > 0} = f−1(0,∞)

V = {x : f(x) < 0} = f−1(−∞, 0).

Moreover, Lemma 12.53 tells us that d(x, Y ) = 0 iff x ∈ Y , and d(x, Z) = 0 iff x ∈ Z. Using this we see that
Y ⊆ U and Z ⊆ V , as required. �

Proposition 14.9. [prop-comp-haus-normal]
Any compact Hausdorff space is normal.

We will deduce this from the following lemma:

Lemma 14.10. [lem-comp-haus-normal]
If X is Hausdorff, Y ⊆ X is compact and z 6∈ Y then are disjoint open sets U and V such that y ∈ U

and Z ⊆ V . It follows that y 6∈ V and U ∩ Z = ∅.

Proof. For each y ∈ Y we have y 6= z, so (by the Hausdorff condition) we can choose disjoint open
sets Uy and Vy with y ∈ Uy and z ∈ Vy. The family (Uy)y∈Y is then an open cover of the compact set Y ,
so there is a finite subset J ⊆ Y such that Y ⊆

⋃
y∈J Uy. Now put U =

⋃
y∈J Uy and V =

⋂
y∈J Vy. As J

is finite these are again open. By construction we have Y ⊆ U . As z ∈ Vy for all y, we also have z ∈ V . If
u ∈ U then u ∈ Uy for some y ∈ J , so u 6∈ Vy (because Uy and Vy are disjoint), so u 6∈ V . This shows that

U ∩ V = ∅, as required. Now V is contained in the closed se U c, so V ⊆ U c but y ∈ U so y 6∈ V . Similarly,
U is contained in the closed set V c, so U ⊆ V c but Z ⊆ V so U ∩ Z = ∅. �

Proof of Proposition 14.9. Let X be a compact Hausdorff space, and let Y and Z be disjoint closed
subsets of X. Proposition 10.13 tells us that Y and Z are also compact. For each z ∈ Z we can therefore
apply Lemma 14.10 to see that there exist disjoint open sets Uz and Vz, with Y ⊆ Uz and z ∈ Vz. The
family (Vz)z∈Z is then an open cover of the compact set Z, so there exists a finite subset K ⊆ Z such that
Z ⊆

⋃
z∈K Vz. We now put U =

⋂
z∈K Uz and V =

⋃
z∈K Vz. As Y ⊆ Uz for all z we have Y ⊆ U . As

K is finite we see that U is open. By construction we have Z ⊆ V , and V is clearly open. If v ∈ V then
v ∈ Vz for some z ∈ K, so v 6∈ Uz (because Uz and Vz are disjoint), so v 6∈ U . It follows that U ∩ V = ∅, as
required. �

Proposition 14.11. [prop-hausdorff-quotient]
Let X be a compact Hausdorff space, and let E be an equivalence relation that is closed as a subset of

X2. Then the space X/E is also compact Hausdorff.

Proof. By a straightforward argument that we gave as Corollary 10.21, any quotient of a compact
space is compact. The real point is to show that X/E is Hausdorff.

First, let q : X → X/E be the quotient map. Define ix : X → X2 by ix(y) = (x, y). The equivalence
class [x] can be described as i−1

x (E), so it is closed. We also have [x] = q−1{q(x)}, so the singleton {q(x)}
is closed in the quotient topology, so X/E is T1.

Now let U be an open subset of X, and put U∗ = {x : [x] ⊆ U}. We claim that U∗ is open in X. To
see this, note that the set F = (X × (X \U))∩E is closed and therefore compact. Let G be the image of F
under the projection (x, y) 7→ x, so G is again compact and therefore closed in X. We have x ∈ G iff there
exists y with y 6∈ U and xEy (so y ∈ [x]). Equivalently, we have x ∈ G iff [x] 6⊆ U iff x 6∈ U∗, so U∗ = X \G,
which is open as claimed. Note also that when xEy we have [x] = [y] so x ∈ U∗ iff y ∈ U∗. Using this, we
see that U∗ = q−1(q(U∗)). As U∗ is open in X, we deduce that q(U∗) is open in X/E.

Now suppose we have distinct points y0, y1 ∈ X/E. Choose x0, x1 ∈ X with yi = q(xi). As y0 6= y1

we see that the sets [x0] and [x1] are disjoint, and we saw above that they are also closed. As X is normal,
we can choose disjoint open sets U0 and U1 with [xi] ⊆ Ui (so xi ∈ U∗i ). Now put Vi = q(U∗i ). These are
disjoint open subsets of X/E with yi ∈ Vi, as required. �
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Proposition 14.12. [prop-quasi-components]
Suppose that X is compact Hausdorff, and x ∈ X. Let C be the connected component containing X.

Then C is also the intersection of the family

F = { clopen sets F : x ∈ F}.

Proof. For any F ∈ F we see that (F, F c) gives a relative separation for the connected set C, with
x ∈ C ∩ F , so we must have C ⊆ F . Thus, if we let D denote the intersection of F , then C ⊆ D. We next
claim that D is connected. To see this, let A be a set that is clopen in D and contains x; we must show
that A = D. As A is closed in D, it is closed in X. As A is open in D, we see that the set D \ A is closed
in D and therefore in X, so the set A ∪Dc = X \ (D \A) is open in X. As A is closed and A ∪Dc is open,
Proposition 14.6(b) gives us an open set U with A ⊆ U ⊆ A ∪Dc. Now consider the boundary E = U \ U .
This is compact, and it is covered by the family V = {F c : F ∈ F}, so it is covered by some finite subfamily.
As F is closed under finite intersections, this subfamily can be reduced to a singleton, so we have E ⊆ F c

for some F ∈ F . The relation E ⊆ F c gives F ⊆ U ∪ U c, which gives F ∩ U ⊆ U , so F ∩ U = F ∩ U . Call
this set G. Forom the description G = F ∩ U we see that G is closed, and from the description G = F ∩ U
we see that it is also open, so G ∈ F . From the definition of D we see that D ⊆ G, so D ∩G = D. On the
other hand, we have U ⊆ A∪Dc by construction, which gives D∩G ⊆ A. This gives A = D as required. �

Corollary 14.13. [cor-component-relation]
Let X be a compact Hausdorff space, and put E =

⋃
C(C × C), where C runs over the connected

components of X. Then E is closed in X ×X and is an equivalence relation, so that the quotient X/E is
again a compact Hausdorff space.

Proof. Suppose that (x, y) 6∈ E, so x and y lie in different components. By Proposition 14.12, there is
a clopen set F such that x ∈ F and y 6∈ F . This means that the set F × F c is a neighbourhood of (x, y)
disjoint from E. We now see that E is closed, and it is clearly an equivalence relation. The quotient is
compact Hausdorff by Proposition 14.11. �

We now explain another useful feature of compact Hausdorff spaces. For any spaces X and Y we define
an evaluation map

ev : C(X,Y )×X → Y

by ev(f)(x) = f(x). Now suppose that X is compact Hausdorff, and that Y is a metric space. We give
C(X,Y ) the topology corresponding to the metric d(f, g) = max{d(f(x), g(x)) : x ∈ X}, and then we give
C(X,Y )×X → Y the product topology.

Proposition 14.14. [prop-eval-cts]
If X is compact Hausdorff and Y is a metric space, then the evaluation map ev : C(X,Y ) ×X → Y is

continuous.

Proof. Let V ⊆ Y be open, and consider a point (f, x) ∈ ev−1(V ). This means that f(x) = ev(f, x) ∈
V , so x ∈ f−1(V ). Now f is continuous, so f−1(V ) is open. Moreover, X is normal (and therefore regular)
by Proposition 14.9. It follows that there exists an open set U ⊆ X with x ∈ U ⊆ U ⊆ f−1(V ). Here U
is closed in the compact space X, so it is itself compact, so the set L = f(U) is also compact. Now put
G = Y \ V . This is a closed set that does not meet L, so the function r(y) = d(y,G) is continuous and
strictly positive on L. As L is compact we see that 1/r must be bounded on L, say by 1/(2ε); this means
that for all u ∈ U and y 6∈ V we have d(f(u), y) ≤ ε/2 < ε. It follows in turn that if (g, u) ∈ OBε(f) × U
we have ev(g, u) = g(u) ∈ V , so (g, u) ∈ ev−1(V ). This proves that ev−1(V ) is a neighbourhood of (f, x), as
required. �

15. The Baire category theorem

Definition 15.1. [defn-baire]
Let X be a topological space. We say that a subset Y ⊆ X is nowhere dense if Y has empty interior.

We say that X is Baire if every countable union of nowhere dense sets has empty interior.
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Note that we do not expect that a countable union of nowhere dense sets will itself be nowhere dense.
For example, we can consider the countable family {{q} : q ∈ Q} of subsets of R. Each individual set {q} is
certainly nowhere dense. The union is Q, which has empty interior, reflecting the fact (to be proved below)
that R is a Baire space. However, we have Q = R, which has nonempty interior; so Q is not nowhere dense.

Proposition 15.2. [prop-baire-equiv]
A space X is Baire if and only if every countable intersection of dense open sets of X is dense.

Proof. Suppose that X is Baire. Let (Un)n∈N be a countable family of dense open sets, so Un = X for
all n. Put Fn = U cn, and note that Fn is closed and int(Fn) = cl(Un)c = Xc = ∅, so Fn is nowhere dense.
Now put A =

⋃
n Fn, so Ac =

⋂
n Un; we must show that Ac is dense. The Baire condition gives int(A) = ∅,

and thus cl(Ac) = int(A)c = X as required.
We leave it to the reader to check that the whole argument is reversible. �

Theorem 15.3 (The Baire Category Theorem). [thm-metric-baire]
Every complete metric space is Baire.

The proof will be given after two preliminary results.

Remark 15.4. The name of this result refers to a traditional meaning of the word “category” which is
now rarely used. It has nothing to do with the theory of categories and functors.

Lemma 15.5. [lem-dense-open]
Let X be an arbitrary space, and let U1, . . . , Un be a finite list of open dense sets. Then U1 ∩ · · · ∩Un is

also open and dense.

Proof. By an evident induction we can reduce to the case n = 2. Let x be an arbitrary point of X,
and consider a number ε > 0. As U1 is dense, the set V = OBε(x) ∩ U1 must be nonempty. Choose y ∈ V .
Note that U2 is dense, so y must be a closure point, so the open neighbourhood V of y must meet U2. This
means that the set OBε(x) ∩ (U1 ∩ U2) = V ∩ U2 must be nonempty. As x and ε were arbitrary, this means
that U1 ∩ U2 is dense as claimed. �

Corollary 15.6. [cor-baire-nested]
Let X be a space, and suppose that for every nested chain of dense open sets

V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · ·
the intersection V∞ =

⋂
n Vn is dense. Then X is Baire.

Proof. Let (Un)n∈N be a countable family of dense open sets. Put Vn = U0 ∩ · · · ∩ Un. These sets are
open and dense by Lemma 15.5, and they are nested as above, so the intersection V∞ is dense. However, it
is clear that V∞ is just the same as

⋂
n Un. �

Proof of Theorem 15.3. Let X be a complete metric space, let (Vn)n∈N be a nested chain of dense
open sets, and let W be an arbitrary nonempty open set. We must show that V∞ ∩W 6= ∅.

We first choose x0 ∈ V0 ∩W (which is possible because V0 is dense and W is nonempty and open). As
V0 ∩W is open, we can now choose ε0 < 1 such that OB2ε0(x0) ⊆ V0 ∩W . We put A0 = OBε0(x0).

Next, we note that A0 is nonempty and open, so it must meet the dense open set V1. We choose
x1 ∈ V1 ∩A0, then we choose ε1 with 0 < ε1 < ε0/2 and OB2ε1(x1) ⊆ V1 ∩A0, then we put A1 = OBε1(x1).
Continuing in the same way, we choose points xk, numbers εk and open balls Ak such that

(a) B2εk(xk) ⊆ Vk ∩Ak−1

(b) 0 < εk < εk−1/2
(c) Ak = OBεk(xk).

Suppose we have j, k ≥ n for some n. We then find that xj , xk ∈ An and so d(xj , xk) < εn < 2−n. It
follows that the sequence (xn)n∈N is Cauchy, but X is assumed to be complete, so the sequence converges to
some point x∞ ∈ X. As d(xn, xi) < εn for all i ≥ n, we see that d(xn, x∞) ≤ εn < 2εn, but B2εn(xn) ⊆ Vn
by (a), so x∞ ∈ Vn. This holds for all n, so x ∈ V∞. Similarly, we have d(x0, xi) < ε0 for all i so
d(x0, x∞) ≤ ε0 < 2ε0, but B2ε0(x0) ⊆W so x∞ ∈W . It follows that V∞ ∩W 6= ∅, as claimed. �
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We now present a simple application, which should be compared with Proposition 8.19 (which says that
R 6' R2 and [0, 1] 6' [0, 1]2) and Proposition 11.5 (which shows that Peano’s construction gives a continuous
surjection [0, 1]→ [0, 1]2).

Proposition 15.7. [prop-R-R-two-baire]
For any continuous injective map f : R→ R2, the image has empty interior. In particular, f cannot be

surjective.

Proof. Put Fn = f([−n, n]). This gives a countable family of sets that are compact and therefore
closed, and their union is f(R). We will show shortly that Fn has empty interior. Because R2 is complete,
we can use Theorem 15.3 to deduce that f(R) has empty interior, as required.

To check that int(Fn) = ∅, we first note that f : [−n, n]→ Fn is a continuous bijection from a compact
space to a Hausdorff space, so it is a homeomorphism. It follows there are precisely two points in Fn whose
removal fails to disconnect the space (because the same property clearly holds for [−n, n]). However, if Fn has
any interior points, then it contains an open disc, so it has infinitely many interior points, and Exercise 7.2
tells us that we can remove any one of them without disconnecting the space. We must therefore have
int(Fn) = ∅ as claimed. �

There are also important applications in functional analysis. The most basic one is as follows:

Theorem 15.8 (The Open Mapping Theorem). [thm-banach-open]
Let X and Y be Banach spaces (as in Definition 12.21), and let f : X → Y be a surjective continuous

linear map. Then f is an open map.

The proof will be given after a lemma.

Lemma 15.9. [lem-convex-closure]
Let C be a convex subset of Y such that −C = C. Then the closure C is again convex, and satisfies

−C = C. Moreover, if C has any interior points, then zero is an interior point.

Proof. For any t ∈ [0, 1] we can define a continuous map mt : Y
2 → Y by mt(y, y

′) = (1 − t)y + ty′.
As C is convex, we have C × C ⊆ m−1

t (C) ⊆ m−1
t (C). Moreover, the set m−1

t (C) is closed, so

C × C = C × C ⊆ m−1
t (C).

As this holds for all t ∈ [0, 1] we deduce that C is convex. Next, as multiplication by −1 is a self-
homeomorphism of Y , we have −C = −C = C.

Now suppose that y is an interior point of C, so there exists ε > 0 such that y+v ∈ C whenever ‖v‖ < ε.
As ‖ − v‖ = ‖v‖ < ε we also have y − v ∈ C, but C = −C so v − y ∈ C as well. It follows by convexity that
(v+ y)/2 + (v− y)/2 ∈ C, or in other words v ∈ C whenever ‖v‖ < ε. This proves that 0 is an interior point
of C. �

Proof of Theorem 15.8. Put Un = {x ∈ X : ‖x‖ < n} for all n > 0. These sets cover X and f
is surjective, so Y =

⋃
n f(Un). In particular, this union has nonempty interior, so by the Baire theorem,

there must exist n such that the set f(Un) has nonempty interior. As f is linear we see that f(Un) is

convex and satisfies −f(Un) = f(Un), so we see from the lemma that 0 must be in the interior of f(Un). As

multiplication by n is a self-homeomorphism of Y we deduce that 0 is also in the interior of f(U1). In other

words, there exists ε > 0 such that whenever ‖y‖ < ε we have y ∈ f(U1). This means in particular that we
can choose x ∈ X with ‖x‖ < 1 and ‖y − f(x)‖ < ε/2. By rescaling we obtain the following statement: if
y ∈ Y with ‖y‖ < tε then there exists x ∈ X with ‖x‖ < t and ‖y − f(x)‖ < tε/2.

Now revert to the case t = 1, and suppose that we have y0 ∈ Y with ‖y0‖ < ε. We can then choose
x0 ∈ X with ‖x0‖ < 1 and such that the vector y1 = y0 − f(x0) has ‖y1‖ < ε/2. We can then use the case
t = 1/2 to see that there exists x1 ∈ X with ‖x1‖ < 1/2 such that the vector y2 = y1−f(x1) = y0−f(x0+x1)
has ‖y2‖ < ε/4. Continuing in this way, we obtain a sequence (xn)n∈N with ‖xi‖ < 2−i such that the partial
sums wn =

∑
j<n xj satisfy ‖y0 − f(wn)‖ < ε/2n. In particular, we find that f(wn) → y0. Moreover, as

‖xi‖ < 2−i we see that the sequence (wn)n∈N is Cauchy. We assumed that X is a Banach space, so it is
complete, so the sequence converges to some w∞ ∈ X. As f is continuous, we have f(w∞) = y0. Moreover,
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as ‖xi‖ < 2−i for all i we have ‖w∞‖ ≤
∑
i ‖xi‖ < 2. This proves that the open ball of radius ε in Y is

contained in f(U2).
Now consider an arbitrary open set A ⊆ X, and a point b ∈ f(A). We can then choose a ∈ A with

f(a) = b, and as A is open, there exists r > 0 such that OBr(a) ⊆ A. It follows that OBrε/2(0) ⊆ f(OBr(0))
and so OBrε/2(b) ⊆ f(OBr(a)) ⊆ f(A). This proves that f(A) is open, as claimed. �

Corollary 15.10. [cor-banach-iso]
Let X and Y be Banach spaces, and let f : X → Y be a linear map that is continuous and bijective.

Then f−1 : Y → X is also linear, continuous and bijective.

Proof. It is elementary that f−1 is linear and bijective. We also know from Theorem 15.8 that f is
open, which is equivalent to f−1 being continuous. �

Corollary 15.11. [cor-banach-closed-graph]
Let f : X → Y be a linear map between Banach spaces, and suppose that the graph

G = {(x, f(x)) : x ∈ X} ⊆ X × Y
is a closed subspace of X × Y . Then f is continuous.

Proof. It is easy to see that the rule ‖(x, y)‖ = max(‖x‖, ‖y‖) defines a norm on X × Y , which gives
rise to the product metric and the product topology. As the product of two complete metric spaces is again
complete, we see that this makes X × Y into a Banach space. As f is linear, we see that G is a vector
subspace of X × Y , so it inherits a norm. As G is closed, it is complete under the resulting metric, so it is

again a Banach space. We have projection maps X
p←− G

q−→ Y , which are continuous and linear. One can
check directly that p is a bijection, with f = qp−1. Corollary 15.10 tells us that p−1 is continuous, so f is
also continuous. �

Another interesting class of applications of Baire’s theorem is to prove that in some sense, almost
all continuous functions are very wild. As an example, we have the following theorem of Banach and
Mazurkiewicz.

Theorem 15.12. [thm-mazurkiewicz]
Put

X = {f ∈ C([0, 1]) : f is differentiable at some point x ∈ [0, 1)}.
Then X is nowhere dense in C([0, 1]).

Sketch proof. Let us say that f is n-tame at x if for all y with x ≤ y ≤ 1 we have |f(y) − f(x)| ≤
n|y − x|. We claim that if f is differentiable at x, then it is n-tame at x for sufficiently large n. Indeed,
differentiability will give an inequality |f(y)− f(x)| ≤ n|y − x| provided that n is large and |y − x| is small,
say x− ε < y < x+ ε. Moreover, the function y 7→ |f(y)− f(x)|/|y−x| is continuous and therefore bounded
on the compact interval [x+ ε, 1], with upper bound m say. It then follows that f is max(n,m)-tame at x,
as required.

Now put

Tn = {f ∈ C([0, 1]) : f is n-tame at some point x ∈ [0, 1− 1/n] },
and T∞ =

⋃
n>0 Tn. If f ∈ X then we have seen that f is n-tame at x for some x ∈ [0, 1) and n, and after

increasing n if necessary we may assume that x ∈ [0, 1 − 1/n], so f ∈ T∞. It will thus suffice to show that
T∞ is nowhere dense. This will follow from Baire’s theorem if we can show that each set Tn is closed and
nowhere dense.

For this, we first put

An = {(x, y) : 0 ≤ x ≤ 1− 1/n, x ≤ y ≤ 1}.
We then define αn(f) : An → R and βn(f) : [0, 1/n]→ R and γn(f) ∈ R by

αn(f)(x, y) = max(0, |f(y)− f(x)| − n|y − x|)
βn(f)(x) = max{αn(x, y) : x ≤ y ≤ 1}

γn(f) = min{βn(f)(x) : 0 ≤ x ≤ 1− 1/n}.
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It is then straightforward to check that

|γn(f)− γn(g)| ≤ ‖βn(f)− βn(g)‖ ≤ ‖αn(f)− αn(g)‖ ≤ 2‖f − g‖.

Thus, the map γn : C([0, 1]) → R is continuous. Note also that γn(f) = 0 iff βn(f)(x) = 0 for some
x ∈ [0, 1 − 1/n], or equivalently αn(f)(x, y) = 0 for all y ∈ [x, 1], which means that f is n-tame at x. It
follows that Tn = γ−1

n {0}, so this set is closed.
Now let Un be the interior of Tn. We must show that Un is empty. If not, we recall from Proposition 12.51

that the set of piecewise-linear functions is dense in C([0, 1]), so we can choose such a function g lying in Un.
As Un is open, it will then contain OB2ε(g) for some ε > 0. Now define a “sawtooth” function v : R→ R by
v(x) = min{|x− n| : n ∈ Z}.

−4 −3 −2 −1 0 1 2 3 4

Let s be the maximum absolute value of the line segments in the graph of g, let m be large compared with
ns/ε, and put h(x) = g(x) + εv(mx). If x < y ≤ 1 with y − x small then v will contribute ±εm|y − x| to
h(y)− h(x), and this will dominate the contribution from g. Using this we see that h is not n-tame at x for
any x, so h 6∈ Tn. However, we also have d(g, h) = ε < 2ε, so h ∈ OB2ε(g) ⊆ Un, which is a contradiction. �

Proposition 15.13. [prop-compact-baire]
Every compact Hausdorff space is Baire.

Proof. Let X be a compact Hausdorff space, let (Vn)n∈N be a nested chain of dense open sets, and let
W be an arbitrary nonempty open set. We must show that V∞ ∩W 6= ∅.

We first choose x0 ∈ V0 ∩W (which is possible because V0 is dense and W is nonempty and open). As
V0 ∩W is open and X is regular we can choose an open neighbourhood A0 of x0 such that x0 ∈ A0 ⊆ A0 ⊆
V0 ∩W .

Next, we note that A0 is nonempty and open, so it must meet the dense open set V1. We choose
x1 ∈ V1 ∩ A0, then we choose an open neighbourhood A1 of x1 such that x1 ∈ A1 ⊆ A1 ⊆ V1 ∩ A0.
Continuing in the same way, we choose points xk and open sets Ak such that xk ∈ Ak ⊆ Ak ⊆ Vk ∩Ak−1 for
all k. As the sets Ak are nonempty and Ak ⊆ Ak−1 we see that the family (Ak)k∈N has the finite intersection
property. It follows by Proposition 10.12 that the intersection

⋂
k Ak is nonempty. Choose x∞ ∈

⋂
k Ak.

For all k we have x∞ ∈ Ak ⊆ Vk, so x∞ ∈ V∞. We also have x∞ ∈ A0 ⊆ W , so V∞ ∩W is nonempty, as
required. �

16. Differentiation

Normed spaces give the most natural context for the theory of differentiation. We will need some of
these ideas later, so we give a brief treatment here. Most of the discussion below applies equally well over R
or C. If we need to mention the scalar field we will call it K (so K ∈ {R,C}).

Definition 16.1. [defn-derivative]
Let X and Y be normed spaces, and let U be an open subset of X. Consider a function f : U → Y ,

a point a ∈ U , and a continuous linear map λ : X → Y . We say that λ is a derivative for f at a if for all
ε > 0 there exists δ > 0 such that ‖f(a + x) − f(a) − λ(x)‖ ≤ ε‖x‖ whenever ‖x‖ ≤ δ. We say that f is
differentiable at a if such a λ exists. We say that f is differentiable if it is differentiable at every point in U .

Lemma 16.2. [lem-derivative-unique]
Let X, Y , U , f and a be as above. Then there is at most one derivative for f at a. (Thus, it is legitimate

to denote that derivative by f ′(a), if it exists.)

Proof. Let λ0 and λ1 be derivatives, and put µ = λ0 − λ1. For any ε > 0 we can choose δ(ε) > 0 such
that when ‖x‖ ≤ δ(ε) we have

‖f(a+ x)− f(a)− λi(x)‖ ≤ ε‖x‖/2
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for i = 0, 1. It follows that for such x we have

‖µ(x)‖ = ‖(f(a+ x)− f(a)− λ1(x))− (f(a+ x)− f(a)− λ0(x))‖
≤ ‖f(a+ x)− f(a)− λ1(x)‖+ ‖f(a+ x)− f(a)− λ0(x)‖
≤ ε‖x‖/2 + ε‖x‖/2 = ε‖x‖.

Now let x ∈ X be arbitrary. For sufficiently small t > 0 we will have ‖tx‖ ≤ δ(ε) so ‖µ(tx)‖ ≤ ε‖tx‖ and
we can divide by t to deduce that ‖µ(x)‖ ≤ ε‖x‖. As this holds for all ε > 0, we must have µ(x) = 0 as
claimed. �

Proposition 16.3. [prop-diff-cts]
Any differentiable map is continuous.

Proof. Let f : U → Y be differentiable. Suppose we are given a ∈ X and ε > 0. Put λ = f ′(a). We
can take ε = 1 in Definition 16.1 to see that there exists δ0 > 0 such that ‖f(a + x) − f(a) − λ(x)‖ ≤ ‖x‖
whenever ‖x‖ ≤ δ0. For such x we therefore have

‖f(a+ x)− f(a)‖ ≤ ‖f(a+ x)− f(a)− λ(x)‖+ ‖λ(x)‖ ≤ ‖x‖+ ‖λ‖‖x‖ = (1 + ‖λ‖)‖x‖.
Now put δ = min(δ0, ε/(1 + ‖λ‖)). We find that for ‖x‖ < δ we have ‖f(a+ x)− f(a)‖ ≤ (1 + ‖λ‖)‖x‖ < ε.
By the usual metric criterion (Proposition 3.9) this proves that f is continuous. �

Definition 16.4. [defn-C-one]
We say that f : U → Y is continuously differentiable if it is differentiable, and the map f ′ : U →

Homc(X,Y ) is continuous.

Remark 16.5. [rem-affine-differentiable]
Suppose that f : X → Y has the form f(x) = c+ λ(x) for some c ∈ Y and some λ ∈ Homc(X,Y ). It is

then clear that f is continuously differentiable with f ′(a) = λ for all a.

Proposition 16.6 (The Chain Rule). [prop-chain-rule]
Let X, Y and Z be normed spaces, and let U ⊆ X and V ⊆ Y be open sets. Suppose we have maps

U
f−→ V

g−→ Z. Suppose we also have points a ∈ U and b ∈ V with f(a) = b, and that f is differentiable at a
and that g is differentiable at b. Then g ◦ f is differentiable at a, with

(g ◦ f)′(a) = g′(b) ◦ f ′(a) : X → Z.

Proof. First assume for simplicity that a = 0 and b = 0, and put λ = f ′(0) and µ = g′(0), so the claim
is that µ ◦ λ is a derivative for g ◦ f at 0. Suppose we are given ε > 0. As µ is a derivative for g at 0, we can
find δ > 0 such that ‖g(y) − µ(y)‖ ≤ ε

2(‖λ‖+1)‖y‖ whenever ‖y‖ ≤ δ. Next, we can choose η > 0 such that

‖f(x) − λ(x)‖ ≤ min(1, ε
2(‖µ‖+1) )‖x‖ whenever ‖x‖ ≤ η. After reducing η if necessary, we can assume that

η ≤ δ/(1 + ‖λ‖). Now suppose that ‖x‖ ≤ η. Note that ‖f(x)− λ(x)‖ ≤ ‖x‖ and so

‖f(x)‖ ≤ ‖f(x)− λ(x)‖+ ‖λ(x)‖ ≤ (1 + ‖λ‖)‖x‖ ≤ (1 + ‖λ‖)η ≤ δ.
It follows that

‖g(f(x))− µ(f(x))‖ ≤ ε

2(‖λ‖+ 1)
‖f(x)‖ ≤ ε

2
‖x‖.

On the other hand, we have

‖µ(f(x))− µ(λ(x))‖ ≤ ‖µ‖‖f(x)− λ(x)‖ ≤ ‖µ‖ ε

2(‖µ‖+ 1)
‖x‖ ≤ ε

2
‖x‖.

By combining these, we have

‖g(f(x))− µ(λ(x))‖ ≤ ‖g(f(x))− µ(f(x))‖+ ‖µ(f(x))− µ(λ(x))‖ ≤ ε‖x‖
as required. The more general case (where a and b may be nonzero) can be reduced to the special case by
considering the maps f0(x) = f(x+ a)− b and g0(y) = g(y + b). �

Corollary 16.7. [cor-chain-rule]
For f and g as above, if f and g are both continuously differentiable then so is g ◦ f .
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Proof. Put h = g ◦ f . The proposition tells us that h is differentiable, and that h′ is the composite

U
(f,1)−−−→ V × U g′×f ′−−−−→ Homc(Y,Z)×Homc(X,Y )

compose−−−−−→ Homc(X,Z).

The map (f, 1) is continuous by Proposition 16.3, and f ′×g′ is continuous by assumption. Using the estimate
‖µλ‖ ≤ ‖µ‖‖λ‖ it is not hard to see that the composition map is continuous, and it follows that h′ is also
continuous. �

Proposition 16.8. [prop-diff-lipschitz]
Suppose that U ⊆ X is convex, and that f : U → Y is differentiable with ‖f ′(a)‖ ≤ K for all a ∈ U .

Then ‖f(b)− f(a)‖ ≤ K‖b− a‖ for all a, b ∈ U (so f is Lipschitz).

Proof. Fix a, b ∈ U and put L = K‖b− a‖. As U is open and convex there exist numbers α < 0 and
β > 1 such that (1− t)a+ tb ∈ U for α < t < β. Define g : (α, β)→ Y by g(t) = f(a+ t(b− a))− f(a). We
find using the chain rule that g is differentiable. If we identify Homc(R, Y ) with Y in the obvious way, the
derivative is g′(t) = f ′(a + t(b − a))(b − a) and thus ‖g′(t)‖ ≤ L. The claim is that ‖g(1)‖ ≤ L. To prove
this, fix ε > 0 and put

P = {p ∈ [0, 1] : ‖g(t)‖ ≤ (L+ ε)t for all t ∈ [0, p]}.
It is easy to see that this is closed and contains 0. It follows that P = [0, p] for some p ∈ [0, 1], so
‖g(p)‖ ≤ (L + ε)p. We claim that p = 1. To see this, note that there exists δ > 0 such that when
p+x ∈ (α, β) with |x| ≤ δ we have ‖g(p+x)−g(p)−g′(p)x‖ ≤ ε|x|. Put q = min(p+δ, 1). For 0 ≤ x ≤ q−p
we then have

‖g(p+ x)‖ ≤ ‖g(p)‖+ ‖g′(p)x‖+ εx ≤ (L+ ε)p+ Lx+ εx = (L+ ε)(p+ x).

This means that q ∈ P , which would contradict the definition of p unless p = q = 1. �

We now want to consider iterated derivatives.

Definition 16.9. [defn-smooth]
Suppose we have normed vector spaces X and Y , an open subset U ⊆ X, and a map f : U → Y .

We can define normed spaces Tk recursively by T0 = Y and Tk+1 = Homc(X,Tk) for all k ≥ 0. We write
f (0) = f : U → T0 = Y . If f is differentiable we have a map f ′ : U → Homc(X,Y ) = T1, which we also denote
by f (1). If f (1) is differentiable then the derivative is a map U → Homc(X,Homc(X,Y )) = T2, which we
denote by f (2). More generally, if f (k) : U → Tk is defined and is differentiable, we write f (k+1) : U → Tk+1

for the derivative. We say that f is smooth if f (k) is defined for all k.

It is somewhat awkward to work with the spaces Tk as defined above. The theory can instead be
formulated in terms of multilinear maps, as we now explain.

Definition 16.10. [defn-multilinear]
Let V0, . . . , Vr−1 and W be vector spaces, and put V =

∏
t Vt. We say that a map f : V → W is

multilinear if it is linear in each variable separately. More precisely, suppose we have p ∈ {0, . . . , r − 1} and
a ∈ V . We can then define ip,a : Vp →

∏
t Vt by

ip,a(x)t =

{
x if t = p

at if t 6= p.

Then f is multilinear if and only if f ◦ ip,a : Vp →W is linear for all p and a. In the case r = 2 we say bilinear
rather than multilinear. We write Hom(r)(V,W ) or Hom(r)(V0, . . . , Vr−1;W ) for the set of all multilinear
maps. This is itself a vector space in an evident way.

Example 16.11. [eg-multilinear]

(a) The standard inner product gives a bilinear map Rn × Rn → R. The standard Hermitian product
does not give a bilinear map Cn × Cn → C, because 〈u, tv〉 is t〈u, v〉 rather than t〈u, v〉.

(b) The usual cross product of three-dimensional vectors gives a bilinear map R3 × R3 → R3.
(c) Multiplication of matrices gives a bilinear map Mpq(R)×Mqr(R)→Mpr(R).
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(d) For any n ≥ 0, we can define a multilinear map δ : (Rn)n → R as follows. Given vectors v1, . . . , vn ∈
Rn, we let A denote the square matrix whose columns are v1, . . . , vn, then we put δ(v1, . . . , vn) =
det(A).

Definition 16.12. [defn-multilinear-norm]
Now suppose that V0, . . . , Vr−1 and W have specified norms. We define a norm on the space V =

∏
t Vt

by

‖x‖ = max(‖x0‖, . . . , ‖xr−1‖),
and recall that the corresponding topology is the same as the product topology. We also define ν : V → R+

by ν(x) =
∏
t ‖xt‖.

Now consider a multilinear map f : V →W . We define ‖f‖ ∈ [0,∞] by

‖f‖ = sup{‖f(x)‖ : x ∈ V, ‖x‖ ≤ 1}.
We say that f is bounded if ‖f‖ <∞, and we write Homc

(r)(V,W ) for the set of bounded multilinear maps.

Remark 16.13. [rem-multilinear-norm]
Multilinearity implies that

f(t0x0, . . . , tr−1xr−1) =

(∏
i

ti

)
f(x)

for all x ∈ V and t ∈ Kr. Using this we see that for all x ∈ V we have ‖f(x)‖ ≤ ‖f‖ν(x).

Proposition 16.14. [prop-multilinear-norm]
The set Homc

(r)(V,W ) is a vector subspace of Hom(r)(V,W ), and the map f 7→ ‖f‖ is a norm on

Homc
(r)(V,W ). Moreover, if W is a Banach space, then so is Homc

(r)(V,W ).

Proof. Suppose that f ∈ Homc
(r)(V,W ) and t ∈ K. It is then clear from the definitions that tf ∈

Homc
(r)(V,W ) with ‖tf‖ = |t|‖f‖. Now suppose we have another element g ∈ Homc

(r)(V,W ). When ‖x‖ ≤ 1
we then have

‖(f + g)(x)‖ = ‖f(x) + g(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖ ≤ ‖f‖+ ‖g‖,
so ‖f + g‖ ≤ ‖f‖+ ‖g‖ <∞, so f + g ∈ Homc

(r)(V,W ). It is clear from this that Homc
(r)(V,W ) is a vector

space, and that the map f 7→ ‖f‖ is at least a seminorm. It is also clear from the inequality ‖f(x)‖ ≤ ‖f‖ν(x)
that (‖f‖ = 0 iff f = 0), so we actually have a norm. All that is left is to prove that Homc

(r)(V,W ) is complete
if W is complete. The case r = 1 was proved as Proposition 12.23, and the argument for the general case is
essentially the same. �

Proposition 16.15. [prop-multilinear-curry]
Suppose we have normed vector spaces U0, . . . , Uq−1, V0, . . . , Vr−1 and W . Then there is a linear isomor-

phism

φ : Hom(q)(U,Hom(r)(V,W ))→ Hom(q+r)(U × V,W )

given by

φ(f)(u, v) = f(u)(v).

Moreover, this restricts to give an isometric linear isomorphism

φ : Homc
(q)(U,Homc

(r)(V,W ))→ Homc
(q+r)(U × V,W )

Proof. Let D(V,W ) denote the space of all functions V →W and so on. Then the above prescription
certainly defines a bijection D(U × V,W ) → D(U,D(V,W )). We also see that φ(f) ∈ D(U,Hom(r)(V,W ))
iff f(u, v) is linear in each of the variables vk, and then that φ(f) ∈ Hom(q)(U,Hom(r)(V,W )) iff f is also
linear in each of the variables uj , or equivalently f ∈ Hom(p+q)(U × V,W ). We have thus defined a linear
isomorphism

φ : Hom(q)(U,Hom(r)(V,W ))→ Hom(q+r)(U × V,W ).

We also have

‖φ(f)‖ = sup{‖f(u)(v)‖ : ‖(u, v)‖ ≤ 1}.
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Here ‖(u, v)‖ ≤ 1 iff ‖u‖ ≤ 1 and ‖v‖ ≤ 1 and by definition we have ‖f(u)‖ = sup{‖f(u)(v)‖ : ‖v‖ ≤ 1} so
the above can be rewritten as

‖φ(f)‖ = sup{‖f(u)‖ : ‖u‖ ≤ 1} = ‖f‖.

It follows that φ restricts to give an isometric isomorphism

φ : Homc
(q)(U,Homc

(r)(V,W ))→ Homc
(q+r)(U × V,W ).

as claimed. �

Corollary 16.16. [cor-multilinear-finite]
If all the spaces Vt are finite-dimensional, then Hom(r)(V,W ) = Homc

(r)(V,W ).

Proof. This holds for r = 1 by Corollary 10.37, and the general case follows by induction on r using
Proposition 16.15. �

Remark 16.17. [rem-higher-derivatives]
Suppose we have normed vector spaces X and Y . Definition 16.9 involves the spaces Tr defined by T0 = Y

and Tk+1 = Homc(X,Tk). Using Proposition 16.15 we see that Tk can be identified with Homc
(k)(X

k, Y ).

Proposition 16.18. [prop-derivatives-commute]
Let f : U → Y be as in Definition 16.9, and suppose that f (r) : U → Homc

(r)(X
r, Y ) is defined and

continuous. Then for all a ∈ U , the multilinear map f (r)(a) : Xr → Y is invariant under permutation of the
arguments.

Before proving this in general, we will treat a special case.

Lemma 16.19. Suppose we have α > 0 and a continuous map g : (−α, α)2 → Y such that

(a) g(s, 0) = g(0, t) = 0 for all s, t ∈ (−α, α).
(b) g(2) is defined and continuous and satisfies g(2)(0, 0)(e1, e0) = 0.

Then for all ε > 0 there exists β > 0 such that ‖g(s, t)‖ ≤ |s||t|ε for all (s, t) ∈ (−β, β)2.

Proof. As g(2) is continuous, we can choose β > 0 such that ‖g(2)(s, t)(e0, e1)‖ < ε for all (s, t) ∈
(−β, β)2. Now fix t ∈ (−β, β) and define p : (−β, β) → Y by p(s) = g′(s, t)(e1). We can differentiate the
relation g(0, t) = 0 with respect to t to see that p(0) = 0. On the other hand, the chain rule shows that p is
differentiable with p′(s) = g(2)(s, t)(e1, e0), so ‖p′(s)‖ < ε for all s ∈ (−β, β), so ‖p(s)‖ = ‖p(s)−p(0)‖ ≤ ε|s|
by Proposition 16.8. In other words, we have ‖g′(s, t)(e1)‖ ≤ ε|s| for all (s, t) ∈ (−β, β)2.

Now fix s ∈ (−β, β) and define q : (−β, β) → Y by q(t) = g(s, t), so q(0) = g(s, 0) = 0. The chain
rule shows that this is differentiable, with q′(t) = g′(s, t)(e1), so ‖q′(t)‖ ≤ ε|s|. It follows that ‖g(s, t)‖ =
‖q(t)− q(0)‖ ≤ ε|s||t| as claimed. �

Corollary 16.20. [cor-derivatives-commute]
Suppose we have α > 0 and a map f : (−α, α)2 → Y such that f (2) is defined and continuous. Then

f (2)(0, 0)(u, v) = f (2)(0, 0)(v, u) for all u, v ∈ R2.

Proof. Put µ = f (2)(0, 0) : (R2)2 → Y . This is a bilinear map, so it must have the form

µ((u0, u1), (v0, v1)) =

1∑
i=0

1∑
j=0

uivjyij

for some elements yij = µ(ei, ej) ∈ Y . We must show that µ(u, v) = µ(v, u) for all u and v, and this is easily
equivalent to the claim that y01 = y10. Define g, h : (−α, α)2 → Y by

g(s, t) = f(s, t)− f(s, 0)− f(0, t) + f(0, 0)− sty01

h(s, t) = f(s, t)− f(s, 0)− f(0, t) + f(0, 0)− sty10.

111



It is clear that g(s, 0) = g(0, t) = h(s, 0) = h(0, t) = 0. We also have

g′(s, t)(e0) = f ′(s, t)(e0)− f ′(s, 0)(e0)− ty01

g(2)(s, t)(e0, e1) = f (2)(s, t)(e0, e1)− y01

g(2)(0, 0)(e0, e1) = µ(e0, e1)− y01 = 0.

By the lemma, we deduce that for all ε > 0 there exists β > 0 such that ‖g(s, t)‖ ≤ ε|s||t| whenever |s|, |t| ≤ β.
By a symmetrical argument, there exists γ > 0 such that ‖h(s, t)‖ ≤ ε|s||t| whenever |s|, |t| ≤ γ. Now for
|s|, |t| ≤ min(β, γ) we have

|s||t|‖y10 − y01‖ = ‖g(s, t)− h(s, t)‖ ≤ ‖g(s, t)‖+ ‖h(s, t)‖ ≤ 2ε|s||t|.

We can take s = t = min(β, γ) > 0 and then divide by st to see that ‖y10 − y01‖ ≤ 2ε. As this holds for all
ε > 0, we must have y01 = y10 as claimed. �

Proof of Proposition 16.18. First consider the case r = 2. For any a ∈ U and u, v ∈ X we can
choose α > 0 such that a + su + tv ∈ U whenever |s|, |t| < α, then we can define g : (−α, α)2 → Y by
g(s, t) = f(a+ su+ tv). Using the chain rule we see that g(2) is defined and continuous, with

g(2)(0, 0)(e0, e1) = f (2)(a)(u, v)

g(2)(0, 0)(e1, e0) = f (2)(a)(v, u).

It therefore follows from Corollary 16.20 that f (2)(a) : X2 → Y is symmetric.
Now consider the case where r > 2. We must show that the function f (r)(a)(u1, . . . , ur) is invariant

under the permutation group Σr. Inside Σr we have the subgroup H of all permutations that send r to itself,
and also the subgroup K consisting of the identity together with the transposition that exchanges r− 1 and
r. We may assume by induction that f (r−1) is invariant under Σr−1, and by differentiating we conclude that
f (r) is invariant under H. On the other hand, we can apply the r = 2 case to the function f (r−2) to see
that f (r) is also invariant under K. It is standard and easy that H and K together generate Σr, so f (r) is
invariant under Σr as claimed. �

Proposition 16.21. [prop-multilinear-continuous]

Let f : V =
∏r−1
t=0 Vt → W be multilinear. Then f is continuous if and only if it is bounded. (In

particular, if the spaces Vt are all finite-dimensional, then f is continuous.)

Proof. First suppose that f is continuous. As f(0) = 0, there exists δ > 0 such that ‖f(y)‖ ≤ 1
whenever ‖y‖ ≤ δ. If ‖x‖ ≤ 1 we can take y = δx to deduce that ‖f(δx)‖ ≤ 1, but multilinearity implies
that f(δx) = δrf(x), so ‖f(x)‖ ≤ 1/δr. It follows that f is bounded with ‖f‖ ≤ 1/δr.

For the converse, suppose that f is bounded. Fix a point a ∈ V . For P ⊆ {0, . . . , r} and x ∈ V we
define jP (x) ∈ V by

jP (x)t =

{
xt if t ∈ P
at if t 6∈ P.

We also put L = ‖f‖
∑
|P |>0

∏
t6∈P ‖at‖. By expanding everything out we see that

f(a+ x)− f(a) =
∑
|P |>0

f(jP (x)).

Now ‖jP (x)‖ ≤ ‖x‖|P |
∏
t 6∈P ‖at‖. If ‖x‖ ≤ 1 we also have ‖x‖|P | ≤ ‖x‖ for all P with |P | > 0, and it follows

easily that

‖f(a+ x)− f(a)‖ ≤ L‖x‖
for all x with ‖x‖ ≤ 1. It follows easily from this that f is continuous. �

This can be sharpened as follows.
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Proposition 16.22. [prop-multilinear-continuous]

Let f : V =
∏r−1
t=0 Vt → W be multilinear and bounded. Then f is smooth. The first derivative is given

by

f ′(a)(x) =

r−1∑
p=0

f(ip,a(xp))

(where ip,a is as in Definition 16.10).

Proof. Fix a ∈ V , and put g(x) =
∑r−1
p=0 f(ip,a(xp)). To show that this is f ′(a), we need an upper bound

for the norm of the error term h(x) = f(a+x)−f(a)−g(x). In the notation in the proof of Proposition 16.22,
we have f(a) =

∑
|P |=0 f(jP (x)) and g(x) =

∑
|P |=1 f(jP (x)) so h(x) =

∑
|P |>1 f(jP (x)). Now put M =

‖f‖
∑
|P |>1

∏
t6∈P ‖at‖. Just as in the previous proof, if ‖x‖ ≤ 1 we have ‖jP (x)‖ ≤ ‖x‖2

∏
t 6∈P ‖at‖ whenever

|P | > 1, and thus ‖h(x)‖ ≤ M‖x‖2. Now given ε > 0 we can put δ = min(1, ε/M) and we find that
‖h(x)‖ ≤ ε‖x‖ whenever ‖x‖ ≤ δ, as required.

This proves that f is differentiable, with the claimed derivative. We still need to show that it is smooth.
We may assume by induction that any continuous s-linear map with s < r is smooth. In particular, for
0 ≤ p < r we can put V ′p =

∏
t 6=p Vt and define fp : V ′p → Homc(Vp,W ) by the obvious prescription

fp(v)(x) = f(v0, . . . , vp−1, x, vp+1, . . . , vr−1).

As in Proposition 16.15 we see that fp is (r − 1)-linear and bounded, so it is smooth by the induction
hypothesis. Now let πp : V → Vp and π′p : V → V ′p be the projections. The map πp induces a map
π∗p : Homc(Vp,W ) → Homc(V,W ) by π∗p(u) = u ◦ πp. This is easily seen to be bounded, with norm one.
Now let kp be the composite

V
π′p−→ V ′p

fp−→ Hom(Vp,W )
π∗p−→ Hom(V,W ).

As fp is smooth and the maps π′p and π∗p are linear and bounded, we see that kp is also smooth. Moreover,
our previous description of f ′ can be rewritten as f ′ =

∑
p kp, so f ′ is smooth, so f is smooth. �

17. Real valued functions

In this section, X is a topological space and C(X) is the set of continuous real-valued functions u : X −→ R.
We consider this as a metric space in the usual way.

17.1. The theorems of Urysohn and Tietze. The following theorem refers to normal spaces, which
were introduced in Definition 14.1: a space is normal if any two disjoint closed sets have disjoint open
neighbourhoods.

Theorem 17.1 (Urysohn’s lemma). [thm-urysohn]
X is normal iff for every pair F0, F1 of disjoint closed subsets there exists a continuous map f : X → [0, 1]

with f(F0) ⊆ {0} and f(F1) ⊆ {1}.
The proof will follow after some preliminaries. Note that one direction is trivial: if we have a function

f as above, then the sets U0 = {x : f(x) < 1/2} and U1 = {x : f(x) > 1/2} are disjoint and open with
Fi ⊆ Ui, as required for normality.

Definition 17.2. [defn-ufilt]
Write A = [0, 1] ∩Q. A Urysohn filtration on a space X is a family U = (Ua)a∈A of open subsets of X

such that Ua ⊆ Ub whenever a < b. Such a filtration is regular if for all a we have Ua =
⋃
b<a Ub. Note that

this implies U0 = ∅.
Construction 17.3. Given a Urysohn filtration U define fU : X → [0, 1] by

fU (x) = inf{a ∈ A : x ∈ Ua}.
This is to be interpreted as 1 if x 6∈ Ua for any a.

Define also ρ(U)a =
⋃
b<a Ub, so U is regular if and only if ρ(U) = U . Finally, given g ∈ C(X, [0, 1])

write
V (g)a = {x : g(x) < a} = g−1(−∞, a).
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Theorem 17.4. [thm-ufilt]

(a) ρ(U) is a regular Urysohn filtration.
(b) ρ2(U) = U .
(c) V (g) is a regular Urysohn filtration.
(d) fU is continuous.
(e) V (fU ) = ρ(U)
(f) fV (g) = g
(g) There is a bijective correspondence between regular Urysohn filtrations on X and continuous func-

tions X → [0, 1], given by U 7→ fU and g 7→ V (g).

Proof. In the following a, b and c are implicitly supposed to be elements of A, and x is supposed to
be a point of X, and s to be an element of [0, 1]. We shall repeatedly use without comment the fact that
between any two distinct real numbers there lies a rational, and hence that s = inf{a : s < a} (where inf(∅)
is interpreted as 1).

(a) It is clear that ρ(U)a ⊆ Ua. Suppose a < b, and write c = (a + b)/2 so a < c < b. As U is a
Urysohn filtration, we have Ua ⊆ Uc. Thus

ρ(U)a ⊆ Ua ⊆ Uc ⊆ ρ(U)b

This shows that ρ(U) is a Urysohn filtration. Moreover,⋃
b<a

ρ(U)b =
⋃

c<b<a

Uc =
⋃
c<a

Uc = ρ(U)a

which shows that ρ(U) is regular.
(b) This is immediate from the above.
(c) Suppose g : X → [0, 1] is continuous and a ∈ A. Write

F (g)a = {x : g(x) ≤ a} = g−1(−∞, a]

This is a closed subset of X, and V (g)a ⊆ F (g)a so V (g)a ⊆ Fa(g). Moreover, if a < b then

F (g)a ⊆ V (g)b and thus V (g)a ⊆ V (g)b. Thus V (g) is a Urysohn filtration.
Next note that if x ∈ V (g)a then g(x) < a so there is a rational number b ∈ A with g(x) < b < a

so x ∈ V (g)b. Thus V (g)a =
⋃
b<a V (g)b and V (g) is regular.

(d) To show that f = fU is continuous, we need only check that the preimages of the subbasic open
sets (−∞, s) and (s,∞) (for s ∈ R) are open. For the first case, note that f(x) is the greatest
lower bound of the set F = {a ∈ A : x ∈ Ua}. Thus, we have f(x) < s iff s is not a lower
bound for that set, iff there exists a ∈ F with a < s, iff x ∈

⋃
a<s Ua. We therefore see that

f−1((−∞, s)) =
⋃
a<s Ua, which is open as required. We next claim that f−1((s,∞)) is also open,

or equivalently that f−1((−∞, s]) is closed. It will suffice to show that f−1((−∞, s]) =
⋂
b>s Ub.

Suppose that f(x) = inf(F ) ≤ s. Consider a point b ∈ A with b > s. Then b is not a lower bound
for F , so we can choose a ∈ F with a < b. This means that x ∈ Ua, and by the Urysohn filtration
condition we have Ua ⊆ Ub ⊆ Ub. It follows that x ∈

⋂
b>s Ub as required. Conversely, suppose

that x ∈
⋂
b>s Ub. Consider an element c ∈ A with c > s. We can then find b ∈ A with c > b > s.

By assumption we have x ∈ Ub, but Ub ⊆ Uc by the Urysohn filtration condition, so x ∈ Uc, so
c ∈ F . Thus F contains {c ∈ A : c > s}, and it follows that f(x) = inf(F ) ≤ s as required.

(e) We have just showed that

V (fU )a = f−1
U (−∞, a) =

⋃
b<a

Ub = ρ(U)a

as required.
(f)

fV (g)(x) = inf{a : x ∈ Va(g)} = inf{a : g(x) < a} = g(x).

(g) This is clear from the previous parts of the theorem.

�
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Proof of Theorem 17.1. First suppose that X has the property in the statement. Then, given
disjoint closed sets F0 and F1, we can choose f as above and put U0 = {x : f(x) < 1/2} and U1 = {x :
f(x) > 1/2}. This gives disjoint open sets Ui containing Fi, as required.

Conversely, suppose that X is normal, and let F0 and F1 be disjoint closed sets. As the set A = Q∩ [0, 1]
is countable, we can choose a bijection n 7→ an from N to A. We can arrange it such that a0 = 0 and a1 = 1.
We shall choose recursively open sets Uk ⊆ X such that

(a) F0 ⊆ Uk ⊆ X \ F1

(b) If aj < ak then Uj ⊆ Uk.

By normality, we can choose an open set U0 with

F0 ⊆ U0 ⊆ U0 ⊆ X \ F1.

Similarly, we can choose U1 with
U0 ⊆ U1 ⊆ U1 ⊆ X \ F1.

Suppose that n > 0 and U0, . . . Un have been chosen. Some of the numbers a0, . . . , an (including a0 = 0)
will be less than an+1, and the rest (including a1 = 1) will be greater than an+1. Let ak be the largest
of the values aj of the first type, and let am be the smallest of the values aj of the second type, so that

ak < an+1 < am. By assumption we have Uk ⊆ Um so by normality we can find Un+1 with

Uk ⊆ Un+1 ⊆ Un+1 ⊆ Um
It is easy to check that this satisfies the requirements. Finally, we define a Urysohn filtration by

Va = Uk where a = ak

and a continuous function f = fV . It is easy to see that f = 0 on F0 and f = 1 on F1. �

Theorem 17.5 (The Tietze Extension Theorem). [thm-tietze]
Let X be a normal space, let Y be a closed subset, and let f : Y → R be a continuous map. Then there

exists a continuous function g : X → R with g|Y = f . Moreover, if f(y) ∈ [a, b] for all y, then g can be
chosen so that g(x) ∈ [a, b] for all x.

The proof will follow after a preparatory lemma and a special case.

Lemma 17.6. [lem-tietze-approx]
Suppose X is normal and Y ⊆ X is closed. Suppose f : Y → [−r, r] is continuous. Then there is a

continuous function g : X → [−r/3, r/3] with

‖f − g‖Y = sup
y∈Y
|f(y)− g(y)| ≤ 2r/3.

Proof. Write

Y− = f−1[−r,−r/3] ⊆ Y
Y0 = f−1[−r/3,+r/3] ⊆ Y
Y+ = f−1[+r/3,+r] ⊆ Y.

These sets are clearly closed in Y , and Y is closed in X, so Y± are closed in X. As Y+ ∩ Y− = ∅, Urysohn’s
theorem gives us a function g : X −→ [−r/3, r/3] with g = −r/3 on Y− and g = r/3 on Y+. By considering
the cases y ∈ Y−, y ∈ Y0, and y ∈ Y+ separately we see that |f(y)− g(y)| ≤ 2r/3 for all y ∈ Y and thus that
‖f − g‖Y ≤ 2r/3. �

Lemma 17.7. [lem-tietze]
Let X be a normal space, let Y be a closed subset, and let f : Y → [−1, 1] be a continuous map. Then

there exists a continuous function g : X → [−1, 1] with g|Y = f .

Proof. We shall choose recursively continuous functions gk : X −→ R (for k ≥ 1) with ‖gk‖ ≤ (2/3)k/2
such that

‖f −
n∑
k=1

gk‖Y ≤ (2/3)n
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Indeed, this works for n = 0 as ‖f‖Y ≤ 1. Given gk for k ≤ n we get gn+1 by applying Lemma 17.6 to
f −

∑n
1 gk with r = (2/3)n. Finally, we set g =

∑∞
1 gk. The sum is uniformly convergent so g is continuous

and ‖f − g‖Y = 0 so g|Y = f as required. �

This lemma easily implies the special case of Theorem 17.5 where f is bounded (which is automatic if
Y is compact). However, we will need an auxiliary construction to cover the general case.

Proof of Theorem 17.5. Let φ : R → (−1, 1) be a homeomorphism, for example φ(x) = x/
√

1 + x2

with φ−1(y) = y/
√

1− y2. Apply Lemma 17.7 to the map φ ◦ f : Y → (−1, 1) ⊂ [1, 1] to get a map
h : X → [−1, 1] with h|Y = φ ◦ f . Put Z = {x ∈ X : |h(x)| = 1}, so Z is closed and disjoint from Y .
By Theorem 17.1 there exists u : X → [0, 1] with u|Y = 1 and u|Z = 0. We put k = uh and observe that
|k(x)| < 1 for all x, so k : X → (−1, 1). Put g = φ−1 ◦ k, which is a continuous map g : X → R. If y ∈ Y
then u(y) = 1 so k(y) = h(y) = φ(f(y)), so g(y) = f(y) as required. If we are given that a ≤ f(y) ≤ b for
all y, we simply replace g by the function g′(x) = min(b,max(a, g(x))). �

17.2. The Stone-Weierstrass Theorem. The Stone-Weierstrass Theorem is a powerful tool for ap-
proximating real-valued functions by simpler functions such as polynomials. In order to state it, we need
some preliminary definitions.

Definition 17.8. [defn-subalg]
A subset A of C(X) = C(X,R) or C(X,C) is a subalgebra if it contains all constant functions (real or

complex, respectively) and is closed under addition and multiplication. In the complex case, we say that A
is a ∗-subalgebra if it is also closed under conjugation.

Next, given u, v ∈ C(X,R) define u ∨ v and u ∧ v in C(X,R) by

(u ∨ v)(x) = max(u(x), v(x))

(u ∧ v)(x) = min(u(x), v(x)).

A subset A ⊆ C(X,R) is a sublattice if it is closed under these two operations.

Definition 17.9. [defn-separating]
A subset A of C(X,R) or C(X,C) is separating if for all x, y ∈ X with x 6= y, there exists u ∈ A such

that u(x) 6= u(y).

Note that if X is normal then C(X,R) itself is separating by Urysohn’s theorem.

Theorem 17.10 (Stone-Weierstrass). [thm-stone]
If X is compact then any separating subalgebra of C(X,R) is dense, as is any separating ∗-subalgebra of

C(X,C).

The proof will be given at the end of this subsection. Most of the time we will just discuss the real
version. The complex case can be deduced easily from the real one, as we discuss at the end.

Example 17.11. [eg-polynomial]
Take X = [0, 1] and A = R[x]. This is easily seen to be a separating subalgebra of C(X), so it is dense.

In other words, for any continuous function f : [0, 1] → R and any ε > 0 we can find a polynomial p such
that |f(x)− p(x)| < ε for all x ∈ [0, 1].

Example 17.12. [eg-fourier]
Take X = R/(2πZ), and let A be the set of functions that have a finite Fourier series, say

f(x) =

N∑
k=0

ak cos(kx) +

N∑
k=1

bk sin(kx)

for some ak, bk ∈ R. Equivalently, we have

f(x) =

N∑
k=−N

uke
ikx

for some complex numbers uk with u−k = uk. One can check that this is a separating subalgebra of C(X),
so it is dense. This is one of the first steps in a rigorous analytic treatment of Fourier series.
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Example 17.13. [eg-hol-not-dense]
Put X = {z ∈ C : |z| ≤ 1}, and let A be the set of continuous functions f : X → C that are holomorphic

in the interior of X. This is a separating subalgebra of C(X,C) that is not a ∗-subalgebra. We can define a
continuous map F : C(X,C)→ C by

F (f) = f(0)− 1

2πi

∫
|z|=1

f(z)

z
dz = f(0)− 1

2π

∫ 2π

t=0

f(eit) dt.

Cauchy’s Theorem tells us that F (f) = 0 for all f ∈ A. However, if we put g(z) = |z| then g ∈ C(X,C) and
F (g) = −1. It follows easily that A is not dense in C(X,C).

Given a finite set Y = {y1, . . . yn} ⊆ X write F (Y ) for the set of all (possibly discontinuous) functions
u : Y −→ R. Note that F (Y ) ' Rn. In most cases of interest X is Hausdorff so Y is discrete and F (Y ) = C(Y ).

Definition 17.14. [defn-interpolating]
A subset A ⊆ C(X) is interpolating if for each finite Y ⊆ X the restriction map u 7→ u|Y is a surjection

A −→ F (Y ). Equivalently, given distinct points y1, . . . yn and real numbers a1, . . . an there must exist a
function u ∈ A such that u(yk) = ak for all k.

Proposition 17.15. [prop-subalgebra-closure]
The closure of a subalgebra is a subalgebra.

Proof. Suppose A ⊆ C(X) is a subalgebra. Clearly all constant functions lie in A. One checks easily
that the following functions are continuous:

σ : C(X)× C(X) −→ C(X) σ(u, v) = u+ v

µ : C(X)× C(X) −→ C(X) µ(u, v) = uv

As A is an algebra, we have µ(A×A) ⊆ A so

A×A ⊆ µ−1(A) ⊆ µ−1(A)

As this last set is closed, we have
A×A = A×A ⊆ µ−1(A)

so
µ(A×A) ⊆ A

Similarly, σ(A×A) ⊆ A. It follows that A is a subalgebra as claimed. �

Lemma 17.16. [lem-abs-approx]
There is a sequence (pn(x))n∈N of polynomial functions such that pn(x) −→ |x| uniformly on the interval

[−1, 1].

Proof. We will use some standard theory of Taylor series. In particular, consider the function f(x) =
1−
√

1− x, and note that this is strictly increasing on the interval [0, 1]. We put a0 = 0, and for n > 0 we
put

an = (−1)n+1

(
1/2
n

)
=

(−1)n+1

n!

1

2

−1

2

−3

2
. . .

3− 2n

2
=

1

2

n∏
k=2

2k − 3

2k
> 0.

By a straightforward induction, we have f (n)(x) = n!an(1 − x)1/2−n for 0 ≤ x < 1, and this function is

strictly positive with f (n)(0) = n!an. Now put qn(x) =
∑n−1
k=1 akx

k, which is a Taylor approximation to f(x).
Taylor’s theorem says that for x ∈ (0, 1] there exists w ∈ (0, x) with

f(x) = qn(x) + f (n)(w)/n! = qn(x) + anw
n,

so qn(x) < f(x) < qn(x) + an. Next, as f and qn are continuous on [0, 1] and qn(x) < f(x) for x ∈ [0, 1) we

must also have qn(1) ≤ f(1) for all n. Here qn(1) =
∑n−1
k=1 ak and f(1) = 1 −

√
1− 1 = 1. As the numbers

ak are positive and all the partial sums are bounded by one, we deduce that ak → 0. The inequality
qn ≤ f ≤ qn + an therefore shows that qn → f in C([0, 1]). Now put pn(x) = 1− qn(1− x2), and note that

this is polynomial in x. It follows easily that these functions converge uniformly to 1−f(1−x2) =
√
x2 = |x|,

as claimed. �
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Remark 17.17. The functions pn(x) arising in the above proof are not actually very good approximations
to |x|. Consider instead the function

qn(x) =

n∑
p,q=0

(−1)p+q(2n+ 2p+ 1)!(2n+ 2q + 1)!x2p

24n(2p+ 2q + 1)(2q + 2)(n+ p)!(n+ q)!(n− p)!(n− q)!(2p)!(2q)!
.

Using the theory of Hilbert matrices and Cauchy determinants, one can show that the L2 distance from qn(x)
to |x| is minimal for polynomials of degree 2n. For our present applications, we need to know about the L∞

distance rather than the L2 distance. Numerical experiments show that the L∞ distance is approximately
0.3/n, which is much better than the distance of approximately 1/

√
πn for pn(x). However, we do not know

a formal proof of this fact.

Corollary 17.18. [cor-alg-lattice]
Any closed subalgebra is a sublattice.

Proof. Suppose A is a closed subalgebra, and that w ∈ A has ‖w‖ ≤ 1. As A is a subalgebra and pn
is a polynomial, we have pn(w) ∈ A. Moreover, for all x we have w(x) ∈ [−1, 1] so

|pn(w(x))− |w(x)|| ≤ sup
[−1,1]

{|pn(t)− |t||} −→ 0

so pn(w) −→ |w| in C(X). As A is closed, this implies |w| ∈ A. More generally, let us not assume that
‖w‖ ≤ 1. Write α = ‖w‖. By the previous argument, |w/α| ∈ A but A is an algebra so |w| = α|w/α| ∈ A.

Finally, suppose u, v ∈ A. Write w = u− v ∈ A so |w| = |u− v| ∈ A. One checks easily that

u ∨ v = 1
2 (u+ v + |u− v|) ∈ A

u ∧ v = 1
2 (u+ v − |u− v|) ∈ A,

so A is a sublattice. �

Proposition 17.19. [prop-interpolating]
Any separating subalgebra is interpolating.

Proof. Let A ⊆ C(X) be a separating subalgebra, and Y a finite subset of X. Suppose y, z are two
distinct points in Y . As A is separating, there is a function uyz ∈ A such that the values p = uyz(y) and
q = uyz(z) are distinct. Write

vyz(x) =
uyz(x)− q
p− q

.

As A is a subalgebra, we see that vyz ∈ A. Clearly vyz(y) = 1 and vyz(z) = 0. Now write

vy(x) =
∏

z∈Y,z 6=y

vyz(x)

Again, vy ∈ A because A is a subalgebra. Clearly vy(y) = 1 and vy(z) = 0 if z is any other point in Y .
Finally, let f : Y −→ R be an arbitary function. Define

v =
∑
y∈Y

f(y)vy

This is an element of A and for z ∈ Y we have

v(z) =
∑
y∈Y

f(y)vy(z) = f(z)

(the terms in the sum for which y 6= z are zero). Thus v|Y = f . This shows that A is interpolating. �

Proposition 17.20. [prop-stone-lattice]
If X is compact then any interpolating sublattice is dense in C(X).
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Proof. Suppose A ⊆ C(X) is an interpolating sublattice. Suppose f ∈ C(X) and ε > 0. We are
required to find h ∈ A such that ‖f − h‖ < ε, or equivalently f − ε < h < f + ε.

For each g ∈ A write

U(g) = {x : g(x) > f(x)− ε}
V (g) = {x : g(x) < f(x) + ε}.

These sets are clearly open. Fix x ∈ X and write

U(x) = {U(g) : g ∈ A and g(x) = f(x)}

We claim that this is an open cover of X. Indeed, suppose that y ∈ X. By the interpolation property
there is a function g ∈ A with g|{x,y} = f |{x,y}, in other words g(x) = f(x) and g(y) = f(y) > f(y) − ε so
y ∈ U(g) ∈ U(x). This proves the claim.

There is thus a finite subcover X = U(g1) ∪ . . . U(gn) with gk ∈ A and gk(x) = f(x). Write

g = g1 ∨ . . . ∨ gn
As A is a sublattice we have g ∈ A. It is easy to see that g > f − ε and g(x) = f(x) (so x ∈ V (g)).

Now write

V = {V (g) : g ∈ A and g > f − ε}
If g is constructed as above then x ∈ V (g) ∈ V, so V is an open cover of X. We thus have a finite subcover
X = V (g1) ∪ · · · ∪ V (gm) with gk ∈ A and gk > f − ε. Write h =

∨m
k=1 gk. This again lies in A and

f − ε < h < f + ε as required. �

Proof of Theorem 17.10. We first consider the real case. Let A be a separating subalgebra of
C(X,R). Then A is a subalgebra by Proposition 17.15. It is thus a sublattice by Corollary 17.18, and it is
interpolating by Proposition 17.19. It is thus dense by Proposition 17.20. As it is closed and dense, we see
that A = C(X). In other words, A itself is dense.

Now instead let B be a separating ∗-subalgebra of C(X,C). Put A = B ∩ C(X,R). For any f ∈ B the
functions g = (f + f∗)/2 = Re(f) and h = (f − f∗)/(2i) = Im(f) then lie in A and we have f = g + ih. It
follows that B = A+ iA and that A is a separating subalgebra of C(X;R). From the real case we see that
A is dense in C(X,R), and it follow that B is dense in C(X,C). �

As an application, we can deduce a classification of closed subalgebras that need not be separating.

Proposition 17.21. [prop-closed-subalgebras]
Let X be a compact Hausdorff space, and A ⊆ C(X) a closed subalgebra. Define a relation E on X by

E =
⋂
f∈A

eq(f) = {(x, x′) ∈ X2 : f(x) = f(x′) for all f ∈ A}.

Then the space Y = X/E is compact Hausdorff, and A is isometrically isomorphic to C(Y ).

Proof. Write q for the quotient map X −→ Y . If f ∈ A then it is tautological that f(x) = f(x′)
whenever (x, x′) ∈ E, so Proposition 5.61 tells us that there is a unique map φ(f) : Y → R with f = φ(f)◦q,
and that this map is continuous. We write A′ for the set of functions of the form φ(f) for some f ∈ A. Note
that when f, g ∈ A the function phi(f) + φ(g) is continuous with (φ(f) + φ(g)) ◦ q = f + g, so we must have
φ(f + g) = φ(f) + φ(g). By similar arguments we see that φ(fg) = φ(f)φ(g) and that φ sends constants to
constants, so A′ is a subalgebra of C(Y ). Moreover, as q is surjective we see that the values of the function
φ(f) are the same as the values of f , so ‖φ(f)‖ = ‖f‖. In other words, φ gives an isometric isomorphism
A→ A′.

Now note that q : X → Y is surjective, and X is compact, so Y is compact. Next, suppose y and y′

are distinct points of Y . Then y = q(x) and y′ = q(x′) say, where (x, x′) 6∈ E. This means that there is a
function f ∈ A with f(x) 6= f(x′), say a = f(x) < a′ = f(x′). It follows that the function g = φ(f) : Y → R
has a = g(y) < a′ = g(y′). Now put b = (a+ a′)/2 and U = {z : g(z) < b} and U ′ = {z : g(z) > b}. These
give a Hausdorff pair for (y, y′). It follows that Y is Hausdorff as well as compact.
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Now, A is closed in the complete space C(X) so A is complete. Moreover, A′ is isometrically isomorphic
to A and hence complete, and hence closed in C(Y ). Thus, by the Stone-Weierstrass Theorem, we have
A′ = C(Y ). We conclude that C(Y ) is isometrically isomorphic to A as claimed. �

Exercise 17.1. [ex-osc]
Let f : X → Y be a continuous map of compact Hausdorff spaces. Show that the map

f∗ : C(Y ) −→ C(X) f∗(u) = u ◦ f
is continuous.

Now suppose X is a metric space (we shall use the same symbol d for all metrics). Define the ε-oscillation
of u as

oscε(u) = sup{|u(x)− u(y)| : d(x, y) < ε}
Give a clean proof that oscε : C(X) −→ R is continuous.

This shows that the set
U(ε, δ) = {u : oscε(u) < δ}

is open. Prove that for fixed δ, we have ⋃
ε>0

U(ε, δ) = C(X)

These are the first steps in the proof of the following uniform Fourier approximation theorem. Let P be
the space of functions u : [−π, π] −→ R given by a finite Fourier series:

u(x) =

n∑
k=0

ak cos(kx) + bk sin(kx)

Then, given δ > 0 there is a continuous map

F : C[−π, π] −→ P

such that d(u, F (u)) < δ for all u. Of course, F is something like the Fourier transform, but we have to work
out how to fix it up so that we take different but finite numbers of terms for different functions u, and have
the result depending continuously on u.

Solution: The metric is derived from the norm

‖u‖ = ‖u‖∞ = sup{|u(x)| : x ∈ X}
Thus, if u ∈ C(Y ) then

‖f∗(u)‖ = sup{|f∗(u)(x)| : x ∈ X}
= sup{|u(f(x))| : x ∈ X}
≤ sup{|u(y)| : y ∈ Y } = ‖u‖

Noting also that f∗(u − v) = f∗(u) − f∗(v), we find that d(f∗(u), f∗(v)) ≤ d(u, v). This implies that f∗ is
continuous.

It is also easy to see that the norm function

n : C(X) −→ R n(u) = ‖u‖
is continuous. This follows from the reversed triangle inequality:

|n(u)− n(v)| ≤ d(u, v)

Now consider Y = {(x, x′) ∈ X2 : d(x, x′) < ε}. There are two continuous projection maps π0, π1 : Y −→
X. We have

oscε(u) = n(π∗0(u)− π∗1(u))

which shows that oscε is continuous.
We next want to show that

⋃
ε>0 U(ε, δ) = C(X). Consider u ∈ C(X); we need to find ε > 0 such that

oscε(u) < δ. This just means that u is uniformly continuous. A proof in the spirit of this problem is as
follows. Write

K = {(x, x′) ∈ X2 : |u(x)− u(x′)| ≥ δ}
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The image d(K) under the distance map d : X2 −→ R is compact and does not contain 0, so d(K)∩ [0, ε) = ∅
for some ε > 0. Thus d(x, x′) < ε implies |u(x)− u(x′)| < δ as required.

Exercise 17.2. [ex-qalg]
Let X be a space, and A a subset of C(X). We identify a real number with the corresponding constant

function, so R ⊆ C(X). We shall say that A is a Q-subalgebra of C(X) if it contains Q and is closed under
addition and multiplication.

(a) Let B be a countable subset of C(X). Prove that there is a countable Q-subalgebra A such that
B ⊆ A ⊆ C(X). Hint: You may want to consider the construction which assigns to a set C ⊆ C(X)
the set

C ′ = C ∪ {f + g : f, g ∈ C} ∪ {fg : f, g ∈ C}.
(b) Let X be a compact metric space which has a countable dense subset. Prove that C(X) has a

countable dense subset.

Solution: We use the construction C 7→ C ′ as above. Note in particular that C ′ is countable if C is.
Suppose that B ⊆ C(X) is countable. Define recursively

C0 = Q ∪B
Cn+1 = C ′n ⊇ Cn

A =

∞⋃
n=0

Cn

I claim that A is a Q-algebra. Indeed, Q ⊆ C0 ⊆ A. Moreover, if f, g ∈ A then f, g ∈ Cn for some n and so
f + g, fg ∈ Cn+1 ⊆ A. Also, each Cn is countable (by induction) so A is countable. Thus A is a countable
Q-algebra containing B, as required.

Now let X be a compact metric space which has a countable dense subset Y . Write dy(x) = d(y, x), so
dy ∈ C(X). Write

B = {dy : y ∈ Y }
(so B is a countable subset of C(X)).

I claim that B ⊆ C(X) is separating. Indeed, suppose u, v ∈ X and u 6= v, so ε = d(u, v)/2 > 0. As Y
is dense, there is a point y ∈ Y ∩B(u, ε). Then

dy(u) = d(y, u) < ε

dy(v) = d(v, y) ≥ d(v, u)− d(u, y) = 2ε− d(u, y) > ε

so dy(u) 6= dy(v) as required.

Let A be a countable Q-algebra containing B. Then A is a ring (see the proof that the closure of a R-
algebra is a R-algebra) and contains Q = R. Thus A is a closed separating R-algebra. By Stone-Weierstrass,
it is all of C(X). Thus A is a countable dense subset of C(X).

A popular error is to suppose that X need not be a metric space. One chooses a countable dense subset
Y , uses Urysohn’s lemma to choose a countable set B of functions separating any pair of points in Y and
then argues as above. However, B need not separate the points of X. For example, take X = [0, 1] and
B = {f ∈ C[0, 1] : f(0) = f(1)}. Then B separates the points of the dense subset (0, 1), but does not
separate 0 from 1. This shows that we need to use functions of the special form indicated above. The result
is false for non-metric spaces, the simplest example being X = βN, the Stone-Čech compactification of the
discrete space N.

17.3. The Arzela-Ascoli Theorem. We next want to study compact subsets of C(X,Y ), particularly
in the case where X is compact Hausdorff and Y = R or Y = C. The key property that we need Y to satisfy
is as follows:

Definition 17.22. [defn-arzela-space]
An Arzela space is a complete metric space Y such that every bounded closed subset is compact.

Remark 17.23. Proposition 10.28 tells us that Rn is an Arzela space. It is straightforward to check
that any finite product of Arzela spaces is an Arzela space.
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Remark 17.24. [rem-arzela-bounded]
Let Y be an Arzela space, and let Z be a bounded subset of Y ; we claim that Z is totally bounded.

Indeed, Z is both bounded and closed, so it is compact by the Arzela property, so it is totally bounded by
Theorem 12.28. It follows by Corollary 12.33 that Z is also totally bounded.

Definition 17.25. [defn-equicts]
Let X be a topological space, and let Y be a metric space. Let A be a set of maps from X to Y . We

say that A is equicontinuous if given x ∈ X and ε > 0 there is a neighbourhood U of x such that for any
f ∈ A and x′ ∈ U we have d(f(x), f(x′)) < ε.

Note that this is the same as the standard metric criterion for continuity, except that the same U is
required to work simultaneously for all f ∈ A.

Theorem 17.26 (Arzela-Ascoli). [thm-arzela]
Let X be a compact Hausdorff space, let Y be an Arzela space, and let A be a subset of C(X,Y ). Then

A is compact if and only if A is bounded and equicontinuous. Thus, A itself is compact if and only if A is
closed, bounded and equicontinuous. In particular, this applies when Y = R or Y = C.

Proof. First, suppose A is compact. Theorem 12.28 tells us that A is totally bounded (and therefore
bounded) and closed. Thus, we need only show that A is equicontinuous. Suppose x ∈ X and ε > 0. We
define maps

ψ : A×X → Y 2 ψ(a, x′) = (u(x′), u(x)) = (ev(u, x′), ev(u, x))

φ : A×X → R φ(a, x′) = d(u(x), u(x′)).

Note that ψ is continuous by Proposition 14.14 and d : Y 2 → R is continuous by the triangle inequality so
φ = d ◦ ψ is also continuous. We define U ⊆ A×X by

U = {(u, x′) ∈ A×X : d(u(x′), u(x)) < ε} = φ−1(−ε, ε).

This is open and contains A×{x}. By the Tube Lemma (Lemma 10.38), there is a neighbourhood V of x such
that A× V ⊆ U , so for u ∈ A and x′ ∈ V we have d(u(x′), u(x)) < ε. This shows that A is equicontinuous.

Conversely, suppose A is closed, bounded and equicontinuous. We know from Proposition 12.16 that
C(X,Y ) is a complete metric space, and from Theorem 12.28 that a subspace of a complete metric space is
compact iff totally bounded and closed, so we need only show that A is totally bounded. Suppose ε > 0. As
A is equicontinuous we can find a neighbourhood Ux for each point x ∈ X such that d(f(x), f(x′)) < ε/4
for all x′ ∈ Ux and f ∈ A. As X is compact we can choose a finite subset T ⊆ X such that {Ux : x ∈ T}
covers X. Next, consider the set F (T, Y ) of all functions from T to Y . Note that if T has n points then
F (T, Y ) ' Y n, so F (T, Y ) is an Arzela space. Now write

A|Y = {u|Y : u ∈ A} ⊆ F (T, Y )

As A is bounded we see that A|Y is bounded, and it follows by Remark 17.24 that A|Y is totally bounded.
We can therefore find a finite set B ⊆ A such that B|Y is an ε/4-net in A|Y . The claim is that B is an ε-net
in A. Indeed, suppose u ∈ A. As B|Y is an ε/4-net in A|Y , there is an element v ∈ B with d(u|Y , v|Y ) < ε/4.
Suppose x′ ∈ X. Then x′ ∈ Ux for some x ∈ T . Thus

d(u(x′), v(x′)) < d(u(x′), u(x)) + d(u(x), v(x)) + d(v(x′), v(x)).

As u, v ∈ A and x′ ∈ Ux we have

d(u(x′), u(x)), d(v(x′), v(x)) < ε/4.

As d(u|Y , v|Y ) < ε/4, we have

d(u(x), v(x)) < ε/4.

Putting this together gives d(u(x′), v(x′)) ≤ 3ε/4. As x′ was arbitrary we deduce that d(u, v) ≤ 3ε/4 < ε, as
required. �

We can give a simple sufficient condition for equicontinuity as follows:
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Definition 17.27. [defn-equilipschitz]
Let X and Y be metric spaces, and let A be a set of maps from X to Y . We say that A is equilipschitz

if there is a constant K > 0 such that d(f(x), f(x′)) ≤ Kd(x, x′) for all f ∈ A and x, x′ ∈ X.

If A is equilipschitz then it is clear that the maps in A are continuous, and that the whole family is
equicontinuous.

Example 17.28. [eg-contractions-compact]
Let X be a compact metric space, and let α be a number in (0, 1). Let CMα(X) be the set of contraction

mappings of ratio α on X. We saw in Proposition 12.45 that CMα(X) is closed in C(X,X), and it is visibly
equilipschitz (with constant α) and therefore equicontinuous. Moreover, as X is compact it must be bounded,
and it follows that CMα(X) is also bounded. We now see from the theorem that CMα(X) is compact.

Example 17.29. [eg-hol-equicts]
Let X be the closed unit disc in C. Fix some r > 1, let U be the open disc of radius r, and let A be the

set of continuous maps f : X → X that can be extended to a holomorphic map U → X. We claim that A
bounded and equicontinuous, so the theorem will tell us that A is compact. Boundedness is clear. Next, fix
s with 1 < s < r. For z ∈ X we have the Cauchy integral formula

f ′(z) =
1

2πi

∫
|w|=s

f(w)

(w − z)2
,

in which |f(w)| ≤ 1 and |w − z| ≥ s − 1, so |f ′(z)| ≤ (1 − s)−2. Thus, the Mean Value Theorem gives
|f(z)−f(y)| ≤ (1− s)−2|z−y| for all y, z ∈ X, and the upper bound here is independent of f , which implies
equicontinuity.

Example 17.30. [eg-intop]
Write I = [0, 1], and let k : I2 → R be continuous. Define K : C(I)→ C(I) by

K(f)(x) =

∫ 1

t=0

k(x, y)f(y) dt.

Put A = {K(f) : f ∈ C(I), ‖f‖ ≤ 1}. It is a a basic fact in the general theory of differential equations and
integral operators that A is bounded and equicontinuous; we can prove this as follows. For boundedness, it is
straightforward to check that ‖K(f)‖ ≤ ‖K‖‖f‖ so ‖g‖ ≤ ‖K‖ for all g ∈ X. Now suppose we are given x ∈ I
and ε > 0. Consider the function m(x′, y) = k(x′, y)− k(x, y) and the set V = {(x′, y) : |m(x′, y)| < ε/2}.
This is an open neighbourhood of {x}×I and I is compact, so V contains U×I for some open neighbourhood
U of x (by the Tube Lemma 10.38). Now for f ∈ C(I) with ‖f‖ ≤ 1 and x′ ∈ U we have

|K(f)(x′)−K(f)(x)| =
∣∣∣∣∫ 1

y=0

m(x′, y)f(y) dy

∣∣∣∣ ≤ ε‖f‖/2 < ε.

This shows that A is equicontinuous, as claimed.

Exercise 17.3. [ex-finite]
Let X be a compact Hausdorff space such that the space C(X, [0, 1]) is compact. Prove that X is finite.

Solution: The Arzela-Ascoli theorem tells us that C(X, [0, 1]) must be equicontinuous. Consider a point
x ∈ X. By equicontinuity, there is a neighbourhood U of x such that |f(x) − f(y)| < 1 for all y ∈ U and
all f ∈ A. We claim that U = {x}. Indeed, suppose not. Then there would be a point y 6= x with y ∈ U .
By Urysohn’s Lemma (Theorem 17.1), we could choose a continuous function f : X → [0, 1] with f(x) = 0
and f(y) = 1, violating the equicontinuity estimate. Thus U = {x} is open for each x ∈ X, so the sets {x}
form an open cover of X. By compactness there is a finite subcover {{x1}, . . . {xn}}, so X = {x1, . . . xn} is
finite.

We next discuss some aspects of equicontinuity that are important for understanding the Mandlebrot
set and related ideas about fractals.

Let X be a topological space, let Y be a metric space, and let A be a subset of C(X,Y ). For any open
subset U ⊆ X we can consider the family

A|U = {f |U : U → Y } ⊆ C(U, Y ).
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Even if the family A is not equicontinuous, it can happen that there are open sets U for which A|U is
equicontinuous. We will show that there is a largest open set with this property (which may be empty).

Proposition 17.31. [prop-fatou-exists]
Let X, Y and A be as above. Then there is an open set U ⊆ X such that A|U is equicontinuous, and for

other open sets V the family A|V is equicontinuous iff V ⊆ U .

Proof. Put

U =
⋃
{open V ⊆ X : A|V is equicontinuous },

and note that this is open. It will suffice to show that A|U is equicontinuous. Suppose we are given x ∈ U
and ε > 0. Then x ∈ V for some V such that A|V is equicontinuous. This means that there is a set W
containing x that is open in V (and so also in U or X) such that d(f(y), f(x)) < ε for all f ∈ A and y ∈W .
This is precisely what is required for equicontinuity on U . �

An illustrative example is as follows.

Proposition 17.32. [prop-powers-equicontinuous]
Define fn : R → R by fn(x) = xn, and put A = {fn : n ≥ 2} ⊂ C(R,R). Then the maximal

equicontinuity set U is the interval (−1, 1).

It would not affect the conclusion if we included f0 and f1 in A, but the proof would need a few more
words.

Proof. The first step is to prove that when 0 < r < 1, the family A|(−r,r) is equicontinuous. Using
Lemma 17.33 below, we have the following chain of inequalities:

|fn(x)− fn(y)| = |x− y||xn−1 + xn−2y + . . . yn−1|
≤ |x− y|(|xn−1|+ . . . |yn−1|)
≤ |x− y|nrn−1

≤ 2|x− y|/(r−1 − 1)

This estimate is independent of n, showing that A|(−r,r) is equilipschitz and hence equicontinuous, so
(−r, r) ⊆ U . As this holds for all r ∈ (0, 1) we deduce that (−1, 1) ⊆ U .

Now suppose that x ≥ 1. We claim that there is no neighbourhood V of x such thatA|V is equicontinuous.
To see this, suppose y = x+ u ≥ x. Then (by the binomial expansion)

yn − xn = (x+ u)n − xn ≥ nxn−1u

Note that nxn−1 −→∞ as n −→∞. Thus, we can only have yn− xn < ε for all n if u = 0, i.e. if y = x. Thus,
there is no neighbourhood W of x such that y ∈ W implies |fn(x)− fn(y)| < ε for all n. In other words, A
is not equicontinuous in any neighbourhood of x. A similar argument works if x ≤ −1. �

Lemma 17.33. [lem-pow-diff]
For 0 < r < 1 and n ≥ 2 we have

nrn−1 ≤ 2/(r−1 − 1)

Proof. Write ε = r−1 − 1 so r = (1 + ε)−1. Then, by the binomial expansion, we have

(1 + ε)n−1 ≥ (n− 1)ε

rn−1 =
1

(1 + ε)n−1
≤ 1

(n− 1)ε

Also, we assume n ≥ 2 so n/(n− 1) ≤ 2. Thus

nrn−1 ≤ n

(n− 1)ε
≤ 2

ε

as claimed. �
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18. Local Compactness

Definition 18.1. [defn-locally-compact]
A space X is said to be locally compact if every point has a precompact neighbourhood, or equivalently,

the precompact open sets cover X.

Remark 18.2. Let X be a metric space. It is then easy to see that X is locally compact iff for all x ∈ X
thee exists ε > 0 such that B(x, ε) is compact. From this it is clear that Rn (with the standard metric)
is locally compact. Consider instead the space R2 with the lane metric. The compact sets were analysed
in Example 12.40, and it is clear from that analysis that no neighbourhood of (x, 0) is precompact, so this
space is not locally compact.

Example 18.3. [eg-Q-not-locally-compact]
We claim that Q (topologised as a subspace of R) is not locally compact. To see this, note that if ε > 0

is irrational then in Q we have

B(x, ε) = [x− ε, x+ ε] ∩Q = (x− ε, x+ ε) ∩Q = OB(x, ε).

The sets B(x, δ) (with 0 < δ < ε) form an open cover of B(x, ε) with no finite subcover, so B(x, ε) is not
compact. Moreover, if ε is rational we can still choose a smaller irrational number η, and we find that B(x, η)
is closed in B(x, ε) and is not compact, so B(x, ε) cannot be precompact.

Proposition 18.4. [prop-locally-compact]
Let X be a locally compact Hausdorff space.

(a) For every x ∈ X and every neighbourhood U of x, there is a precompact neighbourhood V of x such
that V ⊆ U .

(b) The precompact open sets form a basis for the topology on X.
(c) X is regular.

Proof.
Let x be a point of X, and let U be an open neighbourhood of x. As X is locally compact

we can choose a precompact open set A such that x ∈ A. Note that A ∩ U is also a precompact
open neighbourhood of x, so we can replace A by U ∩ A and thus assume that A ⊆ U . Now put
B = A \ A (the boundary of A); this is closed in the compact set A, and so is compact. It follows
from Lemma 14.10 that there exist disjoint open sets V and W such that x ∈ V and B ⊆W . After
replacing V by V ∩ A if necessary, we may also assume that V ⊆ A ⊆ U . After this adjustment
we see that V is contained in the precompact set A, so V is also precompact. Next, we note that
V ⊆ A and V ∩W = ∅, so V is contained in the closed set C = A \W , so V ⊆ C. An the other
hand, as A \A = B ⊆W we see that C = A \W ⊆ A ⊆ U . It follows that V ⊆ U as required.

XU

A

x

X

W

V
B

(a)(b) This is immediate from (a) and Proposition 2.28.

125



(c) This is immediate from (a) and Proposition 14.6.
�

We now consider when a subset Y of a locally compact Hausdorff space X is itself locally compact. It
is not hard to see that this is true if Y is open or if Y is closed, but this does not exhaust the possibilities.

Proposition 18.5. [prop-locally-closed]
Let X be a locally compact Hausdorff space, and let Y be a subspace of X. Then the following are

equivalent:

(a) Y = U ∩ F for some open set U and some closed set F .
(b) Y is open in Y .

(c) Y ∪ Y c is open in X.
(d) For each y ∈ Y there exists an open neighbourhood U of y in X such that Y ∩ U is closed in U .
(e) Y is locally compact.

(If these conditions hold, we say that Y is locally closed in X.)

The proof will be given after a number of lemmas.

Lemma 18.6. [lem-locally-closed-a-b]
Suppose that Y = U ∩ F for some open set U and some closed set F . Then Y = U ∩ Y , and so Y is

open in Y .

Proof. We have Y ⊆ F and F is closed so Y ⊆ F so U ∩ Y ⊆ U ∩ F = Y . In the other direction, we
have Y = U ∩ F ⊆ U and certainly Y ⊆ Y so Y ⊆ U ∩ Y . �

Lemma 18.7. [lem-locally-closed-b-c]

Suppose that Y = U ∩ Y for some open set U . Then Y ∪ Y c = U ∪ Y c, and this set is open in X.

Proof. As Y = U∩Y we have Y c = U c∪Y c. We can intersect both sides with Y to get Y c∩Y = U c∩Y ,
and then take complements again to get Y ∪ Y c = U ∪ Y c. As U and Y

c
are open it follows that Y ∪ Y c is

open. �

Lemma 18.8. [lem-locally-closed-c-abd]

Suppose that the set U = Y ∪ Y c is open in X. Then Y = U ∩ Y , so Y is open in Y . Moreover, for
each y ∈ Y the set U is an open neighbourhood of y such that Y ∩ U is closed in U .

Proof. First, we have

U ∩ Y = (Y ∪ Y c) ∩ Y = (Y ∩ Y ) ∪ (Y
c ∩ Y ) = Y ∪ ∅ = Y.

As U is open in X, this implies that Y is open in Y . The identity Y = U ∩ Y also shows that Y is closed in
U , and of course Y ∩ U = Y , so Y ∩ U is closed in U as claimed. �

Lemma 18.9. Suppose that U is open in X and that Y ∩ U is closed in U ; then Y ∩ U is open in Y .

Proof. By assumption there is a closed set F such that Y ∩ U = F ∩ U . We claim that Y ∩ U is also
equal to F ∩U . Indeed, as Y ⊆ Y we have F ∩U = Y ∩U ⊆ Y ∩U . In the other direction, it is easy to see
that Y = (Y ∩ U) ∪ (Y ∩ U c) and Y ∩ U = F ∩ U ⊆ F and Y ∩ U c ⊆ U c so Y ⊆ F ∪ U c. Here F ∪ U c is
closed, so Y ⊆ F ∪ U c. We now intersect this with U to get Y ∩ U ⊆ F ∩ U as claimed. As Y ∩ U = Y ∩ U
with U open in X, we see that Y ∩ U is open in Y . �

Corollary 18.10. [cor-locally-closed-d-b]
Suppose that for each y ∈ Y there exists an open neighbourhood U of y in X such that Y ∩ U is closed

in U . Then Y is open in Y .

Proof. We can consider Y as the union of the sets Y ∩ U , and these are open in Y be the lemma. �

Corollary 18.11. [cor-locally-closed-abcd]
In Proposition 18.5, conditions (a) to (d) are equivalent.
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Proof. Lemmas 18.6 and 18.7 show that (a) =⇒ (b) =⇒ (c). Lemma 18.8 shows that (c) implies (a),
(b) and (d), whereas Corollary 18.10 shows that (d) implies (b). The claim follows by combining these
results. �

Lemma 18.12. [lem-locally-closed-subspace]
Let X be a locally compact Hausdorff space, and let Y be a subspace of X.

(p) If Y is closed in X, then it is locally compact.
(q) If Y is open in X, then it is locally compact.
(r) Suppose that Y = U ∩ F , where U is open in X and F is closed in X; then Y is locally compact.

Proof.

(p) Suppose that Y is closed, and consider a point y ∈ Y . As X is locally compact, there is a set U
that is open in X such that y ∈ U and U is compact. Now the set V = U ∩ Y is open in Y , and
contains y. Moreover, as Y is closed in X we see that the closure of V in Y is the same as the
closure in X. This is a closed subset of the compact set U , so it is again compact. This proves that
Y is locally compact.

(q) Suppose instead that Y is open. Now Proposition 18.4(a) tells us that for every y ∈ Y there is an
open set V such taht Y is compact with y ∈ V ⊆ V ⊆ Y . This means that Y is locally compact.

(r) Now suppose that Y = U ∩ F , where U is open in X and F is closed in X. Now U is locally
compact by part (q), and Y is closed in U so it is locally compact by part (p).

�

Lemma 18.13. [lem-locally-closed-e-d]
Let X be a locally compact Hausdorff space, and let Y be a locally compact subspace of X. Then for each

y ∈ Y there exists an open neighbourhood U of y in X such that Y ∩ U is closed in U .

Proof. Let y be a point in Y . We can then find a set U0 that is open and precompact in Y and has
y ∈ U0. As this is open in Y we have U0 = U ∩ Y for some set U that is open in X. Now let U0 denote
the closure of U0 in X, so the closure of U0 in Y is the set F = U0 ∩ Y . This is by assumption compact,
and so is closed in X by Proposition 10.16. It will therefore suffice to show that Y ∩ U = F ∩ U . From the
definition of F we have F ⊆ Y , and so F ∩ U ⊆ Y ∩ U . In the other direction, we have Y ∩ U = U0 ⊆ U0

and also Y ∩U ⊆ Y so Y ∩U ⊆ U0 ∩ Y = F . It is also clear that Y ∩U ⊆ U , and we can combine these two
inclusions to get Y ∩ U ⊆ F ∩ U as required. �

Proof of Proposition 18.5. We have seen that conditions (a) to (d) are equivalent. Lemma 18.12(r)
shows that (a) implies (e), and Lemma 18.13 shows that (e) implies (d). �

Remark 18.14. [rem-locally-closed-union]
If Y and Z are locally closed in X, it follows easily from criterion (a) that Y ∩ Z is also locally closed.

However, the union Y ∪ Z need not be locally closed, as we see from the example where X = R2 and
Y = {(0, 0)} and Z = {(x, y) : x > 0}. Here one can also check that the set T = (Y ∪ Z)c = Y c ∩ Zc is
locally closed but T c is not. Thus, the complement of a locally closed set need not be locally closed.

It is clear from the above discussion that any open subset of a compact Hausdorff space is a locally
compact Hausdorff space. Conversely, given a locally compact Hausdorff space we can try to embed it as an
open subset of a compact Hausdorff space. There are several different ways to do this. Our next task will
be to discuss the simplest one.

Definition 18.15. [defn-one-point]
Let X be a locally compact Hausdorff. Let ∞ be some object not in X and write X∞ = X ∪ {∞}. We

declare a subset U ⊆ X∞ to be open if either

(a) U is an open subset of X; or
(b) U = X∞ \K for some compact subset K ⊆ X.

We call this structure the one-point compactification of X.
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Remark 18.16. [rem-one-point]
We claim that U ⊆ X∞ is open if and only if

(c) U ∩X is open in X; and
(d) If ∞ ∈ U then X \ U is compact.

Indeed, if (a) holds then (c) is immediate and (d) is vacuously satisfied. If (b) holds then U ∩X = X \K
for some subset K which is compact and therefore closed (by Proposition 10.16); so (c) holds. We also have
X \U = K so (d) holds. We leave it to the reader to check the converse, that (c) and (d) together imply ((a)
or (b)).

Proposition 18.17. [prop-one-point]
The above definition gives a topology on X∞, making it a compact Hausdorff space. Moreover, the subset

X ⊂ X∞ is open, and the subspace topology on X is the same as the originally given topology.

Proof. It is clear that the sets ∅ and X∞ are both open. Suppose that U and V are both open. Then
U ∩X and V ∩X are both open in X, so the set (U ∩ V ) ∩X = (U ∩X) ∩ (V ∩X) is also open in X. If
∞ ∈ U ∩ V then ∞ ∈ U and ∞ ∈ V , so the sets K = X \ U and L = X \ V are both compact, so the set
X \ (U ∩ V ) = K ∪ L is also compact. This shows that U ∩ V is again open in X∞.

Now suppose we have a family (Ui)i∈I of open subsets of X∞, and we put U =
⋃
I Ui. The sets Ui ∩X

are then open in X, so the set U ∩X =
⋃
I(Ui ∩X) is also open. Suppose that ∞ ∈ U . Then ∞ ∈ Ui for

some i, so the set Ki = X \ Ui must be compact. The set K = X \ U is then closed in X and contained in
the compact set Ki, so it must again be compact. This shows that U is open in X∞, so we do indeed have
a topology.

It is clear from the definitions that the subsets of X that are open in X∞ are precisely the same as the
subsets of X that are open in the original topology on X. In particular, X itself is open in X∞, and we
deduce that the subspace topology on X is the same as the original one.

We next claim that X∞ is Hausdorff. Indeed, suppose we have two distinct points x, y ∈ X∞. If both
of them lie in X, then (by the Hausdorff property of X) we can find a corresponding Hausdorff pair (U, V )
in X, and this will still count as a Hausdorff pair in X∞. Suppose instead that x ∈ X but y =∞. As X is
locally compact, we can choose a precompact open neighbourhood U of x in X. We then put V = X∞ \ U ,
and observe that this is an open neighbourhood of y = ∞ that is disjoint from U . The case where x = ∞
and y ∈ X can be treated in a symmetrical way.

Finally, we must show that X∞ is compact. Suppose we have an open cover (Ui)i∈I of X∞. We must
then have ∞ ∈ Ui for some i, and thus the set Ki = X∞ \ Ui is a compact subset of X. It must therefore
be finitely covered, so there is a finite subset J ⊆ I such that Ki ⊆

⋃
j∈J Uj . It follows that if we put

J∗ = J ∪ {i} then X∞ =
⋃
j∈J∗ Uj as required. �

Remark 18.18. [rem-compact-cpfn]
If X itself is compact, we find that the set {∞} = X∞ \X is open in X∞, and thus that X∞ is just the

disjoint union of X with an extra point.

Lemma 18.19. [lem-unpuncture]
Let X be a compact Hausdorff space, and let x be a point of X. Then (X \ {x})∞ = X.

Proof. Put Y = X \ {x}, which is locally compact and Hausdorff. We have an obvious bijection
f : Y∞ → X given by f(∞) = x and f(y) = y for y ∈ Y . We claim that this is a homeomorphism.

Let U be an open subset of X. If x 6∈ U then U is an open subset of Y . If x ∈ U then the set K = X \U
is contained in Y , and it is closed in X and therefore compact, and we have U = X \K. This is completely
parallel to the description of the open sets in Definition 18.15, and the claim follows. �

Proposition 18.20. [prop-stereo]
The space Rn∞ is homeomorphic to the space Sn = {x ∈ Rn+1 :

∑
i x

2
i = 1}.

Proof. Put en = (0, 1) ∈ Rn × R = Rn+1. Define f0 : Rn → Sn \ {en} by

f0(x) = (2x, ‖x‖2 − 1)/(‖x‖2 + 1).

128



Define g0 : Sn \ {en} → Rn by g0(u, t) = u/(1 − t). One can check by direct calculation that f0 and g0

are continuous and that f0g0 and g0f0 are the respective identity maps, so f0 and g0 are mutually inverse
homeomorphisms. Geometrically, the point f(x) is just the unique point where the line from en to (x, 0)
passes through Sn, so the picture is as follows:

en

f(x)

x Rn

We now see that Rn∞ is homeomorphic to (Sn\{e0})∞, which in turn is homeomorphic to Sn by Lemma 18.19.
More specifically, we can extend f0 and g0 to give mutually inverse homeomorphisms Rn∞ → Sn → Rn∞ by
putting f(∞) = e0 and g(e0) =∞. �

The map f used in the above proof is called stereographic projection.
Now recall (from Definition 4.1) that a map f : X → Y is said to be proper if it is continuous, and the

preimage under f of any compact subset L ⊆ Y is compact in X.

Proposition 18.21. [prop-proper-cpfn]
Let f : X → Y be a function between locally compact Hausdorff spaces. Define f∞ : X∞ → Y∞ by

f∞(x) = f(x) for all x ∈ X, and f∞(∞) =∞. Then f∞ is continuous if and only if f is proper.

Proof. First suppose that f is proper. Consider an open subset V ⊆ Y∞. If V is open in Y then we
have (f∞)−1(V ) = f−1(V ), which is open in X because f is continuous. Otherwise, we must have V = Y∞\L
for some compact set L ⊆ Y . As f is proper, we see that the preimage K = f−1(L) ⊆ X is also compact.
We find that (f∞)−1(V ) = X∞ \K, which is open in X∞. It follows that f∞ is continuous as claimed. We
leave it to the reader to check that the argument is reversible. �

Remark 18.22. [rem-proper-cpfn]
We can give a categorical formulation of the above proposition as follows. Let LCHP be the category

whose objects are locally compact Hausdorff spaces, and whose morphisms are proper maps. Let CH∗ denote
the category whose objects are compact Hausdorff spaces equipped with a specified basepoint, and whose
morphisms are basepoint-preserving continuous maps. If X ∈ LCHP then we can take ∞ as the basepoint
in X∞ and thus regard X∞ as an object of CH∗. The proposition tells us that the construction X 7→ X∞
gives a functor LCHP → CH∗. More precisely, we can let CH′∗(Y, Z) be the set of morphisms for which
the preimage of the basepoint consists only of the basepoint. This defines a wide subcategory CH′∗ ⊆ CH∗,
and our functor gives an equivalence LCHP→ CH′∗, with inverse Y 7→ Y \ {basepoint}.

Proposition 18.23. [prop-collapse-space]
Let X be a compact Hausdorff space, and let Y be a closed subspace of X. Let X/Y be the quotient space

where Y is collapsed to a point (as in Example 5.55), with the quotient topology. Then there is a canonical
homeomorphism between X/Y and (X \ Y )∞.

Proof. Let q : X → X/Y be the quotient map. Define f : X → (X \ Y )∞ as follows: if x ∈ Y then
f(x) = ∞, otherwise x ∈ X \ Y ⊂ (X \ Y )∞ and we put f(x) = x. We claim that f is continuous. To see
this, consider an open set V ⊆ (X \ Y )∞. If V is actually an open set in X \ Y , then f−1(V ) = V , which
is open. Otherwise we have V = (X \ Y )∞ \ L for some compact subset L ⊆ X \ Y . It then follows that
f−1(V ) = X \ L, which is again open in X. This shows that f is continuous as claimed. Moreover, if x and
x′ lie in the same equivalence class then either x = x′ or {x, x′} ⊆ Y and in either case we have f(x) = f(x′).
It follows using Proposition 5.61 that the induced map f : X/Y → (X \ Y )∞ is continuous. Here X/Y is
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compact (by Corollary 10.21) and (X \ Y )∞ is Hausdorff (by Proposition 18.17) and f is a bijection (by
inspection) so f is a homeomorphism (by Proposition 10.22). �

Remark 18.24. [rem-N-infty]
Note that the discrete space N is locally compact and Hausdorff, so N∞ is compact and Hausdorff. From

the definitions we see that U ⊆ N∞ is open iff it is either contained in N or has finite complement.
For a more concrete model, consider the space T = {2−n : n ∈ N} ∪ {0} ⊂ [0, 1]. We can define a

map f : N∞ → T by f(n) = 2−n and f(∞) = 0. This is a continuous bijection from a compact space to a
Hausdorff space, so it is a homeomorphism.

There is an interesting relationship between N∞ and the theory of convergent sequences, as follows.

Proposition 18.25. [prop-N-infty]
Let X be a topological space, and let f : N∞ → X be an arbitrary function. Then f is continuous if and

only if the sequence (f(n))n∈N converges to f(∞).

Proof. Consider an open set U ⊆ X. If f(∞) 6∈ U then f−1(U) is a subset of N, and every subset of N
is open in N∞. On the other hand, if f(∞) ∈ U then f−1(U) is not contained in N, so it is open in N∞ iff it
has finite complement, iff there exists N such that f(n) ∈ U for all n ≥ N . The claim is clear from this. �

Remark 18.26. [rem-lch-component-relation]
We can use an example based on the above space T to show that Proposition 14.12 and Corollary 14.13

do not extend to locally compact Hausdorff spaces. Put X = (T × [0, 1]) \ {(0, 1/2)}, and note that this is
locally compact and Hausdorff. The connected components are the sets An = {2−n} × [0, 1] together with
the sets B = {0} × [0, 1/2) and C = {0} × (1/2, 1]. Any clopen subset F ⊆ X must be the disjoint union of
some of these components. If F meets B, then (because it is open), it must meet An for all large n. It must
therefore contain An for all large n, and because it is closed, it must contain C. Thus, the intersection of the
clopen sets containing (0, 0) is B ∪ C, which is strictly larger than the component B, so Proposition 14.12
does not extend to this case. Similarly, we can define an equivalence relation

E = (B ×B) ∪ (C × C) ∪
⋃
n

(An ×An)

as in Corollary 14.13. We find that (2−n, 0) and (2−n, 1) are related for all n, but that (0, 0) and (0, 1) are
not, so E is not closed in X ×X.

Now consider the space C∞. This is known as the Riemann sphere; it is homeomorphic to S2 by
Proposition 18.20.

Lemma 18.27. [lem-riemann-inverse]
There is a homeomorphism χ : C∞ → C∞ given by χ(0) =∞ and χ(∞) = 0 and χ(z) = 1/z for z ∈ C×.

Proof. First, it is clear that χ2 = 1, so χ is a bijection and is its own inverse. Next, we claim that
the restricted map χ : C× → C× is continuous. This can be proved by the same method as used for R in
Proposition 3.10, or deduced from Corollary 3.11 using the formula

χ(x+ iy) =
x− iy
x2 + y2

.

Now consider an open set U ⊆ C∞. As χ : C× → C× is continuous, we see that the set χ−1(U) \ {0,∞}
is open. Suppose that 0 ∈ χ−1(U), or equivalently ∞ ∈ U . By the definition of the topology on C∞, we
see that the set K = C∞ \ U is compact and therefore bounded in C. We can thus find R > 0 such that
K ⊆ BR(0), so U contains all z ∈ C with |z| > R, so OB1/R(0) ⊆ χ−1(U), so 0 is in the interior of χ−1(U).

Suppose instead that ∞ ∈ χ−1(U), or equivalently that 0 ∈ U . As U is open, there exists ε > 0 such that
OBε(0) ⊆ U . It follows that χ−1(U) contains the set C∞ \ B1/ε(0), so ∞ is in the interior. It follows that

χ−1(U) is open in all cases. As U was arbitrary we see that χ is continuous. As χ is self-inverse, it is
therefore a homeomorphism. �
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Proposition 18.28. [prop-hopf-quotient]
Consider the map η : C2 \ {0} → C∞ given by

η(x, y) =

{
x/y if y 6= 0

∞ if y = 0.

Then η is surjective, continuous and open (and thus is a quotient map). Moreover, we have η(x, y) = η(u, v)
iff there exists w ∈ C× such that w.(x, y) = (u, v). (This w is unique if it exists.)

Proof. For every x ∈ C we have η−1({x}) = {(xw,w) : w ∈ C×}, and we also have η−1({∞}) =
{(w, 0) : w ∈ C×}. It follows that η is surjective, and that η(x, y) = η(u, v) iff there exists w ∈ C× such
that w.(x, y) = (u, v).

Now put U0 = C × C× and U1 = C× × C; these are open sets whose union is C2 \ {0}. Let ηi be the
restriction of η to Ui. The map η0 is just (x, y) 7→ x/y, and this is continuous by the evident complex analog
of Corollary 3.11. We also have η1(x, y) = χη0(y, x) and χ is a homeomorphism, so η1 is continuous. As the
sets Ui are open and cover C2 \ {0} we can conclude (by Proposition 5.9) that η is continuous.

Now define ζ0 : U0 → U0 by ζ0(x, y) = (x/y, y). This is a homeomorphism (with inverse ζ−1
0 (u, y) =

(uy, y)), and we have η0 = π0 ◦ ζ0 : C×C× → C. We also know from Corollary 5.30 that π0 is an open map,
and it follows that η0 is also an open map. Using the relation η1(x, y) = χη0(y, x) again we see that η1 is
also an open map. For any open set V ⊆ C2 \ {0} we have η(V ) = η0(V ∩ U0) ∪ η1(V ∩ U1), and using this
we see that η itself is open. It follows by Proposition 4.8 that η is a quotient map. �

Remark 18.29. [rem-hopf-fibration]
We can restrict η to the subspace {(x, y) ∈ C2 : |x|2 + |y|2 = 1}, which can be identified with S3; this

gives a map η1 : S3 → S2, called the Hopf fibration. For z ∈ C we find that

η−1
1 ({z}) = {u.(z, 1)/

√
1 + |z|2 : u ∈ S1 ⊂ C},

whereas η−1
1 ({∞}) = {(u, 0) : u ∈ S1}. This implies that η1 is a continuous surjection between compact

Hausdorff spaces, so it is automatically a quotient map.

Proposition 18.30. [prop-rational-riemann]
Let u(z) and v(z) be polynomials with complex coefficients, not both identically zero. Then there is a

unique continuous map f : C∞ → C∞ satisfying f(z) = u(z)/v(z) for all z ∈ C such that v(z) 6= 0, and also
f(z) =∞ whenever v(z) = 0 6= u(z).

Proof. If u = 0 we must take f to be the constant function with value zero, and if v = 0 we must take f
to be the constant function with value∞. For the rest of the proof we assume that neither u nor v is identically
zero. It is then standard that we can write u(z) = u(z)w(z) and v(z) = v(z)w(z) for some polynomials u(z),
v(z) and w(z) such that u(z) and v(z) are coprime. This implies that u and v have no common roots, so

we can define f̃0 : C → C2 \ {0} by f̃0(z) = (u(z), v(z)). We then put f0 = q ◦ f̃0 : C → C∞; this is clearly
continuous. Now let d be the maximum of the degrees of u and v. Put u∗(z) = zdu(1/z) and v∗(z) = zdv(1/z).

We find that these are again polynomials with no common roots, so we can define f̃1 : C → C2 \ {0} by

f̃1(z) = (u∗(z), v∗(z)). Using this, we define a continuous map f1 : C∞ \ {0} → C∞ by f1 = q ◦ f̃1 ◦ χ. It is
straightforward to check that f0 and f1 agree on the open set C× = C∩ (C∞ \ {0}) where both are defined.
They can thus be patched together to give a map f : C∞ → C∞, which is continuous by Proposition 5.9. Note
that if z ∈ C with v(z) 6= 0 then we must have v(z), w(z) 6= 0 and f(z) = f0(z) = u(z)/v(z) = u(z)/v(z) ∈ C.
Similarly, if v(z) = 0 6= u(z) we must have v(z) = 0 and u(z), w(z) 6= 0, so f(z) = q(u(z), 0) =∞. Thus, our
map f has the stated properties. Let g : C∞ → C∞ be another continuous map with the stated properties.
As v is not identically zero we see that the set Z = {z ∈ C : v(z) = 0} is finite, and f = g on the set C \ Z
which is dense in C∞, so we have f = g. Thus f is unique as claimed. �

Remark 18.31. [defn-julia]
Let f : C∞ → C∞ be as in the above Proposition, and put A = {fn : n ∈ N} ⊆ C(C∞,C∞). Here

fn denotes the n’th iterate, so f3 = f ◦ f ◦ f , for example. By Proposition 17.31, there is a largest open
set F (f) ⊆ C∞ such that A|F (f) is equicontinuous. This is called the Fatou set of f , and the complement
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J(f) = C∞ \ F (f) is called the Julia set of f . These sets are typically highly complex and fractal. The
white part of the picture below is the Julia set for the polynomial f(x) = x2 − 1:

More generally, we can consider the polynomials fc(z) = z2 + c. Recall that the Mandelbrot set M is the
set of those c for which the sequence (fnc (0))n∈N is bounded. It can be shown that c ∈M if and only if the
Julia set J(fc) is connected. If c 6∈ M it can be shown that J(fc) is totally disconnected and equal to its
own boundary.

Remark 18.32. [rem-real-ends]
If we work over the reals, it is sometimes more natural to use the set R±∞ = R∪ {−∞,∞} rather than

R∞ = R ∪ {∞}. We can topologise this by declaring that the family

σ = {[−∞, b) : b ∈ R} ∪ {(a,∞] : a ∈ R}

is a subbasis of open sets. This makes R±∞ a compact Hausdorff space, homeomorphic to the interval [0, 1].
One can check that every polynomial f(x) ∈ R[x] extends to give a continuous map f : R±∞ → R±∞. Using
this and the compactness of R±∞, we can deduce that the map f : R→ R is closed.

However, rational functions do not work as well in this context. For example, the rational function
f(x) = 1/x has a continuous extension R∞ → R∞ (with 0 → ∞) but not a continuous extension R±∞ →
R±∞ (because the options 0 7→ +∞ and 0 7→ −∞ both lead to problems).

Another important application of the one-point compactification is the Pontrjagin-Thom construction,
which we now discuss.

Definition 18.33. [defn-pontrjagin-thom]
Let f : X → Y be an open embedding of locally compact Hausdorff spaces. We define f ! : Y∞ → X∞ by

f !(y) =

{
x if y ∈ Y and y = f(x) for some x ∈ X
∞ if y =∞ or y ∈ Y \ f(X).

(The first clause is well-defined because f is assumed to be injective.)
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Proposition 18.34. [prop-pt-cts]
The map f ! : Y∞ → X∞ is continuous.

Proof. Let U be an open set in X∞. First consider the case where U ⊆ X. We then see from the
definitions that (f !)−1(U) = f(U) ⊆ Y . This is open in Y because f : X → Y is assumed to be an open
embedding. It is therefore also open in Y∞, as required.

Now suppose instead that ∞ ∈ U . This means that U = X∞ \K for some compact set K ⊆ X, and
thus that (f !)−1(U) = Y∞ \ (f !)−1(K). We again see from the definitions that (f !)−1(K) = f(K), which is
a compact subset of Y . It follows once more that (f !)−1(U) is open in Y∞, as required. �

We will see a number of examples of this when we discuss manifolds in Section 20. There will also be
applications to homotopy theory in Section 27.

19. Examples from linear algebra

We will now take a more systematic look at various spaces related to linear algebra. As far as possible
we will work with abstract vector spaces rather than Rn or Cn; this turns out to have many conceptual and
technical advantages.

19.1. Spaces of linear maps. Recall (from Definition 12.21) that a Banach space is a normed vector
space that is complete with respect to the corresponding metric.

19.2. Inner products. Many constructions will involve inner products or hermitian products so we
start by reviewing some facts about these.

Definition 19.1. [defn-inner-product]
Let V be a vector space over R. An inner product on V is a rule giving a number 〈x, y〉 ∈ R for each

x, y ∈ V such that

IP0: 〈sx+ ty, z〉 = s〈x, z〉+ t〈y, z〉 for all s, t ∈ R and x, y, z ∈ V .
IP1: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .
IP2: 〈x, x〉 ≥ 0 for all x, with equality if and only if x = 0.

In this context, we write ‖x‖ =
√
〈x, x〉.

The Cauchy-Schwartz inequality and the triangle inequality continue to hold in this context:

Lemma 19.2. [lem-triangle-general]
Let V be a vector space over R equipped with an inner product. Then for u, v ∈ V we have |〈u, v〉| ≤

‖u‖‖v‖ and ‖u+ v‖ ≤ ‖u‖+ ‖v‖. (Thus, the rule x 7→ ‖x‖ gives a norm in the sense of Definition 3.31.)

Proof. Both claims are clear if v = 0, so we may assume that v 6= 0 and therefore 〈v, v〉 > 0. Put

f(t) = 〈u− tv, u− tv〉 = 〈u, u〉 − 2t〈u, v〉+ t2〈v, v〉.
By axiom IP2 we have f(t) ≥ 0 for all t. Now put t0 = 〈u, v〉/〈v, v〉. We find that

f(t0) = 〈u, u〉 − 2
〈u, v〉2

〈v, v〉
+
〈u, v〉2〈v, v〉
〈v, v〉2

= 〈u, u〉 − 〈u, v〉
2

〈v, v〉
.

As this is nonnegative we have 〈u, v〉2 ≤ 〈u, u〉〈v, v〉, or equivalently |〈u, v〉| ≤ ‖u‖‖v‖ as claimed.
This in turn gives

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, v〉+ 2〈u, v〉 = ‖u‖2 + ‖v‖2 + 2〈u, v〉
≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2,

so ‖u+ v‖ ≤ ‖u‖+ ‖v‖. �

Definition 19.3. [defn-hermitian-product]
Let V be a vector space over C. A hermitian product on V is a rule giving a number 〈x, y〉 ∈ C for each

x, y ∈ V such that

IP0: 〈sx+ ty, z〉 = s〈x, z〉+ t〈y, z〉 for all s, t ∈ C and x, y, z ∈ V .

IP1: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .
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IP2: 〈x, x〉 is real and nonnegative for all x, and is zero iff x = 0.

In this context, we again write ‖x‖ =
√
〈x, x〉.

Remark 19.4. [rem-conjugate-linear]
Axiom IP1 already implies that 〈x, x〉 is real, so it is not strictly necessary to include that in IP2. Using

IP0 and IP1 we also see that

〈x, sy + tz〉 = s〈x, y〉+ t〈x, z〉
for all s, t ∈ C and x, y, z ∈ V .

Remark 19.5. [rem-hermitian-inner]
Let V be a vector space over C. If 〈·, ·〉 is a hermitian product on V , then we can define an inner product

on V (regarded as a real vector space) by 〈x, y〉′ = Re(〈x, y〉). Conversely, if 〈·, ·〉′ is an inner product, one
can check that the rule

〈x, y〉 = 〈x, y〉′ + i〈x, iy〉′

gives a hermitian product on V . Moreover, these constructions are inverse to each other, so they give a
bijection between inner products and hermitian products.

Definition 19.6. [defn-hilbert-space]
A Hilbert space is a vector space V over R or C equipped with an inner product or hermitian product

such that V is complete with respect to the metric d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉.

Proposition 19.7. [prop-finite-hilbert]
Let V be a finite-dimensional vector space over R or C equipped with an inner product or hermitian

product. Then V is a Hilbert space.

Proof. The claim does not involve the complex structure (if there is one) so we need only discuss the
real case. We note that V is isomorphic to Rn, so we may assume that V = Rn (with a possibly nonstandard
inner product). Corollary 12.15 tells us that Rn is complete with respect to the metric

d∞(x, y) = max(|x1 − y1|, . . . , |xn − yn|).

Part (b) of Proposition 10.34 implies that the metric coming from the inner product is strongly equivalent
to d∞, and the claim follows. �

Proposition 19.8. [prop-l-two-I-hilbert]
Let I be an arbitrary set, and consider the vector space l2(I) defined in Remark 12.20. Then l2(I) is a

Hilbert space in a natural way.

Proof. Let x be a map from I to R. Recall that ‖x‖ is defined as the supremum of the numbers

‖x‖J =
√∑

j∈J x
2
j , where J runs over the finite subsets of I, and l2(I) is defined to be the set of those x

for which ‖x‖ <∞. Remark 12.20 shows that l2(I) is a complete normed vector space. The only issue is to
prove that the norm comes from an inner product. To do this, we define

〈x, y〉 = (‖x+ y‖2 − ‖x− y‖2)/4.

This formulation makes it clear that 〈x, y〉 is well-defined and finite. Now put

〈x, y〉J = (‖x+ y‖2J − ‖x− y‖2J)/4.

A straightforward calculation shows that this is the same as
∑
j∈J xjyj , so the function (x, y) 7→ 〈x, y〉J

satisfies axioms IP0 and IP1. We also have 〈x, x〉J ≥ 0, with equality iff x|J = 0.
Now suppose we have numbers uJ defined for all finite subsets J ⊆ I, and a number a ∈ R. We write

a = limJ uJ if for every ε > 0 there exists J such that |a−uK | < ε whenever K ⊇ J . It is not hard to see that
‖x‖ = limJ ‖x‖J and thus that 〈x, y〉 = limJ〈x, y〉J . From this it follows that the function (x, y) 7→ 〈x, y〉
also satisfies IP0 and IP1. Moreover, we see from the definitions that 〈x, x〉 = ‖x‖2 and we already know
that ‖x‖ is a norm so IP2 also holds. �
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Definition 19.9. [defn-orthogonal-complement]
Let V be a vector space over R equipped with an inner product, or a vector space over C equipped with

a hermitian product. Let W be a vector subspace of V . We then put

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W},
and call this the orthogonal complement of W .

Remark 19.10. [rem-orthogonal-complement]
In the complex case, there are apparently two possible definitions of W⊥: we could define it using the

given hermitian product, or using the inner product 〈x, y〉′ = Re(〈x, y〉). Provided that W is a complex
subspace, these are actually the same. Indeed, if 〈v, w〉′ = 0 for all w ∈ W then we also have 〈v, iw〉′ = 0
(because iw ∈W ) and so 〈v, w〉 = 〈v, w〉′ + i〈v, iw〉′ = 0.

Remark 19.11. [rem-complement-closed]
We claim that W⊥ is always closed, for any subspace W ≤ V . Indeed, if v 6∈W⊥ then we can find w ∈W

and ε > 0 with |〈v, w〉| > ε. This in particular means that ‖w‖ > 0 so it is legitimate to define δ = ε/‖w‖ > 0.
Using the Cauchy-Schwartz inequality we find that ‖u‖ < δ we have |〈u,w〉| < ε so 〈v + u,w〉 6= 0. This
means that v is not a closure point of W⊥, as required.

Proposition 19.12. [prop-hilbert-closest]
Let V be a Hilbert space, let C ⊆ V be a closed convex subset, and let x be a point of V . Write

d(x,C) = inf{d(x, y) : y ∈ C}. Then there is a unique point y ∈ C with d(x, y) = d(x,C).

Proof. Put r = d(x,C). For each ε ≥ 0 put Cε = {y ∈ C : d(x, y)2 ≤ r2 + ε}. By the definition of r
we have Cε 6= ∅ for ε > 0, and the claim is that C0 consists of a single point.

We first claim that for y, z ∈ Cε we have d(y, z)2 ≤ 4ε. Indeed, as C is convex we see that the point
u = (y + z)/2 lies in C, so d(x, u)2 ≥ r2. One can also check by expanding everything out that

〈y − z, y − z〉 = 2〈y − x, y − x〉+ 2〈z − x, z − x〉 − 4〈u− x, u− x〉,
or equivalently

d(y, z)2 = 2d(y, x)2 + 2d(z, x)2 − 4d(u, x)2 ≤ 2(r2 + ε) + 2(r2 + ε)− 4r2 = 4ε

as claimed. This implies that C0 has at most one point. We have also remarked that Cε 6= ∅ for ε > 0, so
we can choose yn ∈ C2−n for all n ≥ 0. The above argument shows that for i, j ≥ n we have d(yi, yj) ≤√

4.2−n = 21−n/2, so the sequence (yi)i≥0 is Cauchy. As V is complete it follows that the sequence converges
to some point y ∈ V . As C is closed we have y ∈ C, and it is clear that d(x, y) = limn→∞ d(x, yn) = r so
y ∈ C0 as required. �

Corollary 19.13. [prop-orthogonal-splitting]
Let V be a Hilbert space, and let W be a closed vector subspace. Then V = W ⊕W⊥ and W⊥⊥ = W .

Proof. First, if x ∈ W ∩ W⊥ then we must have 〈x, x〉 = 0 so x = 0. Thus, it will be enough to
prove that V = W + W⊥. Let x be an arbitrary element of V . As W is a vector subspace it is certainly
convex, so there is a unique element y ∈ W with d(x, y) = d(x,W ). We claim that the element z = x − y
lies in W⊥. To see this, consider an element w ∈ W and a number t ∈ R. We have y − tw ∈ W so
d(x, y− tw)2 ≥ d(x,W )2 = d(x, y)2, or equivalently 〈z + tw, z + tw〉 ≥ 〈z, z〉 or ‖z‖2t2 + 〈z, w〉t ≥ 0. As this
holds for all t, it is easy to see that we must have 〈z, w〉 = 0. (Consider the case t = −〈z, w〉/(2‖z‖2).) We
now have x = y + z ∈W +W⊥ as required.

Next, it is tautological that W ≤ W⊥⊥. In the opposite direction, suppose we have x ∈ W⊥⊥ ≤ V . By
the above we can write x = y + z for some y ∈ W and z ∈ W⊥. By assumption we have 〈x,W⊥〉 = 0, so
in particular we have 〈x, z〉 = 0. On the other hand, we have y ∈ W and z ∈ W⊥, so when we expand out
〈x, z〉 = 〈y + z, z〉 we just get ‖z‖2. As 〈x, z〉 = 0 we conclude that z = 0, so x = y ∈ W . This proves that
W⊥⊥ ≤W as required. �

Definition 19.14. [defn-hilbert-projector]
Let V be a Hilbert space, and let W be a closed vector subspace. We write πW for the linear map

V → V given by πV (y + z) = y for all y ∈W and z ∈W⊥.
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Corollary 19.15 (The Riesz Representation Theorem). [prop-riesz]
Let V be a Hilbert space over R. Then there is an isometric isomorphism λ : V → V ∗ given by λ(a)(v) =

〈v, a〉. More explicitly, for any continuous linear map φ : V → R there is a unique element a ∈ V such that
φ(v) = 〈v, a〉 for all v ∈ V ; moreover, we have ‖φ‖op = ‖a‖.

Proof. First, the Cauchy-Schwartz inequality tells us that ‖λ(a)(v)‖ ≤ ‖a‖‖v‖ for all v, and that this
bound is attained when v = a. It follows that λ(a) ∈ V ∗ with ‖λ(a)‖op = ‖a‖. It is also clear that the map
λ : V → V ∗ is linear, and as ‖λ(a)‖op = ‖a‖ we see that it is also injective. The main point is to prove
that it is surjective. It is clear that zero is in the image, so consider instead a nonzero element φ ∈ V ∗.
Put W = ker(φ) = φ−1{0}. As φ is linear and continuous, we see that W is a closed vector subspace, so
V = W ⊕W⊥. As φ 6= 0 we have V 6= W and so W⊥ 6= 0. We can thus choose b ∈ W⊥ with ‖b‖ = 1. Put
t = φ(b) ∈ R \ {0}. Note that for any z ∈W⊥ we have φ(z − t−1φ(z)b) = 0 so z − t−1φ(z)b ∈W ∩W⊥ = 0
so z = t−1φ(z)b. This means that W⊥ = Rb. Next, put ψ = φ − λ(tb); it will suffice to show that ψ = 0.
Now V = W ⊕W⊥ = W ⊕ Rb so it will be enough to prove that ψ(W ) = 0 and ψ(b) = 0. For the first, we
note that φ(W ) = 0 and that tb ∈ W⊥ so 〈W, tb〉 = 0 so ψ(W ) = 0. For the second, we have φ(b) = t and
〈b, tb〉 = t〈b, b〉 = t so ψ(b) = 0. �

Remark 19.16. [rem-riesz-complex]
The Riesz Representation Theorem is also valid over C, but with one small wrinkle. We can still define

λ : V → V ∗ by λ(a)(v) = 〈v, a〉, and this is R-linear and an isometric isomorphism, but it is not C-linear.
Instead, it is conjugate-linear, in the sense that λ(ta) = tλ(a) for all t ∈ C and a ∈ V .

Definition 19.17. [defn-linear-adjoint]
Let V and W be vector spaces over R equipped with inner products, and let f : V →W and g : W → V

be linear maps. We say that g is adjoint to f if we have 〈f(v), w〉 = 〈v, f(w)〉 for all v ∈ V and w ∈ W .
Similarly, if V and W are complex vector spaces equipped with hermitian products, and f : V → W and
g : W → V are C-linear maps, we say that g is adjoint to f if 〈f(v), w〉 = 〈v, g(w)〉 for all v ∈ V and w ∈W .
By the proposition below, there is at most one such g, so we can legitimately denote it by f∗.

Proposition 19.18. [prop-adjoint-unique]
Given a linear map f : V → W , there is at most one adjoint g : W → V . If f is continuous and V is a

Hilbert space, then there is exactly one adjoint, and it is also continuous, with ‖g‖op = ‖f‖op.

Proof. First, suppose that g0 and g1 are both adjoint to f . Put h(w) = g0(w)− g1(w), so for all v ∈ V
and w ∈W we have

〈v, h(w)〉 = 〈v, g0(w)〉 − 〈v, g1(w)〉 = 〈f(v), w〉 − 〈f(v), w〉 = 0.

In particular, this holds for v = h(w), so we have ‖h(w)‖2 = 〈h(w), h(w)〉 = 0, so h(w) = 0, so g0 = g1.
Now suppose that f is continuous and V is a Hilbert space. Let K denote R or C as appropriate.

For any w ∈ W we have a linear map φw : V → K given by φw(v) = 〈f(v), w〉. This is continuous with
‖φw‖op ≤ ‖f‖op‖w‖, because ‖φw(v)‖ ≤ ‖f(v)‖‖w‖ ≤ ‖f‖op‖v‖‖w‖. By the Riesz representation theorem,
there is a unique element g(w) ∈ V such that φw(v) = 〈v, g(w)〉 for all v ∈ V . If we have elements w0, w1 ∈W
and scalars t0, t1 ∈ K we note that

〈v, t0g(w0) + t1g(w1)〉 = t0〈v, g(w0)〉+ t1〈v, g(w1)〉 = t0〈f(v), w0〉+ t1〈f(v), w1〉 = 〈f(v), t0w0 + t1w1〉,

so we must have t0g(w0) + t1g(w1) = g(t0w0 + t1w1). Thus, the map g : W → V is linear. Moreover, as
the Riesz map λ is an isometry we have ‖g(w)‖ = ‖φw‖op ≤ ‖f‖op‖w‖. It follows that g is continuous
with ‖g‖op ≤ ‖f‖op. On the other hand, the relationship between f and g is symmetrical, so we also have
‖f‖op ≤ ‖g‖op. �

Example 19.19. [eg-matrix-adjoint]
Let A be an m × n matrix, and define mA : Rn → Rm by mA(v) = Av, so mA(v)j =

∑
iAijvj . If we

interpret Rn as the space of column vectors of length n, then the standard inner product is just 〈u, v〉 = uT v.
From this perspective it is clear that 〈Au, v〉 = 〈u,AT v〉, which shows that m∗A = mAT . In the analogous
complex case we have 〈u, v〉 = u†v and m∗A = mA† .
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Definition 19.20. [defn-orthonormal]
Let V be a vector space over R equipped with an inner product, or a vector space over C equipped with

a hermitian product. An orthonormal sequence in V means a finite or infinite sequence (v0, v1, . . . ) such
that 〈vi, vj〉 = 0 for all i 6= j, and ‖vi‖ = 1 for all i. An orthonormal basis is an orthonormal sequence that
is also a basis.

Remark 19.21. [rem-orthonormal-complex]
Suppose that V is a complex vector space, and that the sequence (v0, v1, . . . ) is orthonormal with respect

to a hermitian product 〈·, ·〉. One can then check that the sequence (v0, iv0, v1, iv1, . . . ) is orthonormal with
respect to the inner product 〈x, y〉 = Re(〈x, y〉).

Proposition 19.22. [prop-gram-schmidt]
Let V be a vector space over R equipped with an inner product, or a vector space over C equipped with

a hermitian product, and suppose that V has finite dimension. Then V admits an orthonormal basis.

Proof. This is is just the well-known Gram-Schmidt procedure. As V has finite dimension, we can
choose a basis, say u0, . . . , un−1. Let Ui be the span of {u0, . . . , ui−1}. We define v0, . . . , vn−1 recursively by

vi = ui −
∑
j<i

〈ui, vj〉
〈vj , vj〉

vj .

(In particular, we start with v0 = u0.) One can check by induction that (v0, . . . , vi−1) is a basis for Ui (so
in particular the vj are nonzero) and 〈vi, vj〉 = 0 for j < i. We then put wi = vi/‖vi‖ and we find that
(w0, . . . , wn−1) is the required orthonormal basis for V . �

Proposition 19.23. [prop-projector-formula]
Let (v0, . . . , vn−1) be a finite orthonormal sequence in V , and let W be the subspace spanned by v0, . . . , vn.

Then W is closed in V , and the projector πW : V = W ⊕W⊥ →W (as in Definition 19.14) is given by

πW (x) =

n−1∑
i=0

〈x, vi〉vi.

We thus have

‖x‖2 = ‖πW⊥(x)‖2 +

n−1∑
i=0

|〈x, vi〉|2 ≥
n−1∑
i=0

|〈x, vi〉|2.

Proof. First note that W can be considered as an inner product space in its own right, and it is
complete by Proposition 19.7, so it is closed in V .

Now consider an element x ∈ V , and put ti = 〈x, vi〉 and y =
∑n−1
i=0 tivi ∈W and z = x−y. As the vk are

orthonormal, the only nonzero term in 〈y, vj〉 is 〈tjvj , vj〉 = tj . This implies that 〈z, vj〉 = 〈x, vj〉 − 〈y, vj〉 =
tj−tj = 0. As the elements vj span W we deduce that z ∈W⊥. As x = y+z with y ∈W and z ∈W⊥ we see
that πW (x) = y and πW⊥(x) = z. Next, as the elements vk are orthogonal to each other and to z, we get no
cross-terms when we expand out the inner product 〈x, x〉 = 〈z+

∑
i tivi, z+

∑
i tivi〉. Moreover, most of the

remaining terms have the form 〈tivi, tivi〉 = titi〈vi, vi〉 = |ti|2. The conclusion is that ‖x‖2 = ‖z‖2 +
∑
i |ti|2,

as claimed. �

Corollary 19.24. [cor-parseval]
Let (v0, v1, v2, . . . ) be an infinite orthonormal sequence in V . Let W [n] be the span of v0, . . . , vn−1, and

let W be the closure of
⋃
nW [n]. Then W is a vector subspace of V . Moreover, for any x ∈ V the sequence

(πW [n](x))n∈N converges to πW (x), and we have

‖x‖2 = ‖πW⊥(x)‖2 +

∞∑
i=0

|〈x, vi〉|2 ≥
∞∑
i=0

|〈x, vi〉|2.

(This is known as Parseval’s inequality.)
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Proof. First, put W ′ =
⋃
nW [n] = span{vi : i ∈ N}, so W is the closure of W ′. Let K be R or C as

appropriate, and suppose we have s, t ∈ K. We can define f : V × V → V by f(a, b) = sa+ tb. This is easily
seen to be continuous, so f−1(W ) is closed in V × V . It is also clear that W ′ ×W ′ ⊆ f−1(W ′) ⊆ f−1(W ),
so f−1(W ) contains the set W ′ ×W ′ = W ×W . Using this we see that W is a vector subspace of V .

Now consider an element x ∈ V . Put ti = 〈x, vi〉 and yn =
∑
i<n tivi = πW [n](x) and zn = x − yn =

πW [n]⊥(x). From the proposition we know that ‖yn‖2 =
∑
i<n |ti|2 ≤ ‖y‖2. It follows that the supremum

r = sup{‖yn‖ : n ∈ N} is at most ‖y‖. Suppose we are given ε > 0. There must then exist n such that
‖yn‖2 > r2 − ε. Now for m ≥ n we have

‖ym − yn‖2 = ‖
∑

n≤i<m

tivi‖2 =
∑

n≤i<m

|ti|2 = ‖ym‖2 − ‖yn‖2 ≤ r2 − (r2 − ε) = ε.

Using this, we see that the sequence (yn)n∈N is Cauchy. It therefore converges to some point y ∈ V . In fact,
as each yn lies in W [n] ≤ W and W is closed we see that y ∈ W . We also see that the element z = x − y
is the limit of the elements zn. Moreover, for n ≥ m we see that zn ∈ W [n]perp ≤ W [m]⊥. As W [m]⊥ is
closed and zn → z we see that z ∈ W [m]⊥. Equivalently, we have W [m] ≤ (Kz)⊥. As this holds for all m
and (Kz)⊥ is closed we deduce that W ′ ≤ (Kz)⊥ and then that W ≤ (Kz)⊥, or equivalently z ∈ W⊥. As
x = y+z with y ∈W and z ∈W⊥ we have y = πW (x) and z ∈ πW⊥(x). As yn → y with ‖yn‖2 =

∑
i<n |ti|2

we also have ‖y‖2 =
∑∞
i=0 |ti|2. We can also expand out 〈y + z, y + z〉 to see that

‖x‖2 = ‖y‖2 + ‖z‖2 ≥ ‖y‖2 =
∑
i

|ti|2,

which is Parseval’s inequality. �

19.3. Finite-dimensional spectral theory. We now consider some theory of eigenvalues and eigen-
vectors for endomorphisms of finite-dimensional complex vector spaces. There is also a rich theory for the
infinite-dimensional case, but that would take us further into the realms of functional analysis than we
wish to go. In the finite-dimensional case we avoid many analytic technicalities but there are a number of
interesting algebraic and topological points that not as well-known as they might be.

Definition 19.25. [defn-euclidean-space]
A euclidean space is a finite-dimensional vector space over R equipped with an inner product (or equiv-

alently, a finite-dimensional real Hilbert space). A hermitian space is a finite-dimensional vector space over
C equipped with a hermitian product (or equivalently, a finite-dimensional complex Hilbert space).

Definition 19.26. Let V and W be Hermitian spaces. We define a Hermitian product on Hom(V,W )
by 〈α, β〉 = trace(β∗α). (If we choose orthonormal bases for V and W and let A and B be the matrices
corresponding to α and β, we find that 〈α, β〉 =

∑
i,j AijBij , which makes it clear that this is indeed a

Hermitian product.) We write ‖α‖2 =
√

trace(α∗α) for the corresponding norm.

Recall that we also have another norm

‖α‖op = max{‖α(v)‖ : ‖v‖ ≤ 1}.

(We previously wrote this as a supremum rather than a maximum, but we are now working in a finite-
dimensional context where the ball B(V ) is compact, so the supremum is attained.)

Example 19.27. Let α ∈ End(C2) be given by the matrix

[
1 2a
0 1

]
with a ≥ 0. Then ‖α‖2 = 2 + 4a2,

and a nice exercise in calculus shows that

‖α‖∞ = max{(cos(t) + 2a sin(t))2 + sin(t)2 : t ∈ R} =

√
a2 + 1 + a√
a2 + 1− a

.

In fact, we have

(cos(t) + 2a sin(t))2 + sin(t)2 = 1
2 (r + r−1)− 1

2 (r − r−1) cos(2t+ arctan(1/a)),

where r = (
√
a2 + 1 + a)/(

√
a2 + 1− a).
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We know from Proposition 10.34 that there exist constants k,K (depending only on the dimensions of
V and W ) such that k‖α‖op ≤ ‖α‖2 ≤ K‖α‖op for all α. We can give specific constants as follows:

Proposition 19.28. For any α : V →W we have ‖α‖∞ ≤ ‖α‖2 ≤
√

dim(V )‖α‖∞.

Proof. Choose a unit vector v1 ∈ V with ‖α(v1)‖ = ‖α‖∞, and extend it to give an orthonormal
basis v1, . . . , vn for V . Choose an orthonormal basis w1, . . . , wm for W , and put Aij = 〈α(vi), wj〉, so

α(vi) =
∑
j Aijwj . It follows that α∗(wj) =

∑
iAijvi and thus that ‖α‖22 =

∑
i,j |Aij |2. However, we also

find that ‖α(vi)‖2 =
∑
j |Aij |2 so ‖α‖22 =

∑n
i=1 ‖α(vi)‖2. Here ‖α(vi)‖2 ≤ ‖α‖2op for all i, with equality

when i = 1. It follows that ‖α‖2op ≤ ‖α‖22 ≤ n‖α‖2op as claimed. �

Proposition 19.29. [prop-linear-isometry]
Let K be R or C, and let α : V → W be a K-linear map between finite-dimensional Hilbert spaces over

K. Then α is an isometry if and only if α∗α = 1V . If so, then α is an isometric isomorphism iff αα∗ = 1W
iff dim(V ) = dim(W ).

Proof. First suppose that α∗α = 1. For v ∈ V we then have ‖α(v)‖2 = 〈α(v), α(v)〉 = 〈v, α∗α(v)〉 =
〈v, v〉 = ‖v‖2, so ‖α(v)‖ = ‖v‖. This gives d(α(v), α(v′)) = ‖α(v − v′)‖ = ‖v − v′‖ = d(v, v′), so α is an
isometry.

Conversely, suppose that α is an isometry, so ‖α(v)‖2 = ‖v‖2 for all v ∈ V . Observe that

‖v + v′‖2 − ‖v − v′‖2 = 〈v, v′〉+ 〈v′, v〉 = 2Re(〈v, v′〉).
Similarly, we have

‖α(v) + α(v′)‖2 − ‖α(v)− α(v′)‖2 = 2Re(〈α(v), α(v′)〉) = 2Re(〈v, α∗α(v′)〉).
By comparing these, we see that Re(〈v, v′〉) = Re(〈v, α∗α(v′)〉) for all v and v′, or equivalently Re(〈v, v′ −
α∗α(v)〉) = 0. If we take v = v′−α∗α(v′) then there is no imaginary part and we see that ‖v′−α∗α(v′)‖2 = 0,
so v′ = α∗α(v′). As v′ was arbitrary we have α∗α = 1V as claimed.

For the rest of the proof we assume that α∗α = 1. It is then standard linear algebra that α is an
isomorphism iff dim(V ) = dim(W ), and if so, then α∗ must be a right inverse as well as a left inverse. �

Definition 19.30. [defn-isometry-spaces]
If V and W are euclidean spaces, we write L(V,W ) for the space of R-linear isometries α : V → W

(considered as a topological subspace of the finite-dimensional vector space Hom(V,W )). Similarly, if V and
W are hermitian spaces, we write H(V,W ) for the space of C-linear isometries α : V →W .

Proposition 19.31. The spaces L(V,W ) and H(V,W ) are compact Hausdorff.

Proof. The description H(V,W ) = {α ∈ HomC(V,W ) : α∗α = 1} makes it clear that H(V,W ) is a

closed subspace of Hom(V,W ), so it is Hausdorff. For α ∈ H(V,W ) we also have ‖α‖2 =
√

trace(α∗α) =√
dim(V ), so H(V,W ) is bounded and thus compact. The argument for L(V,W ) is essentially the same. �

Definition 19.32. Let V be a Hermitian space, and let α be an endomorphism of V . We put

spec(α) = { eigenvalues of α} = {λ ∈ C : α− λ is not invertible }
ρ(α) = the spectral radius of α = max{|λ| : λ ∈ spec(α)}.

Lemma 19.33. For any α we have ρ(α) ≤ ‖α‖∞.

Proof. Just choose an eigenvalue λ with |λ| = ρ(α), and then a unit vector v with α(v) = λv; then
ρ(α) = |λ| = ‖α(v)‖ ≤ ‖α‖∞. �

Remark 19.34. Let α be a nonzero map represented by an upper triangular matrix with zeros on the
diagonal. Then spec(α) = {0} so ρ(α) = 0 but ‖α‖2, ‖α‖∞ > 0. Thus, neither norm can be bounded above
by a constant multiple of the spectral radius.

Definition 19.35. We say that an endomorphism α : V → V is normal if α∗α = αα∗.

Remark 19.36. Recall that
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• α is unitary if it is invertible, with α∗ = α−1

• α is hermitian (or self-adjoint) if α∗ = α
• α is antihermitian (or anti self-adjoint) if α∗ = −α.

It is clear that α is normal in all these cases.

Proposition 19.37. α is normal if and only if there exists an orthonormal basis for V consisting of
eigenvectors for α.

Proof. Suppose that v1, . . . , vn is an orthonormal basis for V with α(vi) = λivi. We then define
β : V → V by β(vi) = λivi, and check that 〈α(vi), vj〉 = δijλi = 〈vi, β(vj)〉, so β = α∗. We also see that
αβ = βα, so α is normal.

Conversely, suppose that α is normal. Let λ be an eigenvalue, and put W = ker(α−λ) 6= 0. For w ∈W
we have αα∗(w) = α∗α(w) = λα∗(w), so α∗(w) ∈ W . It follows that for x ∈ W⊥ we have 〈α(x),W 〉 =
〈x, α∗(W )〉 ≤ 〈x,W 〉 = 0, so α∗(x) ∈W⊥. This means that α preserves the splitting V = W ⊕W⊥, and so
restricts to give a normal operator on W⊥. By induction on dimension we can choose an orthonormal basis
of W⊥ consisting of eigenvectors for α, and we can combine this with an arbitrary orthonormal basis of W
to get the required basis of V . �

Corollary 19.38. Let α be normal, with eigenvalues λ1, . . . , λn (repeated according to multiplicity).
Then

‖α‖2 =

(∑
i

|λi|2
)1/2

‖α‖∞ = ρ(α) = max{|λ1|, . . . , |λn|}.

Proof. We can choose an orthonormal basis v1, . . . , vn with α(vi) = λivi. The formula for ‖α‖2 follows
immediately. Now consider a vector v =

∑
i xivi ∈ V . We have ‖v‖2 =

∑
i |xi|2 and

‖α(v)‖2 =
∑
i

|λi|2|xi|2 ≤
∑
i

ρ(α)2|xi|2 = ρ(α)2‖v‖2,

so ‖α‖2∞ ≤ ρ(α)2. The reverse inequality is given by Lemma 19.33. �

Proposition 19.39. Let α : V → V be self-adjoint, and consider the set

R(α) = {〈v, α(v)〉 : v ∈ S(V )}
(known as the numerical range of α). Then all eigenvalues of α are real, and R(α) = [ρ−(α), ρ+(α)], where
ρ−(α) and ρ+(α) are respectively the smallest and largest eigenvalues.

Proof. Choose an orthonormal basis v1, . . . , vn with α(vi) = λivi say. We then have

λi = 〈vi, λivi〉 = 〈vi, α(vi)〉 = 〈α∗(vi), vi〉 = 〈α(vi), vi〉 = λi,

so λi is real as claimed. We can order the basis so that λ1 ≤ λ2 ≤ · · · ≤ λn, so that ρ−(α) = λ1 and
ρ+(α) = λn. Now consider an element v =

∑
i xivi ∈ V . We have

〈v, α(v)〉 = 〈
∑
i

xivi,
∑
j

λjxjvj〉 =
∑
i

λi|xi|2 ≤
∑
i

λn|xi|2 = λn‖v‖2.

It follows that R(α) ⊆ (−∞, λn]. By a similar argument we have R(α) ⊆ [λ1,∞), so R(α) ⊆ [λ1, λn]. By
taking v = cos(θ)v1 + sin(θ)vn for 0 ≤ θ ≤ π/2 we see that [λ1, λn] ⊆ R(α), which completes the proof. �

Definition 19.40. We write w(V ) for the space of self-adjoint endomorphisms of V . We say that
α ∈ w(V ) is positive if 〈v, α(v)〉 > 0 for all v 6= 0, or equivalently ρ−(α) > 0, or equivalently spec(α) ⊂ (0,∞).
We write w+(V ) for the space of positive operators. We also define nonnegative operators in the analogous
way.

Remark 19.41. For a self-adjoint operator α we have ‖α‖∞ = ρ(α) = max(|ρ−(α)|, |ρ+(α)|). For a
positive operator this reduces to ‖α‖∞ = ρ(α) = ρ+(α).

Corollary 19.42. For any linear map α : V →W , we have ‖α‖∞ = ‖α∗α‖1/2∞ =
√
ρ(α∗α).
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Proof. Apply Proposition 19.39 to the nonnegative operator α∗α, noting that 〈v, α∗α(v)〉 = 〈α(v), α(v)〉 =
‖α(v)‖2. �

19.4. Compact convex sets. Let V be a finite-dimensional normed vector space over R. Recall that
a set C ⊆ V is said to be convex if (1− t)x+ ty ∈ C whenever x, y ∈ C and t ∈ [0, 1]. It is straightforward
to check that the ball B(V ) = {x ∈ V : ‖x‖ ≤ 1} is compact and convex, and using Proposition 10.34 we
see that it is homeomorphic to the standard ball Bdim(V ). We next explain a generalisation of this.

Proposition 19.43. [prop-compact-convex-i]
Let C be a compact convex subset of V such that 0 ∈ int(C). Then C is homeomorphic to B(V ) and

thus to the standard ball Bdim(V ). More precisely, there is a unique homeomorphism f : C → B(V ) satisfying
f(tx) = t f(x) for all x ∈ C and t ∈ [0, 1].

Proof. First, as 0 ∈ int(C) we can choose some ε > 0 such that OBε(0) ⊆ C. Moreover, as C is
compact the function x 7→ ‖x‖ must be bounded on C, so we can choose R > 0 with C ⊆ BR(0).

Now put ∂(C) = C \ int(C) as usual. This is closed in the compact set C, so it is again compact.
As 0 ∈ int(C) we see that ∂(C) ⊆ V \ {0}, so we can define a continuous map f1 : ∂(C) → S(V ) by
f1(x) = x/‖x‖.

We next claim that f1 is surjective. To see this, consider a point x ∈ S(V ), define a continuous map
mx : [0,∞)→ V by mx(t) = tx, and put Tx = m−1

x (C). As ‖mx(t)‖ = t and OBε(0) ⊆ C ⊆ BR(0) we have
[0, ε) ⊆ Tx ⊆ [0, R]. As C is convex, the same is true of Tx. It now follows easily that Tx = [0, τ(x)] for
some number τ(x) > 0. Put g1(x) = τ(x)x ∈ C. By the definition of τ(x) we have g1(x) + εx 6∈ C for all
ε > 0, and this means that g1(x) 6∈ int(C). We have thus defined a map g1 : S(V ) → ∂(C) (not obviously
continuous) and it is clear that f1g1 = 1 so f1 is surjective.

Next, for 0 ≤ t < 1 we note that the set tg1(x)+(1− t)OBε(0) is an open neighbourhood of tg1(x) which
is contained in C by convexity, so tg1(x) ∈ int(C). This means that g1(x) is the unique positive multiple
of x that lies in ∂(C). It follows easily that the map f1 : ∂(C) → S(V ) is injective as well as surjective.
Moreover, ∂(C) is compact and S(V ) is Hausdorff, so f1 is actually a homeomorphism. It follows that g1 is
inverse to f1 and is continuous.

0
Bε

τ(x)x
x

tx

C

S(W )

Now define g : B(V )→ C by

g(x) =

{
‖x‖ g1(x/‖x‖) if x 6= 0

0 if x = 0.

To check that this is continuous, consider the map m : [0, 1]×S(V )→ B(V ) given by m(t, x) = tx. This is a
continuous surjection of compact Hausdorff spaces, and thus a quotient map. We have g(m(t, x)) = t g1(x)
for all t and x, so g ◦m is continuous, so g is continuous. Using the fact that Tx = [0, τ(x)] we see that g is
a bijection. As the source and target are compact Hausdorff, it is therefore a homeomorphism. We write f
for the inverse. By construction we have g(tx) = t g(x) when 0 ≤ t ≤ 1, and it follows that f has the same
property. We leave it to the reader to check that it is uniquely determined by this. �

We can generalise slightly further as follows.
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Proposition 19.44. [prop-compact-convex]
Let V be a finite-dimensional vector space, and let C be a nonempty compact convex subset of V . Then

C is homeomorphic to Bn for some n ≤ dim(V ).

Proof. Choose a point c0 ∈ C. Let W be the linear span of all the vectors x − c0 with x ∈ C. Put
X = c0 + W , and note that this is the same as x + W for any x ∈ C. Choose c1, . . . , cn ∈ C such that the
vectors ci − c0 give a basis for W . Put b = (

∑n
i=0 ci)/(n + 1), and note that this lies in C by convexity, so

X = b+W . We can now define a homeomorphism f : Rn → X by

f(t) = b+

n∑
i=1

ti(ci − c0) =

(
1

n+ 1
−

n∑
i=1

ti

)
c0 +

n∑
i=1

(
1

n+ 1
+ ti

)
ci.

If the numbers ti are sufficiently small, then all the coefficients 1/(n+ 1)−
∑
i ti and 1/(n+ 1) + ti will be

positive, and their sum is one, so we have f(t) ∈ C by convexity. It now follows that f−1(C) is a compact
convex subset of Rn with 0 in the interior, so it is homeomorphic to Bn. We also have a homeomorphism
f : f−1(C)→ C, so C ' Bn. �

19.5. More balls and spheres. In this section we let V denote a finite-dimensional real Hilbert space.
To avoid notational clutter we will generally write v2 for ‖v‖2.

Associated to V we have a number of different spaces that are homeomorphic to Sn or Bm. It will be
helpful to have a systematic catalogue of these. We put

V+ = R⊕ V
SV = V ∪ {∞} = the one-point compactification of V

S(V+) = {(t, v) ∈ V+ : t2 + v2 = 1}
S+(V+) = {(t, v) ∈ S(V+) : t ≥ 0}
S′(V+) = {(t, v) ∈ V+ : (t− 1/2)2 + v2 = 1/4}

= {(t, v) ∈ V+ : t(1− t) = v2}.

As in Example 5.55, we use the notation X/Y for the quotient space of X where Y is collapsed to a
single point. In particular, this construction gives us spaces S+(V+)/S(V ) and B(V )/S(V ). We can define
homeomorphisms

S′(V+) ' S+(V+)/S(V ) ' SV ' S(V+) ' B(V )/S(V )

by letting the points P , Q, R, S and T in the following diagram correspond to each other.

O

P

Q

R
S

T

1× V

V

B(V )

S+(V+)

S(V+)

S′(V+)
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Formulae can be read off from the following table:

P Q R S T

S′(V+) S+(V+)/S(V ) SV S(V+) B(V )/S(V )

(p, u) (p, u)/
√
p u/p (2p− 1, 2u) u/

√
p

q(q, v) (q, v) v/q (2q2 − 1, 2qv) v

(1, w)/(1 + w2) (1, w)/
√

1 + w2 w (w2 − 1, 2w)/(1 + w2) w/
√

1 + w2

(1 + s, x)/2 (1 + s, x)/
√

2(1 + s) x/(1 + s) (s, x) x/
√

2(1 + s)

(1− y2, y
√

1− y2) (
√

1− y2, y) y/
√

1− y2 (1− 2y2, 2y
√

1− y2) y

For example, the last line means that if we have a point T ∈ B(V )/S(V ) corresponding to an element

y ∈ B(V ), then the corresponding point P ∈ S′(V+) is given by P = (1 − y2, y
√

1− y2). We will leave all
verifications to the reader. Note that the homeomorphism SV ' S(V+) is stereographic projection, which
we already met in Proposition 18.20.

We now give yet another model of the same homeomorphism type.

Proposition 19.45. [prop-sphere-double]
Let E denote the equivalence relation on B(V+) given by

E = {(a, a) : a ∈ B(V+)} ∪ {((x, v), (−x, v)) : (x, v) ∈ S(V+)}.

Then there is a homeomorphism f : B(V+)/E → S(R2 ⊕ V ) given by

f(x, v) =

(
2x2 + v2 − 1√

1− v2
, 2x

√
1− v2 − x2

√
1− v2

, v

)
(or f(x, v) = (0, 0, v) if v2 = 1).

Remark 19.46. [rem-sphere-double]
In the case V = R, one can check that f can be described geometrically as follows. We first use the map

(y, v) 7→ (
√

1− y2 − v2, y, v) from B2 to the right-hand hemisphere in S2; then we apply the map given in
spherical polar coordinates by (θ, φ) 7→ (2θ, φ). The general case is obtained by reinterpreting the formulae
from this case in a straightforward way.

Proof. It is straightforward algebra to check that when v2 6= 1 we have ‖f(x, v)‖2 = 1. Note that the
last entry in f(x, v) is just v so if v2 is close to 1 then the other two entries must be small; this proves that
the stated rule for v2 = 1 gives a continuous extension of the formula. If (x, v) ∈ S(V+) then the second
entry in f(x, v) is zero and the first entry is clearly an even function of x; thus f respects our equivalence
relation. We next show that f is surjective. Put

U = {(s, t, u) ∈ S(R2 ⊕ V ) : s <
√
s2 + t2}

= {(s, t, u) ∈ S(R2 ⊕ V ) : s < 0 or t 6= 0}

and define g : U → R2 ⊕ V by

g(s, t, v) =

(
t√
2

(
1− s√

s2 + t2

)−1/2

, v

)
.

If we let x be the first entry in g(s, t, v) and put r =
√
s2 + t2 =

√
1− v2, we find after some manipulation

that 1− x2/r2 = (1− s/r)/2. From this one can derive the formulae f(g(s, t, v)) = (s, t, v) and g(f(x, v)) =
(x, v), and after considering carefully the range of validity of these calculations we see that f and g give
a homeomorphism from the interior of B(V+) to U . When x2 + v2 = 1 the formula for f reduces to
f(x, v) = (|x|, 0, v). It follows easily from this that the induced map B(V+)/E → S(R2 ⊕ V ) is a continuous
bijection from a compact space to a Hausdorff space, so it is a homeomorphism. �
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Remark 19.47. Tidy this up
I think we can also define a homeomorphism B(V+)/S+(V+)→ B(V+) by

f(t, u) =

(
1 + t−m,

√
m− t

2 +m− t
u

)
m =

√
1− u2.

Note here that t ∈ [−m,m] and (t, u) ∈ S+(V+) iff t = m. The inverse is

f−1(r, v) = (r − 1 +
√

1− u2, u) u =

√
3− r
1− r

v.

This restricts to give a homeomorphism S(V+)/S+(V+) ' S(V+).

As well as the spheres S(V ) themselves, products such as X = S(V1) × · · · × S(Vn) are also important
examples for a variety of purposes. One interesting fact is that X admits an embedding in Rdim(X)+1, as we
now explain.

Definition 19.48. [defn-sphere-embedding]
Let V be a euclidean space. We define

j(V ) : (−1, 1)× S(V+) −→ V × (−1, 1)

by

j(V )(s, t, v) = 1
2 (1 + s)(v, t).

More generally, suppose we have inner product spaces V1, . . . , Vn. We define (recursively) a map

j(V ) : (−1, 1)×
∏
k≤n

S(Vk+) −→

∏
k≤n

Vk

× (−1, 1)

as the composite

(−1, 1)×
∏
k≤n

S(Vk+)
j(V0,...,Vn−1)×1−−−−−−−−−−→

∏
k<n

Vk × (−1, 1)× S(Vn+)
1×j(Vn)−−−−−→

∏
k≤n

Vk × (−1, 1).

Proposition 19.49. [prop-sphere-embedding]
The map j(V ) is an open embedding. It therefore restricts to give an embedding of

∏
k S(Vk+) '

∏
k S

Vk

in (
∏
k Vk)× R.

Proof. It will suffice to show that j(V ) is an open embedding. In fact, it gives a homeomorphism from
(−1, 1)× S(V+) to OB(V+) \ {0}, with inverse given by

(v, p) 7→ (2
√
v2 + p2 − 1, p/

√
v2 + p2, v/

√
v2 + p2).

�

Now consider a complex vector space V . If we have a hermitian product on V we can define S(V ) as
before and all the above discussion still applies. It is also interesting to consider the situation where we

have a perfect symmetric bilinear form (·, ·) : V ⊗ V → C and the space S̃(V ) = {v ∈ V : (v, v) = 1}. In
particular, if W is a real inner product space then we can consider the symmetric bilinear form on C ⊗W
given by

(x+ iy, u+ iv) = (〈x, u〉 − 〈y, v〉) + (〈x, v〉+ 〈y, u〉)i,
and the space S̃(C⊗W ). We also put

TS(W ) = {(u, v) ∈ S(W )×W : 〈u, v〉 = 0}.

Proposition 19.50. There is a homeomorphism f : TS(W )→ S̃(C⊗W ) given by

f(u, v) =
√

1 + v2 u+ iv

f−1(x+ iy) = (x/‖x‖, y).
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When we have introduced the relevant concepts in Section 27 we will deduce that S̃(C⊗W ) is homotopy
equivalent to the sphere S(W ).

Proof. We have (x+ iy, x+ iy) = x2− y2 + 2i〈x, y〉, so x+ iy ∈ S̃(C⊗W ) if and only if 〈x, y〉 = 0 and
x2 = 1 + y2 ≥ 1. Given this, one can check directly that the given formulae have the required effect. �

20. Manifolds

Definition 20.1. [defn-manifold]
Let M be a topological space. We say that M is locally euclidean of dimension n if every point is

contained in an open set that is homeomorphic to Rn. Any such open set U is called a chart domain,
and a choice of homeomorphism f : U → Rn is called a chart. A (topological) manifold of dimension n (or
n-manifold) is a Hausdorff, second countable space M that is locally euclidean of dimension n.

Remark 20.2. [rem-centred-chart]
Consider a chart f : U → Rn and a point a ∈ U . We say that the chart is centred at a if f(a) = 0. For

any point a ∈ U we can define a new chart g : U → Rn by g(x) = f(x)− f(a), and this is centred at a.

Example 20.3. [eg-vector-manifold]
The most basic example is that Rn itself is an n-manifold. Similarly, if V is any n-dimensional real

vector space (with the linear topology) then every linear isomorphism f : V → Rn is a homeomorphism, and
it follows that V is again an n-manifold. More generally, if M is an arbitrary n-manifold then it is often
more natural and convenient to exhibit homeomorphisms from open subsets of M to various vector spaces
that need not be explicitly identified with Rn. We will still refer to such homeomorphisms as charts.

Proposition 20.4. Let M be an n-dimensional manifold, and let N be an open subset of M . Then N
is also an n-dimensional manifold.

Proof. First, N is Hausdorff and second countable by Propositions 6.4 and 2.64. Now consider a point

a ∈ N . As M is a manifold, there exists a chart f : U
'−→ Rn with a ∈ U . After replacing f by f − f(a)

if necessary, we may assume that f(a) = 0. Now f(N ∩ U) is an open subset of Rn containing 0, so it
contains OBε(0) for some ε > 0. Put V = f−1(OBε(0)), which is an open neighbourhood of a contained in

N ∩ U . Define p : OBε(0) → Rn by p(x) = x/
√

1− ‖x‖2/ε2, and note that this is a homeomorphism with

p−1(y) = y/
√

1 + ‖y‖2/ε2. It follows that the map g = p ◦ f : V → Rn is a homeomorphism. This means
that N is locally euclidean, as required. �

Example 20.5. [eg-open-manifolds]

The space Mn(R) is homeomorphic to Rn2

, so it is a manifold of dimension n2. The subset GLn(R)
is open in Mn(R), so it is also a manifold. The space GLn(C) is a manifold of dimension 2n2, for similar
reasons. The set

Fn(C) = {z ∈ Cn : zi 6= zj for all i 6= j}
(previously considered in Example 8.12) is open in Cn = R2n, so it is a 2n-manifold.

Example 20.6. [eg-sphere-manifold]
The sphere Sn is an n-manifold. Indeed, it is a subspace of the second countable Hausdorff space Rn+1,

so it is Hausdorff and second countable. Next, we recall from Proposition 18.20 that stereographic projection
gives a homeomorphism g : Sn\{en} → Rn. If we split Rn+1 as Rn⊕R, the formula is just g(u, t) = u/(1−t).
We have a similar homeomorphism h : Sn \ {−en} → Rn given by h(u, t) = g(u,−t) = u/(1 + t). As the
open sets Sn \ {en} and Sn \ {−en} cover Sn, this proves that Sn is locally euclidean.

More generally, for any unit vector a ∈ Sn we have an n-dimensional vector space Ta = {v ∈ Rn+1 :
〈v, a〉 = 0}, and there is a homeomorphism ha : Sn \ {a} → Ta given by ha(x) = (x − 〈x, a〉a)/(1 + 〈x, a〉).
This is a chart with ha(a) = 0.

Example 20.7. [eg-On-manifold]
Consider the orthogonal matrix group On = {A ∈ Mn(R) : ATA = 1}; we will show that this is

a manifold. It is a subspace of the second countable Hausdorff space Mn(R) ' Rn2

, so it is Hausdorff
and second countable. To construct charts, we consider the space on of antisymmetric n × n matrices, so
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on = {B ∈Mn(R) : BT +B = 0}. This is a vector space of dimension (n2 − n)/2 over R. Proposition 20.8
below will give a homeomorphism f : on → U , where U is a certain open neighbourhood of I in On. For an
arbitrary point A ∈ On we can define a homeomorphism from on to a neighbourhood of A by B 7→ f(B)A.
It follows that On is locally euclidean, as required.

Proposition 20.8. [prop-cayley]
Put

U = {A ∈ On : A+ I is invertible } = {A ∈ On : det(A+ I) 6= 0}.
Then there is a homeomorphism f : on → U given by f(B) = (I + B)(I − B)−1, with inverse f−1(A) =
(A− I)(A+ I)−1.

Proof. First, we claim that if B ∈ on then I + tB is invertible for all t ∈ R. Indeed, if (I + tB)v = 0
then v = −tBv so

‖v‖2 = 〈v, v〉 = 〈−tBv, v〉 = 〈v,−tBT v〉 = 〈v, tBv〉 = 〈v,−v〉 = −‖v‖2,

so v = 0 as required. We can therefore define f : on → GLn(R) by f(B) = (I +B)(I −B)−1. Note also that
(I + B)T = I − B, so ((I + B)−1)T = ((I + B)T )−1 = (I − B)−1 and similarly ((I − B)−1)T = (I + B)−1.
This gives

f(B)T f(B) = (I +B)−1(I −B)(I +B)(I −B)−1 = (I +B)−1(I +B)(I −B)(I −B)−1 = I,

which proves that f(B) ∈ On. One can also check that (I −B)/2 is an inverse for f(B) + I, so f : on → U .
Next, we can certainly define g : U →Mn(R) by g(A) = (A−I)(A+I)−1. We then have (A+I)g(A) = A−I,
and we can take transposes to get g(A)T (AT + I) = AT − I. We now multiply on the right by A, recalling
that AAT = ATA = I to get g(A)T (A + I) = −(A− I), so g(A)T = −(A− I)(A + I)−1 = −g(A). We can
thus regard g as a map U → on. It is now a matter of straightforward algebra to check that g is inverse to
f . �

Proposition 20.9. [prop-manifold-local]
Any manifold is locally compact Hausdorff and locally path-connected.

Proof. Let M be a manifold. For any point a ∈ M , we can choose a chart f : U → Rn centred at a.
We then put Ur = f−1(OBr(0)), and note that f gives a homeomorphism Ur → OBr(0), so Ur is open in
M and path-connected. It is easy to see that every neighbourhood of a contains Ur for some r > 0. We also
see that the set f−1(Br(0)) is compact and contains Ur, so Ur is precompact, so M is locally compact. It is
also Hausdorff by the definition of a manifold. �

Example 20.10. [eg-double-line]
Put X = R× {−1, 1} and define an equivalence relation E ⊆ X2 by

E = {((x, a), (y, b)) : x = y and (a = b or x 6= 0).}

Put Y = X/E, and let q : X → Y be the quotient map. Note that there is a map p : Y → R given by
p([x, a]) = x. If x 6= 0 then we have (x, 1)E(x,−1) and so p−1{x} contains a single point. However,
(0, 1) and (0,−1) are not E-equivalent, so p−1{0} consists of two points. Now define f+, f− : R → Y by
f±(x) = q(x,±1), and then put U± = f±(R). We find that U± is open and f± : R→ U± is a homeomorphism
and Y = U+∪U−. It follows that Y is locally euclidean and second countable. However, there is no Hausdorff
pair separating q(0, 1) from q(0,−1), so Y is not a Hausdorff space, and thus is not a manifold.

21. Ultrafilters

We now introduce the theory of ultrafilters. This can be seen as a cure for the fact that sequentially
closed sets need not be closed, so information about sequences is insufficient to determine a topology. We
will define a notion of convergence for ultrafilters, and relate it to the notion of convergence of sequences. It
will turn out that information about ultrafilters and their limits does determine a topology, and using this
we will be able to strengthen various results that are typically proved using sequences.
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Definition 21.1. [defn-filter-subbase]
Recall from Definition 10.11 that a set F of subsets of X is said to have the finite intersection property

if for each finite list S1, . . . , Sn with each Sk ∈ F we have S1 ∩ · · · ∩ Sn 6= ∅. In the case n = 0 we interpret⋂
i Si as X, so for F to have the finite intersection property we require in particular that X 6= ∅. Such a set
F will be called a family with the finite intersection property or an FFIP or a filter subbase.

Example 21.2. [eg-ffip]

(a) The set {(a,∞) : a ∈ R} is an FFIP on R.
(b) The set {S ⊆ N : N \ S is finite} is an FFIP on N.
(c) The set {S ⊆ C : C \ S is compact} is an FFIP on C.
(d) For any topological space X and x ∈ X, the set

Nx = { neighbourhoods of x in X}

has FIP.
(e) If (xn)n∈N is a sequence in X then the set

F = {S ⊆ X : ∃N {xN , xN+1, . . .} ⊆ S}

has FIP.

Definition 21.3. [defn-ultrafilter]
An ultrafilter (or UF) on X is a set W of subsets of X which is a maximal FFIP. In other words:

U0: W has the FIP.
U1: If W ⊆W ′ and W ′ has FIP then W ′ =W.

We write βX for the set of all ultrafilters on X.

Example 21.4. [eg-fixed-ultrafilter]
For any element x ∈ X, we put

Wx = {S ⊆ X : x ∈ S}.
If S1, . . . , Sn ∈ Wx then S1 ∩ · · · ∩Sn contains x, so it is nonempty; so Wx has FIP. Now let W ′ be an FFIP
with Wx ⊆ W ′. Note that {x} ∈ Wx ⊆ W ′, so {x} ∈ W ′. Thus, for any S ∈ W ′ we must have S ∩ {x} 6= ∅,
so x ∈ S, so S ∈ Wx. This proves that Wx is an ultrafilter on X. Ultrafilters of this type are called fixed
ultrafilters; a free ultrafilter is an ultrafilter that is not fixed. We can now define η : X → βX by η(x) =Wx.

We will show (using Zorn’s Lemma) that every filter is contained in an ultrafilter, which means that free
ultrafilters are plentiful. However, one cannot specify a particular free ultrafilter (even on the set N) without
making an infinite number of arbitrary choices, which is impossible in practice. For a formal statement of
this impossibility, see [2].

Proposition 21.5. [prop-ultrafilter-omni]
Let W be an ultrafilter on a set X.

(a) If S ∈ W and T ⊇ S then T ∈ W.
(b) If Sk ∈ W for each k then S1 ∩ . . . ∩ Sn ∈ W.
(c) If S ⊆ X then either S ∈ W or Sc ∈ W (but not both).
(d) If T ⊆ X and T ∩ S 6= ∅ for every S ∈ W then T ∈ W.
(e) If S1 ∪ . . . ∪ Sn ∈ W then Sk ∈ W for some k.
(f) X ∈ W

Proof. (a) Write

W ′ = {T ⊆ X : ∃S ∈ W, S ⊆ T}.
Clearly W ⊆W ′. Moreover, W ′ has FIP. Indeed, if T1, . . . Tn ∈ W ′ then there are sets S1, . . . Sn ∈
W with Tk ⊇ Sk and so

T1 ∩ . . . Tn ⊇ S1 ∩ . . . Sn 6= ∅
It follows by maximality of W that W ′ =W, hence the claim.
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(b) Similarly, write

W ′ = {S1 ∩ . . . Sn : n ∈ N, Sk ∈ W}

This contains W and has FIP so equals W as required.
(c) Suppose S 6∈ W, so W ′ =W ∪ {S} 6=W. Thus, as W is maximal among families with FIP, we see

that W ′ cannot have FIP. This means that there are sets T1, . . . Tn in W such that

T1 ∩ . . . Tn ∩ S = ∅

It follows from (b) that the set T = T1 ∩ . . . Tn is an element of W. As T ∩ S = ∅, we have
T ⊆ Sc. Using (a), we find that Sc ∈ W, as required. We cannot have both S ∈ W and Sc ∈ W
as S ∩ Sc = ∅ and W is supposed to have FIP.

(d) Suppose that T ⊆ X and T ∩ S 6= ∅ for every S ∈ W. Using (b) we see that W ∪{T} has FIP and
so equals W by maximality; thus T ∈ W.

(e): Suppose that S =
⋃n
k=1 Sk ∈ W, so Sc =

⋂
k S

c
k 6∈ W. By claim (b), we must have Sck 6∈ W for

some k. Using (c) we deduce that Sk ∈ W as required.
(f): This is the case n = 0 of (b).

�

Corollary 21.6. [cor-free-infinite]
If U is a free ultrafilter, then every set in U is infinite.

Proof. Suppose that U contains a finite set, say S = {x1, . . . , xn}. We can write this as S = {x1} ∪
· · ·∪{xn} and use part (e) of the proposition to see that {xi} ∈ U for some i. Now if T ∈ Wxi then {xi} ⊆ T
so T ∈ U by part (a). This proves that Wxi ⊆ U , but Wxi is maximal so U =Wxi , so U is not free. �

Proposition 21.7. [prop-ultrafilter-test]
Suppose that W has FIP. Then W is an ultrafilter iff for each S ⊆ X we have S ∈ W or Sc ∈ W.

Proof. One half of this is Proposition 21.5(c). Conversely, suppose W has FIP and contains S or Sc

for each S ⊆ X. Consider a family W ′ ⊇ W that still has has FIP. Consider a set S ∈ W ′. By assumption
we have either S ∈ W or Sc ∈ W. In the latter case we would have S, Sc ∈ W ′, which would contradict
the FIP for W ′. We must therefore have S ∈ W. This holds for all S ∈ W ′, so W ′ = W. Thus W is an
ultrafilter. �

We can now reformulate the notion of an ultrafilter in a way which is often useful.

Definition 21.8. [defn-boolean-character]
Let X be a set. We write PX for the set of all subsets of X. A character of PX is a map ξ : PX → {0, 1}

such that

(p) ξ(X) = 1
(q) ξ(∅) = 0
(r) ξ(S ∩ T ) = min(ξ(S), ξ(T )) for all S, T .
(s) ξ(Sc) = 1− ξ(S) for all S.

We write β′X for the set of all characters of PX.

Proposition 21.9. [prop-boolean-characters]
There is a canonical bijection F : β′X → βX given by F (ξ) = ξ−1{1}.

Proof. Consider an arbitrary map ξ : PX → {0, 1}. Put W = ξ−1{1}, so we have ξ(S) = 1 for S ∈ W,
and ξ(S) = 0 for S 6∈ W. The conditions in Definition 21.8 translate as follows:

(p) X ∈ W
(q) ∅ 6∈ W
(r) We have S ∩ T ∈ W iff S ∈ W and T ∈ W
(s) For all S ⊆ X we have S ∈ W or Sc ∈ W (but not both).
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If W is an ultrafilter then these properties follow easily from Proposition 21.5. Conversely, suppose
that (p) to (s) are satisfied. We claim that for S1, . . . , Sn ∈ W we have

⋂
i Si 6= ∅. In view of (q), it

will suffice to show that
⋂
i Si ∈ W. The case n = 0 is (p), the case n = 1 is clear, and the case n = 2

is (r). The case n > 2 now follows by induction. This means that W has FIP, and using (s) together with
Proposition 21.7 we see that W is an ultrafilter. �

Recall that βX denotes the set of all ultrafilters on X.

Proposition 21.10. [prop-beta-functor]
Let X and Y be arbitrary sets, and f : X → Y be any function. Then for any ultrafilter W on X, the

family
f∗(W) = {T ⊆ Y : f−1(T ) ∈ W}

is an ultrafilter on Y . Thus, this construction gives a map f∗ : βX → βY . Moreover, we have (1X)∗(W) =
W, and for g : Y → Z we have (gf)∗(W) = g∗(f∗(W)). Thus, we have a functor β : Sets→ Sets.

Proof. Suppose we have sets T1, . . . , Tn ∈ f∗(W). This means that the sets f−1(Ti) are all in W, and
W has FIP, so

⋂
i f
−1(Ti) 6= ∅. If we choose x ∈

⋂
i f
−1(Ti) we find that f(x) ∈

⋂
i Ti, so

⋂
i Ti 6= ∅. This

means that f∗(W) has FIP. Now consider a set T ⊆ Y . As W is an ultrafilter, Proposition 21.7 tells us that
either f−1(T ) ∈ W or f−1(T )c ∈ W. After noting that f−1(T )c = f−1(T c), we deduce that either T or T c

lies in f∗(W). This shows that f∗(W) is an ultrafilter on Y . We have thus defined a map f∗ : βX → βY . It
is trivial that (1X)∗ is the identity. Now suppose we have another function g : Y → Z. We have

U ∈ (gf)∗(W)⇔ (gf)−1(U) ∈ W
⇔ f−1(g−1(U)) ∈ W
⇔ g−1(U) ∈ f∗(W)

⇔ U ∈ g∗(f∗(W)),

so this construction is functorial. �

We next turn to the problem of proving that ultrafilters exist.

Definition 21.11. [defn-ffip-chain]
A chain of FFIPs is a set L of FFIP’s on X such that whenever F ,G ∈ L we have either F ⊆ G or

G ⊆ F . In other words, L is linearly ordered by inclusion.

Proposition 21.12. [prop-ffip-chain]
If L is a chain of FFIPs on X then the set

F =
⋃
G∈L
G = {S ⊆ X : ∃G ∈ L S ∈ G}

has FIP.

Proof. Suppose S1, . . . , Sn ∈ F . Then there are sets G1, . . . ,Gn in L with Sk ∈ Gk for each k. As L
is a chain, for each k and l we have Gk ⊆ Gl or Gl ⊆ Gk. By changing the indexing if neccessary, we may
assume that

G1 ⊆ G2 ⊆ · · · ⊆ Gn.
Thus Sk ∈ Gn for each k. Moreover, L is assumed to be a set of FFIPs and Gn ∈ L so Gn has FIP. Thus
S1 ∩ · · · ∩ Sn 6= ∅, as required. �

Theorem 21.13. [thm-ultrafilters-exist]
If F is an FFIP on X then there exists an ultrafilter W on X with F ⊆ W.

Proof. Apply Zorn’s Lemma (Theorem 35.10) to the poset of FFIPs that contain F . �

Proposition 21.14. [prop-beta-image]
Let f : X → Y be a function. Then the image of the map f∗ : βX → βY is given by

f∗(βX) = {V ∈ βY : T ∩ f(X) 6= ∅ for all T ∈ V}.
In particular, if f is surjective then so is f∗.
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Proof. First suppose that V = f∗(U) for some ultrafilter U , and that T ∈ V. This means that f−1(T ) ∈
U , so in particular f−1(T ) 6= ∅, so f(f−1(T )) 6= ∅. However, it is elementary that f(f−1(T )) = T ∩ f(X), so
T ∩ f(X) 6= ∅ as required.

Conversely, suppose that V ∈ βY and that T ∩ f(X) 6= ∅ for all T ∈ V. Put U0 = {f−1(T ) : T ∈ V}.
We find that the sets in U0 are all nonempty, and using the fact that

⋂
i f
−1(Ti) = f−1(

⋂
i Ti) we deduce

that the family U0 has FIP. It follows that there is an ultrafilter U ∈ βX with U0 ⊆ U . Consider a set T ⊆ Y .
If T ∈ V then f−1(T ) ∈ U0 ⊆ U so T ∈ f∗(U). This shows that V ⊆ f∗(U) but V is an ultrafilter so it is
maximal among families with FIP, so we must have V = f∗(U).

If f is surjective then f(X) = Y and we deduce that f∗(βX) = βY , so f∗ is also surjective. Alternatively,
for each y ∈ Y we can choose g(y) ∈ X such that f(g(y)) = y. This gives a map g : Y → X with fg = 1Y
so f∗g∗ = 1βY , and it follows again that f∗ is surjective. �

Proposition 21.15. [prop-beta-induced-epi]
If f : X → Y is surjective and U ∈ βX, then f∗(U) = {f(S) : S ∈ U}.

Proof. Put V = {f(S) : S ∈ U}. If T ∈ f∗(U) then the set S = f−1(T ) is an element of U , and as f is
surjective we have T = f(f−1(T )) = f(S), so T ∈ V. Conversely, suppose that T ∈ V, so T = f(S) for some
S ∈ U . We then have S ⊆ f−1(f(S)) = f−1(T ), so f−1(T ) ∈ U by Proposition 21.5(a), so T ∈ f∗(U). �

We now consider convergence of ultrafilters.

Definition 21.16. [defn-neighbourhood-filter]
Let X be a topological space. For x ∈ X we put

Nx = { open neighbourhoods of x} = { open sets U : x ∈ U}.

If we are given a subbasis σ for the topology on X, we also put

N ′x = { subbasic open neighbourhoods of x} = {U ∈ σ : x ∈ U}.

Definition 21.17. [defn-ultrafilter-conv]
Let X be a topological space, and let σ be a subbasis for the topology. An ultrafilter W converges to

x ∈ X if the following equivalent conditions hold:

(p): Nx ⊆ W
(q): N ′x ⊆ W
(r): x ∈

⋂
S∈W S

(s): For all S ∈ W and U ∈ N ′x we have S ∩ U 6= ∅.
If so, we write W −→ x and say that x is a limit of W.

Proof of equivalence. Clearly (p) implies (q). By the definition of a subbasis, every neighbourhood
of x contains a finite intersection of subbasic neighbourhoods of x. Using parts (a) and (b) of Proposition 21.5,
we deduce that (q) implies (p), so (p) and (q) are equivalent.

Now suppose that (p) holds. Consider a set S ∈ W. If x 6∈ S then the set U = X \ S is an open
neighbourhood of x, so it must lie inW, but U ∩S = ∅, which contradicts the FIP forW. We must therefore
have x ∈ S. As S was an arbitrary element of W, we have x ∈

⋂
S∈W S as required, so (p) implies (r).

Now suppose that (r) holds. This means that every open neighbourhood of x meets every set in S. In
particular, this holds for subbasic open neighbourhoods, which means that (s) holds.

Finally, suppose that (s) holds. Consider a set U ∈ N ′x, so U ∩ S 6= ∅ for all S ∈ W. Using part (d) of
Proposition 21.5 we deduce that U ∈ W. This means that N ′x ⊆ W, so (q) holds. �

Example 21.18. [eg-ultrafilter-conv]

(a) The fixed ultrafilter Wx converges to x.
(b) If X is discrete and W −→ x then W = Wx. Indeed, {x} is a neighbourhood of x so {x} ∈ W. If

S ∈ Wx then {x} ⊆ S so S ∈ W by Proposition 21.5(a). This means that Wx ⊆ W but Wx is
maximal so W =Wx.
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(c) Put

F =⊆ C : C \ S is compact}.
Theorem 21.13 tells us that there exist ultrafiltersW withW ⊇ F . We claim that no such ultrafilter
can converge. Indeed, for any x ∈ C we can consider the set S = C \ B1(x); this lies in F and
therefore in W, but x 6∈ S so criterion (r) in Definition 21.17 tells us that W 6→ x.

Proposition 21.19. [prop-sequence-ultrafilter]
Consider a sequence x = (xn)n∈N in X, and put

x≥N = {xk : k ≥ N}
F = {S ⊆ X : x≥N ⊆ S for some N ∈ N}.

Then F has FIP. Moreover, the sequence x converges to a iff every ultrafilter containing F converges to a.

Proof. First suppose we have sets S1, . . . , Sn ∈ F . This means that there are natural numbers
N1, . . . , Nn such that xk ∈ Si whenever k ≥ Ni. It follows that if we put N = max(x1, . . . , xn) then
xN ∈

⋂
i Si, so

⋂
i Si 6= ∅. This means that F has FIP.

Now suppose that x converges to a. This means precisely that every open neighbourhood U of a contains
x≥N for some N , and so has U ∈ F . This means that Nx ⊆ F , so for every ultrafilter W ⊇ F we have
Nx ⊆ W or equivalently W → x.

Suppose instead that x does not converge to a. This means that there is an open neighbourhood U of
a that does not contain x≥N for any N . Now for S ∈ F we have S ⊇ x≥N for some N , and x≥N 6⊆ U ,
so S ∩ U c 6= ∅. Using this we see that the family F ∪ {U c} has FIP, so there exists an ultrafilter W with
F ∪ {U c} ⊆ W. Clearly U 6∈ W, so W 6→ a. �

Proposition 21.20. [prop-ultrafilter-closure]
Let X be a topological space, let Y be a subset, and let i : Y → X be the inclusion map. Then for x ∈ X

we have x ∈ Y if and only if there is an ultrafilter W on Y with i∗(W)→ x.

Proof. Suppose that x ∈ Y . It follows that the family F = {U ∩ Y : U ∈ Nx} consists of nonempty
sets, and it is also closed under taking intersections, so it has FIP. We can thus choose an ultrafilter W on
Y with W ⊇ F . After noting that U ∩ Y = i−1(U) we see that Nx ⊆ i∗(W), so i∗(W)→ x as required.

Conversely, suppose that x 6∈ Y . It follows that the set U = X \ Y is an open neighbourhood of x.
Moreover, we have i−1(U) = ∅, so U cannot be in i∗(W) for any W, so we cannot have i∗(W)→ x. �

Proposition 21.21. [prop-ultrafilter-continuity]
Let f : X → Y be a function between topological spaces. Then f is continuous iff it has the following

property: for every ultrafilter W ∈ βX converging to a ∈ X, the ultrafilter f∗(W) converges to f(a).

Proof. We will temporarily say that f is ultrafilter-continuous if it has the stated property.
Suppose that f is continuous. Consider an ultrafilter W ∈ βX that converges to a ∈ X. Let V be

an open neighbourhood of f(a) in Y . By continuity, the set f−1(V ) is an open neighbourhood of a in X,
and W → x, so we must have f−1(V ) ∈ W. This means that V ∈ f∗(W). As V was an arbitrary open
neighbourhood of f(a), this means that f∗(W)→ f(a) as required. Thus, f is ultrafilter-continuous.

Conversely, suppose that f is not continuous. This means that we can find a point a ∈ X and an open
neighbourhood V of f(a) such that the set f−1(V ) is not a neighbourhood of a. Put S = f−1(V )c = f−1(V c).
Consider an open neighbourhood U of a. As f−1(V ) is not a neighbourhood of a, we cannot have U ⊆ f−1(V ),
and it follows that U ∩S 6= ∅. This means that the family Na ∪ {S} has FIP, so we can choose an ultrafilter
W with W ⊇ Na ∪ {S}. By construction we have W → a, but V c ∈ f∗(W) so V 6∈ f∗(W) so f∗(W) 6→ f(a).
This shows that f is not ultrafilter-continuous. �

Proposition 21.22. [prop-ultrafilter-product]
Consider a family of spaces (Xi)i∈I with product X =

∏
i∈I Xi and projections πi : X → Xi. Consider

an ultrafilter W ∈ βX and a point x ∈ X. Then W → x iff (πi)∗(W)→ xi for all i.

Proof. We use the standard subbasis for the product topology, and recall from Definition 21.17 that
W → x iffW contains every subbasic open neighbourhood of x. These subbasic neighbourhoods are precisely
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the sets π−1
i (Ui), where Ui runs over the open neighbourhoods of xi in Xi. We have π−1

i (Ui) ∈ W iff
Ui ∈ (πi)∗(W), and this holds for all Ui iff (πi)∗(W)→ xi. �

Proposition 21.23. [prop-ultrafilter-hausdorff]
The space X is Hausdorff if and only if every ultrafilter converges to at most one point.

Proof. Suppose that X is Hausdorff, that W −→ x, and that y 6= x. Then there are disjoint open sets
U, V with x ∈ U and y ∈ V . As W −→ x, we must have U ∈ W. As U ∩ V = ∅ and W has FIP, this means
that V 6∈ W. This means that W 6−→ y, as required.

Conversely, suppose that ultrafilter limits are unique. Suppose that x and y do not have disjoint neigh-
bourhoods. Then the family Nx ∪ Ny has FIP, so there is an ultrafilter W ⊇ Nx ∪ Ny. This means that
W −→ x and W −→ y, so by hypothesis x = y. This shows that X is Hausdorff. �

Theorem 21.24. [thm-ultrafilter-compact]
Let X be a topological space, and let σ be a subbasis for the topology. The following are equivalent:

(a) X is compact.
(b) Every covering of X by subbasic open sets has a finite subcover.
(c) Every ultrafilter on X has a limit.

The equivalence of (a) and (b) above is called Alexander’s subbasis theorem.

Proof. It is immediate that (a) implies (b). Suppose that (b) holds, and let W be an ultrafilter on X.
Suppose that W has no limit. By criterion (q) in Definition 21.17, each point x ∈ X has a subbasic open
neighbourhood Ux ∈ σ with Ux 6∈ W. The sets Ux give a covering of X of X by subbasic open sets, so by
assumption there is a finite list x1, . . . , xn with X = Ux1

∪ · · · ∪ Uxn . Now part (f) of Proposition 21.5 tells
us that X ∈ W, so part (e) tells us that Uxi ∈ W for some i, but this is false by our choice of Ux. Thus, W
must have a limit after all. This proves that (b) implies (c).

Finally, suppose (c) holds. We need to prove that X is compact. Proposition 10.12 gave the following
criterion: if F is any family of closed sets with FIP, we must show that

⋂
F∈F F 6= ∅. By Theorem 21.13,

we can choose an ultrafilter W with F ⊆ W. By assumption, there is a point x ∈ X such that W → x. By
criterion (r) in Definition 21.17, we have x ∈ S for all S ∈ W. In particular, we have x ∈ F for all F ∈ F ,
so x ∈

⋂
F∈F F as required. �

Theorem 21.25 (Tychonov). [thm-tychonov]
Let (Xi)i∈I be a family of compact spaces. Then the product X =

∏
I Xi is compact.

Proof. Theorem 21.24 tells us that every ultrafilter on Xi has a limit; we must show that the same
holds for X. If W is an ultrafilter on X, then for each i we can choose a limit xi for (πi)∗(W), and then
put these points together to get a point x = (xi)i∈I ∈ X. Proposition 21.22 then tells us that W → x, as
required. �

Remark 21.26. [rem-FIX-product]
Suppose we have a set I and a compact space X, and we let F (I,X) denote the set of all functions

u : I → X. This can be identified with
∏
i∈I X, so we have a product topology on F (I,X), and Tychonov’s

theorem tells us that this is compact. In this notation, the projection maps πJ :
∏
i∈I X →

∏
j∈J X become

the restriction maps u 7→ u|J . Thus, for each finite subset J ⊆ I and each open set U ⊆ F (J,X) we have a
basic open set V = {u ∈ F (I,X) : u|J ∈ U} in F (I,X).

One important consequence of Tychonov’s theorem is that certain spaces of linear functionals on infinite-
dimensional vector spaces are compact. One example of this is the space of probability measures on a compact
Hausdorff space, which we now describe.

Definition 21.27. [defn-probability-measure]
Let X be a compact Hausdorff space. A probability measure on X is a map µ : C(X) −→ R with the

following properties:

PM0: µ is linear: for all a, b ∈ R and u, v ∈ C(X) we have µ(au+ bv) = aµ(u) + bµ(v).
PM1: µ is positive: if u(x) ≥ 0 for all x ∈ X then µ(u) ≥ 0.
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PM2: µ is normalised: for the constant function with value 1 we have µ(1) = 1.

We will write PM(X) for the set of all probability measures on X.

Example 21.28. [eg-probability-measure]
We can define probability measures δ, λ, θ, ρn on [0, 1] by

δ(u) = u(0)

λ(u) =

∫ 1

0

u(x) dx

θ(u) =

∫ 1

0

2xu(x) dx

ρn(u) =

n−1∑
k=0

u(k/n)/n.

We now want to introduce a topology on PM(X), by regarding it as a subspace of a certain infinite
product. For each element f ∈ C(X), we put

b(f) = min{f(x) : x ∈ X} ∈ R
t(f) = max{f(x) : x ∈ X} ∈ R.

It is clear that b(f) ≤ t(f), so we have a compact interval [b(f), t(f)] ⊂ R. This construction gives a family
of spaces indexed by the elements of the set C(X), so we can form the product

Z =
∏

f∈C(X)

[b(f), t(f)] = {α : C(X)→ R : b(f) ≤ α(f) ≤ t(f) for all f ∈ C(X)}.

Tychonov’s theorem tells us that Z is compact, and it is also easily seen to be Hausdorff.

Proposition 21.29. [prop-PM-CH]
PM(X) is a closed subspace of Z, and thus is compact Hausdorff.

Proof. Let µ be a probability measure. Note that if c is constant we have µ(c) = c.µ(1) = c. For any
function f , we can take c = b(f) to see that µ(f − b(f)) = µ(f) − b(f). On the other hand, the function
f − b(f) is everywhere nonnegative, so by axiom PM1 we have µ(f − b(f)) ≥ 0. Putting these together, we
see that µ(f) ≥ b(f), and essentially the same argument shows that µ(f) ≤ t(f), so µ(f) ∈ [b(f), t(f)]. It
follows that PM(X) is a subset of Z.

Now let µ be an arbitrary element of Z. If f ∈ C(X) has f(x) ≥ 0 for all x then b(f) ≥ 0, and
µ(f) ∈ [b(f), t(f)] so µ(f) ≥ 0. Thus, axiom PM1 is satisfied. Similarly, we have µ(1) ∈ [b(1), t(1)] = {1},
so PM2 is satisfied. However, PM0 is not satisfied automatically. Consider a pair of functions f, g ∈ C(X)
and a pair of constants a, b ∈ R. Define ∆(a, b, f, g) : Z → R by

∆(a, b, f, g)(µ) = µ(af + bg)− aµ(f)− bµ(g).

Then define

L(a, b, f, g) = ∆(a, b, f, g)−1{0} = {µ ∈ Z : µ(af + bg) = aµ(f) + bµ(g)}.
If µ ∈ Z we note that µ is a probability measure iff it is linear iff µ(af + bg) = aµ(f) + bµ(g) for all a, b, f, g.
This means that

PM(X) =
⋂

(a,b,f,g)∈R2×C(X)2

L(a, b, f, g).

We also note that ∆(a, b, f, g) can also be described as

∆(a, b, f, g) = πaf+bg − a πf − b πg :
∏

h∈C(X)

[b(h), t(h)]→ R,

and this description makes it clear that ∆(a, b, f, g) is continuous with respect to the product topology. It
follows that L(a, b, f, g) is closed in Z, and PM(X) is the intersection of all these closed sets, so it is again
closed. �
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Remark 21.30. [lem-measure-convergence]
After adjusting the notation in Proposition 5.35, we obtain the following statement: a sequence (µn)n∈N

in PM(X) converges to ν iff µn(f) → ν(f) for each f ∈ C(X). For example, consider the measures ρn
and λ on [0, 1] described in Example 21.28, so ρn(f) is the approximation to λ(f) =

∫ 1

0
f(x) dx given by

the rectangle rule. Fix f ∈ C([0, 1]), and suppose we are given ε > 0. Proposition 12.49 tells us that f is
uniformly continuous, so we can choose n such that |f(x) − f(y)| < ε whenever |x − y| ≤ 1/n. It follows
easily from this that when m ≥ n we have

|λ(f)− ρm(f)| =

∣∣∣∣∣
m−1∑
k=0

∫ (k+1)/m

k/m

f(x)− f(k/m) dx

∣∣∣∣∣ ≤
m−1∑
k=0

∫ (k+1)/m

k/m

|f(x)− f(k/m)| dx < ε.

As ε was arbitrary we deduce that ρn(f)→ λ(f) as n→∞. It follows that ρn → λ in PM([0, 1]).

21.1. Ultrapowers. We now digress slightly to explain another application of ultrafilters. This may
help to develop the reader’s intuition, even though we do not know of any direct connection with topology.

Definition 21.31. [defn-ultrapower]
Consider a free ultrafilter U on N. For any two sequences x, y ∈

∏
n∈NX we put

T (x, y) = {n ∈ N : xn = yn}.
We then define a relation E on

∏
n∈NX by

E = {(x, y) : T (x, y) ∈ U}.
It is clear that T (x, x) = N and T (x, y) = T (y, x) and that T (x, y) ∩ T (y, z) ⊆ T (x, z), and it follows from
this that E is an equivalence relation. We put X∗ = (

∏
nX)/E, and call this the ultrapower of X. For

x ∈ X we let i(x) denote the equivalence class of the constant sequence (x, x, . . . ), so i : X → X∗.

Remark 21.32. [rem-fixed-ultrapower]
Recall that for each n ∈ N we have a fixed ultrafilter Wn = {S ⊆ N : n ∈ S}; above we assumed

that U is free, so it does not have the form Wn for any n. If we did allow U = Wn, then the projection
πn :

∏
nX → X would induce a bijection X∗ → X, which would be uninteresting.

In model theory it is common to consider ultrapowers of many different sets X with different types of
structure. Here we will restrict attention to the ultrapower R∗, whose elements are called hyperreals. Note
that this involves a choice of ultrafilter, but it turns out that there are many interesting statements that do
not depend on this choice.

Proposition 21.33. [prop-hyperreal-field]
The set I = {x ∈

∏
N R : xE0} is a maximal ideal in

∏
N R, and R∗ can be identified with (

∏
N R)/I,

so it is a field in a natural way. Moreover, the map i : R→ R∗ is a homomorphism of fields.

Proof. It is clear that T (x+y, 0) and T (x−y, 0) contain T (x, 0)∩T (y, 0), so if x, y ∈ I then x±y ∈ I.
It is also clear that 0 ∈ I, so I is an additive subgroup of

∏
N R. Similarly, if x ∈ I and y ∈

∏
N R then

T (xy, 0) ⊇ T (x) ∈ U so T (xy, 0) ∈ U so xy ∈ I. This means that I is an ideal, so the quotient group
R′ = (

∏
N R)/I has a natural ring structure. Moreover, we have T (x, y) = T (x− y, 0) so xEy iff x− y ∈ I,

so R′ = R∗.
Now suppose that x 6∈ I, so T (x, 0) 6∈ U , so the complement S = N \ T (x, 0) = {n : xn 6= 0} does lie in

U . Define y ∈
∏

N R by

yn =

{
1/xn if n ∈ S
0 if n 6∈ S.

Now T (xy, 1) = S ∈ U , so [y] is an inverse for [x]. This proves that R∗ is a field, so I is a maximal ideal.
The rest is clear. �

Proposition 21.34. [prop-hyperreal-order]
For x, y ∈

∏
N R put U(x, y) = {n : xn ≤ yn}. Then there is a total order on R∗ given by [x] ≤ [y] iff

U(x, y) ∈ U . Moreover, this makes R∗ into a nonarchimedean ordered field (as in Definition 34.4), and the
homomorphism i : R→ R∗ preserves the order.
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Proof. First, suppose we have four sequences x, y, x′, y′ ∈
∏

N R. It is then easy to see that

U(x, y) ⊇ T (x, x′) ∩ T (y, y′) ∩ U(x′, y′)

U(x′, y′) ⊇ T (x, x′) ∩ T (y, y′) ∩ U(x, y).

It follows that if xEx′ and yEy′ (so T (x, x′), T (y, y′) ∈ U) then (U(x, y) ∈ U iff U(x′, y′) ∈ U). We therefore
have a well-defined relation on R∗ given by ([x] ≤ [y] iff U(x, y) ∈ U). As U(x, x) = N we see that [x] ≤ [x].
If [x] ≤ [y] and also [y] ≤ [x] we see that U(x, y), U(y, x) ∈ U , and T (x, y) = U(x, y)∩U(y, x) so T (x, y) ∈ U ,
so [x] = [y]. Moreover, if [x] ≤ [y] and [y] ≤ [z] then we have U(x, y) ∩ U(y, z) ⊆ U(x, z) so U(x, z) ∈ U so
[x] ≤ [z]. This proves that we have a partial order on R∗.

To see that this is total, note that we always have either U(x, y) ∈ U (in which case [x] ≤ [y]) or
U(x, y)c ∈ U . In the latter case we note that U(x, y)c ⊆ U(y, x), so U(y, x) ∈ U and [y] ≤ [x].

Now suppose we have [a] ≤ [b] and [c] ≤ [d], so U(a, b), U(c, d) ∈ U . It is clear that U(a, b) ∩ U(c, d) ⊆
U(a+ c, b+ d) and thus that [a+ c] ≤ [b+ d]. Similarly, we have U(a, b) ∩ U(0, c) ⊆ U(ac, bc), so if [a] ≤ [b]
and [0] ≤ [c] then [ac] ≤ [bc]. This means that R∗ is an ordered field.

Now suppose we have numbers x, y ∈ R, and we let c(x) and c(y) be the corresponding constant
sequences, so i(x) = [c(x)]. If x ≤ y then U(c(x), c(y)) = N ∈ U , so i(x) ≤ i(y); this shows that i is
order-preserving.

Now let ω denote the sequence (0, 1, 2, 3, . . . ). Recall from Corollary 21.6 that U does not contain any
finite sets, so in particular it does not contain the set U(ω, i(n)) = {0, 1, . . . , n}, so [ω] 6≤ i(n). This shows
that R∗ is not archimedean. �

Definition 21.35. [defn-finite-hyperreals]
We say that a hyperreal a ∈ R∗ is finite if −i(n) ≤ a ≤ i(n) for some n ∈ N. We say that a is infinitesimal

if −i(1/n) ≤ a ≤ i(1/n) for all n > 0. We write F for the set of finite hyperreals, and I for the subset of
infinitesimals.

Proposition 21.36. [prop-standard-part]
The set F is a subring of R∗, and I is an ideal in F . Moreover, there is a canonical isomorphism

F/I ' R.

Proof. It is clear that i(x) is finite for all x ∈ R; in particular, i(0) and i(1) are finite. Now suppose that
a and b are finite, say −i(n) ≤ a ≤ i(n) and −i(m) ≤ b ≤ i(m). It follows that −i(n+m) ≤ a± b ≤ i(n+m)
and −i(nm) ≤ ab ≤ i(nm), so a± b and ab are also finite. This means that F is an R-algebra.

Now suppose that c and d are infinitesimal. For all k > 0 we then have −i(1/2k) ≤ c, d ≤ i(1/2k),
so −i(1/k) ≤ c + d ≤ i(1/k); this means that c + d is also infinitesimal. Now suppose we have a ∈ F ,
so −i(n) ≤ a ≤ i(n) say. As c is infinitesimal we have −i(1/kn) ≤ c ≤ i(1/kn), and it follows that
−i(1/k) ≤ ac ≤ i(1/k). This means that ac is again infinitesimal. Using this we see that I is an ideal in R.

Next, for a ∈ R∗ we put L(a) = {x ∈ R : i(x) ≤ a}. If −i(n) ≤ a ≤ i(n) then L(a) contains −n and is
bounded above by n, so we can define λ(a) = sup(L(a)) ∈ R. This gives a map λ : F → R.

Suppose that λ(a) = 0. This means that for all n > 0 the number −1/n is not an upper bound for L(a),
so there exists x ∈ L(a) with −1/n < x, and it follows that −i(1/n) ≤ a. On the other hand, as 0 is an
upper bound for L(a) we have 1/n 6∈ L(a) so a < i(1/n). Putting these facts together, we see that a ∈ I.
This argument can easily be reversed to prove the converse, so we have λ(a) = 0 iff a ∈ I. Next, it is clear
that λ(a− i(t)) = λ(a)− t for all t ∈ R. By taking t = λ(a), we see that λ(a− i(λ(t))) = 0, so a− i(λ(t)) ∈ I.

From this it is easy to check that the composite R i−→ F −→ F/I is an isomorphism. �

Remark 21.37. [rem-nonstandard-analysis]
The hyperreal framework can be used to make respectable various heuristic manipulations with infinite

and infinitesimal quantities. For example, given a smooth function f : R → R we can define an extension
f∗ : R∗ → R∗ by

f∗([x]) = [(f(x0), f(x1), f(x2), . . . )].

We then find that when a is finite and ε is a nonzero infinitesimal, we have

(f∗(a+ ε)− f∗(a))/ε = (f ′)∗(a) + an infinitesimal .
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This approach is called nonstandard analysis. There is an extensive literature, to which [3] will serve as an
introduction.

21.2. The Stone-Cech compactification. In Proposition 21.10, we explained how to regard β as
a functor Sets → Sets. We will now introduce a topology on βX, making it a compact Hausdorff space,
called the Stone-Cech compactification of X. We will show that the set of fixed ultrafilters is an open, dense,
discrete subset of βX, which can be identified with the original set X. We will also show that for any
function f : X → Y , the induced map f∗ : βX → βY is continuous, so β gives a functor from sets to compact
Hausdorff spaces. In fact, this functor is left adjoint to a suitable forgetful functor.

Recall that Proposition 21.9 gives a canonical bijection F : β′X → β′X, where β′X is the set of characters
of PX. In particular, β′X is a subset of the set F (PX, {0, 1}) '

∏
S∈PX{0, 1}, which is a compact Hausdorff

space by the Tychonov theorem.

Proposition 21.38. [prop-chars-compact]
The set β′X is closed in F (PX, {0, 1}), and so is compact and Hausdorff. Moreover, the sets

D′S = {ξ ∈ β′X : ξ(S) = 1}
are both open and closed in β′X, and they form a basis for the topology.

Proof. Put

Z0 = {ξ ∈ F (PX, {0, 1}) : ξ(X) = 1}
Z1 = {ξ ∈ F (PX, {0, 1}) : ξ(∅) = 0}

Z2(S, T ) = {ξ ∈ F (PX, {0, 1}) : ξ(S ∩ T ) = min(ξ(S), ξ(T ))}
Z2(S) = {ξ ∈ F (PX, {0, 1} : ξ(S) + ξ(Sc) = 1},

so

β′X = Z0 ∩ Z1 ∩
⋂

S,T∈PX
Z2(S, T ) ∩

⋂
S∈PX

Z2(S).

It will suffice to show that all of the terms in this intersection are closed. For each S ∈ PX we have a
projection map

πS : F (PX, {0, 1})→ {0, 1} ⊂ Z,
which is continuous by the definition of the product topology. It follows that we can define another continuous
map fS,T : F (PX, {0, 1})→ Z by

fS,T (ξ) = ξ(S ∩ T )−min(ξ(S), ξ(T )).

We then have Z2(S, T ) = f−1
S,T {0}, which proves that Z2(S, T ) is closed. A similar argument shows that the

sets Z3(S) are closed, as are the sets Z0 = π−1
X {1} and Z1 = π−1

∅ {0}. This means that β′X is closed, and
thus is compact and Hausdorff as claimed.

Next, let pS be the restriction of πS to β′X, and put

σ0 = {π−1
S (U) : S ∈ PX, U ⊆ {0, 1}}

σ1 = {A ∩ β′X : A ∈ σ0} = {p−1
S (U) : S ∈ PX, U ⊆ {0, 1}}

σ2 = {DS : S ∈ PX} = {p−1
S {1} : S ∈ PX}.

It is standard that σ0 is a subbasis for the product topology on F (PX, {0, 1}), and it follows that σ1 is
a subbasis for the topology on β′X. Now p−1

S (∅) = ∅ and p−1
S ({0, 1}) = β′X, and using the condition

ξ(Sc) = 1 − ξ(S) we see that p−1
S {0} = p−1

Sc {1} = DSc . Using this, it follows that σ2 is still a subbasis
for the topology. It follows that the family of all finite intersections

⋂n
i=1DSi is a basis for the topology.

However, using the condition ξ(S ∩ T ) = min(ξ(S), ξ(T )) we see that ξ(
⋂
i Si) = min(ξ(S1), . . . , ξ(Sn)) and

so
⋂
iDSi = D⋂

i Si
. As this is already in σ2, we see that σ2 is actually a basis, as claimed. �

Corollary 21.39. [cor-beta-topology]
The sets DS = {W ∈ βX : S ∈ W} form a basis for a topology on βX, with respect to which it is

compact and Hausdorff.
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Proof. We have a bijection F : β′X → βX as in Proposition 21.9, and we declare that U ⊆ βX is open
iff F−1(U) is open in β′X. This gives a topology with respect to which F is a homeomorphism, so βX is
compact Hausdorff. From the definitions we see that F−1(DS) = D′S , so the sets DS form a basis for the
topology. �

Now recall that we defined a map η : X → βX by

η(x) =Wx = {S ⊆ X : x ∈ S}.

Proposition 21.40. [prop-beta-density]
The map η is injective, and η(X) is discrete, open and dense in βX.

Proof. First, if x 6= y then {x} ∈ η(x) but {x} 6∈ η(y), so η(x) 6= η(y). This proves that η is injective.
Next, it is straightforward to check that D{x} = {η(x)}, so the singleton {η(x)} is open. It follows that

for any subset Y ⊆ X, the set η(Y ) =
⋃
y∈Y {η(y)} =

⋃
y∈Y D{y} is open in βX. This means that η(X) is

open and discrete.
Next, consider a nonempty open set U ⊆ βX. As this is nonempty, we can choose W ∈ U . As U is

open, there must be a basic open set DS such that W ∈ DS ⊆ U . As D∅ = ∅, we must have S 6= ∅. We can
thus choose x ∈ S, and we find that S ∈ η(x), so η(x) ∈ DS ⊆ U , so U meets η(X). As U was an arbitrary
nonempty open set, this means that η(X) is dense. �

Proposition 21.41. [prop-beta-topological-functor]
For any function f : X → Y , the induced map f∗ : βX → βY is continuous. Thus, we can regard β as a

functor from Sets to the category CompHaus of compact Hausdorff spaces and continuous maps.

Proof. It will suffice to check that for each subset T ⊆ Y , the preimage f−1
∗ (DT ) is open in βX.

Consider an ultrafilter U on X. We have U ∈ f−1
∗ (DT ) iff f∗(U) ∈ DT iff T ∈ f∗(U) iff f−1(T ) ∈ U iff

U ∈ Df−1(T ). This means that f−1
∗ (DT ) = Df−1(T ), which is open in βX as required. �

Now consider a compact Hausdorff space A. Proposition 21.23 and Theorem 21.24 tell us that every
ultrafilter W on A has a unique limit in A, which we denote by ε(W).

Proposition 21.42. [prop-limit-continuous]
The map ε : βA → A is continuous. More precisely, for every open set V ⊆ A, the preimage ε−1(V ) is

the union of all the basic open sets DS for which S ⊆ V .

Proof. Let U be the union of all DS with S ⊆ V . Suppose that W ∈ ε−1(V ). This means that W
converges to some point a ∈ V , or in other words that Na ⊆ W. As compact Hausdorff spaces are regular,
we can choose an open set S with a ∈ S ⊆ S ⊆ V . Now S ∈ Na so S ∈ W so W ∈ DS and S ⊆ V , so
W ∈ U .

Conversely, suppose that W 6∈ ε−1(V ), so W converges to some point a 6∈ V . Now if S ⊆ A with S ⊆ V
we see that S

c
is an open neighbourhood of a, so S

c ∈ W. As S ∩Sc = ∅, we must have S 6∈ W, so W 6∈ DS .
As S was arbitrary this means that W 6∈ U . We deduce that ε−1(V ) = U as claimed. This is clearly open
in βA, so the map ε : βA→ A is continuous. �

Proposition 21.43. [prop-beta-adjoint]
The functor β : Sets→ CompHaus is left adjoint to the forgetful functor U : CompHaus→ Sets.

Proof. We have already defined a function η : X → UβX by η(x) =Wx. We claim that this is natural,
or equivalently that for every function f : X → Y we have f∗(Wx) =Wf(x). Indeed, we have T ∈ f∗(Wx) iff

f−1(T ) ∈ Wx iff x ∈ f−1(T ) iff f(x) ∈ T iff T ∈ Wf(x) as required. This can be displayed diagramatically
as follows:

X
f

//

ηX

��

Y

ηY

��

UβX
Uf∗

// UβY.
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Next, we have already defined continuous maps ε : βUA → A for all compact Hausdorff spaces A.
(Previously we wrote the domain without a U , but it was implicit.) We claim that this is natural, or in other
words that for every continuous map g : A→ B and every ultrafilter W on A, we have ε(f∗(W)) = f(ε(W)).
This is just a restatement of Proposition 21.21.

We now need to check the triangular identities. The first of these says that the composite

UA
ηUA−−−→ UβUA

UεA−−−→ UA

is the identity, or more explicitly, that the fixed ultrafilter Wa converges to a. This is immediate from the
definitions. The second says that the composite

ζ = (βX
(ηX)∗−−−−→ βUβX

εβX−−→ βX)

is the identity. Here ζ is continuous and βX is Hausdorff so the set Z = {W ∈ βX : ζ(W) =W} is closed
in βX. We need to show that Z is all of βX. As η(X) is dense in βX, it will suffice to show that η(X) ⊆ Z,
or equivalently that (Uζ)η = η : X → UβX. For this, we consider the diagram

X
ηX //

ηX

��

UβX

ηUβX

��

1

%%

UβX
U(ηX)∗

// UβUβX
UεβX

// UβX.

The square is the naturality diagram for η in the case where Y = UβX and f = ηX ; it is therefore
commutative. The triangle is the first triangular identity in the case A = βX, so it is also commutative.
The composite along the bottom is Uζ. It is now clear that (Uζ)η = η as required. �

Remark 21.44. [rem-beta-adjunction]
The adjunction gives a natural bijection Sets(X,UA) ' CompHaus(βX,A) for all sets X and compact

Hausdorff spaces A as in Proposition 36.60. By working through the definitions we see that a function
f : X → UA corresponds to the continuous map f# : βX → A given by

f#(W) = ε(f∗(W)) = the unique limit point of the ultrafilter f∗(W).

21.3. The Vietoris space. We now have the tools necessary to introduce a topology on the set of
closed subsets of X, at least when X is compact Hausdorff.

Definition 21.45. [defn-vietoris]
Let X be a compact Hausdorff space, with topology τ say. Let V (X) denote the set of all closed subsets

of X. For any open set U ∈ τ , we put

s(U) = {K ∈ V (X) : K ⊆ U}
m(U) = {K ∈ V (X) : K ∩ U 6= 0}

σ′ = {s(U) : U ∈ τ} ∪ {m(U) : U ∈ τ}.

(Mnemonic: s(U) stands for “subset of U”, and m(U) for “meets U”). The family σ′ is a subbasis for a
topology τ ′ on V (X), called the Vietoris topology. We call V (X) (equipped with this topology) the Vietoris
space for X.

Lemma 21.46. [lem-vietoris-relations]
The sets defined above have the following properties:

(a) s(U) ∩ s(V ) = s(U ∩ V )
(b) s(U) ∩m(V ) = s(U) ∩m(U ∩ V )
(c) If U ⊆ V then m(U) ∩m(V ) = m(U)
(d) s(U ∪ V ) = s(U) ∪ (s(U ∪ V ) ∩m(V )).

Proof. Let K be a closed subset of X.

(a) It is clear that (K ⊆ U and K ⊆ V ) iff K ⊆ U ∩ V , or in other words K ∈ s(U) ∩ s(V ) iff
K ∈ s(U ∩ V ).
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(b) Suppose that K ∈ s(U) ∩ m(V ), so K ⊆ U and there exists a point x ∈ K ∩ V . As K ⊆ U
we have K ∩ V = K ∩ U ∩ V , so x ∈ K ∩ (U ∩ V ), so K ∈ s(U) ∩m(U ∩ V ). This shows that
s(U) ∩m(V ) ⊆ s(U) ∩m(U ∩ V ), and the opposite inclusion is clear.

(c) Now suppose that U ⊆ V . It is clear that K ∩ U ⊆ K ∩ V , so if K meets U then it also meets V .
This means that m(U) ⊆ m(V ), so m(U) ∩m(V ) = m(U).

(d) Suppose that K ∈ s(U ∩ V ) but that K 6∈ s(U). This means that K ⊆ U ∩ V but K 6⊆ U , so K
must meet V , so K ∈ s(U ∪V ). Using this, we see that s(U ∪V ) ⊆ s(U)∪ (s(U ∪V )∩m(V )), and
the opposite inclusion is clear.

�

Lemma 21.47. [lem-vietoris-basis]
Let β′ be the collection of all sets of the form

s(U) ∩m(V1) ∩ · · · ∩m(Vr)

where

• The sets U and Vi are open in X
• We have Vi ⊆ U for all i
• For i 6= j we have Vi 6⊆ Vj.

Then β′ is closed under finite intersections, and is a basis for the topology on V (X).

Proof. Let β′′ be the collection of all sets of the form

s(U1) ∩ · · · ∩ s(Uq) ∩m(V1) ∩ · · · ∩m(Vr),

where the sets Ui and Vj are open in X. From very general facts about bases and subbases we see that β′′

is a basis for the topology, and it is clearly closed under finite intersections. It will therefore suffice to show
that β′ = β′′. The inclusion β′ ⊆ β′′ is clear. In the opposite direction, suppose we have a set

A = s(U1) ∩ · · · ∩ s(Uq) ∩m(V1) ∩ · · · ∩m(Vr) ∈ β′′.
Put U =

⋂
i Ui and V ′i = U ∩ Vi. Using parts (a) and (b) of Lemma 21.46 we see that

A = s(U) ∩m(V ′1) ∩ · · · ∩m(V ′r ).

Next, if V ′i ⊆ V ′j for some i 6= j, part (c) of Lemma 21.46 tells us that we can omit the term m(V ′j ) without
changing the intersection. After a finite number of steps of this type, we obtain an expression for A showing
that it is a member of β′. �

Theorem 21.48. [thm-vietoris-compact]
The space V (X) is compact Hausdorff.

Proof. We will use Alexander’s subbasis theorem. Consider a covering of V (X) by subbasic open sets:

V (X) =
⋃
i∈I

s(Ui) ∪
⋃
j∈J

m(Vj).

Write
K = X \

⋃
j∈J

Vj .

Note that K ∈ V (X), but K 6∈ m(Vj) for any j ∈ J so we must instead have K ∈ s(Ui) for some i ∈ I.
Thus K ⊆ Ui. Next, consider K ′ = X \ Ui ∈ V (X). Note that K ′ ⊆ X \K =

⋃
J Vj and K ′ is compact so

K ′ ⊆
⋃
J′ Vj for some finite set J ′ ⊆ J .

Now consider an arbitary element L ∈ V (X). Either L ⊆ Ui (so L ∈ s(Ui)) or L ∩K ′ 6= ∅. In the latter
case we have L ∩

⋃
J′ Vj 6= ∅ so L ∩ Vj 6= ∅ for some j ∈ J ′, so L ∈ m(Vj). Either way, we have

L ∈ s(U) ∪
⋃
J′

m(Vj).

As L was an arbitrary element of V (X) we deduce that

V (X) = s(U) ∪
⋃
J′

m(Vj).
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This is the required finite subcover, proving that V (X) is compact.
Finally, we prove that V (X) is Hausdorff. Suppose K,L ∈ Z with K 6= L. Without loss of generality,

there is an element x ∈ K \L. As compact Hausdorff spaces are regular, we can choose disjoint open sets U
and V with x ∈ U and L ⊆ V . Then K ∈ m(U) and L ∈ s(V ) and m(U) ∩ s(V ) = ∅ as required. �

Proposition 21.49. [prop-vietoris-metric]
Let X be a compact metric space. Then the Vietoris topology on V (X) is the same as the metric topology

coming from the Hausdorff metric d discussed in Section 12.3.

Proof. Let τ ′ be the Vietoris topology and let τ ′′ be the metric topology. Consider a subset A ⊆ V (X)
and an element K ∈ A. It will suffice to prove that A is a τ ′-neighbourhood of K iff it is a τ ′′-neighbourhood
of K.

Suppose that A is a τ ′-neighbourhood of K, so there exists a set B = s(U) ∩m(V1) ∩ · · · ∩m(Vr) as
in Lemma 21.47 such that K ∈ B ⊆ A. As K ∈ B we have K ⊆ U and we can choose xi ∈ K ∩ Vi for
each i. Now let ε > 0 be small enough that OBε(xi) ⊆ Vi for all i, and also ε < d(K,U c). Now suppose we
have L ∈ V (X) with d(K,L) < ε. On the one hand this means that for y ∈ L we have d(y,K) < ε but for
z ∈ U c we have d(z,K) ≥ d(U c,K) > ε; it follows that L ⊆ U . On the other hand, for each x ∈ K we have
d(x, L) < ε. In particular, we have d(xi, L) < ε, so we can choose yi ∈ L with d(xi, yi) < ε. As OBε(xi) ⊆ Vi
this gives yi ∈ L∩ Vi, so L∩ Vi 6= ∅, so L ∈ m(Vi). This means that L ∈ B ⊆ A whenever d(K,L) < ε, so A
is a τ ′′-neighbourhood of K.

Conversely, suppose we start with the assumption that A is a τ ′′-neighbourhood of K. This means that
there exists ε > 0 such that L ∈ A whenever d(K,L) < ε. Put U = {x : d(x,K) < ε}, which is an open set
containing K. Choose an ε/2-net {x1, . . . , xr} for K, and put Vi = OBε/2(xi) and B = s(U) ∩

⋂
im(Vi). It

is clear that B is a τ ′-neighbourhood of K; we claim that it is contained in A. Indeed, suppose that L ∈ B.
This firstly means that L ⊆ U , so d(y,K) < ε for all y ∈ L. Next, suppose we have x ∈ K. By construction
we have d(x, xi) < ε/2 for some i. As L ∈ m(Vi) = m(OBε/2(xi)) we can choose y ∈ L with d(xi, y) < ε/2.
We now have d(x, y) < ε, so d(x, L) < ε. It now follows that

d(K,L) = max(max{d(x, L) : x ∈ K},max{d(y,K) : y ∈ L}) < ε,

so L ∈ A as required. This proves that A is a τ ′-neighbourhood of K. �

22. Paracompactness and Partitions of Unity

In this section we will discuss the notion of paracompactness. This is a rather weak condition, satisfied
by the great majority of spaces that arise in practice, although it is quite strenuous to prove this. However, it
is very useful. There are many topological problems that can always be solved on sufficiently small open sets;
one then wants to patch together these local solutions (which may not be unique) to get a global solution.
It will turn out that this is much easier when the total space is paracompact.

Definition 22.1. [defn-paracompact]
Let X be a topological space.

(a) A cover of X is a family U = (Ui)i∈I of subsets of X whose union is the whole of X. An open
cover is a cover, each of whose sets is open.

(b) We say that a cover U as above is locally finite if for each point x ∈ X there is an open neighbourhood
N such that {i : Ui ∩N 6= ∅} is finite.

(c) For any function φ : X → R, the support of φ is the closure of the set {x : φ(x) 6= 0}.
(d) A partition of unity subordinate to U is a family of continuous functions φi : X → [0, 1] such that

supp(φi) ⊆ Ui, and (supp(φi))i∈I is locally finite, and
∑
i φi = 1.

(e) We say that U is numerable if there exists a partition of unity subordinate to U .
(f) Now let V = (Vj)j∈J be another cover. We say that V is a refinement of U if for each j ∈ J there

exists i ∈ I with Vj ⊆ Ui.
(g) We say that X is paracompact if every open cover has a locally finite open refinement.

Partitions of unity are often a useful tool for patching together local solutions to obtain a global solution.
We will prove as Theorem 22.22 that every open cover of a paracompact Hausdorff space is numerable.

We start with the following simple result, which illustrates the meaning and importance of local finiteness.
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Lemma 22.2. [lem-sum-support]
Let (φi)i∈I be a family of continuous functions X → [0,∞), and suppose that the family (supp(φi))i∈I

is locally finite. Then the sum φ =
∑
i φi is finite and continuous, and supp(φ) =

⋃
i supp(φi).

Proof. For any subset T ⊆ X we put

IT = {i ∈ I : supp(φi) ∩ T 6= ∅}.
Consider a point x ∈ X. By assumption, there is an open neighbourhood N of x such that IN is finite.
Now φ|N can be written as the finite sum

∑
i∈IN φi|N , so φ|N is finite and continuous. It follows (by

Proposition 5.9(a)) that φ is finite and continuous.
Next, we have φi ≤ φ for all i, so

⋃
i supp(φi) ⊆ supp(φ). Suppose instead that x 6∈

⋃
i supp(φi). Choose

N as before. As IN is finite, the set M = N \
⋃
i∈IN supp(φi) is open, and it contains x, and φ|M = 0; it

follows that x 6∈ supp(φ). �

Corollary 22.3. [cor-numerable-refinement]
If an open cover has a numerable refinement, then it is itself numerable.

Proof. Let (Ui)i∈I be an open cover, let (Vj)j∈J be a numerable refinement, and let (ψj)j∈J be a
partition of unity subordinate to (Vj)j∈J . The refinement condition means that we can choose a function
u : J → I such that Vj ⊆ Uu(j) for all j. Put J [i] = {j : u(j) = i}, so J is the disjoint union of the sets J [i].
As the family (supp(ψj))j∈J is locally finite, the same is true of the subfamily (supp(ψj))j∈J[i]. It follows
from the lemma that the function φi =

∑
j∈J[i] ψj is continuous, with

supp(φi) =
⋃
j∈J[i]

supp(ψj) ⊆
⋃
j∈J[i]

Vj ⊆ Ui.

For any set T ⊆ X, we put

IT = {i ∈ I : supp(φi) ∩ T 6= ∅}
JT = {j ∈ J : supp(ψj) ∩ T 6= ∅}.

It is now clear that IT = u(JT ). For any point x ∈ X, we can choose an open neighbourhood N such JN is
finite, and it follows that IN is also finite. This means that the family (supp(φi))i∈I is locally finite. It is
also clear that ∑

i∈I
φi =

∑
i∈I

∑
j∈J[i]

ψj =
∑
j∈J

ψj = 1,

so we have a partition of unity subordinate to the cover (Ui)i∈I as required. �

It turns out that most naturally occurring spaces are paracompact, but substantial work is required to
prove this. The simplest case is as follows.

Proposition 22.4. [prop-compact-paracompact]
Any compact Hausdorff space is paracompact.

Proof. Any open cover has a finite subcover, which is automatically a locally finite open refinement. �

Proposition 22.5. [prop-exhaustion-paracompact]
Suppose that X is Hausdorff and can be written as X =

⋃
nXn where Xn is open, Xn is compact and

Xn ⊆ Xn+1. Then X is paracompact.

Proof. Consider an open cover U = (Ui)i∈I . As Xn is compact, we can choose a finite set In ⊆ I such
that Xn ⊆

⋃
i∈In Ui. Now put Vn = Xn \ Xn−2 (or Vn = Xn for n ∈ {0, 1}). These sets are clearly open.

As Xn−2 ⊆ Xn−1 we see that Xn \Xn−1 ⊆ Vn, so Xn ⊆
⋃
m≤n Vm, so the sets Vm cover X. Moreover, for

m ≥ n+ 2 we have Vn ⊆ Xm−2 and Vm ⊆ Xn ⊆ Xm−2 ⊆ Xm−2
c

so Vn ∩ Vm = ∅.
Now consider the family W = (Vn ∩ Ui)n∈N, i∈In . It is clear that these sets are open, and that each of

them is contained in some set Ui. Consider a point x ∈ X. We have seen that X =
⋃
n Vn, so x ∈ Vn for

some n. This means that x ∈ Xn, which is covered by (Ui)i∈In , so there is a set Vn ∩Ui in W that contains
x. Moreover Vn is an open neighbourhood of x, and using the fact that Vn ∩ Vm = ∅ for m ≥ n + 2 we see
that Vn meets only finitely many sets in W. Thus, W is a locally finite open cover that refines U . �
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Corollary 22.6. [cor-lch-paracompact]
Suppose that X is locally compact Hausdorff and second countable. Then X is paracompact.

Proof. It will suffice to construct a chain of subsets Xn as in Proposition 22.5. As X is second
countable, there is a countable basis β for the topology. Put

γ = {U ∈ β : U is compact }.

This is a countable collection of precompact open sets; we claim it covers X. Indeed, suppose x ∈ X. Then
as X is locally compact, there is a neighbourhood W of x such that W is compact. As β is a basis, there is
a set U ∈ β with x ∈ U ⊆ W . As U is closed in W , it is compact, so U ∈ γ. Thus, for any x there is a set
U ∈ γ with x ∈ U as claimed.

Now enumerate γ as γ = {Vn : n > 0}. We shall define recursively precompact open sets Xn such that

Vn ⊆ Xn ⊆ Xn ⊆ Xn+1

Indeed, we can take X0 = ∅. Suppose we have defined sets X0, . . . Xn satisfying the requirements. Then Xn

is compact and covered by γ (as the whole space is) so

Xn ⊆ Vk1 ∪ . . . Vkm
say. We take

Xn+1 = Vn+1 ∪ Vk1 ∪ . . . Vkm
and observe that this is precompact because each Vk is.

This procedure gives us Xn for all n. As Vn ⊆ Xn and the Vn cover X, we see that
⋃
nXn = X as

required. �

Corollary 22.7. [cor-manifold-paracompact]
Every topological manifold is paracompact Hausdorff.

Proof. Manifolds are locally compact Hausdorff by Proposition 20.9, and second countable by defini-
tion. �

It is convenient to digress slightly at this point to prove another result with the same hypotheses as
Proposition 22.5.

Proposition 22.8. [prop-exists-proper]
Suppose that X is Hausdorff and can be written as X =

⋃
nXn where Xn is open, Xn is compact and

Xn ⊆ Xn+1. Then there exists a proper map f : X → R.

Proof. Consider the sets

An = Xn \Xn−1

Cn = Xn+1 \Xn−2.

Note that An and Cn are closed and compact, that Cn is open in X, and that An ⊆ Cn ⊆ Cn. As Cn is
compact Hausdorff, it is normal, so we can choose a set Bn that is open in Cn with

An ⊆ Bn ⊆ Bn ⊆ Cn ⊆ Cn.

As Bn is open in Cn and Bn ⊆ Cn and Cn is open in X we see that Bn is open in X. Similarly, the symbol
Bn above officially refers to the closure in Cn but that is the same as the closure in X because Cn is closed
in X. Now, by Urysohn’s Lemma we can find φn : Cn → [0, 1] with φn(x) = 1 for x ∈ An and φn(x) = 0 on
Cn \ Bn. We extend φn over all of x by putting φn(x) = 0 for x 6∈ Cn. Now φn is continuous on the closed
set Cn, and it is constant on the closed set X \ Bn, and X is the union of these two closed sets. It follows
that φn : X → [0, 1] is continuous. Note also that supp(φn) ⊆ Cn, but by construction we have Cn ∩Cm = ∅
when |n −m| ≥ 3, so the family of supports is locally finite. This means that the function φ =

∑
n nφn is

continuous. I claim that it is also proper. Indeed, suppose that K ⊆ R is compact, so K ⊆ [−n, n] say. As
φ ≥ mφm = m on Am, we see that φ−1(K) ⊆ A1 ∪ . . . An which is compact. Moreover, φ−1(K) is closed by
continuity. As a closed subset of a compact set, it is itself compact. �
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Theorem 22.9. [thm-metric-paracompact]
Let X be a metric space; then X is paracompact.

The proof, which relies on an elaborate system of preparatory results, will be given after Lemma 22.17.

Definition 22.10. If V ⊆ X2, we write V T = {(y, x) : (x, y) ∈ V }. We say that V is symmetric if
V = V T . We also say that V is reflexive if it contains the diagonal ∆ = {(x, x) : x ∈ X}.

Proposition 22.11. [prop-closed-refinement-metric]
Let (Ui)i∈I be an open cover of X. Then there is a family of sets (Dj)j∈J such that

(a) Each set Dj is closed in X.
(b) Each set Dj is contained in Ui for some i.
(c) X is the union of the sets Dj.
(d) For each point x ∈ X there is an open neighbourhood N such that N meets only finitely many of

the sets Dj.

Moreover, there is a set V ⊆ X2 such that

(e) V is open.
(f) V is symmetric and reflexive.
(g) For each x ∈ X, the set V [x] = {y : (x, y) ∈ V } is contained in Ui for some i.

Framework of proof. By Theorem 35.27, we may assume that the index set I is well-ordered. We
then make the following definitions.

Ani = {a ∈ X : d(a, x) < 2−n =⇒ x ∈ Ui}

Bni = Ani \
⋃
j<i

An+1,j

Cni = {c ∈ X : d(c, b) < 2n−3 for some b ∈ Bni}

Dni = Cni \

 ⋃
m<n

⋃
j

Cmj


V =

⋂
n,i

((Ui × Ui) ∪ (Dc
ni ×Dc

ni)) ⊆ X2.

The properties of these sets will be established in Lemmas 22.12 to 22.16. In particular, we will show in
Lemma 22.15 that the family (Dni)n∈N,i∈I has the announced properties (a) to (d), and in Lemma 22.16
that V has properties (e) to (g). �

Lemma 22.12. [lem-pc-A]

(a) Ani ⊆ Ui.
(b) We have Ui =

⋃
nAni, and thus X =

⋃
n,iAni.

(c) Ani is closed in X.
(d) For all a ∈ Ani and a′ 6∈ An+1,i we have d(a, a′) ≥ 2−n−1.

Proof.

(a) If a ∈ Ani we can take x = a in the definition to see that a ∈ Ui.
(b) Consider a point a ∈ Ui. As Ui is open, it contains the open ball around a of radius 2−n for some

n; we then have a ∈ Ani. This proves that Ui is the union of the sets Ani, and X =
⋃
i Ui by

assumption, so X =
⋃
n,iAni.

(c) Suppose that a lies in the closure of Ani. Consider a point x ∈ X with d(a, x) < 2−n. As a ∈ Ani
we can find a′ ∈ Ani with d(a, a′) < 2−n − d(a, x). We then find that d(a′, x) < 2−n, so x ∈ Ui by
the definition of Ani. This shows that a lies in Ani, so Ani is closed.
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(d) Suppose that a ∈ Ani and a′ 6∈ An+1,i. As a′ 6∈ An+1,i there exists x with d(a, x) < 2−n−1 but
x 6∈ Un. As a ∈ Ani we must have d(a, x) ≥ 2−n. It follows that

d(a, a′) ≥ d(a, x)− d(a′, x) ≥ 2−n − 2−n−1 = 2−n−1

as claimed.

�

Lemma 22.13. [lem-pc-B]

(a) Bni ⊆ Bni ⊆ Ani ⊆ Ui.
(b) X =

⋃
n,iBni.

(c) If b ∈ Bni and b′ ∈ Bnj with i 6= j then d(b, b′) ≥ 2−n−1.

Proof.

(a) By definition we have Bni ⊆ Ani and Ani is closed so Bni ⊆ Ani. We saw in Lemma 22.12(a) that
Ani ⊆ Ui.

(b) Consider a point b ∈ X. As the sets Ui cover X and I is well-ordered, there is a smallest index i
such that b ∈ Ui. As Ui =

⋃
nAni we have b ∈ Ani for some n. If j < i we have b 6∈ Uj , so certainly

b 6∈ An+1,j . We thus have b ∈ Bn,i as required.
(c) First, as the space {(x, x′) : d(x, x′) ≥ 2−n−1} is closed in X2, it will suffice to prove the claim for

b ∈ Bni and b′ ∈ Bnj . We may also assume by symmetry that j < i. This means that b 6∈ An+1,j

and b′ ∈ Anj , so the claim follows from Lemma 22.12(d).

�

Lemma 22.14. [lem-pc-C]

(a) Cni is open in X.
(b) Bni ⊆ Cni ⊆ Cni ⊆ An+1,i ⊆ Ui.
(c) X =

⋃
n,i Cni.

(d) If c ∈ Cni and c′ ∈ Cnj with i 6= j then d(c, c′) ≥ 2−n−2.

Proof.

(a) This is clear, as Cni is the union of all open balls of radius 2−n−3 with centre in Bni.
(b) It is clear from the definition that Bni ⊆ Cni. Next, if c ∈ Cni we can find b ∈ Bni ⊆ Ani with

d(c, b) < 2−n−3, but for a′ 6∈ An+1,i we have d(a′, b) ≥ 2−n−1 by Lemma 22.12(d); so we must have

c ∈ An+1,i. This proves that Cni ⊆ An+1,i, and An+1,i is closed so Cni ⊆ An+1,i. We also have
An+1,i ⊆ Ui by Lemma 22.12(a).

(c) We have just shown that Cni ⊇ Bni, and X =
⋃
n,iBni by Lemma 22.13(b), so X =

⋃
n,i Cni.

(d) First, as the space {(x, x′) : d(x, x′) ≥ 2−n−2} is closed in X2, it will suffice to prove the claim
for c ∈ Cni and c′ ∈ Cnj . We can then find b ∈ Bni and b′ ∈ Bnj with d(c, b) < 2−n−3 and
d(c′, b′) < 2−n−3. Lemma 22.13(c) tells us that d(b, b′) ≥ 2−n−1. It follows that

d(c, c′) ≥ d(b, b′)− d(b, c)− d(b′, c′) > 2−n−1 − 2−n−3 − 2−n−3 = 2−n−2.

as required.

�

Lemma 22.15. [lem-pc-D]

(a) Dni is closed in X.
(b) Dni ⊆ Cni ⊆ An+1,i ⊆ Ui.
(c) X =

⋃
n,iDni.

(d) For each x ∈ X there is an open neighbourhood N that meets only finitely many of the sets Dni.

Proof.
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(a) As the sets Cmj are open, this is clear from the definition.

(b) By definition we have Dni ⊆ Cni, and the rest is part (b) of the previous lemma.
(c) Consider a point x ∈ X. By part (c) of the previous lemma, there exist pairs (m, j) with d ∈ Cmj .

If we choose such a pair with m as small as possible, we find that x ∈ Cmj \
⋃
p<m

⋃
k Cpk ⊆ Dmj .

(d) Choose m and j as in (c), and put

N = {y ∈ Cmj : d(x, y) < 2−m−3},

which is an open neighbourhood of x. If n > m then Dni ⊆ Ccmj by the definition of Dni, and
so N does not meet Dni. Suppose instead that n ≤ m. For any y, z ∈ N we have d(y, z) ≤
d(y, x) + d(x, z) < 2−m−2, but if y ∈ Cnk and z ∈ Cnl with k 6= l then d(y, z) ≥ 2−n−2 ≥ 2−m−2 by
Lemma 22.14(d). It follows that N meets at most one of the sets Cni, and Dni ⊆ Cni, so N meets
at most one of the sets Dni. This applies for n = 0, 1, . . . ,m, so N meets at most m+ 1 of the sets
Dni altogether.

�

Lemma 22.16. [lem-pc-V]

(e) V is open.
(f) The diagonal ∆ = {(x, x) : x ∈ X} is a subset of V .
(g) For each x ∈ X, the set V [x] = {y : (x, y) ∈ V } is contained in Ui for some i.

Proof. (e) Consider a point (x, y) ∈ V . Choose open neighbourhoods N and M of x and y
as in Lemma 22.15(d), so there is a finite subset T ⊆ N × I such that for (n, i) 6∈ T we have
Dni ∩N = Dni ∩M = ∅, or equivalently N ×M ⊆ Dc

ni ×Dc
ni. It follows that

V ∩ (N ×M) =
⋂

(n,i)∈T

((U2
i ∪ (Dc

ni)
2) ∩ (N ×M)),

which is a finite intersection of open sets and so is open. It follows that V is a neighbourhood of
(x, y). As (x, y) was arbitrary, this means that V is open.

(f) Now consider a point (x, x) ∈ ∆. For each (n, i) we have Dni ⊆ Ui, so either x ∈ Ui or x ∈ Dc
ni, so

(x, x) ∈ U2
i ∪ (Dc

ni)
2. It follows that (x, x) ∈ V , so V is reflexive. It is also clearly symmetric.

(g) Consider an arbitrary point x ∈ X. By Lemma 22.15(c) we can find (n, i) such that x ∈ Dni. Now
if y ∈ V [x] then (x, y) ∈ V ⊆ (U2

i ∪(Dc
ni)

2), so either (x ∈ Ui and y ∈ Ui) or (x ∈ Dc
ni and y ∈ Dc

ni).
The second possibility is excluded because x ∈ Dni, so y ∈ Ui. Thus V [x] ⊆ Ui as required.

�

Lemma 22.17. [lem-root-neighbourhood]
Let V be an open, reflexive and symmetric subset of X2. Then there is an open, reflexive and symmetric

subset W ⊆ V such that whenever (u, v) ∈W and (v, w) ∈W we have (u,w) ∈ V .

The basic example here is that if V = {(x, y) : d(x, y) < ε}, we can take W = {(x, y) : d(x, y) < ε/2}.

Proof. We may assume that d(x, x′) <∞ for all x and x′. We will use the metric on X2 given by

d((x, y), (x′, y′)) = max(d(x, x′), d(y, y′)).

If V = X2 we can just take W = V . We will therefore assume that V 6= X2, so it is meaningful to define
f : X → R by

f(x) = d((x, x), V c) = inf{d((x, x), (y, z)) : (y, z) 6∈ V }.

As V c is closed and does not meet ∆, Lemmas 12.53 and 12.54 tell us that f is continuous and strictly
positive. We now put

W = {(u, v) ∈ X2 : d((u, v), (x, x)) < f(x)/3 for some x ∈ X}.
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This can also be described as the union of the open balls of radius f(x)/3 around the points (x, x) ∈ ∆, so
it is clearly open, reflexive and symmetric. Suppose that (u, v) ∈W and (v, w) ∈W , so there exist x, y ∈ X
such that d((u, v), (x, x)) < f(x)/3 and d((v, w), (y, y)) < f(y)/3, or equivalently

d(u, x) < f(x)/3 d(v, x) < f(x)/3 d(v, y) < f(y)/3 d(w, y) < f(y)/3.

By symmetry we may assume that f(x) ≤ f(y). It then follows from the above that d(u, y) < 2f(x)/3 +
f(y)/3 ≤ f(y), and thus that d((u,w), (y, y)) < f(y), so (u,w) ∈ V . �

Proof of Theorem 22.9. Consider an open cover (Ui)i∈I of X. We can apply Proposition 22.11 to
this cover, giving a family of closed sets (Dj)j∈J with the properties (a) to (d) described there. Property (d)
means that we can cover X by a family (Nk)k∈K of open sets such that each Nk meets only finitely many
of the sets Dj . We can then apply Proposition 22.11 again to this new family, giving an open, reflexive and
symmetric set V ⊆ X2 such that each open set V [x] is contained in some Nk. Choose W as in Lemma 22.17.
For each j choose φ(j) ∈ I such that Dj ⊆ Uφ(j), and put

Ej = {x ∈ Uφ(j) : (x, y) ∈W for some y ∈ Dj} = Uφ(j) ∩
⋃
y∈Dj

W [y].

We claim that these sets form a locally finite open cover of X refining the original cover (Ui)i∈I . Indeed, it
is clear that Ej is open and contained in Uφ(j). Note that if x ∈ Dj then x ∈ Uφ(j) and also (x, x) ∈ ∆ ⊆W
so x ∈ Ej . This means that Dj ⊆ Ej and the sets Dj cover X, so the sets Ej also cover X. This just leaves
local finiteness. Consider a point z ∈ X, so the set W [z] is an open neighbourhood of z. Suppose that W [z]
meets Ej , say x ∈ Ej ∩W [z]. As x ∈ Ej there exists y ∈ Dj such that (x, y) ∈W . As x ∈W [z] we also have
(z, x) ∈W . By the defining property of W we therefore have (z, y) ∈ V , so y ∈ V [z]∩Dj , so V [z]∩Dj 6= ∅.
However, the defining property of V means that V [z] meets only finitely many of the sets Dj . It follows that
W [z] meets only finitely many of the sets Ej , as required. �

Proposition 22.18. [prop-paracompact-normal]
If X is paracompact and Hausdorff then it is normal.

We will deduce this from the following weaker statement:

Lemma 22.19. [lem-paracompact-regular]
If X is paracompact and Hausdorff then X is regular.

Proof. Let Y be a closed set in X, and let z be a point in X \ Y . For each y ∈ Y we can choose
disjoint open sets Uy and Vy with y ∈ Uy and z ∈ Vy (so z 6∈ Uy). The sets Uy together with X \ Y give
an open cover of X, which must have a locally finite open refinement. This will consists of a locally finite
family (Ai)i∈I of open subsets of X \ Y , together with another locally finite family of open sets (Bj)j∈J
such that each Bj ⊆ Uy(j) for some y(j) ∈ Y . Choose an open neighbourhood N of z such that the set

J0 = {j : N ∩Bj 6= ∅} is finite. Put M = N ∩
⋂
j∈J0 Uy(j)

c
, and observe that this is an open neighbourhood

of z. Put L =
⋃
j∈J Bj , and observe that this is open. Moreover, as the sets Ai and Bj cover all of X,

and none of the sets Ai meet Y , we see that Y ⊆ L. Also, the intersection L ∩M is the union of the sets
Bj ∩M ⊆ Bj ∩ N . If j 6∈ J0 then this is empty. If j ∈ J0 then Bj ⊆ Uy(j) and M ⊆ Uy(j)

c
so again

Bj ∩M = ∅. We conclude that L∩M = ∅, so we have disjoint open sets containing Y and x respectively as
required. �

Proof of Proposition 22.18. Let Y and Z be disjoint closed sets in X. As X is regular, for each
z ∈ Z we can choose disjoint open sets Uz and Vz with Y ⊆ Uz and z ∈ Vz. The sets Vz together with
Zc therefore give an open cover of X, which must have a locally finite refinement. This will consists of a
locally finite family (Ai)i∈I of open subsets of Zc, together with another locally finite family of open sets
(Bj)j∈J such that each Bj is contained in Vz(j) for some z(j) ∈ Z. Put M =

⋃
j∈J Bj , and observe that

this is open and contains Z. Put L =
⋂
j∈J Bj

c
, and observe that this is disjoint from M . If y ∈ Y then for

each j ∈ J we have Bj ⊆ Vz(j) ⊆ U cz(j) and U cz(j) is closed so Bj ⊆ U cz(j), so Y ⊆ Uz(j) ⊆ Bj
c
. It follows

that Y ⊆ L. Finally, suppose that x ∈ L. We can choose an open neighbourhood N of x such that the set
J0 = {j ∈ J : N ∩ Bj 6= ∅} is finite. Put L0 =

⋂
j∈J0 Bj

c
and N0 = N ∩ L0. As J0 is finite we see that
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L0 and N0 are open. It is clear that L ⊆ L0 and so N ∩ L ⊆ N0. We claim that the opposite inclusion also
holds. Indeed, if j ∈ J0 then N0 ⊆ Bj

c
by the definition of L0. If j ∈ J \J0 then N ∩Bj = ∅ by the definition

of J0, so Bj is contained in the closed set N c, so Bj ⊆ N c, so N0 ⊆ N ⊆ Bj
c

again. Thus N0 ⊆ Bj
c

for all
j ∈ J , which means that N0 ⊆ L as required. As N0 = N ∩L we see that x ∈ N0 ⊆ L, so x is in the interior
of L. As x was an arbitrary point of L, this proves that L is open. Now L and M are disjoint open sets
containing Y and Z respectively, as required for normality. �

Proposition 22.20. [prop-closed-refinement]
Let X be a normal space, and let (Ui)i∈I be a locally finite open cover. Then there exist open subsets Vi

such that Vi ⊆ Vi ⊆ Ui and
⋃
i Vi = X.

Proof. The case where I = {1, . . . , n} was covered by Lemma 14.7. More generally, Theorem 35.27
tells us that we can choose a well-ordering of I, and in view of Proposition 35.28 we may then assume that
I = S(λ) = {α : α < λ} for some ordinal λ. We can then follow the method of Lemma 14.7 but using
transfinite recursion. More specifically, put U+

α =
⋃
β>α Uβ , so U+

α ⊇ U+
β whenever α ≤ β. We will define

sets Vβ (for all β < λ) such that the following statements hold for all β:

Aβ : Vβ ⊆ Uβ
Bβ :

⋃
α≤β Vα ∪ U

+
β = X.

Suppose that Vα has been defined for all α < β, and that Aα and Bα hold for all α < β. Put U ′β = U+
β ∪⋃

α<β Vα. We claim that U ′β ∪Uβ = X. To see this, consider a point x ∈ X and put Jx = {µ < λ : x ∈ Uµ},
which is finite by our local finiteness assumption. It therefore has a largest element, say µx.

• If µx < β then Bµx holds, which means that either x ∈ Vα for some α ≤ µx < β, or x ∈ Uγ for
some γ > µx. The latter is impossible by the definition of µx, so we must have x ∈

⋃
α<β Vα ⊆ U ′β .

• If µx = β then x ∈ Uβ .
• If µx > β then x ∈ Uµx ⊆ U+

β ⊆ U ′β .

In all cases we have x ∈ U ′β ∪ Uβ , as claimed. This means that the set F ′β = X \ U ′β is closed and contained

in the open set Uβ . By Proposition 14.6(b), we can choose an open set Vβ with F ′β ⊆ Vβ ⊆ Vβ ⊆ Uβ . As

Vβ ⊆ Uβ , we see that statement Aβ holds. As F ′β ⊆ Vβ , we see that Vβ ∪ U ′β = X, or equivalently that
statement Bβ also holds. This completes the recursion setup, so we have sets Vβ as indicated for all β.

Now note that for all x ∈ X the statement Bµx implies that x ∈ Vα for some α ≤ µx, so the sets Vα
cover X. Given this, we see that the sets Vk give a closed cover of X refining the original open cover (Ui)i∈I .
As the original cover was locally finite and the refining cover has the same indexing, we see that (Vi)i∈I is
also locally finite. �

Corollary 22.21. [cor-normal-numerable]
Let X be a normal space. Then every locally finite open cover is numerable.

Proof. Let (Ui)i∈I be a locally finite open cover. Choose open sets Vi as in the proposition. By
Proposition 14.6(b) we can then choose open sets Wi with Vi ⊆Wi ⊆Wi ⊆ Ui. Using Urysohn’s Lemma we
can then choose continuous functions ψi : X → [0, 1] with ψi = 1 on Vi and ψi = 0 on X \Wi. This means
that supp(ψi) ⊆ Wi ⊆ Ui, so in particular the family of supports is locally finite. Put ψ(x) =

∑
i ψi(x).

Using Lemma 22.2 we see that this is finite and continuous. As the sets Vi cover X, we also have ψ(x) ≥ 1
for all x. We can thus define φi = ψi/ψ, and we find that these functions give the required partition of
unity. �

Theorem 22.22. [thm-paracompact-numerable]
Let X be a paracompact Hausdorff space. Then every open cover of X is numerable.

Proof. We know from Proposition 22.18 thatX is normal, so every locally finite open cover is numerable
by Corollary 22.21. Every open cover has a locally finite refinement (by the definition of paracompactness)
and so is numerable by Corollary 22.3. �
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23. CGWH spaces

In this section, we introduce a certain full subcategory CGWH of the category of topological spaces.
The great majority of spaces arising in nature will lie in CGWH, and we will also show that limits, colimits
and mapping spaces have better behaviour in CGWH than in Spaces. Because of this, it is standard to
use CGWH as a foundation for work in homotopy theory, as we will explain later on.

In order to set up the definitions, it will be convenient to think of a topology as being specified by its
closed sets, as in Remark 2.14. We will typically write ζ for the collection of all closed sets.

Definition 23.1. [defn-CG]
Let X be a topological space. A test map for X is a continuous map u : K → X, where K is a compact

Hausdorff space. We say that a subset Y ⊆ X is k-closed if u−1(Y ) is closed in K for every such test map.
We write k(ζ) for the collection of k-closed sets. It is easy to check that this is a topology on X, and that
ζ ⊆ k(ζ). We write kX for the set X equipped with the topology k(ζ). We say that X is compactly generated
if kX = X. We write CG for the category of compactly generated spaces and continuous maps.

Definition 23.2. [defn-WH]
A topological space X is weakly Hausdorff if for every test map u : K → X, the image u(K) is closed in

X. We write WH for the category of weakly Hausdorff spaces and continuous maps.

The connection with the ordinary Hausdorff condition will not become fully apparent until we have proved
some preparatory results. For the best available statement, the reader should compare Proposition 23.27
with Proposition 6.6.

Definition 23.3. [defn-CGWH]
We write CGWH for the full subcategory of Spaces consisting of the spaces that are both compactly

generated and weakly Hausdorff.

The next two propositions imply that the vast majority of spaces in common use are CGWH.

Proposition 23.4. [prop-hausdorff]
Any Hausdorff space is weakly Hausdorff.

Proof. If X is Hausdorff and u : K → X is a test map then u(K) is a compact subset of a Hausdorff
space and thus is closed by Proposition 10.16. �

Lemma 23.5. [lem-WH-omni]
Suppose that X is weakly Hausdorff.

(a) Every point is closed (so X is T1).
(b) If u : K −→ X is a test map then u(K) is compact Hausdorff with respect to the subspace topology.
(c) A subset Y ⊆ X is k-closed if and only if Y ∩ K is closed in K for every subset K ⊆ X that is

compact Hausdorff with respect to the subspace topology.

Proof. For part (a), take K to be a single point in Definition 23.2. Next, let u : K −→ X be a test map,
and put L = u(K), which is closed in X by hypothesis. If F ⊆ K is closed then it is compact Hausdorff
so u(F ) is also closed in X and thus in K, so u : K −→ L is a closed map. If a, b ∈ K and a 6= b then
u−1{a} and u−1{b} are disjoint closed subspaces of the compact Hausdorff space K, so they have disjoint
neighbourhoods, say U and V . Put

U ′ = {x ∈ X : u−1{x} ⊆ U} = {x ∈ X : u−1{x} ∩ (K \ U) = ∅} = X \ u(K \ U)

V ′ = {x ∈ X : u−1{x} ⊆ V } = {x ∈ X : u−1{x} ∩ (K \ V ) = ∅} = X \ u(K \ V ).

From the first description we see that a ∈ U ′ and b ∈ V ′ and U ′ ∩ V ′ ∩ L = ∅. We also note that K \ U
is compact so u(K \ U) is closed in X so U ′ = X \ u(K \ U) is open in X. Similarly, V ′ is open, so we
have found disjoint open neighbourhoods of a and b in L. This shows that L is Hausdorff. This proves (b),
and (c) follows easily. �

Proposition 23.6. [prop-metric-cg]
Every first countable space is compactly generated. In particular, every metric space is CGWH.
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Proof. Let X be a first countable space, and Y a k-closed subset. We must show that Y is closed.
By Proposition 2.72, it will suffice to prove that Y is sequentially closed. Consider a sequence (yn)n∈N in Y
converging to a point x ∈ X. We can define a map u : N∞ → X by u(n) = yn for n ∈ N, and u(∞) = x.
This is continuous (for the one-point compactification topology on N∞) by Proposition 18.25. As N∞ is
compact Hausdorff and u is continuous and Y is k-closed, we see that u−1(Y ) is closed in N∞. We have
N ⊆ u−1(Y ) by assumption and N is dense in N∞ so u−1(Y ) = N∞. In particular we have ∞ ∈ u−1(Y ), so
x = u(∞) ∈ Y . This means that Y is sequentially closed as required.

If X is a metric space then it first countable and Hausdorff, so it is compactly generated by the argument
above, and weakly Hausdorff by Proposition 23.4. �

Proposition 23.7. [prop-lch-cg]
Every locally compact Hausdorff space is CGWH.

Proof. Let X be a locally compact Hausdorff space, and Y a k-closed subset. Suppose that x ∈ Y ; we
need to show that x ∈ Y . As X is locally compact, x has a neighbourhood U such that the set K = U is
compact. If V is a neighbourhood of x then so is V ∩K, and x ∈ Y , so V ∩K ∩ Y 6= ∅; this shows that
x ∈ K ∩ Y . On the other hand, as Y is k-closed and the inclusion j : K � X is continuous we see that
K ∩ Y = j−1(Y ) is closed in K. Thus x ∈ Y as required.

This shows that X is compactly generated, and it is weakly Hausdorff by Proposition 23.4. �

Lemma 23.8. [lem-k-idempotent]
Let K be a compact Hausdorff space, let X be an arbitrary space (with topology ζ) and let u : K → X be

a function. Then u is continuous with respect to ζ iff it is continuous with respect to k(ζ).

Proof. First suppose that u is continuous with respect to k(ζ). This means that for every F ∈ k(ζ),
the preimage u−1(F ) is closed in K. As ζ ⊆ k(ζ), we deduce that u is also continuous with respect to ζ.
Conversely, suppose that u is continuous with respect to ζ. This means that u is one of the maps involved
in the definition of k(ζ), so it is tautological that u−1(F ) is closed for all F ∈ k(ζ). Thus, u is continuous
with respect to k(ζ) as well. �

Corollary 23.9. [cor-k-idempotent]
For any space X we have k2X = kX and thus kX is compactly generated.

Proof. Let ζ be the original topology on X. By definition we have F ∈ k2(ζ) iff u−1(F ) is closed for
every compact Hausdorff K and every map u : K → X that is continuous with respect to k(ζ). We have
seen that these are precisely the same as the maps that are continuous with respect to ζ, so k2(ζ) = k(ζ) as
required. �

Corollary 23.10. [cor-CGWH-adjoint]
Let X and Y be topological spaces, and consider an arbitrary function f : X → Y .

(a) If f is continuous as a map X → Y , then it is also continuous as a map kX → kY .
(b) In particular, if X is compactly generated and f is continuous as a map X → Y , then it is

continuous as a map X → kY .
(c) Conversely, if X is compactly generated and f is continuous as a map X → kY , then it is continuous

as a map X → Y .

Proof. Let ζ be the original topology on X, and let ξ be the original topology on Y .

(a) Suppose that f is continuous for ζ and ξ. Consider a set G ∈ k(ξ) and the preimage f−1(G) ⊆ X.
For any test map u : K → X we note that fu : K → Y is a test map for Y , so (fu)−1(G) is closed
in K. This set is the same as u−1(f−1(G)), so we see that f−1(G) ∈ k(ζ). This means that f is
continuous for k(ζ) and k(ξ).

(b) If X is compactly generated then kX = X so (b) is a special case of (a).
(c) If f is continuous as a map X → kY , then we see that f−1(G) ∈ ζ for all G ∈ k(ξ). As ξ ⊆ k(ξ)

this means that f−1(G) ∈ ζ for all G ∈ ξ, so f is continuous as a map X → Y .

�
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Corollary 23.11. Let j : CG→ Spaces be the inclusion functor; then k gives a functor Spaces→ CG
that is right adjoint to j.

Proof. Parts (b) and (c) of the previous corollary give CG(X, kY ) = Spaces(jX, Y ). �

Proposition 23.12. [prop-test]
Let X be a compactly generated space and Y an arbitrary space. Then a function f : X −→ Y is continuous

if and only if fu : K −→ Y is continuous for all test maps u : K −→ X.

Proof. Suppose that fu is continuous for all K and u. Let F ⊆ Y be closed. For any K and u, the
continuity of uf means that f−1(u−1F ) = (uf)−1F is closed. This shows that f−1F is k-closed and thus
closed, which means that f is continuous. The opposite implication is trivial. �

Proposition 23.13. [prop-topologies]
If ζ and ξ are topologies on X with ζ ⊆ ξ then k(ζ) ⊆ k(ξ).

Proof. Consider a set F ∈ k(ζ); we must show that F is k-closed with respect to ξ. Consider a compact
Hausdorff space K and a ξ-continuous map u : K → X. As ζ ⊆ ξ we see that u is also ζ-continuous. As F
is k-closed with respect to ζ we see that u−1(F ) is closed in K. Thus F ∈ k(ξ). �

23.1. Products, coproducts and quotients.

Proposition 23.14. [prop-quot-cg]
If X is a compactly generated space and E is an equivalence relation on X then the quotient Y = X/E

is compactly generated.

Proof. Write q : X −→ Y be the quotient map. Let Z be a k-closed subset of Y . By Corollary 23.10,
the function q is continuous when thought of as a map X −→ kY , so q−1(Z) is closed in X. By the definition
of the quotient topology, we conclude that Z is closed in Y . �

Proposition 23.15. [prop-coprod-CGWH]
If (Xi)i∈I is a family of compactly generated spaces then their disjoint union X =

∐
iXi is compactly

generated. Moreover, if each Xi is also weakly Hausdorff, then the same is true of X.

Proof. Let Z ⊆ X be k-closed. Then Z has the form
∐
i Zi, where Zi = Z ∩ Xi, and it is sufficient

to check that Zi is closed in Xi. As Xi is compactly generated, it is enough to check that Zi is k-closed

in Xi. Consider a test map u : K −→ Xi. Then the composite v = (K
u−→ Xi � X) is continuous and

u−1(Zi) = v−1(Z), which is closed because Z is k-closed in X.
Now suppose that each Xi is also weakly Hausdorff. Consider a test map u : K → X. As Xi is both open

and closed in X, we see that the preimage Ki = u−1(Xi) is both open and closed in K. The sets Ki form a
disjoint open cover of the compact space K, so all but finitely many of them must be empty. Moreover, as
Ki is also closed it is compact, and Xi is weakly Hausdorff so u(Ki) ⊆ Xi is closed in Xi. The image u(K)
is the disjoint union of the sets u(Ki), so it is also closed (by the definition of the coproduct topology). �

Corollary 23.16. [cor-coprod-CGWH]
The category CG has coproducts, given by disjoint unions with the usual coproduct topology. Moreover,

the same construction also gives coproducts in CGWH. �

Definition 23.17. [defn-prod-CG]
Given two spaces X and Y , we shall write X×0Y for the product space equipped with the usual product

topology. This need not be compactly generated even if X and Y are. We thus define X × Y = k(X ×0 Y ).
Similarly, given an indexed family of (possibly infinitely many) spaces Xi we write

∏
0,iXi for their product

under the usual topology and
∏
iXi = k

∏
0,iXi.

Proposition 23.18. [prop-prod-CG]
Let (Xi)i∈I be a family of compactly generated spaces. Then the projection maps πi :

∏
iXi −→ Xi are

continuous. Moreover, for any compactly generated space W , a map f : W −→
∏
iXi is continuous if and

only if each component fi = πi ◦ f is continuous. (This means that
∏
iXi is the product of the objects Xi in

the category CG.)
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Proof. First, the projections πi are continuous as maps
∏

0,iXi → Xi, so they are continuous as maps∏
iXi → Xi by Corollary 23.10(a). Thus, if f : W →

∏
iXi is continuous, the same is true of the composites

fi = πi ◦ f . Conversely, suppose we start with the assumption that all the maps fi are continuous and
that kW = W . It follows from Proposition 5.16 that f is continuous as a map W →

∏
0,iXi, so it is also

continuous as a map W →
∏
iXi by Corollary 23.10(b). �

It is also true that CG-products of CGWH spaces are again CGWH, so the category CGWH has
products. However, the most efficient proof is somewhat indirect; it will be given as Corollary 23.29.

Proposition 23.19. [prop-prod-lch]
If X is a locally compact Hausdorff space and Y is compactly generated then X ×0 Y is compactly

generated and thus X × Y = X ×0 Y .

Proof. In this proof we will say that subsets of X ×0 Y are open or closed if they have that property
with respect to the ordinary product topology. Suppose that Z ⊆ X ×0 Y is k-closed; we need to check
that it is closed in the ordinary product topology. Suppose that (x, y) 6∈ Z. The map iy : x′ 7→ (x′, y) is
continuous with respect to the product topology, and hence also with respect to the compactly generated
topology, by Corollary 23.10. It follows that the set i−1

y (Z) = {x′ ∈ X : (x′, y) ∈ Z} is closed in X. Thus,

by Proposition 18.4, we can choose a precompact open neighbourhood U of x in X such that U ∩ i−1
y Z = ∅,

or equivalently U × {y} ⊆ Zc. Now put

V = {y′ ∈ Y : U × {y′} ⊆ Zc,

so y ∈ V . We claim that V is open in Y . As Y is compactly generated, it will suffice to show that u−1(V ) is
open in K for every test map u : K → Y . Note that the map 1× u : U ×K → X ×0 Y is a test map, and Z
is assumed to be k-closed, so the preimage Z ′ = (1× u)−1(Z) is closed in U ×K and thus is compact. Let
π : U ×K → K be the projection, so π(Z ′) is compact and therefore closed, so K \π(Z ′) is open. Moreover,
we have b ∈ K \ π(Z ′) iff ((a, b) 6∈ Z ′ for all a ∈ U) iff ((a, u(b)) 6∈ Z for all a ∈ U) iff U × {u(b)} ⊆ Zc iff
b ∈ u−1(V ), so u−1(V ) is open as required. This completes the proof that V is open in Y , so U × V is an
open neighbourhood of (x, y) in X ×0 Y which does not meet Z. It follows that Z is closed in X ×0 Y , as
required. �

Proposition 23.20. [prop-countable-prod]
Suppose that X and Y are both first countable (and thus compactly generated by Proposition 23.6). Then

X ×0 Y is also first countable and therefore compactly generated, so X × Y = X ×0 Y

Proof. Given a point (x, y) ∈ X × Y we choose a countable basis of neighbourhoods Ui for x in X,
and a countable basis of neighbourhoods Vj for y ∈ Y . Then the sets Ui × Vj give a countable basis of
neighbourhoods for (x, y) ∈ X × Y . �

23.2. Cartesian closure. In this section, all spaces are assumed to be compactly generated unless
otherwise specified. We next introduce a topology on the set of all continuous maps from X to Y .

Definition 23.21. [defn-compact-open]
Let X and Y be compactly generated spaces. For any test map u : K −→ X and any open set U ⊆ Y , we

write

W (u,K,U) = { continuous maps f : X −→ Y : fu(K) ⊆ U}.
If K is a compact Hausdorff subspace of X and u : K → X is the inclusion then we write W (K,U) for
W (u,K,U). We write C0(X,Y ) for the set of maps f : X −→ Y , equipped with the smallest topology for which
the sets W (u,K,U) are open (this is called the compact-open topology). We also write C(X,Y ) = kC0(X,Y ).

Remark 23.22. [rem-CXZ-closed]
If Z is a closed subspace of Y then C(X,Z) is closed in C(X,Y ), because C(X,Z) =

⋂
xW ({x}, Zc)c.

Lemma 23.23. [lem-star-cont]
If g : Y −→ Z is continuous, then so is the map g∗ : C(X,Y ) −→ C(X,Z) defined by g∗(t) = g ◦ t. If

f : W −→ X is continuous then so is the map f∗ : C(X,Y ) −→ C(W,Y ) defined by f∗(t) = t ◦ f .
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Proof. Consider a test map u : K −→ X and an open subset U ⊆ Z. We then have

(g∗)
−1W (u,K,U) = {t : X −→ Y : gtu(K) ⊆ U} = {t : X −→ Y : tu(K) ⊆ g−1(U)} = W (u,K, g−1U).

It follows easily that the preimage of any open subset of C0(X,Z) is open in C0(X,Y ) and thus in C(X,Y );
by Corollary 23.10 we conclude that g∗ is continuous as a map C(X,Y ) −→ C(X,Z).

Now consider a test map v : L −→W , and an open subset V ⊆ Y . Then

(f∗)−1W (v, L, V ) = {t : X −→ Y : tfv(L) ⊆ V } = W (fv, L, V ).

By the same logic, we conclude that f∗ : C(X,Y ) −→ C(W,Y ) is continuous. �

Proposition 23.24. [prop-ev-inj]
Define functions evX,Y : X × C(X,Y ) −→ Y and injX,Y : Y −→ C(X,X × Y ) by

ev(x, f) = f(x)

inj(y)(x) = (x, y).

Then ev and inj are continuous.

Proof. We first consider inj. By Corollary 23.10, it is enough to show that inj is continuous as a map
Y −→ C0(X,X × Y ), or equivalently that inj−1W (u,K,U) is open in Y for every u : K −→ X and every open
set U ⊆ X × Y . As Y is compactly generated, it is equivalent to check that v−1 inj−1W (u,K,U) is open in
L for every test map v : L −→ Y . Note that u× v : K ×L −→ X × Y is a test map, so (u× v)−1(U) is open in
K × L, so {b ∈ L : K × {b} ⊆ (u× v)−1U} is open in L by the Tube Lemma. It is easy to check that this
set is the same as v−1 inj−1W (u,K,U), which completes the proof.

We next consider the evaluation map ev : X × C(X,Y ) −→ Y . Consider an open set U ⊆ Y , and a test
map u : K −→ X × C(X,Y ). It will be enough to show that V = u−1 ev−1 U is open in K. Let v : K −→ X
and w : K −→ C(X,Y ) be the two components of u, so V = {a ∈ K : w(a)(v(a)) ∈ U}. Suppose that
a ∈ V . As w(a) ◦ v : K −→ Y is continuous, we can choose a compact neighbourhood L of a in K such that
w(a)(v(L)) ⊆ U . This means that w(a) ∈W (v, L, U) ⊆ C(X,Y ). As w : K −→ C(X,Y ) is continous, the set
N = w−1(W (v, L, U)) is a neighbourhood of a in K. If b ∈ N ∩ L then w(b)(v(b)) ∈ w(b)(v(L)) ⊆ U , so
b ∈ V . Thus the neighbourhood N ∩ L of a is contained in V . This shows that V is open, as required. �

Proposition 23.25. [prop-adj-homeo]
There is a natural homeomorphism adjX,Y,Z : C(X,C(Y, Z)) −→ C(X × Y, Z) given by adj(f)(x, y) =

f(x)(y). Thus, the category CG is cartesian closed.

Proof. Write D(X,Y ) for the set of all (possibly discontinuous) functions X −→ Y . It is clear that there
is a bijection between functions f : X −→ D(Y, Z) and functions g : X × Y −→ Z defined by g(x, y) = f(x)(y).
We first claim that g is continuous if and only if

(1) f(x) : Y −→ Z is continuous for each x ∈ X, so that f can be considered as a function X −→ C(X,Y ).
(2) f is continuous when considered as a function X −→ C(X,Y ).

Indeed, if f satisfies these conditions then g is the composite

X × Y f×1−−−→ C(Y, Z)× Y ev−→ Y

which is continuous by Proposition 23.24. Conversely, suppose that g is continuous. If x ∈ X then we have a
continuous map ix : Y −→ X ×Y defined by ix(y) = (x, y) and f(x) = g ◦ ix so f(x) is continuous. Moreover,
f is the composite

X
inj−→ C(Y,X × Y )

g∗−→ C(Y,Z)

which is continuous by Lemma 23.23 and Proposition 23.24.
It follows from the above that we have a bijection adj : C(X,C(Y, Z)) −→ C(X × Y, Z), which already

means that CG is cartesian closed.
However we still need to show that adj is a homeomorphism. This is true by a purely formal argument,

which we now explain. We know that the evaluation map evX,C(Y,Z) : X × C(X,C(Y, Z)) −→ C(Y, Z) is
continuous, as is evY,Z : Y × C(Y,Z) −→ Z. It follows that the composite

evY,Z ◦(1Y × evX,C(Y,Z)) : Y ×X × C(X,C(Y,Z)) −→ Z
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is continuous. It follows that the adjoint map

C(X,C(Y, Z)) −→ C(X × Y,Z)

is also continuous. However, this last map is just adj itself. Thus, adj is continuous.
Similarly, we know that the evaluation map X × Y × C(X × Y,Z) −→ Z is continuous. It follows that

the adjoint map X ×C(X ×Y,Z) −→ C(Y,Z) is continuous. Applying the same argument again, we see that
the adjoint map C(X × Y,Z) −→ C(X,C(Y, Z)) is continuous. However, this last map is just the inverse of
adj. This proves that adj is a homeomorphism.

We give a second proof which may be found more conceptual. For any space W , we have natural
bijections

C(W,C(X,C(Y, Z)))
adjW,X,C(Y,Z)−−−−−−−−−→ C(W ×X,C(Y,Z))

adjW×X,Y,Z−−−−−−−−→ C(W ×X × Y,Z)

adjW,X×Y,Z←−−−−−−−− C(W,C(X × Y,Z)).

This means that C(X,C(Y, Z)) and C(X × Y,Z) represent the same contravariant functor from spaces to
sets, and it follows by Yoneda’s Lemma that there is a natural homeomorphism

C(X,C(Y,Z)) = C(X × Y,Z).

Applying Yoneda’s Lemma just comes down to considering the cases W = C(X,C(Y,Z)) and W = C(X ×
Y,Z), as we did previously. �

Proposition 23.26. [prop-map-metric]
If X is compact Hausdorff and Y is a metric space then C(X,Y ) is a metric space, with metric d(f, g) =

maxx∈X d(f(x), g(x)).

Proof. Let ζ be the compact-open topology on C(X,Y ), so the official topology on C(X,Y ) is k(ζ).
Next, observe that the definition of d(f, g) makes sense: the map x 7→ d(f(x), g(x)) is a continuous real-
valued function on a compact Hausdorff space, so it has a maximum. It is easy to check that d(f, g) defines
a metric; we write ξ for the resulting topology, so ξ = k(ξ) by Proposition 23.6.

Suppose that we have a subbasic open set W (u,K,U) for ζ, and a point f ∈ W (u,K,U), so that
f : X −→ Y and fu(K) ⊆ U . Then a 7→ d(fu(a), U c) is a continuous, strictly positive, real-valued function
on the compact space K, so it has a lower bound ε > 0. It is easy to see that the open ball OBε(f) = {g :
d(g, f) < ε} is contained in W (u,K,U). It follows that W (u,K,U) is open with respect to ξ, so ζ ⊆ ξ. It
follows using Proposition 23.13 that k(ζ) ⊆ k(ξ) = ξ.

Conversely, consider a point f ∈ C(X,Y ) and an open ball OBε(f) around f . The sets f−1(OBε/3(y))
(as y runs over Y ) form an open cover of X. We may therefore choose finitely many points y1, . . . , yn ∈ Y
such that the sets f−1(OBε/3(yi)) cover X. We write Ki = f−1(Bε/3(yi)) and Ui = OBε/2(yi), so that the
Ki are compact and cover X, and f(Ki) ⊆ Ui. It is clear that the set N =

⋂
iW (Ki, Ui) is a neighbourhood

of f in the compact-open topology. We claim that N ⊆ OBε(f). Indeed, suppose that g ∈ N and x ∈ X;
we need to show that d(f(x), g(x)) < ε. We know that x ∈ Ki for some i, so both f(x) and g(x) lie in
OBε/3(yi), and the required inequality follows immediately. This shows that OBε(f) is a neighbourhood of
f in ζ, so ξ ⊆ ζ ⊆ k(ζ) ⊆ k(ξ) = ξ. required. �

Proposition 23.27. [prop-diag]
A compactly generated space X is weakly Hausdorff if and only if the diagonal subspace ∆X = {(x, x) :

x ∈ X} is closed in X ×X.

Proof. Suppose thatX is weakly Hausdorff. First, observe that every one-point set {x} ⊂ X is certainly
a continuous image of a compact Hausdorff space and thus is closed in X, so X is T1. Next, consider a test
map u = (v, w) : K −→ X ×X. It will be enough to show that the set u−1(∆X) = {a ∈ K : v(a) = w(a)} is
closed in K. Suppose that a 6∈ u−1(∆X), so v(a) 6= w(a). Then the set U = {b : v(b) 6= w(a)} is an open
neighbourhood of a (because {w(a)} is closed in X). Now K is compact Hausdorff and therefore regular, so
there is an open neighbourhood V of a in K such that V ⊆ U , or equivalently w(a) 6∈ v(V ). This means
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that a lies in the set W = w−1(v(V )c). The weak Hausdorff condition implies that v(V ) is closed in X and
thus W is open in K. We claim that (V ∩W ) ∩ u−1∆X = ∅. Indeed, if b ∈ V ∩W then v(b) ∈ v(V ) but
w(b) ∈ v(V )c by the definition of W , so v(b) 6= w(b), so u(b) = (v(b), w(b)) 6∈ ∆X . This shows that u−1(∆X)
is closed in K, as required.

Conversely, suppose that ∆X is closed in X ×X. Let u : K → X be a test map. Given any other test
map v : L −→ X, we define M = {(a, b) ∈ K × L : u(a) = v(b)} ⊆ K × L. This can also be described as
(u × v)−1∆X , so it is closed in K × L and thus compact. It follows that the projection πL(M) is compact
and thus closed in L. However, it is easy to see that πL(M) = v−1(u(K)). Thus shows that u(K) is k-closed
in X, and hence closed. This means that X is weakly Hausdorff. �

Corollary 23.28. [cor-equaliser-closed]
If X and Y are CGWH and f, g : X −→ Y are continuous then the set

eq(f, g) = {x : f(x) = g(x)} = (f, g)−1(∆Y )

is closed in X. �

Corollary 23.29. [cor-prod-wh]
The product of an arbitrary family of CGWH spaces (with the CG topology) is CGWH, and thus gives a

product in the category CGWH.

Proof. Consider a product X =
∏
iXi of CGWH spaces with projection maps πi : X −→ Xi. We know

that ∆Xi is closed in Xi ×Xi and πi × πi : X ×X −→ Xi ×Xi is continuous so the set Di = (πi × πi)−1∆Xi

is closed in X ×X. It is clear that ∆X =
⋂
iDi, so ∆X is closed in X ×X and X is weakly Hausdorff. �

Proposition 23.30. [prop-distrib-CGWH]
Suppose we have two families of CGWH spaces, say (Xi)i∈I and (Yj)j∈J . Then the evident bijection

∐
i,j

(Xi × Yj)→

(∐
i

Xi

)
×

∐
j

Yj


is a homeomorphism.

Proof. Put X =
∐
iXi and Y =

∐
j Yj and Zij = Xi×Yj , so the claim is that

∐
i,j Zij = X×Y . In one

direction, we can take the product of the inclusion Xi → X with the inclusion Yj → Y to get a continuous
map Zij → X × Y for all i and j, and by the universal property of the coproduct these fit together to give
a continuous map f :

∐
i,j Zij → X × Y . By inspection of definitions we see that this is a bijection.

Next, for an arbitrary space T , we note that there are natural bijections

CGWH(X × Y, T ) = CGWH(X,C(Y, T )) = CGWH(
∐
i

Xi, C(Y, T ))

=
∏
i

CGWH(Xi, C(Y, T )) =
∏
i

CGWH(Xi × Y, T )

=
∏
i

CGWH(Y,C(Xi, T )) =
∏
i

CGWH(
∐
j

Yj , C(Xi, T ))

=
∏
i

∏
j

CGWH(Yj , C(Xi, T )) =
∏
i,j

CGWH(Xi × Yj , T )

= CGWH(
∐
i,j

Zij , T ).

In other words, we have a natural isomorphism between the functors represented by X × Y and
∐
i,j Zij ,

and by the Yoneda Lemma this must come from a homeomorphism between these spaces. By taking T =
X × Y and chasing the identity map 1X×Y through the above chain of equalities, we see that the resulting
homeomorphism is just f . �
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The following proposition is a good example of something which is usually true for the ordinary product
of general spaces, but requires messy hypotheses. In our compactly generated context, it is true without
restriction.

Proposition 23.31. [prop-quot]
Let X and Y be compactly generated spaces and E an equivalence relation on X. Let E′ be the equivalence

relation on X × Y defined by (x0, y0)E′(x1, y1) if and only if x0Ex1 and y0 = y1. Then the natural bijection
(X × Y )/E′ −→ (X/E)× Y is a homeomorphism.

Proof. Let q : X −→ X/E and q′ : X × Y −→ (X × Y )/E′ be the quotient maps. We have a continuous
map q×1: X×Y −→ (X/E)×Y , which evidently respects the equivalence relation E′, so we have an induced
continuous map f : (X × Y )/E′ −→ (X/E) × Y . On the other hand, the adjoint of q′ is a continuous map
X −→ C(Y, (X×Y )/E′) respecting E, so we get an induced map g# : X/E −→ C(Y, (X×Y )/E′). The adjoint
of this is a continuous map g : (X/E) × Y −→ (X × Y )/E′. It is easy to check that f and g are just the
evident bijections and thus that fg = 1 and gf = 1. �

Proposition 23.32. [prop-quot-prod]
If f : W −→ X and g : Y −→ Z are quotient maps of compactly generated spaces, then so is f×g : W×Y −→

X × Z.

Proof. It is immediate from Proposition 23.31 that f×1Y : W×Y −→ X×Y and 1X×g : X×Y −→ X×Z
are quotient maps, and f × g = (1X × g) ◦ (f × 1Y ). �

We can now prove an analogue of Proposition 14.11 for CGWH spaces.

Corollary 23.33. [cor-quot-wh]
Let E be an equivalence relation on a compactly generated space X. Then X/E is weakly Hausdorff if and

only if E is closed in X×X. (Here we are identifying a relation R on X with the set {(x, y) : xRy} ⊆ X×X.)

Proof. We know from Proposition 23.27 that X/E is weakly Hausdorff if and only if ∆X/E is closed
in X/E ×X/E. Let q : X −→ X/E be the quotient map, so Proposition 23.32 tells us that q × q : X ×X −→
X/E × X/E is a quotient map, so ∆X/E is closed if and only if (q × q)−1(∆X/E) is closed in X × X. It

is easy to see that (q × q)−1(∆X/E) = E, so we conclude that X/E is weakly Hausdorff if and only if E is
closed in X ×X. �

Proposition 23.34. [prop-wh-quot]
Let X be a compactly generated space. Then there is a smallest closed equivalence relation E on X.

If we write hX = X/E then h defines a functor G → CGWH, which is left adjoint to the inclusion
CGWH→ CG. In other words, any map from X to a CGWH space factors uniquely through hX.

Proof. Let R be the set of all equivalence relations R on X such that R is closed as a subset of X×X.
(There is at least one such relation, namely R = X ×X.) One can then check that the set E =

⋂
R∈RR is

an equivalence relation and is closed in X ×X; clearly it is the smallest such. Corollary 23.33 tells us that
hX = X/E is CGWH. If Y is a CGWH space and f : X −→ Y is continuous then it is not hard to see that
the set

R = {(x, x′) : f(x) = f(x′)} = (f × f)−1(∆Y )

is a closed equivalence relation on X. It follows that E ⊆ R, and thus that f factors through a unique
continuous map hX −→ Y . This implies that h is a functor and is left adjoint to the inclusion of CGWH
spaces in compactly generated spaces. �

Corollary 23.35. [prop-colimits]
The category of CGWH spaces has colimits for all diagrams, obtained by applying the functor h to the

colimit as calculated in the category of all spaces. �Refer to the appendix

Proposition 23.36. [prop-cartesian-closed]
If X is compactly generated and Y is CGWH then C(X,Y ) is CGWH. Thus, the category CGWH is

cartesian closed.
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Proof. By definition, C(X,Y ) is compactly generated; we need only check that it is weakly Hausdorff,
or equivalently that ∆C(X,Y ) is closed in C(X,Y )× C(X,Y ). Define evx : C(X,Y ) −→ Y by evx(f) = f(x).

For any open set U ⊆ Y we have ev−1
x (U) = W ({x}, U), which is open in C(X,Y ), so evx is continuous.

Moreover, we have ∆C(X,Y ) =
⋂
x(evx× evx)−1∆Y , which is closed because ∆Y is. �

23.3. Subspaces.

Definition 23.37. [defn-subspace]
Let X be a CGWH space (with topology ζ), and let Y be a subset of X. Let ζ0

Y denote the ordinary
subspace topology on Y (so ζ0

Y = {F ∩ Y : F ∈ ζ}) and put ζY = k(ζ0
Y ); we call this the CGWH subspace

topology. Let iY : Y → X be the inclusion map. As ζ0
Y ⊆ ζY we see that iY is continuous with respect to

ζY and ζ.

Lemma 23.38. [lem-open-ordinary]
If Y is open or closed then ζY = ζ0

Y .

Proof. The case where Y is closed is easy, so we will assume instead that Y is open.
Suppose that F ∈ ζY , and put V = Y \ F . We must prove that F is closed in the ordinary subspace

topology on the open set Y , or equivalently that V is open in X. Consider a test map u : K −→ X; as X is
compactly generated, it will be enough to show that u−1(V ) is open in K. Suppose that a ∈ u−1(V ). As
Y is open in X, we know that u−1(Y ) is an open neighbourhood of a in K. As K is compact Hausdorff
and thus regular, we can choose an open neighbourhood N of a in K such that N ⊆ u−1(Y ). Now N is a
compact Hausdorff space, and u restricts to give a continuous map v : N −→ X with image contained in Y .
Thus, as F ∈ ζ|Y , we see that v−1(F ) is closed in N , so the set u−1(V ) ∩N = v−1(V ) is open in N . This
means that u−1(V ) ∩N is open in N and thus in K, so u−1(V ) is a neighbourhood of a in K. This proves
that u−1(V ) is open in K, as required. �

Definition 23.39. [defn-inclusion]
A continuous map i : Y −→ X of CGWH spaces is an inclusion if it is injective, and the resulting map

Y → i(Y ) is a homeomorphism if i(Y ) is given the CGWH subspace topology inherited from X. Using
Lemma 23.38 we see that an inclusion sends closed sets in Y to closed sets in X iff the image i(Y ) is closed
in X. If so, we say that i is a closed inclusion. If Y is just a subset of X and i(y) = y for all Y , we say that
i is the identity inclusion.

Lemma 23.40. [lem-inc-detect]
Let i : Y → X be a continuous injective map of CGWH spaces. Then i is an inclusion if and only if it

has the following property: if T is CGWH and f : T → Y is such that if : T → X is continuous, then f is
continuous.

Proof. Let P (i) denote the statement that i has the property mentioned above.
Let Y be a subset of X (with the CGWH subspace topology) and let iY : Y → X be the identity inclusion.

Suppose that f : T → Y is such that iY f is continuous. This immediately implies that f is continuous with
respect to ζ0

Y , but T is CGWH so this is equivalent to continuity with respect to ζY (by Corollary 23.10).
Thus P (iY ) holds, and it follows that P (i) holds for any inclusion.

Conversely, suppose we have an injective map i : Y → X such that P (i) holds. Put Y ′ = i(Y ) and give
this the CGWH subspace topology. Let f : Y → Y ′ be the bijection induced by i, so iY ′f = i and if−1 = iY ′ .
Note that P (iY ′) holds by the previous paragraph, and it follows that f is continuous. We are given that
P (i) holds, and it follows that f−1 is continuous. Thus f is a homeomorphism, so i is an inclusion. �

Corollary 23.41. [cor-retract]

Let Y
i−→ X

r−→ Y be continuous maps of CGWH spaces such that ri = 1Y . Then i is a closed inclusion
and r is a quotient map.

Proof. Let f : T → Y be such that if is continuous; then f = rif is continuous as well. The lemma
therefore tells us that i is an inclusion. One checks that

i(Y ) = {x ∈ X : ir(x) = x} = (ir, 1X)−1(∆X),
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so i(Y ) is closed in X, so i is a closed inclusion. Clearly r is surjective. If F ⊆ Y is such that r−1F is closed,
then the set F = (ri)−1(F ) = i−1(r−1(F )) is itself closed. This shows that r is a quotient map. �

Proposition 23.42. [prop-limits]
The category of CGWH spaces has limits for all small diagrams, and they are preserved by the forgetful

functor to sets.

Proof. Suppose we have a diagram {Xi} of CGWH spaces. The limit calculated in the category of
sets is a certain subset X ⊆

∏
iXi. We give

∏
iXi the CGWH product topology, and observe (using

Corollary 23.28) that X is then a closed subspace. If we give X the subspace topology, it is easy to check
that this makes it the limit in the CGWH category. �

Proposition 23.43. [prop-inc-detect]

Let X
i−→ Y

j−→ Z be continuous maps of CGWH spaces.

(a) If i and j are inclusions then so is ji.
(b) If i and j are closed inclusions then so is ji.
(c) If ji is an inclusion then so is i.
(d) If ji is a closed inclusion then so is i.

Proof. Parts (a) and (b) are easy, and part (c) follows from Lemma 23.40. Thus, in (d) we know that
i is an inclusion and we just have to check that it is closed. By assumption, ji(X) is closed in Z, so the
set Y ′ = j−1(ji(X)) is closed in Y , and it clearly contains i(X). Let k : Y ′ → Y be the inclusion, and let
i′ be i regarded as a map to Y ′, so ki′ = i. Next, if y ∈ Y ′ then j(y) = ji(x) for some x, and this x is
unique because ji is injective, so we can denote it by r(y). This gives a map r : Y ′ → X with jir = jk. In
particular, jir is continuous and ji is an inclusion so r is continuous. We also have jiri′ = jki′ = ji, and ji
is injective, so ri′ = 1X . It follows from Corollary 23.41 that i′ is a closed inclusion, and k is also a closed
inclusion, so i = ki′ is a closed inclusion as claimed. The maps considered are indicated in the following
diagram:

Y ′

r

~~~~

// k // Y

j

��

X X

OO
i′

OO

>>

i

>>

//
ji
// Z

�

Proposition 23.44. [prop-inc-prod]

Let X, Y and Z be CGWH spaces, and let X
i−→ Y be an inclusion. Then the map i×1: X×Z −→ Y ×Z

is again an inclusion. If i is closed then so is i× 1.

Proof. Suppose that (u, v) : W −→ X × Z and that the map (i × 1) ◦ (u, v) = (iu, v) : W −→ Y × Z
is continuous. This means that iu and v are continuous, and i is an inclusion, so u is also continuous,
so (u, v) is continuous. This proves that i × 1 is an inclusion. If i is closed then i(X) is closed in Y so
(i× 1)(X × Z) = i(X)× Z is closed in Y × Z, so i× 1 is closed (by the remarks in Definition 23.39). �

Proposition 23.45. [prop-inc-pullback]
Suppose we have a pullback square as shown, in which i is an inclusion. Then i′ is also an inclusion.

Moreover, if i is closed then so is i′.

X ′
i′ //

f ′

��

Y ′

f

��

X //
i
// Y.

Proof. Suppose we have a map u : W −→ X ′ such that i′u is continuous. We then see that the map
if ′u = fi′u is continuous, and i is an inclusion, so f ′u is continuous. As i′u and f ′u are continuous, the
pullback property tells us that u is continuous. This proves that i′ is an inclusion. Now suppose that i is
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closed. Then one checks that i′(X ′) = f−1i(X), which is closed in Y ′ because f is continuous and i is closed.
It follows that i′ is a closed inclusion. �

Lemma 23.46. [lem-pullback]
If the diagram

W //
f
//

g

��

X

h
��

Y
k
// Z

is a pullback of sets and f is a closed inclusion, then it is a pullback of spaces.

Proof. We need to show that W is topologised as a subspace of X × Y , or equivalently that the map

W
(f,g)−−−→ X × Y is a closed inclusion. Let p : X × Y → X be the projection. Then p ◦ (f, g) = f is a closed

inclusion, so (f, g) is a closed inclusion by Proposition 23.43(d). �

Proposition 23.47. [prop-push-pull]
Suppose we have a pushout square as shown, in which i is a closed inclusion. Then j is also a closed

inclusion, and the square is a pullback. Moreover, the pushout is created in the category of sets.

W // i //

f

��

X

g

��

Y
j
// Z

Proof. We may assume that W is a closed subspace of X and that i is the identity inclusion. We first
analyse the pushout of i and f in the category of sets. Put Z ′ = (X \W ) q Y (just considered as a set,
for the moment). Let p : X q Y → Z ′ be given by the identity on the subset Z ′ ⊆ X q Y , and by f on the
subset W ⊆ X ⊆ X q Y . Let g′ : X → Z ′ and j′ : Y → Z ′ be the restrictions of p. One can check directly
that the square

W // i //

f

��

X

g′

��

Y
j′
// Z ′

is a pushout in the category of sets. We give Z ′ the unique topology for which p is a quotient map. We will
need to show that this topology is CGWH, or equivalently that the equivalence relation

E = eq(p) = {(a, b) ∈ (X q Y )2 : p(a) = p(b)}

is closed in X q Y . For this we put G = {(w, y) ∈W × Y : f(w) = y}, which is closed in W × Y , and thus
also in X × Y . Put G′ = {(y, x) : (x, y) ∈ G} ⊆C Y ×X and

E0 = eq(f) = {(w,w′) =∈W 2 : f(w) = f(w′)} ⊆C W 2 ⊆C X2

E1 = (∆X ∪ E0)qGqG′ q∆Y ⊆C X2 q (X × Y )q (Y ×X)q Y 2 = (X q Y )2.

Then E1 is visibly closed, and one checks directly that E = E1. Thus Z ′ is CGWH, so it is also the pushout
in the category U , so we can identify Z ′ with Z. It follows that j is injective and that for any closed set
F ⊆ Y we have

p−1j(F ) = f−1(F )q F ⊆ X q Y,

which is closed. Thus j is a closed inclusion. Moreover, we now see that the square is a pullback of sets, so
it is a pullback of spaces by Lemma 23.46. �
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Proposition 23.48. [prop-quot-pullback]
Consider a pullback square in U as shown, in which q is a quotient map. Then p is also a quotient map.

W
f
//

p

��

X

q
����

Y
g
// Z

Proof. First consider the special case where g is a closed inclusion. Proposition 23.45 tells us that f is
also a closed inclusion. As the pullback is created in the category of sets, we can check by a small diagram
chase that p is surjective and that q−1g(F ) = fp−1(F ) for all subsets F ⊆ Y . Now suppose that p−1(F ) is
closed. As f is a closed inclusion we deduce that q−1g(F ) = fp−1(F ) is closed, and as q is a quotient map
this means that g(F ) is closed. As g is injective we have F = g−1g(F ), so F is closed. This proves that p is
a quotient map, as claimed.

For the general case, it is formal that the square below is also a pullback:

W
(f,p)
//

p

��

X × Y

q×1
����

Y
(g,1)
// Z × Y

Here q × 1 is a quotient map by Proposition 23.32, and (g, 1) is a closed inclusion by Corollary 23.41, so p
is a quotient map by the special case already considered. �

Proposition 23.49. [prop-inc-map]

Let X, Y and Z be CGWH spaces, and let X
i−→ Y be an inclusion. Then the map i∗ : C(Z,X) −→ C(Z, Y )

is again an inclusion. Moreover, if i is closed then so is i∗.

Proof. Consider a map w : W → C(Z,X) such that i∗ ◦ w : W → C(Z, Y ) is continuous. This means
that the adjoint map adj−1(i∗ ◦ w) : W × Z → Y is continuous, but this is the same as the composite

W × Z adj−1(w)−−−−−−→ X
i−→ Y,

and i is an inclusion, so adj−1(w) is continuous, so w is continuous. This proves that i∗ is an inclusion. If
i is closed then the set i∗(C(Z,X)) = C(Z, i(X)) is closed in C(Z, Y ) by Remark 23.22, so i∗ is a closed
inclusion. �

Definition 23.50. [defn-collapse]
Let X be a CGWH space, and let Y be a closed subspace. Define X/Y to make the square on the left

below a pushout:

Y q 0 //
i //

c

��

X q 0

q
����

Y // i //

��

X

����

1 //
z
// X/Y 1 //

z
// X/Y

By Proposition 23.47, the pushout is created in the category of sets, and the square is also a pullback. If Y = ∅
then X/Y = Xq{0}; otherwise, one checks that the right hand square is also a pushout and a pullback. We
also let p : Xq{0} → X/Y be the constant map with value z, and note that {x ∈ X : p(x) = q(x)} = Y q{0}.

Remark 23.51. [rem-collapse-closed]
If F ⊆ X is a closed set then q−1(q(F )) is either F (if F ∩ Y = ∅) or F ∪ Y . Either way q−1(q(F )) is

closed, and q is a quotient map, so q(F ) is closed in X/Y . This shows that q is a closed map.

Proposition 23.52. [prop-collapse-prod]
Suppose we have a CGWH space X, a closed subspace Y , and another CGWH space Z. Then (X ×

Z)/(Y × Z) = (X/Y )× Z.
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Proof. This is essentially Proposition 23.32 applied to the quotient map X → X/Y . �

24. Limits and regularity

From now on we will take a somewhat more categorical viewpoint, and investigate the relationship
between various kinds of limits and colimits in the category U of CGWH spaces. We will also change our
terminology slightly: the word “space” will refer to a CGWH space unless we explicitly say otherwise.

24.1. Regularity. Let C be a category with finite limits and colimits. Then any parallel pair of maps
f, g : A −→ B has an equaliser eq(f, g) −→ A and a coequaliser B −→ coeq(f, g). We also write eq(f) for the
equaliser of fπ1, fπ2 : A2 −→ B and coeq(f) for the dual thing. Equivalently, we have pullback and pushout
squares as shown.

eq(f) //

��

��

B
��

∆

��

AqA

∇
����

fqf
// B qB

����

A×A
f×f
// B ×B A // coeq(f)

or

eq(f) //

��

A

f

��

A
f

//

f

��

B

��

A
f
// A B // coeq(f)

In other words, eq(f) = A×B A and coeq(f) = B qA B.
Recall that a map f : B −→ C is said to be a regular epimorphism if it is the coequaliser of some pair of

maps A ⇒ B, or equivalently if it is the coequaliser of the obvious pair of maps eq(f) ⇒ B. Dually, f is a
regular monomorphism if it is the equaliser of some pair of maps C ⇒ D.

We say that a category is regular if every map can be factored as a regular epimorphism followed by a
monomorphism, and pullbacks of regular epimorphisms are regular epimorphisms. Coregularity is defined
dually, and biregular means regular and coregular.

Theorem 24.1. [thm-regular-spaces]

(a) A map in U is a monomorphism if and only if it is injective, and an epimorphism if and only if it
has dense image.

(b) A map in U is a regular monomorphism if and only if it is a closed inclusion.
(c) A map in U is a regular epimorphism if and only if it is a quotient map.
(d) A product, coproduct or composite of (regular) monomorphisms is a (regular) monomorphism.
(e) A coproduct, finite product or composite of (regular) epimorphisms is a (regular) epimorphism.
(f) U is biregular

Proof of Theorem 24.1. (a): By definition, i : A→ B is a monomorphism if and only if the induced
map of sets i∗ : U(X,A) −→ U(X,B) is injective for all X. This clearly holds if f is injective; for the converse,
take X to be a single point, so that U(X,A) is just the underlying set of A.

Now suppose that r : A → B has dense image; we claim that r is an epimorphism. Indeed, suppose we
have two maps g, h : B −→ X with gr = hr. Then the set

eq(g, h) = {b ∈ B : g(b) = h(b)} = (g × h)−1∆X

is a closed subspace of B containing the image of r. As this image is dense, we have C = B and g = h. Thus
r is an epimorphism.

Conversely, suppose that r : A −→ B is an epimorphism. Let A′ be the closure of the image of r, and apply
Definition 23.50 to A′. This gives a pair of maps p, q : B → B/A′ and a point z ∈ B/A′ with p−1{z} = B and
q−1{z} = A′. It follows that pr = qr, but r is epi, so p = q. This means that A′ = q−1{z} = p−1{z} = B,
so r(A) is dense as claimed.

180



(b): Any regular monomorphism i : A→ B is the equaliser of some parallel pair of arrows g, h : B −→ X.
The equaliser was originally constructed by taking the closed set {b ∈ B : g(b) = h(b)} = (g × h)−1∆ and
giving it the subspace topology; so i is a closed inclusion.

Conversely, let i : A −→ B be the inclusion of a closed subspace. Then i is the equaliser of the maps
p, q : B → B/A in Definition 23.50, so it is a regular monomorphism.

(c): Let r : A→ B be a regular epimorphism, so r is the coequaliser of some pair of arrows g, h : X −→ A.
There exist closed equivalence relations R ⊆ A2 such that the set S = {(g(x), h(x)) : x ∈ X} is contained
in R (for example, R = A2). Let R be the intersection of all such relations. Clearly R itself is a closed
equivalence relation, so we have a quotient map q : A −→ B′ = A/R, and B′ ∈ U by Corollary 23.33. This is
easily seen to be a coequaliser of g and h, so it can be identified with r, so r is a quotient map.

Conversely, let r : A −→ B be a quotient map, so B = A/R for some equivalence relation R, which must
be a closed subspace of A2 because B is weakly Hausdorff. It is then clear that r is a coequaliser for the two
projections π0, π1 : R→ A, so it is a regular epimorphism.

(d): In any category, it is trivial that a product of (regular) monomorphisms is a (regular) monomor-
phism. The corresponding facts for coproducts and composites follow from parts (a) and (b) and the explicit
construction of coproducts.

(e): The statements about coproducts are again formal, as is the fact that a composite of epimorphisms
is epi. It follows easily from (c) that composites of regular epimorphisms are regular epimorphisms. Propo-
sition 23.32 tells us that finite products of quotient maps are quotient maps, and we now know that quotient
maps are the same as regular epimorphisms.

(f): Consider a map f : A −→ B. Write R = eq(f), which is a closed equivalence relation on A. Let C
be the closure of the image of f , topologised as a subspace of B. We then have a factorisation of f as a
composite

A −→ A/R −→ C −→ B.

The factorisation A −→ A/R −→ B displays f as a regular epimorphism followed by a monomorphism. The
factorisation A −→ C −→ B displays f as an epimorphism followed by a regular monomorphism.

Proposition 23.48 now tells us that pullbacks of regular epis are regular epi, so U is regular. Proposi-
tion 23.47 tells us that pushouts of regular monos are regular mono, so U is coregular. �

24.2. Filtered colimits. The general theory of filtered diagrams is explained in Section 36.8. We now
discuss how this works out in the category of CGWH spaces.

Lemma 24.2. [lem-filtered]
Let {Xi}i∈I be a filtered diagram of closed inclusions of spaces, with colimit X. Then the underlying set

of X is the colimit of the underlying sets of the Xi, and the maps Xi −→ X are closed inclusions.

Proof. We first claim that if u, v : i → j in I then u∗ = v∗ : Xi → Xj . Indeed, if w is as in axion (c)
above then certainly w∗u∗ = w∗v∗, but w∗ is assumed to be a closed inclusion, so u∗ = v∗.

Next suppose we have i, j,m ∈ I and there exist maps i
u−→ m

v←− j. We put

Rmij = {(x, y) ∈ Xi ×Xj : u∗(x) = v∗(y)},

which is closed in Xi ×Xj . By the previous paragraph, this is independent of the choice of u and v. In the
case m = i = j we can take u = v = 1i to see that Riii = ∆Xi .

If there exists a morphism f : m→ m′ then, using the fact that f∗ : Xm → Xm′ is injective we see that
Rmij = Rm

′

ij . Even if there is no map m → m′ we can certainly choose m′′ with maps m −→ m′′ ←− m′ so we

still have Rmij = Rm
′

ij . We write Rij for this set. If (x, y) ∈ Rij and (y, z) ∈ Rjk then, by choosing on object
m that admits maps from all of i, j and k, we see that (x, z) ∈ Rik.

Now put T =
∐
iXi, so T 2 =

∐
i,j Xi×Xj . As Rij is closed in Xi×Xj we see that the set R =

∐
i,j Rij

is closed in T 2. It is also an equivalence relation, so we have a CGWH space X = T/R. Let q : T → X be
the quotient map, and let fi : Xi → X be the obvious map. It is now straightforward to check that these
form a universal cone, so lim

−→i
Xi = X, and this colimit is created in the category of sets. As Rii = ∆Xi

we see that fi is injective. Suppose we have a closed set F ⊆ Xi; we claim that fi(F ) is closed in X. It
will suffice to show that q−1(fi(F )) is closed in T , or that Xj ∩ q−1(fi(F )) is closed in Xj for all j. To see
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this choose an object m and maps i
u−→ m

v←− j, giving closed inclusions Xi
u∗−→ Xj

v∗←− Xk. One checks
that Xj ∩ q−1(fi(F )) = v−1

∗ (u∗(F )), which is closed in Xj as required. This proves that fi is a closed
inclusion. �

Definition 24.3. [defn-strongly-filtered]
We say that a filtered diagram {Ai} of closed inclusions is strongly filtered if every compact subset of

A = lim
−→i

Ai lies in the image of some Ai.

Remark 24.4. [rem-not-strongly-filtered]
A convergent sequence together with its limit is compact. Using this, one sees that any compact metric

space A is the filtered colimit of its countable compact subspaces. This diagram is not strongly filtered unless
A is countable.

Lemma 24.5. [lem-pointy]
A sequence of closed inclusions is strongly filtered. The diagram of finite subcomplexes of a CW complex

is strongly filtered. More generally, let {Ai} be a directed system of subsets of A = lim
−→i

Ai, and suppose

that there are disjoint sets Bj such that each Ai is the union of a finite set of B’s. Then the family {Ai} is
strongly filtered.

Proof. This argument is well-known, but it seems a little less well-known exactly what one needs to
make it work.

The first and second claims follow from the third, by taking Bi = Ai \ Ai−1 in the first case, or taking
the B’s to be the open cells in the second. So suppose that the A’s and B’s are as in the third case. Suppose
that C ⊆ A is compact. For each j such that Bj ∩C 6= ∅, choose bj ∈ Bj ∩C. Let D be the set of these bj ’s.
For any E ⊆ D and any i, we see that E ∩ Ai is finite and thus closed in Ai. It follows that E is closed in
A. As this holds for all E ⊆ D, we conclude that D is a discrete closed subset of the compact set C, hence
D is finite. Thus C is contained in some finite union of B’s. As the diagram of A’s is directed, we conclude
that C ⊆ Ai for some i. �

Lemma 24.6. [lem-sub-pointy]
Let {Ai} be a directed family of closed subsets of B, and write A =

⋃
iAi ⊆ B. Consider the conditions

(a) A is closed in B, and is homeomorphic to lim
−→i

Ai.

(b) For any compact set C ⊆ B, we have C ∩A = C ∩Ai for some i.

Then (b) implies (a), and the converse holds if {Ai} is strongly filtered.

Proof. (b)⇒(a): Let C ⊆ B be compact. Then C ∩ A = C ∩ Ai for some i, and this is closed in C
because Ai is closed in B. Thus A is compactly closed and thus closed in B. Similarly, suppose that D ⊆ A
is such that D ∩ Ai is closed for all i. Then for any compact C we can choose i such that C ∩ A = C ∩ Ai,
so D ∩ C = D ∩ C ∩ Ai, and this is again closed in C; thus D is closed in B. Thus, the subspace topology
on A coincides with the colimit topology.

(a)⇒(b): Suppose that {Ai} is strongly filtered and (a) holds. Suppose that C ⊆ B is compact. As A is
closed, we see that C ∩ A is compact. As A = lim

−→i
Ai is a strongly filtered colimit, we see that C ∩ A ⊆ Ai

for some i, so C ∩A = C ∩Ai. �

Lemma 24.7. [lem-filtered-mappings]
If X is compact, then the functor C(X,−) preserves strongly filtered colimits of closed inclusions.

Proof. Let {Ai} be a strongly filtered diagram with colimit A. As C(X,−) has a left adjoint, it
preserves regular monos, so {C(X,Ai)} is a diagram of closed inclusions. Any map X −→ A has compact
image; by the definition of a strongly filtered colimit, it therefore factors through some Ai. This means that
the natural map b : lim

−→i
C(X,Ai) −→ C(X,A) is a continuous bijection. Now let W be another compact
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space. Proposition 23.25 gives us a diagram

lim
−→

C(W,C(X,Ai))

a '

��

// C(W, lim
−→

C(X,Ai))
b∗ // C(W,C(X,A))

lim
−→

C(W ×X,Ai) c
// C(W ×X,A)

' d

OO

in which a and d are homeomorphisms. The maps a and d are bijective for formal reasons. The map c is
bijective by the previous paragraph, as W ×X is compact. As b : lim

−→
C(X,Ai) −→ C(X,A) is bijective, the

map b∗ is mono. Commutativity of the diagram now shows that b is also epi, so it is a bijection. As any
space is a colimit of compact spaces, we conclude that C(W, lim

−→
C(X,Ai)) = C(W,C(X,A)) for noncompact

W ’s as well. Thus lim
−→

C(X,Ai) is homeomorphic to C(X,A) by Yoneda’s lemma.

Now suppose that K ⊆ C(X,A) is compact. Then the image of the compact space K × X under the
evaluation map is a compact subspace of A, hence contained in some Ak; it follows that K ⊆ C(X,Ak).
Thus, the diagram {C(X,Ai)} is strongly filtered. �

Lemma 24.8. [lem-sequence-pullback]
Consider a diagram of the form

A0
��

f0

��

//
i0 // A1

��

f1

��

//
i1 // A2

��

f2

��

//
i2 // . . .

B0
//
j0
// B1

//
j1
// B2

//
j2
// . . .

in which all maps are closed inclusions and all squares are pullbacks of sets (and therefore of spaces, by
lemma 23.46). Write A∞ and B∞ for the evident colimits. Then the diagram

Ai // //

��

fk

��

A∞
��

f∞

��

Bi // // B∞

is a pullback square of closed inclusions.

Proof. Using Lemma 24.2, we see that the square is a pullback of sets, that the horizontal maps
are closed inclusions, and that the vertical maps are injective. It follows from Lemma 23.46 that it is a
pullback of spaces. The left hand vertical is a closed inclusion by assumption. If C ⊆ A∞ is closed then
f∞(C) ∩Bk = fk(C ∩Ak) by the pullback property, and this is clearly closed in Bk. As B∞ = lim

−→k
Bk, we

conclude that f∞(C) is closed in B∞, so f∞ is a closed inclusion. �

Corollary 24.9. [cor-bifiltered]
Let {Ak,l} be a diagram of closed inclusions indexed by N2, such that each square

Ak,l //

��

Ak+1,l

��

Ak,l+1
// Ak+1,l+1

is a pullback. Define A∞,l, Ak,∞ and A∞,∞ to be the obvious colimits. Then the resulting diagram indexed
by (N ∪ {∞})2 again consists of pullback squares of closed inclusions.

183



24.3. β-epimorphisms. For any set S we let βS be the space of ultrafilters on S, or equivalently the
maximal ideal space of the Banach algebra C∗(S) of bounded functions S −→ R. This is called the Stone-Cech
compactification of the discrete space S. The basic point is that βS is a compact Hausdorff space containing
S as a discrete open subspace, and that any function u : S −→ X (where X is compact Hausdorff) extends
uniquely to a continuous map βS −→ X. In other words, β is left adjoint to the forgetful functor from
compact Hausdorff spaces to sets. (In fact, a theorem of Manes tells us that the category of such spaces
is equivalent to the category of algebras for β, considered as a monad in the category of sets.) All this is
covered in [1].

Definition 24.10. [defn-beta-epi]
We say that a map f : X −→ Y of CGWH spaces is a β-epimorphism if it satisfies the following equivalent

conditions.

(a) For every set S and map u : βS −→ Y there is a map v : βS −→ X with fv = u.
(b) If L ⊆ Y is compact then there is a compact set K ⊆ Y such that f(K) = L.
(c) If L ⊆ Y is compact then there is a compact set K ⊆ Y such that f(K) ⊇ L.

Proof of equivalence. Suppose that (a) holds and that we are given a compact set L ⊆ Y . We have
a counit map βL� L which we compose with the inclusion L� Y to get u : βL −→ Y , which we can lift to
a map v : βL −→ X. We then put K = v(βL) and observe that this is compact and has f(K) = L.

It is trivial that (b) implies (c). On the other hand, given K satisfying (c) we can take K ′ = K ∩f−1(L)
to see that (b) holds as well.

Now suppose that (b) holds and we are given u : βS −→ Y . Put L = u(βS); this is a compact Hausdorff
subset of Y , so we can choose a compact Hausdorff set K ⊆ X with f(K) = L. Now choose a function

v : S −→ K lifting the composite S � βS
u−→ K, and extend over βS using the universal property. This gives

the required lifting of u to X. �

Proposition 24.11. [prop-beta-regular]
If f is a β-epimorphism, then it is a regular epimorphism.

Proof. We can take L to be a point in (b) to see that f is surjective. Suppose that Z ⊆ Y is such that
f−1Z is closed in X; it will be enough to check that Z is closed in Y , for then f is a quotient map and thus
a regular epi. As Y is CGWH it is enough to check that Z ∩L is closed when L is compact. We can choose
a compact set K ⊆ X with f(K) = L and then Z ∩L = f(f−1(Z)∩K) but f−1(Z) is closed so f−1(Z)∩K
is compact Hausdorff so f(f−1(Z) ∩K) is closed as required. �

Lemma 24.12. [lem-beta-epi]
The class of β-epimorphisms is closed under products, pullbacks and composition. �

Lemma 24.13. [lem-metric-beta-epi]
If X is a metric space and ∅ 6= W ⊆ X is closed and f : X −→ Y := X/W is the projection then f is

β-epi.

Proof. Suppose that L ⊆ Y is compact. Put L′ = L\{0} and K ′ = f−1L′; one checks that f : K ′ −→ L′

is a homeomorphism. Let K be the closure of K ′ in X and choose w ∈ W , so f(K ∪ {w}) = L ∪ {0}. It is
thus enough to show that K is compact, or equivalently that K ′ is totally bounded.

Fix ε > 0. Let S be a subset of K ′ with the property that d(a, b) > ε/2 when a, b ∈ S and a 6= b. Any
Cauchy sequence in S is clearly eventually constant, and it follows that S is a discrete closed subspace of
X. Also S ∩W = ∅ so f−1f(S) = S and f is a quotient map so f(S) is closed so U := f(S)c is open in Y .
For each s ∈ S, choose a small open ball Bs of radius at most ε/4 around s such that Bs ∩W = ∅ and put
Vs = f(Bs), which is an open neighbourhood of f(s) in Y . The sets U and Vs cover Y and so some finite
subcollection covers L. However f(s) ∈ L and Vs is the only set in the cover that contains f(s) so each Vs
must be in the finite subcover so S must be finite.

It follows from this that we can choose a maximal set S with the stated properties, and it is easy to see
that such an S is an ε-net for K ′. Thus K ′ is totally bounded, as required. �

Lemma 24.14. [lem-CW-beta-epi]
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If X is a CW complex and ∅ 6= W ⊆ X is a subcomplex and f : X −→ Y := X/W is the projection then
f is β-epi.

Proof. Suppose that L ⊆ X/W is compact. Then L is contained in a finite subcomplex, so we may
assume that it is itself a finite subcomplex. Each open cell lifts to an open cell in X whose closure is a
finite complex and thus compact. It follows easily that we can choose a compact subcomplex K ⊆ X with
f(K) = L, as required. �

Definition 24.15. [defn-proper]
We say that a surjective map f : X −→ Y is proper if it satisfies the following equivalent conditions.

(a) f is closed and has compact fibres.
(b) The preimage of any compact set is compact.

(It is immediate from (b) that a proper map is β-epi and thus regular epi.)

Proof of equivalence. Suppose that (a) holds and that L ⊆ Y is compact, and put K = f−1(L);
we need to show that K is compact. Let {Fi} be a collection of nonempty closed subsets of K that is closed
under finite intersections. It suffices to show that

⋂
i Fi 6= ∅. The sets f(Fi) are closed in the compact

space L and any finite intersection of them is nonempty, so
⋂
i f(Fi) contains some point y say. The sets

Fi ∩ f−1{y} are thus nonempty closed subsets of the compact space f−1{y} and are closed under finite
intersections, so

⋂
i Fi ∩ f−1{y} 6= ∅ so

⋂
i Fi 6= ∅ as required.

Conversely, suppose that (b) holds. It is immediate that f has compact fibres. Suppose that F ⊆ X is
closed; we need to show that f(F ) is closed. As Y is CGWH, it suffices to show that f(F )∩L is closed when
L ⊆ Y is compact, but then K = f−1(L) is compact in X so F ∩K is compact so f(F ) ∩ L = f(F ∩K) is
closed as required. �

Proposition 24.16. [prop-proper-bij]
A proper continuous bijection of CGWH spaces is a homeomorphism.

Proof. Let f : Y −→ Z be a proper continuous bijection. As remarked above, f is regular epi and clearly
also mono and thus an isomorphism. For a more direct argument, we need only show that f−1 is continuous
or equivalently that f is closed. Let X ⊆ Y be closed, and let L ⊆ Z be compact. It will suffice to show that
f(X)∩L is closed. As f is proper we see that K := f−1(L) is compact so X ∩K is compact, and images of
compact sets are always compact so the set f(X) ∩ L = f(X ∩K) is compact, and thus closed as required.
check that this does not need strong Hausdorff property. �

Remark 24.17. [rem-not-proper]
The obvious map [0, 1)q [0, 1] −→ [0, 1] is a split epimorphism (and thus a β-epi and a regular epi) with

compact fibres, but is not proper.

25. Based spaces

Definition 25.1. [defn-pointed-category]
Let CGWH∗ denote the category of CGWH spaces equipped with a specified basepoint 0X ∈ X. The

morphisms from X to Y are the continuous maps f : X → Y for which f(0X) = 0Y . We will use the symbol
0 to denote the constant map X → Y taking everything to 0Y , and also for the based space whose only
point is the basepoint.

Definition 25.2. [defn-base-adjunction]
If X is an unbased space we write X+ for X q {0}, with the new point 0 taken as the basepoint. If

Y is a based space we write Y− for Y regarded as an unbased space. We then have an evident adjunction
CGWH∗(X+, Y ) = CGWH(X,Y−).

Remark 25.3. [rem-collapse-pointed]
Given a space X ∈ CGWH and a closed subspace Y , we can form X/Y = (X q {0})/E as in Defini-

tion 23.50, and take the image of 0 as the basepoint. Most often we will do this when X is a based space
and Y contains the basepoint. In that case we can regard X/Y as a quotient of X, and then 0X/Y is the
image of 0X .
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Remark 25.4. [rem-limits-pointed]
If (Xi)i∈I is any diagram in CGWH∗ then we can form the inverse limit X = lim

←−i
Xi in CGWH. The

points (0Xi)i define a point 0X of this inverse limit, and we take this as the basepoint in X. This makes X
into the inverse limit of the diagram in CGWH∗. More formally, we can say that CGWH∗ has all small
limits, and they are created by the forgetful functor CGWH∗ → CGWH. In particular, the categorical
product of based spaces X and Y is just the space X × Y with the basepoint 0X×Y = (0X , 0Y ).

Before discussing colimits, we need a small preliminary.

Definition 25.5. [defn-connected-category]
Given a category I, we let ∼ be the smallest equivalence relation on obj(I) such that i ∼ j whenever

there is a morphism from i to j. We write π0(I) for the set of equivalence classes, and we say that I is
connected if π0(X) is a singleton. For example, the usual indexing categories for coequalisers, pushouts and
quotients by group actions are connected, but those for products are not.

Remark 25.6. [rem-connected-limit]
Let C be a category with finite products and coproducts, let X be an object of C, and regard it as a

constant functor I → C. Then one checks that lim
−→I

X =
∐
i∈π0(I)X and lim

←−I
X =

∏
i∈π0(I)X. In particular,

if I is connected then lim
−→I

X = X = lim
←−I

X.

Remark 25.7. [rem-colimits-pointed]
Let X : I → CGWH∗ be a diagram of pointed spaces, and let X ′ be the colimit in CGWH. Let 0 denote

the constant I-diagram whose value is the one-point space, so lim
−→I

0 = π0(I) (with the discrete topology).

There are evident maps 0 → X → 0 of I-diagrams, giving maps π0(I) → X ′ → π0(I) in CGWH. The
composite is the identity on π0(I), showing that π0(I) is embedded as a closed subspace in X ′. One checks
that X ′/π0(I) is the colimit of X in CGWH∗, showing that CGWH∗ has all small colimits. Moreover,
if I is connected we see that colimits for I-diagrams are created in CGWH. In particular, pushouts and
coequalisers are the same whether calculated in CGWH∗ or in CGWH. However, the categorical coproduct
in CGWH∗ is the wedge product, defined by

X ∨ Y = (X q Y )/({0X} q {0Y })

Note that there is a canonical map k : X ∨Y → X×Y given by k(x) = (x, 0Y ) for x ∈ X and k(y) = (0X , y)
for y ∈ Y .

Theorem 25.8. [thm-regular-pointed]
Let f : A −→ B be a morphism in CGWH∗.

(a) f is a monomorphism if and only if it is injective, and an epimorphism if and only if it has dense
image.

(b) f is a regular monomorphism if and only if it is a homeomorphism of A with a closed subset of B
(with the usual subspace topology), or in other words a closed inclusion.

(c) f is a regular epimorphism if and only if it is surjective and B has the quotient topology.
(d) A coproduct, product or composite of (regular) monomorphisms is a (regular) monomorphism.
(e) A coproduct, finite product or composite of (regular) epimorphisms is a (regular) epimorphism.
(f) CGWH∗ is biregular.

Proof. In part (e), it is categorical nonsense that coproducts preserve coequalisers and so preserve
regular epimorphisms. In part (d), we leave aside for the moment the claim that coproducts preserve
(regular) monomorphisms. The remaining claims involve only products, equalisers and coequalisers, all of
which are created in CGWH. Moreover, the proofs given for Theorem 24.1 also use only these constructs.
Thus, everything goes through as before.

We now return to (d). Consider injective maps i : A → B and j : C → D. By inspection of the
construction we see that i ∨ j : A ∨ C → B ∨ D is injective. Part (a) tells us that monomorphisms are
precisely the injective maps, so coproducts preserve monomorphisms. Now suppose that i and j are regular
monomorphisms, or in other words closed inclusions. We have a commutative diagram as follows, in iq j is
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a closed inclusion, and q is also a closed map by Remark 23.51.

Aq C
p
����

iqj
// B qD

q
����

A ∨ C
i∨j
// B ∨D

Given a closed subset F ⊆ A ∨ C, one checks directly (separating the cases 0 ∈ F and 0 6∈ F ) that
(i∨j)(F ) = q((iqj)(p−1(F ))), which is again closed. If follows that i∨j is a closed inclusion, as claimed. �

Proposition 25.9. [prop-wedge-closed]

The maps X
i−→ X ∨ Y j←− Y and X ∨ Y k−→ X × Y are closed inclusions.

Proof. Let X
p←− X × Y q−→ Y be the projections. Note that pki = 1X and qkj = 1Y . This means

that i, j, ki and kj are all split monomorphisms, hence regular monomorphisms, hence closed inclusions. If
A ⊆ X ∨Y is closed then B = i−1(A) is closed in X and C = j−1(A) is closed in Y , so k(A) = ki(B)∪kj(C)
is closed in X × Y . Thus k is closed as claimed. �

25.1. The smash product.

Definition 25.10. [defn-smash]
We define X ∧ Y = (X × Y )/(X ∨ Y ) and S0 = {0, 1} (with 0 as the basepoint). The underlying sets

satisfy

(X ∧ Y ) \ {0} = (X \ {0})× (Y \ {0}).

Remark 25.11. [rem-one-point-smash]
Let X and Y be locally compact Hausdorff, so we have compactifications X∞ and Y∞ as in Defini-

tion 18.15. Using Lemma 18.19 one checks that X∞ ∧ Y∞ is homeomorphic to (X × Y )∞.
For example, we know that Sn ' Rn∞ by stereographic projection (Proposition 18.20). It follows that

Sn ∧ Sm ' Rn∞ ∧ Rm∞ ' (Rn × Rm)∞ = Rn+m
∞ ' Sn+m.

For a different kind of example, suppose that X and Y are already compact. Then X∞ and Y∞ can be
identified with X+ and Y+, and the conclusion is that X+ ∧ Y+ = (X × Y )+.

Remark 25.12. [rem-collapse-smash]
Suppose we have CGWH spaces X and Y , with closed subspaces A and B. By a comparison of universal

properties, one can check that there is a homeomorphism

X

A
∧ Y
B
' X × Y

(X ×B) ∪ (A× Y )
.

Proposition 25.13. [prop-smash-symmon]
There are natural homeomorphisms S0 ∧ X = X = X ∧ S0 and X ∧ Y = Y ∧ X and (X ∧ Y ) ∧ Z =

X ∧ (Y ∧ Z).

Proof. The only point requiring a little attention is the associativity isomorphism. Let qX,Y : X×Y →
X ∧ Y be the quotient map. Using Proposition 23.32 we see that the composite

X × Y × Z qX,Y ×1−−−−−→ (X ∧ Y )× Z qX∧Y,Z−−−−−→ (X ∧ Y ) ∧ Z

is a quotient map. This identifies (X ∧ Y ) ∧ Z with (X × Y × Z)/A, where

A = {(x, y, z) ∈ X × Y × Z : x = 0X or y = 0Y or z = 0Z}.

We identify X ∧ (Y ∧ Z) with the same space, by a symmetrical argument. �

Proposition 25.14. [prop-wedge-smash]
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The square

X ∨ Y // k //

��

X × Y
q
����

0 // X ∧ Y
is both a pushout and a pullback. Moreover k is a closed inclusion, and q is a closed quotient map.

Proof. The map k is a closed inclusion by Proposition 25.9. The map q is a quotient map by definition,
and is closed by Remark 23.51. The square is a pushout by definition, and a pullback by inspection or by
Proposition 23.47. �

Proposition 25.15. [prop-smash-connected-limit]
Let X be a based space. Then the functor Y 7→ X∧Y preserves equalisers (but not pullbacks or products).

Proof. Consider a pair of arrows f, g : V → W with equaliser j : U → V . Consider a point b ∈ X ∧ V
with (1 ∧ f)(b) = (1 ∧ g)(b). If b = 0 then b = (1 ∧ j)(0). Otherwise b = x ∧ v for a unique pair
(x, v) ∈ (X \ {0})× (V \ {0}), in which case the equation (1∧ f)(b) = (1∧ g)(b) gives x∧ f(v) = x∧ g(v). As
x 6= 0 this gives f(v) = g(v) (even if f(v) = 0 or g(v) = 0). This means that v = j(u) for a unique u ∈ U ,
so b = (1 ∧ j)(x ∧ u). This shows that 1 ∧ j is the equaliser of 1 ∧ f and 1 ∧ g in the category of sets. Now
consider the diagram

X × U //
1×j
//

p
����

X × V
q
����

X ∧ U //
1∧j
// X ∧ V

It is formal that products preserve regular monomorphisms, so 1 × j is a closed inclusion. The map q is
closed by Remark 23.51. Given a closed subset F ⊆ X ∧ U we have F = pp−1(F ) (because p is surjective)
so (1 ∧ j)(F ) = (1 ∧ j)pp−1(F ) = q((1× j)(p−1(F ))), which is closed. Thus 1× j is a closed inclusion, so it
is the equaliser in CGWH∗.

On the other hand, if we let n denote a set with n points then smashing with 2+ does not preserve the
pullback of the maps 1+ −→ 0←− 1+. �

Corollary 25.16. [cor-smash-inc]
The functor Y 7→ X ∧ Y preserves closed inclusions.

Proof. Closed inclusions are the same as regular monomorphisms, or in other words maps that can be
written as an equaliser of some fork. �

Definition 25.17. We put F (X,Y ) = {f ∈ C(X,Y ) : f(0X) = 0Y }, topologised as a closed subspace
of C(X,Y ). We take the constant map with value 0Y as a basepoint in F (X,Y ).

Remark 25.18. To see that F (X,Y ) is closed one can go back to Definition 23.21 and note that
F (X,Y ) = W ({0X}, {0Y }c)c. More abstract arguments are also possible.

Proposition 25.19. [prop-F-adjoint]
There are natural homeomorphisms F (X,F (Y,Z)) = F (X ∧ Y, Z).

Proof. As F (Y,Z) is a subspace of C(Y, Z), we see that F (X,F (Y, Z)) is a subset of F (X,C(Y,Z)),
which is a subset of C(X,C(Y,Z)), which bijects naturally with C(X × Y, Z). A function f : X × Y → Z
corresponds to an element of F (X,F (Y,Z)) iff (a) each of the functions f(x,−) : Y → Z preserves basepoints,
and (b) the map f(0X ,−) : Y → Z is the zero map. These mean that f(x, y) = 0Z if x = 0X or y = 0Y ,
or in other words that f(X ∨ Y ) = 0Z , so f factors through (X × Y )/(X ∨ Y ) = X ∧ Y . We thus arrive
at a bijection F (X,F (Y,Z)) = F (X ∧ Y, Z). One can show using the Yoneda Lemma that this is in fact a
homeomorphism, as in the proof of Proposition 23.25. �

Corollary 25.20. [cor-smash-colimits]
The functor (−) ∧ Y is left adjoint to F (Y,−). Thus
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(a) (−) ∧ Y preserves all colimits in CGWH∗, and thus preserves regular epimorphisms.
(b) F (Y,−) preserves all limits in CGWH∗, and thus preserves regular monomorphisms. �

Two important special cases are as follows:

Definition 25.21. [defn-sigma-omega]
Let X be a based space. We put I = [0, 1] (with 0 as the basepoint), and we take I/∂(I) = [0, 1]/{0, 1}

as our model of S1. We then put

CX = I ∧X ΣX = S1 ∧X
PX = F (I,X) ΩX = F (S1, X).

These are called the cone, suspension, path space and loop space of X, respectively.

Remark 25.22. [rem-sigma-omega]
As a special case of Proposition 25.19 we have natural homeomorphisms F (CX, Y ) = F (X,PY ) and

F (ΣX,Y ) = F (X,ΩY ).

25.2. Mapping spaces and filtered colimits.

Lemma 25.23. [lem-filtered-based-mappings]
If X is compact, then the functor F (X,−) preserves strongly filtered colimits of closed inclusions.

Proof. This can be deduced from Lemma 24.7, or proved by the same line of argument. �

Lemma 25.24. [lem-A-FBBA]
The unit map η : A −→ F (B,B ∧A) is a closed embedding unless B = 0.

Proof. Suppose that B 6= 0, and choose b ∈ B with b 6= 0. Define i : S0 → B by i(0) = 0 and i(1) = b;
this is a closed inclusion. One checks that the following diagram commutes:

A
η
//

%%

i∧1

%%

F (B,B ∧A)

i∗

�� B ∧A.
The map i∧ 1 is a closed inclusion by Corollary 25.16, so η is a closed inclusion by Proposition 23.43(d). �

Corollary 25.25. [cor-inc-adj]
If f : A ∧ B −→ C is a closed inclusion and B 6= 0 then the adjoint map f# : A −→ F (B,C) is a closed

inclusion.

Proof. The map f# is the composite

A
η−→ F (B,A ∧B)

f∗−→ F (B,C).

We have just shown that η is a closed inclusion and F (B,−) preserves closed inclusions so f∗ is a closed
inclusion; the claim follows. �

Corollary 25.26. [cor-OnSn]
For any A, the maps ΩnΣnA −→ Ωn+1Σn+1A −→ QA are closed inclusions.

Proof. After replacing A by ΣnA and taking B = S1, the lemma tells us that ΣnA −→ ΩΣn+1A is a
closed inclusion. The functor Ωn preserves regular monos, so ΩnΣnA −→ Ωn+1Σn+1A is a closed inclusion.
As QA = lim

−→n
ΩnΣnA, the rest follows from Lemma 24.2. �

Corollary 25.27. [cor-OnSnmap]
If A −→ B is a closed embedding, then the diagram

ΩnΣnA // //

��

��

Ωn+1Σn+1A // //

��

��

QA
��

��

ΩnΣnB // // Ωn+1Σn+1B // // QB
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consists of pullback squares of closed inclusions.

Proof. We know by Corollary 25.26 that the horizontal maps are closed inclusions. Corollary 25.16
tells us that ΣnA −→ ΣnB is a closed inclusion, and it follows that ΩnΣnA −→ ΩnΣnB is a closed inclusion.
The left hand square is a pullback of sets, by inspection. The claim now follows from Lemma 24.8. �

26. Examples

26.1. R∞. We regard Rn as a subspace of Rn+1 in the obvious way, and put R∞ = lim
−→n

Rn. Each Rn

is a metric space and thus CGWH, so R∞ is CGWH. If we let Kn be the closed ball of radius n in Rn then
Kn is compact and R∞ =

⋃
nKn. Thus R∞ is σ-compact (ie a countable union of compact sets). It follows

that every open cover has a countable subcover. Let U be an open set with compact closure. Then U ⊆ Rn
for some n and U = U ∩ Rn+1 is open in Rn+1; it follows that U = ∅. This shows that R∞ is not locally
compact.

26.2. [0, ω1). Let ω1 be the first uncountable ordinal, and give the set [0, ω1) the order topology. This is
an open subspace of the compact Hausdorff space [0, ω1], so it is locally compact Hausdorff and thus CGWH.
It is easy to see that a subset is countable iff bounded iff precompact. It follows easily that [0, ω1) is neither
separable nor σ-compact. The open sets [0, α) (with α countable) form an open cover with no countable
subcover, so [0, ω1) is not Lindelöf. I think that every countable open cover has a finite subcover, ie [0, ω1)
is countably compact.

26.3. The long line. Let α be any ordinal, and put L+(α) = α × [0, 1), ordered lexicographically, so
(β, s) < (γ, t) iff (β < γ or (β = γ and s < t). We give this the order topology, with a subbase consisting of
sets D(x) = {y : y < x} and U(x) = {y : y > x}. This is easily seen to be Hausdorff. We also define L(α)
to be the quotient of {1,−1} × L+(α) in which (−1, 0, 0) is identified with (1, 0, 0).

The spaces L+(ω1) and L(ω1) are called the long ray and the long line.
If α < ω1 then α is countable so we can choose a bijection d : α → N, and define f : L(α) → [0, 1) by

f(β, s) = s2−d(β) +
∑
γ<β 2−d(γ). This is an order-isomorphism and thus a homeomorphism. It follows that

L+(ω1) is locally homeomorphic to [0, 1). However, it is easy to see that every countable subset of L+(ω1) is
contained in L+(α) for some countable ordinal α, so (α+, 1/2) is not in the closure. This means that L+(ω1)
is not separable, and so is not homeomorphic to [0, 1).

Check that it is not paracompact or second countable.
Note that the long line is Hausdorff and locally homeomorphic to R, so it would count as a topological

manifold, if we had not included second countability as part of the definition.

26.4. C(I, I). The space C(I, I) is separable, because the set of piecewise linear functions with rational
breakpoints and slopes is a countable dense subset. Put

Fn = {f : I −→ I : f(0) = 0 and f(t) = 1 for t ≥ 1/n}.

This is a decreasing sequence of closed sets with empty intersection. It follows that the sets Un = F cn form
a countable open cover with no finite subcover, showing that C(I, I) is not countably compact and thus not
σ-compact.

26.5. (βN) \ {ω}. Let βN be the Stone-Cech compactification of N, and choose a point ω ∈ (βN) \ N
(so ω is a free ultrafilter on N). Put X = (βN) \ {ω}; this is clearly a locally compact Hausdorff space.
For any T ⊆ N we put V (T ) = {α ∈ βN : T ∈ α}. These sets satisfy V (S ∪ T ) = V (S) ∪ V (T ) and
V (S ∩ T ) = V (S) ∩ V (T ) and V (T ) ∩ N = T . They form a basis for the topology on βN, consisting of
compact clopen sets. It follows that {V (T ) : T 6∈ ω} is a basis of open sets in X, which is closed under
finite unions and intersections. It follows in turn that every compact subspace of X is contained in some
V (T ) with T 6∈ ω.

Lemma 26.1. [lem-cech-chain]
Consider a descending chain T0 ⊇ T1 ⊇ . . . of subsets of N. Then either Tn = ∅ for some n, or

X ∩
⋂
n V (Tn) 6= ∅.
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Proof. First suppose that
⋂
n Tn is nonempty, containing a number a say. The image of a under the

embedding N −→ βN is the ultrafilter α = {T ⊆ N : a ∈ T}, which certainly lies in
⋂
n V (Tn). Moreover, as

ω ∈ (βN) \ N we have α 6= ω and so α ∈ X ∩
⋂
n V (Tn), as required.

Now suppose that
⋂
n Tn = ∅. If Tn is finite for some n, it is easy to see that Tn = ∅ for some larger n.

Thus, we may assume that Tn is always infinite. It follows that we can choose numbers a1, a2, . . . , b1, b2, . . .,
all of them distinct, such that an, bn ∈ Tn. Put A = {an : n > 0} and B = {bn : n > 0} so the sets A∩ Tn
and B ∩ Tn are nonempty for all n. As A ∩B = ∅ and ω is an ultrafilter we must have A 6∈ ω or B 6∈ ω; we
assume wlog that A 6∈ ω. Now put

φ = {S ⊆ N : S ⊇ A ∩ Tn for some n}.

This is a proper filter, so we can choose an ultrafilter α with φ ⊆ α. Clearly A ∈ φ and A 6∈ ω so α 6= ω
so α ∈ X. For each n we have Tn ∈ φ so Tn ∈ α so α ∈ V (Tn). This shows that α ∈ X ∩

⋂
n V (Tn) as

claimed. �

Lemma 26.2. X is not σ-compact.

Proof. Any compact subset of X is contained in V (T ) for some T with T 6∈ ω. It will thus suffice to
show that for any chain T1 ⊆ T2 ⊆ . . . with Tn 6∈ ω for all n, we have

⋃
n V (Tn) 6= X. As V (T )c = V (T c),

it is equivalent to show that X ∩
⋂
n V (T cn) 6= ∅. This will follow from Lemma 26.1, if we can show that

T cn 6= ∅, or equivalently Tn 6= N. This holds because Tn 6∈ ω, whereas N lies in every ultrafilter. �

Corollary 26.3. X is not Lindelöf.

Proof. The sets V (T ) (with T 6∈ ω) form an open cover of X. If X were Lindelöf, then there would be
a countable subcover, and as the sets V (T ) are compact, this would mean that X was σ-compact, giving a
contradiction. �

Lemma 26.4. [lem-cone-nbhd]
Let U be an open subset of I×X containing 0×X. Then there exists m ∈ N such that [0, 2−m)×N ⊆ U .

Proof. Put

Tm := {n ∈ N : [0, 2−m)× {n} ⊆ U}.
We clearly have Tm ⊆ Tm+1. For any n ∈ N we know that U is open and contains (0, n), so we have
[0, 2−m) × {n} ⊆ U for m � 0; this shows that

⋃
m Tm = N, so

⋂
m T

c
m = ∅. More generally, consider

α ∈ X. We again know that U is a neighbourhood of (0, α), so there exists S ∈ α and m ∈ N with
[0, 2−m)×V (S) ⊆ U . As V (S)∩N = S we deduce that [0, 2−m)×S ⊆ U and so S ⊆ Tm, so V (S) ⊆ V (Tm),
so α ∈ V (Tm). This shows that X ⊆

⋃
m V (Tm), so X ∩

⋂
m V (T cm) = ∅. Lemma 26.1 thus tells us that for

m� 0 we have T cm = ∅ and so Tm = N. This means that [0, 2−m)× N ⊆ U , as required. �

Corollary 26.5. [cor-not-locomp]
The space Y := (I ×X)/(0×X) = I ∧X+ is not locally compact.

Proof. Let N be a neighbourhood of the cone point in Y , and let Ñ be its preimage in I ×X. Then

claim 26.4 tells us that [0, 2−m)×X ⊆ Ñ for some m. It follows that the set L = {2−m−1 ∧ x : x ∈ X} is
contained in N . Moreover, L is closed in Y and is not compact, so N cannot be compact. �

Corollary 26.6. Put

K̃ = {(t, n) ∈ I × N : t ≤ 2−n} ⊂ I ×X,
and let K be the image of K̃ in Y . Then K is compact, but there is no compact set L ⊆ X with K ⊆ I ∧L+.

Proof. Let {Ui}i∈I be a family of open sets in Y that cover K. Then some set Ui0 contains the
basepoint, and thus (by Claim 26.4) contains [0, 2−m) ∧ X+ for some m. It follows easily that K \ Ui0 is
compact, and thus is covered by some finite list Ui1 , . . . , Uir , so K is covered by Ui0 , . . . , Uir . Thus, K is
compact as claimed.

If K ⊆ I ∧L+ with L closed we see that N ⊆ L, but N is dense so we must have L = X, so in particular
L is not compact. �
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26.6. A non-regular space. Let ζ be the lattice of closed sets for the usual topology on R. For k ≥ 0,
write Sk = {1/n : n > k}, and write S = S0. Define

ζ ′ = {F ∪ T : F ∈ ζ and T ⊆ S}(1)

= {F ∪ T : F ∈ ζ and T ⊆ Sk} (for any k ≥ 0)(2)

= {G ⊆ R : G ∩ Sc ∈ ζ|Sc}(3)

(where ζ|Sc means the ordinary subspace topology on Sc).

Proposition 26.7. ζ ′ is a compactly generated weak Hausdorff topology on R. Moreover,

c(ζ ′) = {K ∈ c(ζ) : K ∩ S is finite } = {K ∈ c(ζ) : K ∩ Sk = ∅ for k � 0},

and for any K ∈ c(ζ ′) we have ζ ′|K = ζ|K . However, ζ ′ is not regular (so there is a closed set and a point
which cannot be separated by disjoint neighbourhoods).

Proof. The last description of ζ ′ makes it clear that it is a topology. As ζ ⊆ ζ ′, we see that ζ ′ is
Hausdorff, and that c(ζ ′) ⊆ c(ζ). Suppose that K ∈ c(ζ ′). For any T ⊆ S we have T ∈ ζ ′, so T ∩K is closed
in K. Thus S ∩K is compact and discrete, hence finite as claimed; thus Sk ∩K = ∅ for k � 0. Using this
and the second description of ζ ′, we see that ζ ′|K = ζ|K .

Conversely, suppose that K ∈ c(ζ) and that K ∩ Sk = ∅ for some k. Then the second description of ζ
shows that ζ|K = ζ ′|K , so that K is also compact under ζ ′. This verifies all the claims about c(ζ ′).

We next prove that ζ ′ is compactly generated. Let F be compactly closed for ζ ′; we must show that
F ∈ ζ ′. Let G be the closure of F in the ordinary topology ζ (so F ⊆ G). If G = F , then F ∈ ζ ⊂ ζ ′,
so we are done; so suppose that G 6= F . We claim that G = F ∪ {0} and 0 6∈ F . Indeed, suppose that
0 6= x ∈ G. If x has the form 1/n then set k = n, otherwise set k = 0. We can then choose a sequence xi
in F \ Sk converging to x in the usual metric. Moreover, K = {xi : i ≥ 0} ∪ {x} is compact under ζ ′,
so by assumption F ∩ K is closed in ζ ′|K = ζ|K . It follows that x ∈ F . This (with G 6= F ⊂ G) implies
immediately that G = F ∪ {0} and 0 6∈ F . If (−1/n, 1/n) ∩ F is not contained in S for any n, then we may
choose xn ∈ (−1/n, 1/n) ∩ F (so that xn −→ 0) and proceed as as above to deduce that 0 ∈ F , contrary to
assumption; thus T = (−1/n, 1/n) ∩ F ⊆ S for some n. Write F ′ = F \ (−1/n, 1/n) = G \ (−1/n, 1/n), so
that F ′ ∈ ζ. Thus F = F ′ ∪ T ∈ ζ ′ as required.

Finally, it is easy to see that the closed sets {0} and S cannot be separated by disjoint open neighbour-
hoods in ζ ′. Thus, ζ ′ is not regular. �

26.7. Bad sequential colimits.

Proposition 26.8. There is a diagram

W0
��

��

// // W1
��

��

// // W2
��

��

// // · · ·

X0
// // X1

// // X2
// // · · ·

in which the vertical maps are closed inclusions, but the induced map lim
−→n

Wn −→ lim
−→n

Xn is not injective.

(It follows that finite limits do not commute with sequential colimits in general.)

Proof. Put X ′ = [0, 1] × {0, 1} and W ′ = {0} × {0, 1}. Define an equivalence relation Rn on X ′ by
(s, a)Rn(t, b) if s = t and (a = b or s ≥ 2−n). Put Xn = X ′/Rn and Wn = W ′. One finds that the induced
map Wn −→ Xn is a closed inclusion, but lim

−→n
Wn = W ′ and lim

−→n
Xn = I but the induced map W ′ −→ I

sends both points of W ′ to 0. �

26.8. Irregular evaluation.

Proposition 26.9. There is a path connected based space X for which the evaluation map ε : PX −→ X
is not a quotient map.
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Proof. Put

a = (0, 0, 0)

bn = (0, n, 1) for n <∞
b∞ = (0,−1, 1)

cn = (2−n, 0, 2) for n <∞
c∞ = (0, 0, 2).

Note that

(a) d(bi, bj) > 1 whenever i 6= j
(b) cn −→ c∞ as n −→∞
(c) The line segments (a, bi] and (bi, ci] are all disjoint.

Let X be the union of all the line segments [a, bi] and [bi, ci], and take a as the basepoint. Put U = (b∞, c∞],
which is not open in X because cn −→ c∞. Put V = ε−1U ⊆ PX. I’m fairly sure that this is open in PX,
proving the claim. �

26.9. Discontinuity of the Pontrjagin-Thom construction. Given a locally compact Hausdorff
space U , we write U∞ for the one-point compactification. Given an open embedding i : U −→ V of such
spaces, we define i• : V∞ −→ U∞ by i•(i(u)) = u and i•(v) = ∞ for v not in the image of i. We write
Emb(U, V ) for the space of open embeddings from U to V , with the Kellification of the subspace topology
inherited from C(U, V ). We then define a function φ : Emb(U, V ) −→ F (V∞, U∞) by φ(i) = i•. I think that
this is often continuous, for example when U and V are manifolds. Here, however, we will give an example
where φ is not continuous.

First, we take U = V =
∏∞
k=0{0, 1}. We define fk : U −→ U by

fk(x)i =


xi if i < k

0 if i = k

xi−1 if i > k.

This is isomorphic to the product of 1U with the inclusion {0} −→ {0, 1}, so it is an open embedding. I claim
that fk −→ 1 in C(U,U). To see this, note that C(U,U) '

∏
i C(U, {0, 1}), and convergence in product spaces

is detected termwise, so it suffices to show that πi ◦ fk −→ πi as k −→ ∞, for all i ≥ 0. This is clear because
πi ◦ fk = πi when k > i.

Now put ek = 1 for all k, giving an element e ∈ U . For any x ∈ U we have fk(x)k = 0 6= ek, so e is not
in the image of fk, so f•k (e) =∞. Thus f•k (e) 6−→ e = 1•(e), so f•k 6−→ 1•.

26.10. Bad pullbacks. We remarked earlier that although CGWH is regular (so regular epis are
preserved by pullback), coequaliser diagrams need not be preserved by pullback. We now give an example of
this behaviour. Let X and Y be CGWH spaces, and let U be a dense open subspace of Y with Z = Y \ U .
Consider the following diagram, in which all the maps are the evident inclusions and projections:

∅

��

+3 X × Z

��

// Z

��

X2 × U +3 X × Y // Y.

We claim that the bottom line is a coequaliser. To see this, let R be the smallest equivalence relation on
X × Y such that (x, u)R(x′, u) whenever x, x′ ∈ X and u ∈ U . As subsets of X2 × Y 2 = (X × Y )2, one can
check that

R = (∆X ×∆Y ) ∪ (X2 ×∆U ).

The set R = X2 × ∆Y is a closed equivalence relation and R is dense in R so R is the smallest closed
equivalence relation containing R. Clearly also (X × Y )/R = Y , and it follows that the bottom line is a
coequaliser as claimed. The top row is obtained by pulling back the bottom row along the map Z −→ Y .
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Although the right hand map on the top row is a regular epimorphism (as required for regularity) the row
itself is not a coequaliser diagram.

27. Basics of homotopy theory

Definition 27.1. [defn-homotopy]
Let f0 and f1 be continuous maps from a topological space X to another space Y . A homotopy from f0

to f1 is a path from f0 to f1 in the space C(X,Y ). If there exists such a homotopy, we say that f0 and f1

are homotopic and write f0 ' f1.

Remark 27.2. [rem-continuous-family]
A homotopy can be thought of as a family of maps (ft)t∈[0,1] such that the map t 7→ ft (from [0, 1] to

C(X,Y )) is continuous. Given such a family, we can define a single map F : [0, 1]×X → Y by F (t, x) = ft(x),
and Proposition 23.25 tells us that continuity of F is equivalent to continuity of t 7→ ft.

Remark 27.3. [rem-homotopy-classes]
As in Definition 8.1 we see that the relation of being homotopic is an equivalence relation. The equiv-

alence classes are called homotopy classes of maps. The set π0C(X,Y ) of homotopy classes is also denoted
by [X,Y ]. If X and Y are based spaces we also write [X,Y ]∗ for π0F (X,Y ).

Example 27.4. [eg-linear-homotopy]
Suppose we have maps f0, f1 : X → Y , where Y is a subset of a real vector space V (with the subspace

topology). For (t, x) ∈ [0, 1]×X we can then define F (t, x) = (1− t)f0(x) + tf1(x) ∈ V . If it happens that
F (t, x) ∈ Y for all t and x, then we have a homotopy between f0 and f1, which we call the linear homotopy.
It is distressingly easy to fall into the trap of writing such formulae without verifying that F (t, x) ∈ Y .

In the case where Y = V , of course, there is nothing to check: any two maps from X to V are homotopic
by a linear homotopy.

Example 27.5. [eg-sphere-homotopies]
Define maps fi : S

2 → S2 by

f0(x, y, z) = (x, y, z)

f1(x, y, z) = (−x, y, z)
f2(x, y, z) = (−x,−y, z).

There is a homotopy between f0 and f2 given by

F (t, (x, y, z)) = (cos(πt)x− sin(πt)y, sin(πt)x+ cos(πt)y, z).

(In other words, at time t we rotate about the z-axis by an angle πt.) However, it turns out that f0 is not
homotopic to f1. It is possible but difficult to prove this directly. One approach is as follows. Consider a
map F : [0, 1]×S2 → S2, and put C = F−1{(0, 0, 1)} ⊆ [0, 1]×S2. If we merely asume that F is continuous,
then C could be very complicated; it could even be fractal, for example, or a knot with infinitely many
loops. However, after adjusting F by an arbitrarily small amount, we can arrange that F is continuously
differentiable, and that C is a smooth curve, and that a certain kind of coincidental vanishing of derivatives
does not happen anywhere on C. Then, by considering how the derivatives vary along C, one can check that
it is impossible for F to be a homotopy from f0 to f1. A much simpler and more general approach is to use
invariants from algebraic topology, such as homotopy or homology groups. Will we give further details
anywhere?

Example 27.6. [eg-maps-to-sphere]
Consider two maps f0, f1 : X → Sn such that f0(x) + f1(x) 6= 0 for all x. Define F : [0, 1]×X → Rn+1

by

F (t, x) = (1− t)f0(x) + tf1(x) ∈ Rn+1.

Except in the trivial case where f0 = f1, this will not give a homotopy from f0 to f1, simply because the values
F (t, x) will not lie in Sn. However, we see as in Example 8.8 that F (t, x) is never zero, so we can regard F as a
continuous map from X to Rn+1\{0}. There is a continuous map r : Rn+1\{0} → Sn given by r(v) = v/‖v‖,
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so we can define G = r ◦F : [0, 1]×X → Sn. We then have G(0, x) = r(f0(x)) = f0(x)/‖f0(x)‖ = f0(x) and
similarly G(1, x) = f1(x), so this gives a homotopy from f0 to f1.

The following principle will often be useful for specifying homotopy classes of maps.

Proposition 27.7. [prop-connected-parameters]
Let P be a path connected space. Suppose we have a continuous map F : P × X → Y , and we define

fp : X → Y by fp(x) = F (p, x). Then the homotopy class of fp is independent of p ∈ P .

Proof. The rule p 7→ fp gives a map F# : P → C(X,Y ), which is continuous by Proposition 23.25.
For any two points p, q ∈ P we can choose a path u : [0, 1] → P with u(0) = p and u(1) = q, and then the
composite F# ◦ u (given by t 7→ fu(t)) is a homotopy from fp to fq. �

Lemma 27.8. [lem-composite-homotopy]
Suppose we have maps

X
f0 //

f1

// Y
g0 //

g1
// Z

where f0 ' f1 and g0 ' g1. Then g0f0 ' g1f1.

Proof. Choose a homotopy F from f0 to f1, and a homotopy G from g0 to g1, and then put H(t, x) =
G(t, F (t, x)); this gives a homotopy from g0f0 to g1f1. �

Corollary 27.9. [cor-homotopy-category]
There is a well-defined composition operation [Y,Z] × [X,Y ] → [X,Z], given by ([g], [f ]) 7→ [gf ]. We

can thus define a category hCGWH, whose objects are spaces and whose morphisms are homotopy classes
of map. There is a functor U : CGWH → hCGWH given by U(X) = X on objects, and U(f) = [f ]
on morphisms. Similarly, there is a category hCGWH∗ whose objects are based CGWH spaces and whose
morphism sets are the sets [X,Y ]∗. �

Definition 27.10. [defn-homotopy-equivalence]
A map f : X → Y is a homotopy equivalence if there exists a homotopy inverse g : Y → X with gf ' 1X

and fg ' 1Y . We say that X and Y are homotopy equivalent if there exists a homotopy equivalence between
them. We say that X is contractible if it is homotopy equivalent to a single point.

Before giving some examples, it will be convenient to reformulate the notion of contractibility a little.

Definition 27.11. A contraction of a space X is a map h : [0, 1]×X → X such that h(1, x) = x for all
x, and h(0, x) is independent of x.

Lemma 27.12. [lem-contractible]
A space X is contractible if and only if it has a contraction.

Proof. Let h : [0, 1] × X → X be a contraction. This means that there is a point x0 ∈ X such that
h(0, x) = x0 for all x ∈ X. Let Y denote the singleton space {0}. Let f be the unique map from X to Y ,
given by f(x) = 0 for all x. Let g be the map from Y to X given by g(0) = x0. Then fg is equal (and
therefore homotopic) to 1Y , and h gives a homotopy from gf to 1X . This proves that f is a homotopy
equivalence, as required. The converse is essentially the same. �

Example 27.13. [eg-linear-contraction]
Let V be any vector space; then the map h(t, x) = tx defines a contraction of V . More generally, let X

be any subset of V , and let x0 be a point of X. We say that X is star-shaped around x0 if for all x ∈ X, the
line segment from x to x0 is contained wholly in X. If so, then the formula h(t, x) = tx+ (1− t)x0 gives a
contraction of X.

Example 27.14. [eg-punctured-vector-space]
Let V be a vector space with inner product, and put V × = V \{0}. Let i : S(V )→ V × be the inclusion,

and define r : V × → S(V ) by r(v) = v/‖v‖. Then ri = 1Sn , and we can define a homotopy from 1V × to ir
by h(t, v) = v/‖v‖t. This shows that i and r are mutually inverse homotopy equivalences.
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Example 27.15. We next claim that R \ Z is homotopy equivalent to Z. Indeed, we can define f : Z→
R \ Z by f(n) = n+ 1/2, and we can define g : R \ Z→ Z by g(x) = n whenever n < x < n+ 1. Then gf is
equal to the identity, and fg is linearly homotopic to the identity.

Example 27.16. For an example where neither fg nor gf is equal to the identity, consider the spaces
X and Y pictured below:

X Y

We can define f : X → Y by collapsing vertically, and we can define g : Y → X by doubling and then
collapsing horizontally, as illustrated by the following pictures:

f g

The composites fg and gf are then homotopic to the respective identity maps. The reader should be able
to visualise the required homotopies, but we will not attempt to give formulae.

One problem in understanding the homotopy sets [X,Y ] is that there may exist maps f : X → Y that
are very wild, as with the space-filling curves discussed in Section 11. However, in many cases this does not
cause trouble, because one can find a well-behaved map g that is very close to f and is homotopic to it.
There are a number of different results of this type (refer to simplicial approximation theorem); here
we will prove one that is quite simple and flexible.

Definition 27.17. [defn-polynomial]
Let X be a subspace of Rn, and let Y be a subspace of Rm. We say that a map f : X → Y is polynomial

if there exist polynomials pj(x0, . . . , xn−1) (for 0 ≤ j < m) such that

f(x) = (p0(x), . . . , pm−1(x))

for all x ∈ X. We also say that a subset W ⊆ X is Zariski closed in X if there are polynomials
w0(x), . . . , wr−1(x) such that

W = {x ∈ X : wk(x) = 0 for all k}.

Lemma 27.18. [lem-zariski-closed]

(a) If W is Zariski closed in X, then there is a single polynomial w(x) such that w(x) ≥ 0 for all
x ∈ X, and W = X ∩ w−1{0}.

(b) If W0 and W1 are Zariski closed in X, then so are W0 ∩W1 and W0 ∪W1.

Proof.
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(a) If W is Zariski closed, then there exist polynomials w0(x), . . . , wr−1(x) such that

W = {x ∈ X : wk(x) = 0 for all k}.

The polynomials w(x) =
∑
k wk(x)2 then has the stated properties.

(b) By part (a) there are nonnegative polynomials w0 and w1 with X ∩ w−1
i {0} = Wi for i = 0, 1. If

we put w2(x) = w0(x) +w1(x) and w3(x) = w0(x)w1(x) we find that X ∩w−1
2 {0} = W0 ∩W1 and

X ∩ w−1
3 {0} = W0 ∪W1.

�

Proposition 27.19. [prop-polynomial-approx]
Let X be a compact subspace of Rn, and let Y be an open subspace of Rm. Use the norm ‖y‖ =

max(|y0|, . . . , |ym−1|) and the corresponding metric on Rm.

(a) For any continuous map f : X → Y and any ε > 0 there exists a polynomial g : X → Y with
d(f, g) < ε.

(b) Let W ⊆ X be Zariski closed, and suppose that f |W is already polynomial. Then in (a) we can
choose g such that g|W = f |W .

(c) Any continuous map f : X → Y is homotopic to a polynomial map.
(d) Suppose that f, g : X → Y are polynomial maps that are homotopic. Then there exists a homotopy

h : [0, 1]×X → Y between them that is itself a polynomial map.

Proof. (a) First, as f(X) is compact and Y is open, the number

η = d(f(X), Y c) = inf{d(f(x), z) : x ∈ X, z ∈ Rm \ Y }

is strictly positive. Next, the Stone-Weierstrass Theorem (Theorem 17.10) easily implies that the
set of polynomial functions X → R is dense in C(X,R). We can thus find polynomials gk for
0 ≤ k < m with d(fk, gk) < min(η, ε) for all k. We can combine these to give a map g : X → Rm
with d(f, g) < min(η, ε). As d(f, g) < η we see that g(X) ⊆ Y , as required.

(b) Now let W be a Zariski closed subset of X, so we can choose a nonnegative polynomial function
w : X → R+ with X ∩ w−1{0} = W . Note that as X is compact, the set w(X) must be bounded.
After dividing by a positive constant if necessary, we may assume that w(X) ⊆ [0, 1].

Now suppose we have a continuous function f : X → Y and that there exists a polynomial
p : Rn → Rm such that f |W = p|W . Suppose we are also given ε > 0, and we define η as before and
put ε′ = min(η, ε)/2. By part (a), we can find a polynomial function q : X → Y with ‖f(x)−q(x)‖ <
ε′ for all x ∈ X. In particular, we see that the polynomial r(x) = p(x) − q(x) has ‖r(w)‖ < ε′ for
all w ∈ W . Put Z = {z ∈ X : ‖r(z)‖ ≥ ε′} and R = sup{‖r(x)‖ : x ∈ X}. As Z is compact and
disjoint from W and W = X∩w−1{0} we see that the number ζ = min{w(z) : z ∈ Z} lies in (0, 1].
If N is large enough we will have (1 − ζ)N < ε′/R and also 0 ≤ (1 − ζ)N < 1. It follows that the
polynomial s(x) = (1− w(x))Nr(x) has ‖s(x)‖ < ε′ for all x ∈ X, and s(w) = r(w) = p(w)− q(w)
for all w ∈ W . This means that the function g = (s + q)|X is polynomial with g|W = f |W and
d(f, g) < 2ε′ = min(ε, η), so g(X) ⊆ Y as required.

(c) If we choose g as in the proof of (a), then g is a polynomial that is linearly homotopic to f .
(d) Suppose that f, g : X → Y are polynomial maps, and that k : [0, 1]×X → Y is a homotopy between

them. The set {0, 1}×X = {(t, x) ∈ R×X : t(t− 1) = 0} is Zariski closed in [0, 1]×X, so by (b)
we can find a polynomial map h : [0, 1] × X → Y that agrees with k on {0, 1} × X. This is the
required polynomial homotopy from f to g.

�

28. Coverings and the fundamental groupoid

Definition 28.1. [defn-path-homotopy]
Let X be a CGWH space. We write Path(X) for the space C([0, 1], X) of paths in X. We define

continuous maps σ, τ : Path(X)→ X (called source and target) by σ(u) = u(0) and τ(u) = u(1).
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Given points x, y ∈ X, we also put

Path(X)(x, y) = { paths in X from x to y }
= {u ∈ Path(X) : σ(u) = x and τ(u) = y}.

Suppose we have two paths u0, u1 ∈ Path(X)(x, y). A path-homotopy from u0 to u1 is a continuous map
U : [0, 1]2 → X with

(a) U(s, 0) = x and U(s, 1) = y for all s
(b) U(0, t) = u0(t) and U(1, t) = u1(t) for all t.

Remark 28.2. [rem-path-homotopy]
Just as in Remark 27.2, a path-homotopy U gives a family of paths us ∈ Path(X)(x, y) by us(t) = U(s, t),

and these give a path from u0 to u1 in the space Path(X)(x, y). Using this we see that the relation of path
homotopy is an equivalence relation on the set Path(X)(x, y).

Definition 28.3. [defn-Pi-one]
We write Π1(X)(x, y) for the set of path-homotopy classes of paths from x to y in X. Equivalently, we

have

Π1(X)(x, y) = π0(Path(X)(x, y)).

We also write π1(X,x) for Π1(X)(x, x). If X has a specified basepoint then we just write π1(X) for π1(X, 0X).

Remark 28.4. [rem-pi-one-omega]
We can identify S1 with [0, 1]/{0, 1} in an obvious way, and take the collapsed point as the basepoint.

For any based space X we then have

ΩX = F (S1, X) = {u ∈ Path(X) : u(0) = u(1) = 0X} = Path(X)(0X , 0X)

and therefore π1(X) = [S1, X]∗ = π0(ΩX).

Proposition 28.5. [prop-path-homotopy]

(a) Suppose we have paths u0, u1 ∈ Path(X)(a, b), and paths v0, v1 ∈ Path(X)(b, c). If u0 is path-
homotopic to u1 and v0 is path-homotopic to v1 then the join v0 ∗ u0 is path-homotopic to v1 ∗ u1.

(b) Suppose we have paths u ∈ Path(X)(a, b) and v ∈ Path(X)(b, c) and w ∈ Path(X)(c, d). Then
w ∗ (v ∗ u) is path-homotopic to (u ∗ v) ∗ w.

(c) If ca is the constant path with value x, then any path u ∈ Path(X)(a, b) is path-homotopic to u ∗ ca
and to cb ∗ u.

(d) If u denotes the reverse path u(t) = u(1 − t), then u ∗ u is path-homotopic to ca, and u ∗ u is
path-homotopic to cb.

Proof.

(a) Let U be a path homotopy from u0 to u1, and let V be a path homotopy from v0 to v1. Put

W (s, t) =

{
U(s, 2t) if 0 ≤ t ≤ 1/2

V (s, 2t− 1) if 1/2 ≤ t ≤ 1

(so the corresponding paths ws are just ws = vs ∗ us). It is clear by patching (Proposition 5.9(b))
that W is continuous, and it gives the required path homotopy.

(b) Define F : [0, 1]2 → X by

F (s, t) =


u(4t/(s+ 1)) if 0 ≤ 4t ≤ s+ 1

v(4t− s− 1) if s+ 1 ≤ 4t ≤ s+ 2

w((4t− s− 2)/(2− s)) if s+ 2 ≤ 4t ≤ 4.
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s

t

0 1
4

1
2 1

0 1
2

3
4 1

a b c d

u v w

(s+ 1)/4 1/4 (2− s)/4

This gives the required path-homotopy. It corresponds to a family of paths (fs)s∈[0,1], where fs
follows u at speed 4/(s+ 1), then follows v at speed 4, then follows w at speed 4/(2− s).

(c) To see that u ∗ ca ' u, use the path-homotopy

F (s, t) =

{
a if 0 ≤ 2t ≤ s
u((2t− s)/(2− s)) if s ≤ 2t ≤ 2.

s

t

0 1

0 1
2 1

a

u

This corresponds to a family of paths (fs)s∈[0,1], where fs waits at a for time s/2, and the follows
u at speed 1/(1− s/2) for the remaining time. The proof that cb ∗ u ' u is similar.

(d) To see that u ∗ u ' ca, use the path-homotopy

F (s, t) =


a if 0 ≤ 2t ≤ s
u(2t− s) if s ≤ 2t ≤ 1

u(2− s− 2t) if 1 ≤ 2t ≤ 2− s
a if 2− s ≤ t ≤ 2.
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t

0 1
2 1

0 1
2 1

a a

u u

This corresponds to a family of paths (fs)s∈[0,1], where fs waits at a for time s/2, and then starts
to follow u at speed 2 for time (1− s)/2, then reverses direction and runs back to a and waits there
again for a further period of length s/2. The proof that u ∗ u ' cb is similar.

�

Corollary 28.6. [cor-Pi-one]
There is a category Π1(X), whose objects are the points of X, and whose morphisms from x to y are

the path-homotopy classes of paths from x to y. The reverse of a path gives an inverse for the morphism
corresponding to that path, so every morphism is an isomorphism, or in other words the category Π1(X) is
a groupoid. It is called the fundamental groupoid of X.

Remark 28.7. It is cumbersome to distinguish rigorously between paths and path-homotopy classes of
paths, so we will sometimes abuse notation by blurring this distinction.

Example 28.8. [eg-convex-groupoid]
Let X be a convex subset of a vector space V . For any two points x, y ∈ X we have a path u from x to

y given by u(t) = (1− t)x+ ty. If v is any other path from x to y, we have a path homotopy between u and
v given by H(s, t) = (1− s)u(t) + sv(t). Thus, there is a unique morphism in Π1(X) from x to y, so Π1(X)
is an indiscrete category (as in Example 36.9).

Example 28.9. [eg-circle-groupoid]
Define a groupoid G as follows. The objects are the nonzero complex numbers, and the morphisms from

z to w are the complex numbers a with ea = w/z, with composition given by addition. In particular, for
any z we have G(z, z) = 2πiZ.

We can define a functor I : Π1(C×)→ G as follows: on objects we have I(z) = z, and on morphisms we
have

I([u]) =

∫ 1

t=0

u′(t)

u(t)
dt.

We are glossing over some technicalities here. If the path u is differentiable then the above integral expression
is meaningful, and if v is another differentiable path and there is a differentiable path-homotopy between

them, then
∫ 1

0
u′/u =

∫ 1

0
v′/v by a standard version of Cauchy’s integral theorem. There are various different

ways to remove the differentiability condition, but we will not discuss them here. Once we have developed
the theory of covering spaces, it will be easy to give an alternative definition of I and to prove that it is an
isomorphism of categories.

Recall that π1(X, a) is defined to be Π1(X)(a, a). As Π1(X) is a groupoid, we see that this is a group
under composition. We therefore have a one-object category bπ1(X, a) as in Example 36.7.

Proposition 28.10. [prop-Pi-one-connected]
Suppose that X is path connected, and that we have a chosen basepoint a ∈ X. Then Π1(X) is equivalent

to bπ1(X, a).
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Proof. We can identify bπ1(X, a) with the full subcategory of Π1(X) whose only object is the point
a. We thus have an inclusion functor J : bπ1(X, a) → Π1(X), which is visibly full and faithful. As X is
assumed to be path connected, we can choose, for each x ∈ X, a path mx from a to x. In the case x = a, we
will choose the constant path. This means that for each object x of Π1(X) we have an isomorphism from
J(a) to x, which means that J is also essentially surjective, and thus is an equivalence of categories. We can
construct an inverse functor R : Π1(X)→ bπ1(X, a) as follows. On objects, we have no choice but to define
R(x) = a for all x. For any morphism u ∈ Π1(X)(x, y), we put R(u) = myum

−1
x . If v is another morphism

from y to z we have
R(v)R(u) = (mzvm

−1
y )(myum

−1
x ) = mz(vu)m−1

x = R(vu),

and similarly R preserves identity morphisms, so it is a functor. We have RJ = 1, and the morphisms
mx : a = JR(x)→ x give a natural isomorphism JR→ 1. �

Definition 28.11. [defn-simply-connected]
We say that X is simply connected if it is nonempty and has the following equivalent properties:

(a) For all x, y ∈ X we have |Π1(X)(x, y)| = 1.
(b) Π1(X) is an indiscrete category.
(c) X is path connected, and π1(X,x) = {1} for all x ∈ X.
(d) X is path connected, and π1(X,x) = {1} for some x ∈ X.

Proof of equivalence. Conditions (b) is included just as a reminder of terminology; it means the
same as (a). It is also clear by definition that X is path connected iff |Π1(X)(x, y)| > 0 for all x and y.
Suppose this holds, and that we have points x, y, x′, y′ ∈ X. We can then choose paths p ∈ Π1(X)(x, x′) and
q ∈ Π1(X)(y, y′), and define maps

α : Π1(X)(x, y)→ Π1(X)(x′, y′) α(u) = qup−1

β : Π1(X)(x′, y′)→ Π1(X)(x, y) β(v) = q−1up.

It is clear that these are inverse to each other, so |Π1(X)(x, y)| = |Π1(X)(x′, y′)|. Given this, it is clear
that (a), (c) and (d) are equivalent. �

Proposition 28.12. [prop-Pi-one-functor]
Any continuous map f : X → Y gives rise to a functor

f∗ = Π1(f) : Π1(X)→ Π1(Y ),

given by f∗(x) = f(x) on objects and f∗([u]) = [f ◦ u] on morphisms. Moreover:

(a) Any homotopy from f0 to f1 gives rise to a natural isomorphism (f0)∗ ' (f1)∗.

(b) For any maps X
f−→ Y

g−→ Z we have (g∗f∗) = g∗f∗, and moreover (1X)∗ is the identity functor on
Π1(X).

Proof. The first thing to check is that f∗ is well-defined on morphisms. This works because if U is a
path-homotopy from u0 to u1, then f ◦U is a path-homotopy from f ◦u0 to f ◦u1. Next, whenever we have
a path u from a to b, and a path v from b to c, we note that

(f∗(v ∗ u))(t) = ((f∗v) ∗ (f∗u))(t) =

{
f(u(2t)) if 0 ≤ t ≤ 1/2

f(v(2t− 1)) if 1/2 ≤ t ≤ 1.

This shows that we have a functor. Now suppose we have a homotopy F from f0 to f1. For each point
a ∈ X, we have a path pa from f0(a) to f1(a), given by pa(t) = F (t, a). This gives an element φa = [pa] ∈
Π1(Y )(f0(a), f1(a)). We claim that these form a natural transformation from (f0)∗ to (f1)∗. Equivalently,
for any path u from a to b in X, we claim that the diagram

f0(a)
φa //

(f0)∗[u]

��

f1(a)

(f1)∗[u]

��

f0(b)
φb

// f1(b)
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commutes in the category Π1(Y ). Equivalently, we have paths pb ∗ (f0 ◦ u) and (f1 ◦ u) ∗ pa from f0(a) to
f1(b), and we claim that they are path-homotopic. A suitable path-homotopy is given by

V (s, t) =


F (0, u(2t)) = f0(u(2t)) if 0 ≤ 2t ≤ s
F (2t− s, u(s)) if s ≤ 2t ≤ s+ 1

F (1, u(2t− 1)) = f1(u(2t− 1)) if s+ 1 ≤ 2t ≤ 2.

This proves claim (a), and (b) is clear. �

Corollary 28.13. If X is homotopy equivalent to Y , then Π1(X) and Π1(Y ) are equivalent categories.
In particular, if X is contractible then Π1(X) is an indiscrete category, so X is simply connected. �

Definition 28.14. [defn-covering]
Let p : X → Y be a continuous map of spaces. We say that p is a covering map (or that X is a covering

space of Y ) if for each point y ∈ Y there is an open neighbourhood V of y, a discrete space F and a map
f : p−1(V ) → F such that the combined map (p, f) : p−1(V ) → V × F is a homeomorphism. We will say
that such a set V is trivially covered by q, and that the map f is a trivialisation.

Remark 28.15. [rem-coverings-open]
It is easy to see that covering maps are open maps, and thus that surjective covering maps are quotient

maps.

Example 28.16. [eg-product-covering]
If F is discrete and Y is arbitrary, then the projection p : Y × F → Y is clearly a covering. (For any y

we can take V = Y and f(y, t) = t.) More generally, if we have a family of spaces (Yi)i∈I and a family of
discrete spaces (Fi)i∈I then the evident map

p :
∐
i

(Yi × Fi)→
∐
i

Yi

is a covering.

Proposition 28.17. [prop-exp-covering]
The exponential map exp: C→ C× is a covering.

Proof. Put

T1 = {x+ iy ∈ C : −π < y < π}
U1 = C \ {x+ (2n+ 1)πi : x ∈ R, n ∈ Z} = T1 + 2πiZ
V1 = C \ (−∞, 0].

For each x ∈ U1 there is a unique integer n = f1(x) such that (2n − 1)π < Im(x) < (2n + 1)π, and this
function f1 : U1 → Z is continuous. We will take for granted the following facts from complex analysis:

(a) exp(x+ y) = exp(x) exp(y).
(b) The map exp: C → C× is surjective. (If u is any differentiable path from 1 to y avoiding 0 and

x =
∫ 1

0
u′(t)/u(t)dt then exp(x) = y.)

(c) exp gives a homeomorphism R → (0,∞). (We have exp(x) > 1 for x > 0 by inspection, so exp is
strictly increasing on R by (a), and exp(R) = (0,∞) by the argument in (b), and this is almost
enough.)

(d) We have exp(x) = 1 iff x is an integer multiple of 2πi. (Point (a) shows that exp−1{1} is an additive
subgroup of C, and using complex conjugation together with (c) we see that it is contained in iR.
After studying the behaviour of exp(x) near x = 0 we conclude that exp−1{1} must be discrete, so
it is the set of integer multiples of 2πi for some number π, which we find by numerical calculation
to be approximately 3.14. It is best to take this as the primary definition of π, and to deduce facts
about the area of circles and so on as consequences.)

(e) exp(iπ) = −1. (It follows from (a) and (d) that exp(iπ)2 = 1, and from (d) that exp(iπ) 6= 1.)
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From these facts we see that

exp−1(−∞, 0] = {(x+ (2n+ 1)πi : x ∈ R, n ∈ Z}

and thus that exp−1(V1) = U1. We also see that exp: T1 → V1 is a homeomorphism, and thus that the map
(exp, f1) : U1 → V1×Z is a homeomorphism. This provides the required data for the case y = 1. For a general
element y ∈ C×, we can choose x0 with exp(x0) = y and then put Uy = y.U1 and Vy = exp−1(Uy) = x0 +V1

and fy(x) = f1(x− x0). This gives a homeomorphism (exp, fy) : Uy → Vy × Z, as required. �

Proposition 28.18. [prop-group-covering]
Let X be a space with an action of a group G. Suppose that for all x ∈ X there is an open neighbourhood

U1 of x such that gU1 ∩ U1 = ∅ for all g ∈ G \ {1}. Then the quotient map q : X → X/G is a covering.

Proof. Let y be a point in X/G. We can then find x ∈ X with q(x) = y, and U1 as in the statement
of the proposition. Put V = q(U1) ⊆ X/G. As in Lemma 5.72 we see that gU1 is open for all G and that
q−1(V ) =

⋃
g gU1 and that V is open. Moreover, when g 6= h we also have g−1h 6= 1 so U1 ∩ g−1hU1 = ∅

so gU1 ∩ hU1 = g(U1 ∩ g−1hU1) = ∅. This means that q−1(V ) is the disjoint union of the open sets gU1, so
we can define a continuous map f : q−1(V ) → G by f(x) = g for all x ∈ gU1. It is then clear that the map
(q, f) : q−1(V )→ V ×G is a continuous bijection and an open map, so it is a homeomorphism. �

Corollary 28.19. [cor-group-covering]
Let X be a regular space with a free action of a finite group G; then the projection q : X → X/G is

a covering map. (In particular, this works for metric spaces by Proposition 14.8, and for locally compact
Hausdorff spaces by Proposition 18.4.)

Proof. Consider a point x ∈ X. Put W = X \ {gx : g 6= 1}. This is open, and as the action is free we
see that x ∈W . As X is locally compact Hausdorff, we can find a neighbourhood V of X such that V ⊆W .
Note that if g 6= 1 then g−1 6= 1 so g−1x 6∈ V so x 6∈ gV . It follows that the set U = V \

⋃
g 6=1 V is an open

neighbourhood of U , and by construction we have U ∩ gU = ∅ for g 6= 1. The claim therefore follows by
Proposition 28.18. �

Example 28.20. [eg-torus-covering]
We can let Zn act on Rn by translation. For any x ∈ Rn we can let U1 be the open ball of radius 1/2

centred at x, and we find that he condition in Proposition 28.18 is satisfied. It follows that the quotient
map Rn → Rn/Zn is a covering map. Here Rn/Zn is homeomorphic to (R/Z)n and thus to (S1)n, otherwise
known as an n-dimensional torus.

Example 28.21. [eg-lens-covering]
In Example 5.70 we defined

L(p1, . . . , pn) = S2n−1/Cd,

where the group Cd < C× acts on S2n−1 ⊂ Cn by the rule

z.(x1, . . . , xn) = (zp1x1, . . . , z
pnxn).

If the integers pi are all coprime to d then the action is free and so the quotient map

q : S2n−1 → L(p1, . . . , pn)

is a covering map.

Example 28.22. [eg-elliptic-modular]
Let U = {z ∈ C : Im(z) > 0} be the upper half-plane in C. The group SL2(R) acts on U by the rule[

a b
c d

]
.z =

az + b

cz + d
.

Note that the subgroup Z = {I,−I} acts as the identity, so there is an induced action of the quotient group
PSL2(R) = SL2(R)/Z. We will be interested in the subgroup

G =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
= [ 1 0

0 1 ] (mod 2)
}
< SL2(R)
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and G = G/Z < PSL2(R). There is then a holomorphic covering map λ : U → C \ {0, 1} called the elliptic
modular function. This satisfies λ(g.z) = λ(z) for all g ∈ G, so there is an induced map λ : U/G→ C\{0, 1},
which is actually a homeomorphism. However, it would take us too far afield to prove these facts. Find a
good reference.

Example 28.23. [eg-tree]
Let G be the free group generated by elements x and y. This means that each element g ∈ G is a list

(a1, . . . , ar) where each ai is one of the symbols x, y, x−1 and y−1, and x never occurs next to x−1, and y
never occurs next to y−1. The empty list is allowed, and gives the identity element of G. The product of
(a1, . . . , ar) and (b1 . . . , bs) is defined by taking the concatenated list (a1, . . . , ar, b1, . . . , bs) and repeatedly
removing adjacent pairs of the form (x, x−1), (x−1, x), (y, y−1) or (y−1, y) until none are left.

Now consider the space

X0 = Gq (G× {x, y} × [0, 1])

and form the quotient space X where (g, u, 0) ∈ (G× {x, y} × [0, 1]) is identified with g ∈ G, and (g, u, 1) is
identified with gu ∈ G. This can be pictured as a graph, with one vertex for each element of G, and edges
linking g to gx and gy. Part of X can be displayed as follows:

x−2 x−1 1 x x2

y−2

y−1

y

y2

yxyx−1

y−1xy−1x−1

xy

xy−1

x−1y

x−1y−1

The group G acts on X by g.[h, u, t] = [gh, u, t]. The orbit space X/G is the quotient of {x, y}× [0, 1] where
(x, 0), (x, 1), (y, 0) and (y, 1) are all identified together. This is homeomorphic to the figure-eight space

Y = {z ∈ C : |z − 1| = 1 or |z + 1| = 1}

by the map sending [x, t] to 1− e2πit and [y, t] to e2πit − 1. Now put

U0 ={[1, x, t] : 0 ≤ t < 1/2} ∪ {[1, y, t] : 0 ≤ t < 1/2}∪
{[x−1, x, t] : 1/2 < t ≤ 1} ∪ {[y−1, y, t] : 1/2 < t ≤ 1}

U1 ={[1, x, t] : 0 < t < 1}
U2 ={[1, y, t] : 0 < t < 1}.
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U0 U1 U2

One can see that gUi ∩ hUi = ∅ whenever g 6= h, and that every point in X lies in some set gUi. It follows
that the criterion in Proposition 28.18 is satisfied, and so the quotient map q : X → X/G is a covering map.
We could do essentially the same thing with a free group on r generators for any r; then the space X would
be a graph in which every vertex lies on 2r different edges, and X/G would be a union of r circles, all meeting
in a single point.

Proposition 28.24. [prop-lifting]
Let q : X → Y be a covering map. Let v : [0, 1] → Y be a path, and let a ∈ X be a point such that

q(a) = v(0). Then there is a unique path u : [0, 1]→ X with u(0) = a and q ◦ u = v.

The path u is called the lifting of v with initial point a.

Proof. As q is a covering map, Y is a union of open sets that are trivially covered by q, and so [0, 1]
is the union of the preimages under v of such sets. This gives an open covering of the compact metric space
[0, 1], and any such covering has a Lebesgue number ε > 0 by Theorem 12.28. Choose n such that 1/n < ε.
Then each the sets v([i/n, (i+1)/n]) must lie in some open set Vi ⊆ Y that is trivially covered by q, so we can
choose a discrete set Fi and a continuous map fi : q

−1(Vi)→ Fi such that the map (q, fi) : q−1(Vi)→ Vi×Fi
is a homeomorphism. Define points ai ∈ q−1(Vi) and bi ∈ Fi and maps ui : [i/n, (i+ 1)/n]→ X recursively
by

a0 = a

bi = fi(ai)

ui(t) = (q, fi)
−1(v(t), bi)

ai+1 = ui((i+ 1)/n).

Note that q(ai+1) = v((i + 1)/n) ∈ Vi ∩ Vi+1 as required. By construction we have ui((i + 1)/n) = ai+1 =
ui+1((i+ 1)/n), so there is a unique map u : [0, 1]→ X that agrees with ui on [i/n, (i+ 1)/n] for all i, and
this is continuous with q ◦ u = v.

Now suppose we have another path u′ : [0, 1] → X with u′(0) = a and q ◦ u′ = v. Put a′i = u′(i/n) ∈
q−1(Vi) and b′i = fi(a

′
i) ∈ Fi. Note that fi ◦ u′ gives a continuous map from the interval [i/n, (i + 1)/n] to

the discrete space Fi, so it is necessarily constant, with value b′i say. It follows that u′(t) = (q, fi)
−1(v(t), b′i)

for t ∈ [i/n, (i + 1)/n]. By assumption we have u′(0) = a0 = u(0) and so b′0 = f0(a0) = b0, so u′ = u on
[0, 1/n], so a′1 = a1, so b′1 = b1. Extending this by induction in the obvious way, we find that u′ = u. �

Proposition 28.25. [prop-covering-homotopy]
Let q : X → Y be a covering map. Let K : [0, 1]2 → Y be a path-homotopy from v0 to v1. Let a ∈ X

be a point with q(a) = v0(0) = v1(0), and let u0 and u1 be the lifts of v0 and v1 with initial point a. Then
u0(1) = u1(1) and there is a unique path-homotopy H : [0, 1]2 → X from u0 to u1 with q ◦H = K.

Proof. Put a = v0(0) = v1(0) = q(a) ∈ Y . As K is a path-homotopy, we actually have vs(0) = a for
all s. There is thus a unique path us : [0, 1] → X with us(0) = a and q ◦ us = vs. We put H(s, t) = us(t),
so H(s, 0) = a and q ◦ H = K. From this definition it is clear that H is continuous on each vertical line
{s} × [0, 1], but not that it is continuous as a function on all of [0, 1]2. To prove this, we need to subdivide
[0, 1]2.
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Choose an integer n > 0 and put

Qij = [i/n, (i+ 1)/n]× [j/n, (j + 1)/n] ⊆ [0, 1]2

for i, j,∈ {0, 1, . . . , n − 1}. As in the previous proof, if we take n large enough then for each i and j we
can choose an open set Vij ⊆ Y containing K(Qij) such that Vij is trivially covered by q, and then we can
choose a trivialisation fij : q−1(Vij)→ Fij . By the standard patching argument, it will suffice to prove that
H|Qij is continuous for all i and j, which we will do by induction on j. As (q, fij) is a homeomorphism and
the map q ◦H = K is continuous by assumption, it will suffice to prove that the map

gij = fij ◦H|Qij : Qij → Fij

is constant on Qij . As H is continuous on vertical lines, we see that gij is constant on vertical lines in Qij .
It will thus be enough to show that it is constant on the horizontal line [i/n, (i + 1)/n] × {j/n}. If j = 0
this is clear because H(s, 0) = a, and if j > 0 then it follows from the inductive assumption that HQi,j−1

is

continuous. Thus, the map H : [0, 1]2 → X is continuous as required.
Now let b be the common endpoint of all the paths vs, and put b = H(0, 1) ∈ X, so q(b) = b. We can

now define a path w : [0, 1] → X by w(s) = H(s, 1), and we have q(w(s)) = b for all s. Thus w and the
constant path cb are two lifts of the constant path cb with the same initial point, so they must be the same.
This means that H(s, 1) = b for all s, so H is a path homotopy as claimed.

If H ′ is any other path homotopy with H ′(s, 0) = a and q ◦H ′ = K then the path u′s(t) = H ′(s, t) is a
lift of vs starting with a, so it must be the same as us; so H ′ = H. �

Corollary 28.26. [cor-covering-functor]
Let q : X → Y be a covering map, and put Fq(y) = q−1{y} for all y ∈ Y . Then for each path v from

y0 to y1 in Y there is a function v∗ : Fq(y0) → Fq(y1) defined as follows: for x0 ∈ Fq(y0) we let u be the
unique lift of v such that u(0) = x0, then we put v∗(x0) = u(1). Moreover, this construction gives a functor
Fq : Π1(Y )→ Sets.

Proof. It is clear from Proposition 28.24 that we have a well-defined function Fq(y0) → Fq(y1) for
any path v, and Proposition 28.25 tells us that this depends only on the path-homotopy class of v. If v is
constant then the lift u is also constant, and it follows that (cy)∗ = 1Fq(y). Now suppose we have a second
path v′ from y1 to y2. Write x1 = v∗(x0) and x2 = v′∗(x1). By definition, this means that there is a path u
from x0 to x1 with q ◦ u = v, and there is a path u′ from x1 to x2 with q ◦ u′ = v′. Thus, u′ ∗ u is a path
from x0 to x2 with q ◦ (u′ ∗ u) = v′ ∗ v, so (v′ ∗ v)∗(x0) = x2. This proves that (v′ ∗ v)∗ = v′∗ ◦ v∗, we have a
well-defined functor as claimed. �

Remark 28.27. [rem-Pi-one-connected]
Suppose that Y is path connected, with a chosen basepoint a ∈ Y . For any functor F : Π1(Y )→ Sets,

we have a set F (a) with an action of the group π1(Y, a) = Π1(Y )(a, a). Moreover, using Proposition 28.10
we see that every set with an action of π1(Y, a) comes from an essentially unique functor.

Remark 28.28. [rem-trivialised-path]
Suppose we have an open set V ⊆ X and a trivialisation (q, g) : q−1(V )→ V ×G, so g gives a bijection

Fq(y) → G for each y ∈ V . Now suppose we have a path v : [0, 1] → V with v(0) = y0 and v(1) = y1. We
claim that the diagram

Fq(y0)
v∗ //

g '
��

Fq(y1)

g'
��

G G

commutes. Indeed, given any point x0 ∈ Fq(y0) we can put a = g(x0) ∈ G and u(t) = (q, g)−1(v(t), a) and
x1 = u(1). This gives a path u : [0, 1] → X with q ◦ u = v and u(0) = x0 and u(1) = x1, so v∗(x0) = x1. It
is also built in to the definition of u that g(u(t)) = a for all t, so in particular g(x0) = g(x1) as required.

Definition 28.29. [defn-locally-simply-connected]
We say that a space Y is locally simply connected if the simply connected open subsets form a basis for

the topology.
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Example 28.30. [eg-locally-simply-connected]
As open balls in Rn are simply connected, we see that all open sets in Rn are locally simply connected.

More generally, an n-dimensional topological manifold is a Hausdorff space X where every point has a
neighbourhood homeomorphic to Rn. (One further condition is often imposed but we can ignore it here.)
Any topological manifold is locally simply connected, and this covers a large class of interesting spaces.
Next, say that X ⊆ Rn is locally star-shaped if for all x ∈ X there exists εx > 0 such that OBεx(x) ∩X is
star-shaped around x (as in Example 27.13). If so, the sets OBδ(x) ∩ X (for δ < εx) form a basis for the
topology consisting of open sets that are contractible and therefore simply connected. This covers another
large class of naturally occurring spaces.

Proposition 28.31. [prop-classify-coverings]
Let q : X → Y and q′ : X ′ → Y be covering maps, and suppose that Y is locally simply connected. Then

the natural transformations Fq → Fq′ are the same as the continuous maps f : X → X ′ with q′f = q.

Proof. Let f : X → X ′ be continuous with q′f = q. For x ∈ Fq(y) we then have q′(f(x)) = q(x) = y,
so f(x) ∈ Fq′(y). Thus, f gives a system of maps fy : Fq(y)→ Fq′(y), and we claim that these give a natural
transformation. In other words, we claim that for every path v from y0 to y1 in Y , the following diagram
commutes:

Fq(y0)
v∗ //

fy0
��

Fq(y1)

fy1
��

Fq′(y0)
v∗
// Fq′(y1).

To see this, consider a point x0 ∈ Fq(y0), so x0 ∈ X and q(x0) = y0. There is then a unique path u : [0, 1]→ X
with u(0) = x0 and q ◦ u = v. Put x1 = u(1), so by definition we have v∗(x0) = x1. Now fy0(x0) is just
f(x0), and v∗(fy0(x0)) is the endpoint of the unique path u′ : [0, 1]→ X ′ with u′(0) = f(x0) and q′ ◦ u′ = v.
One can check that f ◦ u has the defining properties of u′, so

v∗(fy0(x0)) = u′(1) = f(u(1)) = f(x1) = fy1(v∗(x0))

as required.
Conversely, suppose we have a natural map Fq → Fq′ , given by a family of maps fy : Fq(y)→ Fq′(y) for

all y ∈ Y . As X is the disjoint union of the sets q−1{y} = Fq(y) (and similarly for X ′) we see that the maps
fy fit together to give a unique map f : X → X ′ with q′ ◦ f = q. We claim that this map f is continuous.
To see this, consider a point b ∈ Y . For a sufficiently small open neighbourhood V of b, we can choose

trivialisations (q, g) : q−1(V )
'−→ V × G and (q′, g′) : (q′)−1(V )

'−→ V × G′. After replacing V by a smaller
open set if necessary, we may assume that V is simply connected. Let φ : G→ G′ denote the composite

G
g−1

−−→ Fq(b)
fb−→ Fq′(b)

g′−→ G′.

For any y ∈ V , let vy denote the unique morphism b→ y in Π1(V ). Consider the following diagram:

G
g−1

'
// Fq(b)

(vy)∗

��

fb // Fq′(b)

(vy)∗

��

g′

'
// G′

G
g−1

' // Fq(y)
fy

// Fq′(y)
g′

' // G′.

The outer squares commute by Remark 28.28, and the middle one commutes because the maps fy are
assumed to be natural. The composite along the top is by definition φ, so we see that g′ ◦ fy = φ ◦ g. This
means that the following square commutes:

q−1(V )

(q,g)

��

f
// (q′)−1(V )

(q′,g′)

��

V ×G
1×φ

// V ×G′.
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The vertical maps are homeomorphisms, and the bottom map is visibly continuous, so f : q−1(V ) →
(q′)−1(V ) is continuous. As X can be covered by open sets of the form q−1(V ) arising here, we see that
f : X → X ′ is continuous as claimed. �

Proposition 28.32. [prop-construct-coverings]
Let Y be locally simply connected, and let T : Π1(Y )→ Sets be a functor. Then there is a covering space

q : X → Y such that Fq is naturally isomorphic to T .

Proof. Put
X = {(y, a) : y ∈ Y and a ∈ T (y)},

and define q : X → Y by q(y, a) = y. The main problem is to introduce a suitable topology on X. For any
open set V ⊆ Y , we let j : V → Y denote the inclusion, and we let S(V ) denote the inverse limit of the
composite functor

Π1(V )
Π1(j)−−−→ Π1(X)

T−→ Sets .

More explicitly, an element s ∈ S(V ) is a family of elements sy ∈ T (y) for all y ∈ V , such that v∗(sy0) = sy1
for every path v from y0 to y1 in V . For any such s, we put

U(V, s) = {(y, sy) : y ∈ V } ⊆ X.
We will show that these sets form a basis for a topology on X, with respect to which q is a covering map.

Consider a point y ∈ Y , and a simply connected neighbourhood V of y. For any two points z0, z1 ∈ V
there is a unique morphism vz0,z1 : z0 → z1 in Π1(V ). Define

f : q−1(V ) = {(z, a) : z ∈ V, a ∈ T (z)} → T (y)

by f(z, a) = (vzy)∗(a) = (vyz)
−1
∗ (a). It is then clear that (q, f) : q−1(V ) → V × T (y) is a bijection, with

inverse (z, b) 7→ (z, (vyz)∗(b)). For any a ∈ T (y) we can thus define an element sa ∈ S(V ) by saz = (vyz)∗(a).
In particular, we have say = a, so (y, a) ∈ U(V, sa). More generally, we see that q−1(V ) =

∐
a∈T (y) U(V, sa).

This shows that the sets U(V, s) cover X.
Now suppose we have sets U(V, s) and U(V ′, s′); we need to understand U(V, s) ∩ U(V ′, s′). Put

W = {y ∈ V ∩ V ′ : s(y) = s′(y) ∈ T (y)}.
We claim that this is open. Indeed, if y ∈ W then we can choose a simply connected open set W ′ with
y ∈ W ′ ⊆ W . Then for any z ∈ W ′ there is a path v from y to z in W ′, so by the assumed property of
s and s′ we have sz = v∗(sy) and s′z = v∗(s

′
y). As y ∈ W we have sy = s′y, so sz = s′z. This shows that

W ′ ⊆W as required. Now put t = s|W = s′|W ; it is clear that U(V, s) ∩ U(V ′, s′) = U(W, t). We thus have
a topological basis, and thus a topology on X. When V is simply connected the previous paragraph gives
q−1(V ) =

⋃
a U(V, sa), so q−1(V ) is open. As the simply connected open sets form a basis for the topology on

Y , we deduce that q : X → Y is continuous. We also have f−1{a} = U(V, sa), so the map f : q−1(V )→ T (y)
is continuous, as is the combined map (q, f) : q−1(V )→ V ×T (y). We claim that (q, f) is also an open map.
To see this, consider an open set A ⊆ q−1(V ) and a point (z, b) ∈ A. Put a = f(z, b) = (vzy)∗(b) ∈ T (y). As
A is open, there exists an open subset V ′ ⊆ V and an element s′ ∈ S(V ′) such that (z, b) ∈ U(V ′, s′) ⊆ A.
After shrinking V ′ if necessary, we may assume that it is simply connected. Note that s′ agrees with sa at
z, and every point in V ′ can be connected to z by a path in V ′, so s′ = sa|V ′ . It follows that

(q, f)(A) ⊇ (q, f)(U(V ′, s′)) = V ′ × {a},
which is a neighbourhood of (q, f)(z, b). This proves that (q, f) is open as well as continuous and bijective,
so it is a homeomorphism. This means that q is a covering as claimed.

Now consider an arbitrary path v : [0, 1]→ Y . As T is a functor we have an induced map v∗ : T (v(0))→
T (v(1)). As q : X → Y is a covering with q−1{y} = T (y), we get another map T (v(0)) → T (v(1)) defined
by path lifting; we will temporarily use the notation v• for this. It is clear by construction that v∗ = v•
when v([0, 1]) is contained in a simply connected open set. In general, we note that the sets v−1(V ) (for
V ⊆ Y open and simply connected) form an open cover of [0, 1]. Choose N large enough that 1/(N − 1)
is a Lebesgue number for this cover. Define vi(t) = v((i + t)/N) for i ∈ {0, 1, . . . , N − 1} and t ∈ [0, 1]; we
then see that vi([0, 1]) is contained in a simply connected open set, so (vi)∗ = (vi)• for all i. Moreover, v
is path-homotopic to the join vN−1 ∗ · · · ∗ v0, so we also have v∗ = v•. This means that Fq and T are the
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same functor. More precisely, we have Fq(y) = {(y, a) : a ∈ T (y)} and the maps πy(y, a) = a give a natural
isomorphism π : Fq → T . �

Remark 28.33. For the last few results we have assumed that Y is locally simply connected. It is
sometimes useful to note that we can make do with a slightly weaker condition. For V ⊆ Y and y, z ∈ V put

A(V )(y, z) = img(Π1(V )(y, z)→ Π1(X)(y, z)).

Thus, every element of A(V )(y, z) is represented by a path from y to z in V , and two paths represent the
same element iff they are path-homotopic in X. This construction gives a subcategory A(V ) ⊆ Π1(X),
which is neither wide nor full in general. Thus, any functor F : Π1(X) → Sets can be restricted to give a
functor A(V )→ Sets. Let us say that V is relatively simply connected if A(V ) is indiscrete (so all morphism
sets A(V )(x, y) have size one). It is easy to see that (V is simply connected) =⇒ (V is relatively simply
connected) =⇒ (V is path connected). Moreover, if W ⊆ V and V is relatively simply connected and W
is path connected, then W is relatively simply connected.

We say that X is semilocally simply connected if the relatively simply connected open sets form a basis
for the topology. One can check that Propositions 28.31 and 28.32 remain valid if we assume only that Y is
semilocally simply connected. Indeed, we can just replace Π1(V ) by A(V ) whenever it appears (implicitly
or explicitly) in the proofs.

29. Simplicial complexes

We now digress slightly to discuss a particular class of spaces called simplicial complexes, which are
important in many applications.

Definition 29.1. [defn-ASC]
An (abstract) simplicial complex K consists of a set vert(K) (whose elements are called vertices) together

with a set simp(K) of subsets of vert(K) (called simplices) such that:

ASC0: Every simplex is a finite, nonempty set.
ASC1: If σ is a simplex and τ is a nonempty subset of σ then τ is also a simplex.
ASC2: If v is a vertex then {v} is a simplex.

A k-simplex is a simplex σ with |σ| = k + 1 (so the 0-simplices biject with the vertices). We say that K is
finite if there are only finitely many vertices, or equivalently, only finitely many simplices. If K has simplices
of arbitrarily large size, we say that it is infinite-dimensional ; otherwise, the dimension of K is the largest
n such that K has an n-simplex.

If K and L are simplicial complexes, a simplicial map from K to L is a function f : vert(K)→ vert(L)
such that for every simplex σ ∈ simp(K), the image f(σ) = {f(v) : v ∈ σ} is a simplex of L. We write
ASC for the category of abstract simplicial complexes and simplicial maps.

Definition 29.2. [defn-restricted-complex]
Let K be an abstract simplicial complex, and let W be a subset of vert(K). We write K|W for the

abstract simplicial complex with vert(K|W ) = W and

simp(K|W ) = {σ ∈ simp(K) : σ ⊆W}.
Subcomplexes of this form are called full subcomplexes of K.

Definition 29.3. [defn-realisation]
Let K be an abstract simplicial complex. The geometric realisation of K (written G(K) or |K|) is the

set
G(K) = {x : vert(K)→ [0, 1] : supp(x) ∈ simp(K),

∑
v∈vert(K)

x(v) = 1},

where supp(x) = {v : x(v) > 0}. Note here that the condition supp(x) ∈ K implies that supp(x) is finite,
so the expression

∑
v∈vert(K) x(v) really only involves a finite sum.

For v ∈ vert(K), we have a map ev : vert(K)→ [0, 1] given by

ev(w) =

{
1 if w = v

0 otherwise
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This is clearly a point of G(K). We will often identify ev with v.
If | vert(K)| = n < ∞, we give G(K) the obvious topology as a subspace of Map(vert(K),R) ' Rn. If

K is infinite, we declare that U ⊆ G(K) is open iff U ∩G(K|W ) is open for all finite sets W ⊆ vert(K); this
defines a CGWH topology on G(K).

Remark 29.4. In some places we will need a metric on G(K), and by default we will always use this
one:

d(x, y) =
∑
v∈V
|x(v)− y(v)|.

If K is finite then the metric topology is the obvious one. If K is infinite then the standard topology on
G(K) is obtained from the metric topology by applying the functor k() from Definition 23.1. Note also that
for all x and y we have

d(x, y) =
∑
v∈V
|x(v)− y(v)| ≤

∑
v∈V

x(v) + y(v) = 2.

Example 29.5. [eg-simplex-realisation]
For any finite set I we can define an abstract simplicial complex ∆a

I with vertex set I by declaring that
every nonempty subset of V is a simplex. We write ∆I = G(∆a

I ), so

∆I = {x : I → [0, 1] :
∑
i

x(i) = 1}.

We will often consider the case I = [n] = {0, . . . , n}, in which case we write ∆a
n and ∆n rather than ∆a

[n]

and ∆[n]. We also use the streamlined notation

∆n = {(x0, . . . , xn) ∈ [0, 1]n+1 :
∑
i

xi = 1}.

We call ∆a
n the abstract n-simplex, and ∆n the geometric n-simplex. Note that ∆0 is a single point, and we

can draw pictures of ∆1, ∆2 and ∆3 as follows.

e0

e1

∆1

e0

e1

e2

∆2

e0

e1

e2

e3

∆3

If K is an arbitrary simplicial complex and σ = {v0, . . . , vn} is an n-simplex of K then we will write

|σ| = G(K|σ) = {x ∈ G(K) : supp(x) ⊆ σ}.

This is clearly homeomorphic to ∆n. Moreover, G(K) is the union of the sets |σ|, and we have |σ|∩|τ | = |σ∩τ |
(provided we interpret |∅| as ∅).

Example 29.6. [eg-simplex-boundary]
For n > 0 we also define a complex ∂∆a

n with vertex set [n] = {0, . . . , n} again, but with

simp(∂∆a
n) = {σ ⊆ [n] : σ 6= ∅ and σ 6= [n]}.

We find that

G(∂∆a
n) = {x ∈ ∆n : xi = 0 for some i},

which is the boundary of ∆n in an evident sense; we denote it by ∂∆n. There is a homeomorphism f : ∂∆n →
Sn−1 given by

f(x0, . . . , xn) =
(x1 − x0, x2 − x1, . . . , xn − xn−1)√∑

i(xi+1 − xi)2
.
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Example 29.7. [eg-discrete-simplicial]
We say that K is discrete if the only simplices are the singletons, so simp(K) = {{v} : v ∈ vert(K)}.

If so, then G(K) is just vert(K) considered as a space with the discrete topology.

Definition 29.8. [defn-affine-map]
Let K be a simplicial complex, and let f be a map from vert(K) to a finite-dimensional real vector space

P . We define f∗ : G(K)→ P by

f∗(x) =
∑

v∈vert(K)

x(v)f(v).

We call this the affine extension of f , and we say that f∗ is an affine map from G(K) to P . If f∗ gives a
homeomorphism from G(K) to some subspace X ⊆ P , we say that f∗ is an affine triangulation of X. We
will write f rather than f∗ in cases where this is unlikely to cause confusion.

Example 29.9. [eg-infinite-band]
For each r ≥ 0 we can define a simplicial complex K(r) with vert(K(r)) = Z and

simp(K(r)) = {σ ⊂ Z : max(σ)−min(σ) ≤ r}.

When r = 0, the only simplices are the singletons {n}, so G(K(0)) = {en : n ∈ Z} and this is homeomorphic
to the discrete space Z.

When r = 1, the only simplices are the singletons and the sets εn = {n, n + 1} for n ∈ Z. If we let
f : Z→ R be the inclusion, we find that the affine extension f∗ : G(K(1))→ R is a homeomorphism, sending
|εn| to the interval [n, n+ 1].

Now take r = 2, so the 0-simplices have the form {n}, the 1-simplices have the form {n, n+1} or {n, n+2},
and the 2-simplices have the form {n, n+ 1, n+ 2}. We can define g : Z→ R2 by g(n) = (n, (−1)n) and we
find that the affine extension gives a homeomorphism G(K(2))→ R× [−1, 1].

−4

−3

−2

−1

0

1

2

3

4

Example 29.10. [eg-octahedron]
Take vert(K) = {1, 2, 3,−1,−2,−3} and

simp(K) = {σ ⊆ vert(K) : σ 6= ∅, σ ∩ (−σ) = ∅}.

There are then eight 2-simplices, as follows:

σ0 = {1, 2, 3} σ1 = {−1, 2, 3} σ2 = {1,−2, 3} σ3 = {−1,−2, 3}
σ4 = {1, 2,−3} σ5 = {−1, 2,−3} σ6 = {1,−2,−3} σ7 = {−1,−2,−3}.

We can define f : vert(K)→ R3 by

f(1) = (1, 0, 0) f(2) = (0, 1, 0) f(3) = (0, 0, 1)

f(−1) = (−1, 0, 0) f(−2) = (0,−1, 0) f(−3) = (0, 0,−1)

and we find that the affine extension gives a homeomorphism from G(K) to the octahedron:

211



f(1)

f(2)

f(3)

f(−1)

f(−2)

f(−3)

Example 29.11. [eg-icosahedron]

Put τ = (1 +
√

5)/2. We have four points in R3 of the form (0,±1,±τ), and by adding in all cyclic
permutations of these we obtain a set V containing twelve points in total. One can check that for any
x, y ∈ V we have

‖x− y‖ ∈ {0, 2,
√

5 + 1,

√
10 + 2

√
5}.

We can now define a simplicial complex K with vert(K) = V and simp(K) = {σ ⊆ V : diam(σ) ≤ 2}. We
have a map f : G(K) → R3 given by f(x) =

∑
v x(v).v, and one can check that this is an embedding, and

that the image is an icosahedron.

We can give a more algebraic definition of this simplicial complex, as follows. Let r denote the five-cycle
(1 2 3 4 5), and let C denote the conjugacy class of r in A5, which has |C| = 12. (Note here that r and r2 are
conjugate in Σ5 but not in A5; there are 24 five-cycles in all, of which 12 are conjugate to r, and the other 12
to r2.) We now have a simplicial complex L with vertex set C, where a subset σ ⊆ C is a simplex iff for all
distinct g, h ∈ σ, the permutation g−1h is a three-cycle. The group A5 acts on C by conjugation, and this
action preserves simplices, so we get an induced action on L and G(L). It turns out that L is isomorphic
to K. We will not give a full proof, but we will record some relevant formulae. There is an embedding
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ρ : A5 → SO(3) with

ρ((1 2)(3 4)) =
[

1 0 0
0 −1 0
0 0 −1

]
ρ((1 3)(2 4)) =

[−1 0 0
0 −1 0
0 0 1

]
ρ((2 3)(4 5)) =

1

2

[
1/τ −τ 1
−τ −1 1/τ
−1 1/τ −τ

]
ρ((1 2 3)) =

[
0 1 0
0 0 1
1 0 0

]
ρ(1 2 3 4 5) =

1

2

[
τ −1 −1/τ
1 1/τ τ
−1/τ −τ 1

]
.

One can check that this action preserves the set V . For each five-cycle c ∈ C there is a unique vector v(c)

such that ‖v(c)‖ =
√

1 + τ2 and ρ(c) is a clockwise rotation through 2π/5 around v(c). One can check that
this vector lies in V , and that the map v : C → V is an A5-equivariant bijection. Moreover, one can show
that v(σ) is a simplex if and only if σ is a simplex, so v is an isomorphism of simplicial complexes.

Remark 29.12. [rem-realisation-functor]
Let f : K → L be a morphism of simplicial complexes. We can then define G(f) : G(K)→ G(L) by

G(f)(x)(w) =
∑

f(v)=w

x(v).

Equivalently, we have a map vert(K)→ G(L) ⊂ Map(vert(L),R) given by v 7→ ef(v), and G(f) is the affine
extension of this. One can check that this construction makes G into a functor ASC→ Spaces.

Remark 29.13. [rem-asc-coprod]
If K and L are abstract simplicial complexes, we can define a new complex K qL as follows: the vertex

set is just vert(K)q vert(L), and a subset σ ⊆ vert(K)q vert(L) is a simplex if either

(a) σ ⊆ vert(K) and σ is a simplex of K; or
(b) σ ⊆ vert(L) and σ is a simplex of L.

We then have a bijection simp(K q L) ' simp(K) q simp(L). If we have maps K
f−→ M

g←− L of simplicial
complexes then we can combine them in an obvious way to get a map K q L → M , and using this we see
that K q L is a categorical coproduct for K and L. Given a (possibly infinite) family of complexes Ki, we
can define a coproduct

∐
iKi in the same way. It is clear that G(

∐
iKi) =

∐
iG(Ki).

Remark 29.14. [rem-asc-prod]
The category ASC also has products, constructed as follows. Suppose we have abstract simplicial

complexes K and L, and we let α and β denote the projections

vert(K)
α←− vert(K)× vert(L)

β−→ vert(L).

We then have an abstract simplicial complex K � L with vert(K � L) = vert(K)× vert(L) and

simp(K � L) = {ρ ⊆ vert(K)× vert(L) : α(ρ) ∈ vert(K), β(ρ) ∈ vert(L)}
= {ρ : ρ ⊆ σ × τ for some σ ∈ simp(K), τ ∈ simp(L)}.

One can check that this is a categorical product for K and L. However, we will not denote it by K × L
because we want to avoid confusion with the categorical product for ordered simplicial complexes, which will
be introduced below. For that product we will have a homeomorphism G(K × L) = G(K)×G(L), but for
K � L we have only a weaker statement which we now discuss.

Proposition 29.15. [prop-asc-product]
There are natural maps

G(K)×G(L)
µ−→ G(K � L)

ν−→ G(K)×G(L)

with νµ = 1. There is also a natural homotopy from µν to the identity, so µ and ν are homotopy equivalences.
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Proof. The definitions are µ(x, y)(u, v) = x(u)y(v), and ν(z) = (G(α)(z), G(β)(z)), where α and β are
the projections from K � L to K and L. More explicitly, we have ν(z) = (m,n), where m(u) =

∑
v z(u, v)

and n(v) =
∑
u z(u, v). As

∑
u x(u) =

∑
v y(v) = 1 we see that νµ = 1. Now consider a point z ∈ G(K�L),

so supp(z) ⊆ σ × τ for some σ ∈ simp(K) and τ ∈ simp(L). If ν(z) = (m,n) we find that supp(m) ⊆ σ and
supp(n) ⊆ τ so supp(µ(m,n)) is also contained in σ× τ . Thus, the linear path in Map(vert(K)×vert(L),R)
from µν(z) to z lies wholly in the set |σ × τ | ⊆ G(K � L), so we have a linear homotopy µν ' 1 as
required. �

There is one further way of combining two simplicial complexes that is useful for various applications.

Definition 29.16. [defn-simplicial-join]
Let K and L be abstract simplicial complexes. We define a new complex K ∗ L (called the join of K

and L) as follows. The vertex set is vert(K)q vert(L). A subset ρ is a simplex if either

(a) ρ ⊆ vert(K) and ρ is a simplex of K; or
(b) ρ ⊆ vert(L) and ρ is a simplex of L; or
(c) ρ = σ q τ for some σ ∈ simp(K) and τ ∈ simp(L).

Example 29.17. [eg-simplex-join]
It is clear that ∆a

I ∗∆a
J = ∆a

IqJ . Given n,m ≥ 0 we have a bijection f : [n] q [m] → [n + m + 1] given
by f(i) = i on [n], and f(j) = n+ 1 + j on [m]. Using this we obtain an isomorphism ∆n ∗∆m ' ∆n+m+1.

Example 29.18. [eg-octahedron-multiple]
Consider the discrete complex K with vertex set {1,−1}, and the n-fold iterated join K∗n = K ∗ · · · ∗K.

There is an evident way to identify the set

vert(K∗n) = {1,−1} q · · · q {1,−1}

with {1, . . . , n,−1, . . . ,−n}, and by induction we see that simp(K∗n) = {σ : σ ∩ (−σ) = ∅}. As in
Example 29.10 we can define f : vert(K∗n) → Rn by f(±k) = ±ek and this gives an affine embedding
f : G(K∗n) → Rn. We find that 0 is not in the image, so we can define g : G(K∗n) → Sn−1 by g(x) =
f(x)/‖x‖. This is a homeomorphism, with

g−1(y)(±k) =

{
|yk|/(

∑
i |yi|) if ± yk ≥ 0

0 if ± yk ≤ 0.

We can also define a join operation for topological spaces, and prove that it is compatible with our join
operation for simplicial complexes.

Definition 29.19. [defn-join]
Let X and Y be topological spaces. Define f : X×{0, 1}×Y → XqY by f(x, 0, y) = x and f(x, 1, y) = y.

Define X ∗ Y to be the pushout in the following square:

X × {0, 1} × Y // inc //

f

��

X × [0, 1]× Y

��

X q Y // X ∗ Y.
More explicitly, X ∗Y is the quotient space of XqY q (X× [0, 1]×Y ) in which all points of the form (x, 0, y)
are identified with x, and all points of the form (x, 1, y) are identified with Y .

Remark 29.20. [rem-empty-join]
Provided that X and Y are nonempty, we can regard X ∗ Y as a quotient of X × [0, 1] × Y . However,

we have ∅ ∗ Y = Y and X ∗ ∅ = X whereas X × [0, 1]× Y is empty if X or Y is empty.

Example 29.21. [eg-sphere-join]
Let U and V be finite dimensional real vector spaces with inner products. We then have an evident

inclusion i : S(U)q S(V )→ S(U ⊕ V ) and a surjective map m : S(U)× [0, 1]× S(V )→ S(U ⊕ V ) given by
m(u, t, v) = (

√
tu,
√

1− tv). One can check that these induce a homeomorphism S(U) ∗ S(V )→ S(U ⊕ V ).
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Remark 29.22. This probably needs to be moved.
Suppose that X and Y are based, and put

TX = {[x, t, 0Y ] : x ∈ X, t ∈ [0, 1]}
TY = {[0X , t, y] : y ∈ Y, t ∈ [0, 1]}
T = TX ∪ TY.

The map [x, t, y] 7→ t ∧ x ∧ y then gives a homeomorphism (X ∗ Y )/T → Σ(X ∧ Y ). Moreover, the spaces
TX and TY are contractible, as is the space TX ∩ TY = {[0X , t, 0Y ] : t ∈ [0, 1]}. Under mild cofibrancy
assumptions we can deduce that T is contractible and X ∗ Y → Σ(X ∧ Y ) is a homotopy equivalence.

Proposition 29.23. [prop-join-realisation]
For finite simplicial complexes K and L there is a natural homeomorphism G(K) ∗G(L) = G(K ∗ L).

Remark 29.24. A suitable version of this is true for infinite complexes, but we defer the details.

Proof. Any map z : vert(K ∗ L) = vert(K) q vert(L) → [0, 1] can be regarded as a pair (x, y), where
x : vert(K) → [0, 1] and y : vert(L) → [0, 1]. From the definitions we see that G(K ∗ L) is the set of pairs
(x, y) such that

(a) Either x = 0 or supp(x) ∈ simp(K); and
(b) Either y = 0 or supp(y) ∈ simp(L); and
(c)

∑
u∈vert(K) x(u) +

∑
v∈vert(L) y(v) = 1.

The subspace where y = 0 is a copy of G(K), and the subspace where x = 0 is a copy of G(L). We can also
define a map

m : G(K)× [0, 1]×G(L)→ G(K ∗ L)

by m(x, t, y) = ((1− t)x, ty). By combining these we obtain a map

G(K)qG(L)q (G(K)× [0, 1]×G(L))→ G(K ∗ L)

which is compatible with the relevant equivalence relation and so induces a map m : G(K)∗G(L)→ G(K∗L).
If (x, y) ∈ G(K ∗ L) with x 6= 0 and y 6= 0, we can define t =

∑
v y(v) and x′ = x/(1 − t) and y′ = y/t; we

find that (x′, t, y′) is the unique point in G(K)× [0, 1]×G(L) that is sent by m to (x, y). Using this we see
that m is a continuous bijection from a compact space to a Hausdorff space, so it is a homeomorphism. �

Definition 29.25. [defn-contiguous]
Let f, g : K → L be morphisms of ordered simplicial complexes. We say that f and g are directly

contiguous if for all simplices σ in K, the set f(σ) ∪ g(σ) is a simplex in L. We say that f and g are
contiguous if there is a list f = p0, p1, . . . , pr = g such that pi and pi+1 are directly contiguous for all i. This
defines an equivalence relation on ASC(K,L). We write [f ] for the contiguity class of f .

Lemma 29.26. [lem-composite-contiguous]
Suppose we have maps

K
f0 //

f1

// L
g0 //

g1
// M

where f0 and f1 are contiguous, and g0 and g1 are contiguous. Then g0f0 and g1f1 are also contiguous.

Proof. We can easily reduce to the case where f0 and f1 are directly contiguous, and g0 and g1 are
also directly contiguous. Consider a simplex σ of K. Then the set τ = f0(σ) ∪ f1(σ) is a simplex of L, so
the set ρ = g0(τ) ∪ g1(τ) is a simplex of M . It is clear that g0f0(σ) ∪ g1f1(σ) is a nonempty subset of ρ, so
it is again a simplex. Thus g0f0 and g1f1 are directly contiguous. �

Corollary 29.27. [cor-contiguity-category]
If we put cASC(K,L) = ASC(K,L)/contiguity, then there is a well-defined composition operation

cASC(L,M)× cASC(K,L)→ cASC(K,M),

given by ([g], [f ]) 7→ [gf ]. We thus have a category cASC, whose objects are abstract simplicial complexes
and whose morphisms are contiguity classes of maps. There is a functor U : ASC → cASC given by
U(K) = K on objects, and U(f) = [f ] on morphisms. �

215



Proposition 29.28. [prop-contiguous]
If f and g are contiguous, then G(f) and G(g) are homotopic.

Proof. As homotopy is an equivalence relation, it will suffice to treat the case where f and g are
directly contiguous. In that case we can define

h : [0, 1]×G(K)→ Map(vert(L), [0, 1])

by h(t, x) = (1 − t)G(f)(x) + tG(g)(x). Note that the support of x is a simplex, say σ. It follows that
supp(h(t, x)) ⊆ f(σ) ∪ g(σ), which is a simplex in L by assumption, so h(t, x) ∈ G(L). We thus have a map
h : [0, 1]×G(K)→ G(L), which is the required homotopy. �

Corollary 29.29. There is a functor G : cASC → hSpaces given by G(K) = G(K) on objects, and
by G([f ]) = [G(f)] on morphisms. The following diagram commutes:

ASC
G //

U

��

Spaces

U

��

cASC
G

// hSpaces .

Proof. This is now clear. �

Remark 29.30. [rem-need-subdivision]
As simplices are rather inflexible, the map G : cASC(K,L)→ [G(K), G(L)] is rarely a bijection. How-

ever, we can make it closer to a bijection by subdividing the simplices of K. This process will be discussed
in more detail below.

We next give a construction giving a different criterion for maps of simplicial complexes to be homotopic.

Construction 29.31. [cons-simplicial-ELCX]
Let K be an abstract simplicial complex. For x, y ∈ G(K) we can regard x and y as maps vert(K) →

[0, 1] and take the pointwise minimum to get a map min(x, y) : vert(K) → [0, 1]. We then put m(x, y) =∑
v min(x, y)(v), and note that this gives a continuous map m : G(K)2 → [0, 1] with m(x, x) = 1 for all x.

It follows that the set

U = {(x, y) ∈ G(K)2 : m(x, y) > 0} = {(x, y) ∈ G(K)2 : supp(x) ∩ supp(y) 6= ∅}
is open. We define p : U → G(K) by p(x, y) = min(x, y)/m(x, y), and note that supp(p(x, y)) = supp(x) ∩
supp(y). We then define h : [0, 1]× U → G(K) by

h(t, x, y) =

{
(1− 2t)x+ 2tp(x, y) for 0 ≤ t ≤ 1/2

(2− 2t)p(x, y) + (2t− 1)y for 1/2 ≤ t ≤ 1.

Note that for t ≤ 1/2 we have supp(h(t, x, y)) ⊆ supp(x), and for t ≥ 1/2 we have supp(h(t, x, y)) ⊆ supp(y),
so this does indeed land in G(K) as advertised. Note also that h(0, x, y) = x and h(1, x, y) = y, so h gives a
homotopy between the two projections π0, π1 : U → G(K).

Lemma 29.32. [lem-diagonal-nbhd]
The open set U can also be described as {(x, y) : d(x, y) < 2}.

Proof. As in Remark 29.4 we always have d(x, y) ≤ 2, and this is only an equality if all the inequalities
|x(v)− y(v)| ≤ x(v) + y(v) are equalities. That can only happen if the supports of x and y are disjoint, and
the claim follows. �

Proposition 29.33. [lem-simplicial-ELCX]
Let K and L be simplicial complexes, and let f and g be maps from G(K) to G(L) such that for all

x ∈ G(K) we have supp(f(x)) ∩ supp(g(x)) 6= ∅, or equivalently d(f(x), g(x)) < 2. Then f and g are
homotopic.

Proof. Just use the homotopy (t, x) 7→ h(t, f(x), g(x)), where h is as in Construction 29.31. �
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Remark 29.34. [rem-simplicial-ELCX]
One could think of applying this proposition in the case where both f and g are simplicial maps, say

f = G(p) and g = G(q) for maps p, q : K → L of abstract simplicial complexes. However, for distinct vertices
v and w we have d(v, w) = 2, so the condition d(G(p), G(q)) < 2 can only be satisfied if p = q, which is not
interesting. However, the proposition can still be useful if f is simplicial and g is not.

There is a close relationship between simplicial complexes and partially ordered sets. We recall the main
definitions:

Definition 29.35. [defn-poset]
A partial order on a set P is an relation on P (written p ≤ q) such that

PO0: For all p ∈ P we have p ≤ p
PO1: For all p, q, r ∈ P , if p ≤ q and q ≤ r then p ≤ r.
PO2: For all p, q ∈ P , if p ≤ q and q ≤ p then p = q.

A partially ordered set or poset is a set with a specified partial order. A map f : P → Q of posets is monotone
if whenever p ≤ p′ in P , we also have f(p) ≤ f(p′) in Q. We write POSets for the category of partially
ordered sets and monotone maps.

Definition 29.36. [defn-chain]
Let P be a partially ordered set, and let C be a subset of P . We say that C is a chain if for all p, q ∈ C

we have either p ≤ q or q ≤ p. We say that the partial order is total if the whole set P is a chain.

Definition 29.37. [defn-OSC]
An ordered simplicial complex is a simplicial complex K with a specified partial ordering on vert(K)

such that every simplex is a chain. If K and L are ordered simplicial complexes, a morphism from K to L
will mean a morphism f : K → L of simplicial complexes such that for each σ ∈ simp(K), the restriction
f : σ → f(σ) is monotone. We write OSC for the category of ordered simplicial complexes.

Remark 29.38. [rem-OSC-ASC]
For any simplicial complex K we can choose a total order on vert(K), and this makes K an ordered

simplicial complex. Thus, the forgetful functor OSC→ ASC is surjective on objects.

Remark 29.39. [rem-trimming]
Because morphisms in OSC are not required to be monotone everywhere, it is possible for two ordered

simplicial complexes to be isomorphic even if the posets of vertices are not isomorphic. We can eliminate
this issue as follows. Let K be an ordered simplicial complex, and let x and y be vertices of K. We write
x � y if there is a sequence x = w0 ≤ w1 ≤ · · · ≤ wr = y with {wi, wi+1} ∈ vert(K) for i = 0, . . . , r − 1.
(We allow the degenerate case where r = 0 and x = y.) One can check that this gives a new partial order on
vert(K), and that every simplex is still a chain. We thus have a new ordered simplicial complex K ′ with the
same vertices and simplices, but with this modified order. The identity function on vertices can be regarded
as a morphism K → K ′ or as a morphism K ′ → K, so K and K ′ are isomorphic. Morphisms K ′ → L in
ASC are automatically monotone everywhere. We refer to the construction K → K ′ as trimming, and say
that K is trimmed if K ′ = K.

Definition 29.40. [defn-poset-OSC]
Let P be a partially ordered set. We can then regard P as an ordered simplicial complex by taking

vert(P ) = P and

simp(P ) = { finite, nonempty chains in P}.
If f : P → Q is a map of posets that is monotone on every chain in P , then it is clearly monotone. Using
this, we see that POSets(P,Q) = OSC(P,Q), so we can regard POSets as a full subcategory of OSC.

Example 29.41. [eg-poset-Z]
We can introduce a nonstandard order on Z as follows: we have n ≤ m if and only if n = m, or n is

even and m = n± 1. Equivalently, we have n < m iff there is an arrow from n to m in the following picture:
. . . . . .

−3 −2 −1 0 1 2 3
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Thus, the chains are precisely the sets {n} and {n, n+ 1}, and we deduce that G(Z) = R.

Example 29.42. [eg-poset-polygon]
Consider the following picture:

a b

c d

We can partially order the set P = {a, b, c, d} by declaring that x < y iff there is an arrow from x to y in
the diagram. The diagram itself then displays a homeomorphism from G(P ) to the boundary of a square.

More generally, we can partially order the set Qn = Z/n×{0, 1} by declaring that (a, i) < (b, j) iff i = 0
and j = 1 and b ∈ {a, a+ 1}. We find that G(Qn) is homeomorphic to the boundary of a 2n-gon (and thus
to S1). The above picture corresponds to the case n = 2.

Example 29.43. [eg-poset-cube]
Let I be a finite set, and let P be the set of subsets of I. We partially order this set by the rule J ≤ K

iff J ⊆ K. This gives us a simplicial complex, and thus a space G(P ). We can define f : P → Map(I,R) by

f(J) = χJ = characteristic function of J.

We claim that the affine extension gives a homeomorphism f∗ : G(P ) → Map(I, [0, 1]). Indeed, for each
J ⊆ I we can define gJ : Map(I, [0, 1])→ [0, 1] by

gJ(u) = max(0,min(u(j) : j ∈ J)−max(u(k) : k 6∈ k)).

We interpret min(∅) as 1 and max(∅) as 0, so g∅(u) = 1−max(u) and gI(u) = min(u). These formulae make
it clear that gJ is well-defined and continuous. To understand them more clearly, note that we have a finite
subset u(I) ∪ {0, 1} ⊆ [0, 1], so we can list the elements in reverse order as u(I) ∪ {0, 1} = {s0, . . . , sr+1}
with 1 = s0 > · · · > sr > sr+1 = 0. Put Ki = u−1{si}; these sets are disjoint, and nonempty for 1 ≤ i ≤ r.
For 0 ≤ i ≤ r we put Ji = K0 ∪ · · · ∪Ki and ti = si − si+1. We find that J0 ⊂ · · · ⊂ Jr and 0 < ti ≤ 1 and∑
i ti = 1. We also find that gJi(u) = ti, and that gJ(u) = 0 if J is not one of the sets Ji. It follows that

there is a map g : Map(I, [0, 1])→ G(P ) given by g(u)(J) = gJ(u), and that this is inverse to f∗.

Example 29.44. [eg-subgroup-posets]
Fix a prime p. For any finite group Γ, we let P(Γ) denote the poset of nontrivial p-subgroups of Γ,

and we let E(Γ) denote the subposet of nontrivial elementary abelian p-subgroups. There are a number of
interesting results relating the group theory of Γ to the homotopy theory of the spaces G(P(Γ)) and G(E(Γ)),
some of which we will examine later. In particular, it can be shown that the inclusion G(E(Γ))→ G(P(Γ))
is a homotopy equivalence.

Remark 29.45. [rem-ASC-limits]
One advantage of working with ordered complexes is that in that context we can define products.

Specifically, if P and Q are partially ordered sets, we can define a partial order on P ×Q by (p, q) ≤ (p′, q′)
iff (p ≤ p′ and q ≤ q′). If T is another poset, we find that a map (f, g) : T → P × Q is monotone iff both
f : T → P and g : T → Q are monotone, so P ×Q is a product of P and Q in the sense of category theory.
More generally, if we have a finite diagram consisting of partially ordered sets Pi and maps u : Pi → Pj , we
can form the limit set Q ⊆

∏
i Pi and order it by declaring that q ≤ q′ iff qi ≤ q′i in Pi for all i. This makes

Q a limit for the diagram in POSets.
Now suppose instead that we have a diagram of ordered simplicial complexes Ki. It will be harmless

to assume that they are all trimmed, so all the maps of vertex sets are monotone. Let V be the limit of
the vertex sets, with the partial order just discussed. We say that σ ⊆ V is a simplex iff the projection
πi(σ) ⊆ vert(Ki) is a simplex for all i, and also σ is a chain. This gives us an ordered simplicial complex L
with vert(L) = V , and we see that this is a limit of the diagram.
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Remark 29.46. [rem-product-triangulation]
We will prove later that G : OSC → Spaces preserves finite limits, so in particular G(K × L) =

G(K)×G(L). For the moment we just illustrate two cases of this. First, take K = L = ∆a
1 . We then have

vert(K × L) = {00, 01, 10, 11}, so the maximal simplices are σ0 = {00, 10, 11} and σ1 = {00, 01, 11}, with
intersection τ = σ0 ∩ σ1 = {00, 11}. Thus G(K × L) is the union of the triangles |σ0| and |σ1|, which share
the common edge |τ |. It can be displayed as follows:

01 11

00 10

|σ0|

|σ1|

|τ |

Now instead take K = ∆a
2 and L = ∆a

1 so

vert(K × L) = {00, 01, 10, 11, 20, 21}
and there are three maximal simplices:

σ0 = {00, 01, 11, 21} σ1 = {00, 10, 11, 21} σ2 = {00, 10, 20, 21}.
The product |K| × |L| decomposes as the union of three tetrahedra |σi| as shown below.

00 10

20

01 11

21

|σ0| |σ1| |σ2|

Definition 29.47. For any simplicial complex K, we write sK for the set of simplices of K, regarded
as a partially ordered set by inclusion. We call this the (abstract) barycentric subdivision of K. For each
σ ∈ sK we have a point b(σ) ∈ G(K) ⊆ Map(vert(K),R) given by

b(σ)(v) =

{
1/|σ| if v ∈ σ
0 otherwise.

This is called the barycentre of σ. By affine extension we obtain a map b∗ : G(sK)→ Map(vert(K),R).

Proposition 29.48. [prop-barycentric]
The map b∗ gives a homeomorphism G(sK)→ G(K).
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Proof. The general case reduces easily to the case where K is finite, so we restrict attention to that
case from now on. Put I = vert(K), so G(K) ⊆ Map(I, [0, 1]). It is clear that each barycentre b(σ) lies in
Map(I, [0, 1]), and this set is convex, so it contains the whole image of b∗. Recall from Example 29.43 that
we have maps gJ : Map(I, [0, 1])→ [0, 1] such that u =

∑
J gJ(u)χJ for all u ∈ Map(I, [0, 1]). Now suppose

that u ∈ G(K), so supp(u) ∈ simp(K). From the definitions it is clear that gJ(u) = 0 unless J ⊆ supp(u),
in which case J is either empty or a simplex. As χ∅ = 0, the corresponding term can be omitted. For any
simplex σ we note that b(σ) = χσ/|σ|, and we put hσ(u) = |σ| gσ(u). We now find that for u ∈ G(K) we
have u =

∑
σ∈sK hσ(u) b(σ). From this it follows that∑

σ

hσ(u) =
∑
σ

hσ(u)
∑
x∈σ

1

|σ|
=
∑
x

∑
σ

hσ(u) bσ(x) =
∑
x

u(x) = 1

(and thus that hσ(u) ≤ 1 for all σ). We also saw in Example 29.43 that the set {σ : hσ(u) > 0} is a chain in
sK. We can therefore define h : G(K)→ G(sK) by h(u)(σ) = hσ(u), and we find that b∗ ◦ h is the identity.
A similar argument shows that h ◦ b∗ is also the identity, as required. �

Example 29.49. Consider the case K = ∆a
2 . We write 02 for the simplex {0, 2} regarded as a vertex of

s∆a
2 , and similarly for the other vertices, so

vert(s∆2
a) = {0, 1, 2, 01, 02, 12, 012}.

There are six maximal simplices (one for each permutation of {0, 1, 2}) as follows:

σ012 = {0, 01, 012} |σ0| = {x ∈ ∆2 : x0 ≥ x1 ≥ x2}
σ102 = {1, 01, 012} |σ1| = {x ∈ ∆2 : x1 ≥ x0 ≥ x2}
σ120 = {1, 12, 012} |σ2| = {x ∈ ∆2 : x1 ≥ x2 ≥ x0}
σ210 = {2, 12, 012} |σ3| = {x ∈ ∆2 : x2 ≥ x1 ≥ x0}
σ201 = {2, 02, 012} |σ4| = {x ∈ ∆2 : x2 ≥ x0 ≥ x1}
σ021 = {0, 02, 012} |σ5| = {x ∈ ∆2 : x0 ≥ x2 ≥ x1}

The homeomorphism b∗ can be displayed as follows:

0 1

2

01

1202

012

σ012 σ102

σ021 σ120

σ201 σ210

Proposition 29.50. [prop-subdivision-mu]
For ordered simplicial complexes K, there is a natural map µ : sK → K given by µ(σ) = max(σ), and

G(µ) : G(sK)→ G(K) is homotopic to the homeomorphism b∗, so it is a homotopy equivalence.

Proof. First, as each simplex σ ∈ vert(sK) is a nonempty chain, it certainly has a unique largest
element, so we have a well-defined map µ : vert(sK) → vert(K) as indicated. Now suppose we have a
simplex ω in sK, or equivalently, a chain ω = (σ0 ⊂ · · · ⊂ σr) of simplices in K. Put vi = µ(σi) ∈ σi ⊆ σr
and τ = µ(σ) = {v0, . . . , vr}. As τ ⊆ σr and σr is a simplex, we see that τ is also a simplex. Thus, µ is
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a morphism of ordered simplicial complexes. It therefore gives a map G(µ) : G(sK) → G(K). We can thus
define a map

h : [0, 1]×G(sK)→ Map(|(K),R)

by h(t, x) = (1 − t)b∗(x) + tG(µ)(x). If we can prove that h(t, x) ∈ G(K) for all t, we will have the
required homotopy. We may assume that x ∈ |ω| for some ω as above, with x(σi) = ti say. We then have
b∗(x) =

∑
i tib(σi) whereas G(µ)(x) =

∑
i tivi. The points b(σi) and vi all lie in the convex set |σr| ⊆ G(K),

and it follows that h(t, x) ∈ |σr| ⊆ G(K) for all t ∈ [0, 1] as required. �

Remark 29.51. [rem-barycentric-natural]
Let f : K → L be a map of simplicial complexes. For any simplex σ of K we have a simplex f(σ) of L,

and if σ ⊆ τ then f(σ) ⊆ f(τ). Thus, the construction K 7→ sK gives a functor ASC → OSC. Next, if f
is injective we find that G(f) : G(K)→ G(L) sends b(σ) to b(f(σ)), and thus that the naturality diagram

G(sK)
��

G(sf)

��

b∗ // G(K)
��

G(f)

��

G(sL)
b∗

// G(L)

commutes. However, this does not work when f is not injective. For example, for 0 < k < n we have a map
f : ∆a

n → ∆a
2 given by f(0) = · · · = f(k) = 0 and f(k+ 1) = · · · = f(n) = 1, and the induced map ∆n → ∆1

sends the barycentre to the point ((k + 1)/(n+ 1), (n− k)/(n+ 1)), which is generally not the same as the
barycentre at (1/2, 1/2).

It is clear that the simplices for G(sK) are in some sense smaller than those for K. It will be useful to
quantify this. Consider a maximal simplex ω ∈ simp(s∆a

n), so

ω = {{i0}, {i0, i1}, {i0, i1, i2}, . . . {i0, . . . , in}}

for some enumeration of the set {0, . . . , n} as {i0, . . . , in}. The map k 7→ ik gives a homeomorphism ∆n →
|ω| ⊆ G(s∆a

n), which we compose with b∗ to get a map θω : ∆n → ∆n.

Proposition 29.52. [prop-tht-contraction]
If we use the metric on ∆n given by

d(x, y) =

n∑
i=0

|xi − yi|

then d(θω(x), θω(y)) ≤ n
n+1d(x, y).

Proof. Nothing interesting depends on ω, so we may assume that

ω = {{0}, {0, 1}, {0, 1, 2}, . . . , {0, · · · , n}}.

In this context we write θ for θω. If ep denotes the p’th standard basis vector for Rn+1 (for 0 ≤ p ≤ n) then
we have θ(ep) = (

∑
q≤p eq)/(p + 1), or θ(x)i =

∑n
j=i xj/(j + 1). Using this formula, we extend θ to give a

linear automorphism of Rn+1.
Put wi = xi−yi (so

∑
i wi = 0) and ‖w‖ =

∑
i |wi| = d(x, y). The claim is then that ‖θ(w)‖ ≤ n

n+1‖w‖.
In the special case where w = eq − ep with p 6= q we have ‖w‖ = 2, and we claim that ‖θ(w)‖ ≤ 2n/(n+ 1).
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It will be harmless to assume that p ≤ q, and we then have

θ(w) =

q∑
i=0

ei
q + 1

−
p∑
i=0

ei
p+ 1

=

q∑
i=p+1

1

q + 1
ei −

p∑
i=0

q − p
(p+ 1)(q + 1)

ei

‖θ(w)‖ =

q∑
i=p+1

1

q + 1
+

p∑
i=0

q − p
(p+ 1)(q + 1)

= 2
q − p
q + 1

= 2

(
1− p+ 1

q + 1

)
≤ 2

(
1− 1

n+ 1

)
= 2

n

n+ 1

as required. Now consider the general case again. Put J = {i : wi > 0} and K = {i : wi < 0} and
a =

∑
j∈J wj . To avoid trivialities, we may assume that J,K 6= ∅ and so a > 0. As

∑
i wi = 0 we also have∑

k∈K wk = −a and so d(x, y) =
∑
i |wi| = 2a. Now put bjk = −wjwk (for (j, k) ∈ J×K) so

∑
j bjk = −awk

and
∑
k bjk = awj and

∑
j,k bjk = a2. It is now straightforward to check that aw =

∑
j,k bjk(ej − ek), so

a‖θ(w)‖ ≤
∑
j,k

bjk‖θ(ej − ek)‖ ≤
∑
j,k

bjk
2n

n+ 1
=

2na2

n+ 1
.

After dividing by a and recalling that ‖w‖ = 2a we find that ‖θ(w)‖ ≤ n
n+1‖w‖ as claimed. �

Definition 29.53. [defn-diameter]
Let X be a metric space, and let Y be a subset of X. Then the diameter of Y is

diam(Y ) = sup{d(a, b) : a, b ∈ Y }.

Corollary 29.54. [cor-subdivision-diameter]
Let K be a simplicial complex of dimension n, and use the metric d(x, y) =

∑
v |x(v)− y(v)| on G(K).

Then for any simplex σ of srK, the image br∗|σ| ⊆ G(K) has diameter at most 2(n/(n+ 1))r.

Proof. In the case r = 0 the claim is just that every simplex of K has diameter at most 2, which is
clear because

d(x, y) =
∑
v

|x(v)− y(v)| ≤
∑
v

(x(v) + y(v)) =
∑
v

x(v) +
∑
v

y(v) = 2.

The general case follows by induction using the proposition. �

For ordered simplicial complexes we can give a different description of the geometric realisation, which
is convenient for various purposes.

Definition 29.55. [defn-monotone-regular]
Let P be a partially ordered set. We say that a monotone map u : [0, 1)→ P is regular if

(a) img(u) is finite; and
(b) for all s ∈ [0, 1) there exists t > s such that u is constant on [s, t).

Remark 29.56. [rem-adjust-regular]
Let u : [0, 1)→ P be a monotone map, and suppose that x ∈ img(u). Then u−1{x} is a nonempty convex

subset of [0, 1), so it must have the form [a, b] or [a, b) or (a, b] or (a, b) for some a and b. Condition (b) just
requires that u−1{x} must have the form [a, b) for all x ∈ img(u). If u satisfies (a) but not (b), we note that
u(t + ε) is independent of ε for small ε > 0. We call this value u′(t), and we find that u′ is a regular map
[0, 1) → P with u′(t) = u(t) for all but finitely many values of t. We also use the shorthand u(t + 0+) for
u′(t).

Definition 29.57. [defn-G-prime]
Let K be an ordered simplicial complex. We put

G′(K) = {u : [0, 1)→ vert(K) : img(u) is a simplex, and u is monotone and regular }.
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For u, v ∈ G′(K) we put D(u, v) = {t : u(t) 6= v(t)}. This is a finite union of intervals, and we write d(u, v)
for their total length. This gives a metric on G′(K). If K is finite we give G′(K) the metric topology. If K
is infinite, we declare that a set U ⊆ G′(K) is open iff U ∩G′(L) is open in G′(L) for all finite subcomplexes
L ⊆ K.

If f : K → L is a morphism of ordered simplicial complexes, we define G′(f) : G′(K) → G′(L) by
G′(f)(u) = f ◦ u. This makes G′ into a functor OSC→ Spaces.

Proposition 29.58. [prop-G-G-prime]
There is a natural homeomorphism λ : G′(K)→ G(K) given by λ(u)(a) = len(u−1{a}).

Proof. It is easy to reduce the general case to the case where K is finite, so we restrict attention to
that case from now on.

Consider an arbitrary point u ∈ G′(K). The image of u is then a simplex, and thus a nonempty
chain, say img(u) = {a0, . . . , ar} with a0 < · · · < ar. As u is monotone and regular, we see that there are
numbers 0 = s0 < · · · < sr+1 = 1 with u−1{ai} = [si, si+1), so λ(u)(ai) = si+1 − si and λ(u)(b) = 0 for
b 6∈ {a0, . . . , ar}. This shows that λ(u) ∈ G(K), as required.

In the opposite direction, suppose we have a simplex σ = {a0, . . . , ar} with a0 < · · · < ar. Consider a
point x ∈ |σ|, with x(ai) = ti say. We put si =

∑
j<i tj and define µσ(x) ∈ G′(K) by µσ(x)(t) = ai for

si ≤ t < si+1. If x and x′ are nearby points in |σ| then the corresponding numbers si and s′i will be close,
so the set D(µσ(x), µσ(x′)) will be a union of at most 2r + 2 very short intervals, so d(µσ(x), µσ(x′)) will
be small. It follows that µ defines a continuous map |σ| → G′(K). The maps for different simplices σ are
compatible, so they patch together to give a continuous map µ : G(K)→ G′(K), which is clearly inverse to
λ. Now µ is a continuous bijection from a compact space to a Hausdorff space, so it is a homeomorphism
by Proposition 10.22. Thus, λ is also a homeomorphism, as claimed. �

Corollary 29.59. [cor-limit-realisation]
The functors G,G′ : OSC→ Spaces preserve finite limits.

Proof. This is clear from the definitions for G′, and the statement for G follows using the proposition.
�

Example 29.60. [eg-poset-Zr]
Consider Z with the nonstandard partial order described in Example 29.41, so G′(Z) ' G(Z) ' R. This

gives a partial order on Zd, for which G′(Zd) ' G(Zd) ' Rd by the corollary. In the case d = 2, we can draw
a finite part of the picture as follows:

Corollary 29.61. [cor-order-homotopy]
Let f, g : P → Q be monotone maps of posets, and suppose that f(p) ≤ g(p) for all p ∈ P . Then G(f)

and G(g) are homotopic.
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Proof. Regard {0, 1} as a poset in the obvious way, and define h : {0, 1} × P → Q by h(0, p) = f(p)
and h(1, p) = g(p). Our assumptions imply that h is a monotone map, so it induces a map

G(h) : G({0, 1})×G(P ) = [0, 1]×G(P )→ G(Q)

of spaces; this is the required homotopy. �

Example 29.62. [eg-largest-element]
Suppose that P has a largest element, say a ∈ P with a ≥ p for all p ∈ P . We can then let f : P → P be

the identity, and let g : P → P be the constant map with value a; we find from this that G(P ) is contractible.
Similarly, if P has a smallest element then G(P ) is again contractible.

Now let Γ b a finite group, and let p be a prime. As in Example 29.44, we let P = P(Γ) be the poset of
nontrivial p-subgroups of Γ, and let E = E(Γ) be the subposet of nontrivial elementary abelian subgroups.
We will illustrate the theory that we have just developed by proving some results (due to Quillen) about the
topology of G(P) and G(E).

Lemma 29.63. [lem-normal-p-subgroup]
If Γ has a nontrivial normal p-subgroup, then G(P) is contractible. In particular, this holds if Γ is itself

a nontrivial p-group.

Proof. Let N be a nontrivial normal p-subgroup. If P is any other nontrivial p-subgroup, it is standard
that the set NP = {xy : x ∈ N, y ∈ P} is a subgroup of Γ of order |N ||P |/|N ∩ P |, so in particular it
is a nontrivial p-subgroup. It is clear that when P ≤ Q we have P ≤ NP ≤ NQ and also N ≤ NP . We
thus have poset maps f, g, h : P → P given by f(P ) = P , and g(P ) = NP , and h(P ) = N . These satisfy
f ≤ g ≥ h, so G(f), G(g) and G(h) are all homotopic by Corollary 29.61. As f is the identity and h is
constant, this gives a contraction of G(P). �

Proposition 29.64. [prop-elem-ab]
The inclusion G(E)→ G(P) is a homotopy equivalence.

Proof. We have an inclusion map i : E → P, and also maps µ as in Proposition 29.50. As µ is natural,
we see that square below commutes:

sE
µ

��

si // sP
µ

��

E
i
// P.

Now consider a point σ = {P0, . . . , Pd} ∈ sP, so the Pk are p-subgroups of Γ with 1 < P0 < · · · < Pr. It is a
standard result about p-groups that the centre ZPk is nontrivial, and if z is a nontrivial element then some

power zp
k

will have order p. It follows that the group

Ek = {z ∈ ZPk : zp = 1}

is nontrivial, and elementary abelian. If k ≤ j, we do not have Ek ≤ Ej in general. However, we do have
Ek ≤ Gj and Ej is central in Gj so Ek commutes with Ej . As this holds for all j and k, we find that the
group

α(σ) = α({P0, . . . , Pd}) = E0E1 · · ·Ed
is nontrivial and elementary abelian. If σ, τ ∈ sP with σ ⊆ τ , it is clear that α(σ) ≤ α(τ). We can thus
regard α as a map sP → E of posets. Note that

iα(σ) =

d∏
k=1

Ek ≤ Pd = µ(σ),

so Corollary 29.61 tells us that G(i)G(α) is homotopic to G(µ). On the other hand, if the groups Pk are all
elementary abelian then Ek = Pk and so

∏
k Ek = Pd; this shows that α ◦ (si) = µ : sE → E . We now see
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that the diagram

G(sE)

'G(µ)

��

G(si)
// G(sP)

' G(µ)

��

G(α)

zz

G(E)
G(i)

// G(P).

commutes up to homotopy, and the vertical maps are homotopy equivalences. It follows formally that
all maps in the diagram, including G(α), are homotopy equivalences. In detail, let g : G(E) → G(sE)
and h : G(P) → G(sP) be homotopy inverses for the corresponding maps µ. By composing the relation
G(α)G(si) ' G(µ) with g, we obtain G(α)G(si)g ' 1G(E). By composing the relation G(i)G(α) ' G(µ)
with h, we obtain hG(i)G(α) ' 1G(sP) By combining these, we find that

hG(i) = hG(i) ◦ 1G(E) ' hG(i)G(α)G(si)g ' 1G(sP)G(si)g = G(si)g.

If we call this map k, we deduce that kG(α) ' 1G(sP) and G(α)k ' 1G(E), so k is the required homotopy
inverse for G(α). �

We next consider a different kind of subdivision, which is often more convenient that the barycentric
version.

Definition 29.65. [defn-cubic-subdivision]
For any poset P , we put cP = {(p, q) ∈ P 2 : p ≤ q}, with the following ordering:

(p, q) ≤ (p′, q′) iff p′ ≤ p ≤ q ≤ q′.

Equivalently, we can define an “interval” [p, q] = {x : p ≤ x ≤ q}, and then we have (p, q) ≤ (p′, q′) iff
[p, q] ⊆ [p′, q′]. We call cP the cubic subdivision of P .

We also define a poset map π : cP → P by π(p, q) = q. There is an obvious way to make c a functor
from posets to posets, and then π is a natural map.

Proposition 29.66. There is a natural homeomorphism φ : G′(cP )→ G′(P ) that is naturally homotopic
to G′(π). In particular, G′(π) is a homotopy equivalence.

Proof. Any poset map v : [0, 1)→ cP can be written in the form v(x) = (v0(x), v1(x)) where vi : [0, 1)→
P . Here v0 reverses the order and v1 preserves it, and v0(x) ≤ v1(x) for all x. Using the notation of
Remark 29.56, we define φ(v) : [0, 1)→ P by

φ(v)(x) =

{
v0(1− 2x− 0+) if 0 ≤ x < 1/2

v1(2x− 1) if 1/2 ≤ x < 1.

One can check that this preserves order and is regular. Next, given a poset map u : [0, 1) → P we define
ψ(u) : [0, 1)→ cP by

ψ(u)(x) = (u((1− x− 0+)/2), u((1 + x)/2)),

which is again a regular order-preserving map map. We next claim that φ(ψ(u))(x) = u(x), and ψ(φ(v))(x) =
v(x). Indeed, it is easy to see from the formulae that this is true for all but finitely many values of x, and
all maps considered are regular, so this is enough.

Finally, we need to show that φ is homotopic to G′(π), or equivalently that λφ ' λG′(π) : G′(cP ) →
G(P ), where λ is as in Proposition 29.58. Put v̂0(x) = v0(1 − x − 0+), so v̂0 ∈ G′(P ). One checks that
λφ(v) = (λ(v̂0) + λ(v1))/2, whereas λG′(π)(v) = λ(v1). We define h : [0, 1]×G′(cP )→ Map(P,R) by

h(t, v) =
1− t

2
λ(v̂0) +

1 + t

2
λ(v1).

It follows that supp(h(t, v)) ⊆ v0([0, 1)) ∪ v1([0, 1)), and this is a chain in P , so h is a map from [0, 1] ×
G′(cP )→ G(P ), which gives the required homotopy. �

Example 29.67. [eg-cubic-triangle]
The cubic subdivision of ∆2 can be displayed as follows:
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00 01 11

02
12

22

(We have just written 02 for the vertex (0, 2) ∈ c∆a
2 and so on.)

Remark 29.68. [rem-cubic-natural]
Unlike the situation in Remark 29.51, the map φ is natural with respect to all maps of posets, not just

injective ones.

Remark 29.69. [rem-cubic-limits]
From the definitions it is clear that c(P ×Q) = c(P )× c(Q). More generally, the functor c : POSets→

POSets preserves all finite limits.

29.1. Simplicial approximation.

Definition 29.70. [defn-ostar]
Let K be a simplicial complex, and let v be a vertex of K. The open star of v in K is the set

ostarK(v) = {x ∈ G(K) : x(v) > 0}.

Remark 29.71. Let us identify v with the corresponding point ev ∈ G(K), defined by ev(v) = 1 and
ev(w) = 0 for w 6= v.

Lemma 29.72. Let p : K → L be a morphism of abstract simplicial complexes, and let f : |K| → |L| be a
continuous map such that f(ostarK(v)) ⊆ ostarL(p(v)) for all v ∈ vert(K).

Recall that Proposition 29.48 gives a homeomorphism b∗ : G(sK) → G(K) for any abstract simplicial
complex K. By iterating this, we obtain a homeomorphism br∗ : G(srK)→ G(K).

Proposition 29.73. [prop-SAT]
Let K and L be simplicial complexes, with K finite, and let f : G(K) → G(L) be a continuous map.

Then for sufficiently large r there exists a map p : srK → L of abstract simplicial complexes such that f is
homotopic to G(p) ◦ (br∗)

−1.

Proof. We will use the metric on G(K) given by d(x, y) =
∑
v |x(v) − y(v)|. The metric topology is

the appropriate one, because K is finite.
For each vertex w ∈ L, put Vw = {y ∈ G(L) : y(v) > 0} ⊆ G(L) and Uw = f−1(Vw) ⊆ G(K). The

sets Uw then form an open cover of the compact metric space G(K), so there is a Lebesgue number ε > 0
by Theorem 12.28. Let n be the dimension of K, and choose r large enough that 2(n/(n + 1))r < ε. Put
g = f ◦ br∗ �

30. CW complexes

We now discuss CW complexes, which are spaces that are built from balls and spheres in a well-controlled
way.
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30.1. Basic definitions and examples.

Definition 30.1. Let X be a CGWH space. A CW structure on X consists of a set A, a map d : A→ N,
and a quotient map

φ :
∐
a∈A

[0, 1]d(a) → X

satisfying the conditions listed below. These are formulated in terms of the sets

Ea = φ({a} × [0, 1]d(a))

DEa = φ({a} × ∂([0, 1]d(a)))

OEa = φ({a} × (0, 1)d(a)).

When d(a) = 0 these are interpreted as DEa = ∅ and OEa = Ea. The conditions are:

CW0: φ restricts to give a bijection
∐
a(0, 1)d(a) → X (so the sets OEa are disjoint and cover X).

CW1: For each a ∈ A the set
Aa = {b : OEb ∩DEa 6= ∅}

is finite, and for all b ∈ Aa we have d(b) < d(a).

A finite CW structure is a CW structure for which the set A is finite. The sets Ea are called the cells of
the CW structure. A (finite) CW complex is a space equipped with a specified (finite) CW structure. The
dimension is the maximum value of d (or ∞, if d is unbounded).

Remark 30.2. [rem-carrier]
As a special case of axiom CW1 we have a 6∈ Aa, so OEa ∩DEa = ∅. It also follows directly from the

axioms that
DEa ⊆

⋃
b∈Aa

OEb ⊆
⋃
b∈Aa

Eb.

If we put A+
a = Aa ∪ {a} we therefore have

Ea ⊆
⋃
b∈A+

a

OEb ⊆
⋃
b∈A+

a

Eb.

Remark 30.3. [rem-ball-models]
We have given the definition in terms of the standard cubes [0, 1]d, but it is often more convenient to work

with different spaces. Suppose we have a system of spaces (Ba)a∈A with Ba homeomorphic to [0, 1]d(a), and a
quotient map φ :

∐
a∈ABa → X. We can choose homeomorphisms fa : [0, 1]d(a) → Ba and put φ′ = φ◦

∐
a fa.

We will allow ourselves to say that φ is a CW structure if φ′ is a CW structure. To be rigorous, we should
check that this does not depend on the choice of the maps fa. The only issue is to show that the image
fa(∂([0, 1]d)) ⊆ Ba does not depend on f , or equivalently, that every homeomorphism g : [0, 1]d → [0, 1]d

preserves ∂([0, 1]d). This is true but surprisingly hard to prove. Reference? Alternatively, we can avoid
this issue by imposing restrictions on Ba and fa. In most cases Ba will be a compact convex subset of
some finite-dimensional vector space and no trouble will arise if we use the homeomorphism arising from
Proposition 19.44.

Remark 30.4. [rem-finite-CW]
Suppose we have a Hausdorff space X and a continuous surjection φ :

∐
a∈AB

d(a) → X with A finite.
It is then automatic (from Proposition 10.22(c)) that φ is a quotient map, and also that the sets Aa in CW1
are finite. Thus, we will have a finite CW structure iff CW0 and the second half of CW1 are satisfied.

For expository purposes, it is convenient to introduce a weaker notion as follows.

Definition 30.5. A pre-CW structure on X is a decomposition of X as a a disjoint union of subsets
Xa such that each Xa is homeomorphic to OBd (or equivalently, to Rd) for some d.

A CW structure on X decomposes X as the disjoint union of the sets OEa, and gives continuous
bijections φa : OBd(a) → OEa for all a. We will check later that φa is actually a homeomorphism, so any
CW structure gives a pre-CW structure. Pre-CW structures are not very useful in themselves, but they can
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often be constructed with relatively little work, and then one can try to improve them to get genuine CW
structures.

Example 30.6. [eg-CW-R]
The sets {n} and (n, n + 1) (for n ∈ Z) give a pre-CW structure on R. To improve this to a CW

structure, put

A = Z× {0, 1}
d(n, k) = k

φ(n, 0, 0) = n

φ(n, 1, t) = n+ t.

We next consider several different CW structures on the space Sn.

Example 30.7. [eg-CW-sphere-min]
Put e0 = (0, . . . , 0, 1) ∈ Sn and X0 = {en} and Xn = Sn \X0. Recall from Proposition 18.20 that Xn

is homeomorphic to Rn, so this gives a pre-CW structure with one 0-cell and one n-cell. To improve this to
a CW structure, we regard Rn+1 as Rn × R and define φ : B0

2 qBn2 → Sn by φ(0) = en on B0
2 and

φ(x) = (2x
√

1− ‖x‖2, 2‖x‖2 − 1)

on Bn2 . It is straightforward to check that

‖φ(x)‖2 = 4‖x‖2(1− ‖x‖2) + (2‖x‖2 − 1)2 = 1,

so this lands in Sn as claimed. Moreover, it restricts to give a homeomorphism OBn2 → Xn with inverse

(s, y) 7→ y/
√

2(1− s).
When n = 1 the geometric picture is as follows. The ball B1

2 is just the interval [−1, 1], which we stretch
to put the endpoints at (±2, 0), then bend to form a semicircle of radius two, then collapse horizontally onto
the unit circle.

Using Remark 30.4 we see that φ gives the required CW structure. Note that the cell En is all of Sn, so
this example illustrates the fact that the maps φa : Bd(a) → Ea need not be homeomorphisms.

Example 30.8. [eg-CW-sphere-a]
Now instead put

A = {0, . . . , n} × {1,−1}
d(i, ε) = i

Xi,ε = {x ∈ Sn : εxi > 0, xj = 0 for j > i}.
Note that every point in Sn must have at least one nonzero coordinate, and by considering the position and
sign of the last nonzero coordinate we see that Sn is the disjoint union of the sets Xi,ε. Next, we can define

φi,ε : Bi2 → Sn

by

φi,ε(x0, . . . , xi−1) = (x0, . . . , xi−1, ε
√

1−
∑
j<i x

2
j , 0, . . . , 0).

It is easy to see that this gives a homeomorphism OBi2 → Xi,ε and also that

φi,ε(B
i
2) = {x ∈ Sn : εxi ≥ 0, xj = 0 for j > i}

= Xi,ε = Xi,ε ∪
⋃

j<i,δ∈{1,−1}

Xj,δ.
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We can combine these maps φi,ε to give a map φ :
∐

(i,ε)∈AB
i
2 → Sn, and using Remark 30.4 we see that

this gives a CW structure.

Example 30.9. [eg-CW-RP]
Consider the space RPn. As in Examples 5.24 and 5.69, we have a quotient map q : Sn → RPn with

q(x) = q(y) iff x = ±y. Put A = {0, . . . , n} and d(i) = i. Define φi : B
i
2 → RPn by

φi(x0, . . . , xi−1) = q(x0, . . . , xi−1,
√

1−
∑
j<i x

2
j , 0, . . . , 0).

Equivalently, this can be written in the notation of Example 30.8 as φi = q ◦ φi,+1. We can combine these
maps to give a map φ :

∐
i≤nB

i
2 → RPn. Note that if x ∈ RPn then there exists y ∈ Sn with q(y) = x, and

if we insist that the last nonzero coordinate in y is positive, then y is unique. Using this, we see that φ gives
a bijection

∐
iOB

i
2 → RPn. We also see that the cell Ei = φ({i} × Bi2) is just the evident copy of RP i in

RPn, which is the same as φ({i+ 1} × ∂Bi+1
2 ). We therefore have a CW structure on RPn.

We next want to construct a CW structure on the orthogonal group O(n) and various related spaces.
This is somewhat more elaborate, so we will do it in stages.

Proposition 30.10. Let V be a finite-dimensional real vector space equipped with an inner product, and
put

RP (V ) = {A ∈ End(V ) : A2 = AT = A, trace(A) = 1}
O(V ) = {B ∈ End(V ) : BTB = I}.

Then there is a natural embedding ρ : RP (V )→ O(V ) given by ρ(A) = I − 2A.

Proof. Write this �

Fix up and merge the next two examples

Example 30.11. [eg-CW-On]
Consider the space O(n + 1) of (n + 1) × (n + 1) real matrices Q with QTQ = I. We will construct a

CW structure on O(n + 1). First, suppose we have A ∈ RPn ⊆ Mn+1(R) and we put ρ(A) = I − 2A. As
AT = A2 = A we have

ρ(A)T ρ(A) = (I − 2A)2 = I − 4A+ 4A2 = I,

so ρ : RPn → O(n+ 1). We can interpret this more geometrically in terms of the map q : Sn → RPn: if we
put Q = ρ(Q(u)) then Qu = −u but Qv = v for all v ∈ u⊥, so Q is just the reflection across the hyperplane
v⊥.

Next, let µr : O(n+ 1)r → O(n+ 1) be the multiplication map

µr(Q1, . . . , Qr) = Q1Q2 · · ·Qr.
Put N = {0, 1, . . . , n} and A = { subsets of N}, and define d : A → N by d(a) =

∑
i∈a i. For any a ∈ A we

can write a = {i1, . . . , ir} for some r ≥ 0 and some sequence i1 > · · · > ir. We put Ba =
∏
tB

it
2 , and note

that this is homeomorphic in an obvious way to Bd(a). Let φi : B
i
2 → RP i ⊆ RPn be as in Example 30.9,

and define ψa : Ba → O(n+ 1) to be the composite∏
t

Bit2

∏
t φit−−−−→ (RPn)r

ρr−→ O(n+ 1)r
µr−→ O(n+ 1).

We claim that the resulting map ψ :
∐
aBa → O(n+ 1) is a CW structure.

Example 30.12. Consider the space O(n+ 1) of (n+ 1)× (n+ 1) real matrices Q with QTQ = I. We
will construct a CW structure on O(n+ 1). First, for m ≤ n and Q′ ∈ O(m) we have a matrix

Q =

[
Q′ 0
0 I

]
∈ O(n+ 1),

and this construction identifies O(m) with the subgroup

{Q ∈ O(n+ 1) : Qei = ei for all i > m} ≤ O(n+ 1).
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(Here we are numbering the standard basis of Rn+1 as e0, . . . , en.) For any x ∈ Sn \ {en} let Hx be the
hyperplane orthogonal to x− en, and let r(x) ∈ O(n+ 1) be the reflection across Hx. We can thus define

s : (Sn \ {en})×O(n)→ O(n+ 1)

by s(x,Q) = r(x)Q. Here Qen = en so s(x,Q)en = r(x)en = x, and as x 6= en we have s(x,Q) 6∈ O(n).
For an arbitrary R ∈ O(n+ 1) \ O(n) we can put x = Ren ∈ Sn \ {en} and Q = r(x)−1R and we find that
Q ∈ O(n + 1) and Qen = en, so Q ∈ O(n), and s(x,Q) = R. Using this we see that s gives a bijection
(Sn \ {en}) × O(n) → O(n + 1) \ O(n). Note also that Sn \ {en} is homeomorphic to Rn by stereographic
projection, so we have decomposed O(n+ 1) as the union of O(n) with a space homeomorphic to Rn×O(n).
We may assume by induction that we have a pre-CW structure decomposing O(n) as a union of subspaces
homeomorphic to Rd for various d, and it follows that we have a decomposition of O(n + 1) as a union of
spaces homeomorphic to Rd or Rn+d. More specifically, we claim that for each subset J ⊆ {0, . . . , n} the
decomposition of O(n+ 1) has a cell of dimension d(J) =

∑
j∈J j; this can be checked by induction on n.

We next explain how to improve this to a genuine CW structure. First, for x ∈ Bk we define q(x) ∈
Mk(R) by q(x)ij = xixj . Equivalently, if we view x as a column vector then q(x) = xxT . We find that
q(x)T = q(x) and q(x)2 = ‖x‖2q(x) and q(x)y = 〈x, y〉x. Next, for x ∈ Bk2 we can define a matrix
pk(x) ∈Mk+1(R) by

pk(x) =

[
I − 2q(x) 2

√
1− ‖x‖2 x

2
√

1− ‖x‖2 xT 2‖x‖2 − 1

]
It is clear that pk(x)T = pk(x). We claim that pk(x)2 = 1. Indeed, the top left entry in pk(x)2 is

(I − 2q(x))2 + 2
√

1− ‖x‖2x.2
√

1− ‖x‖2xT .

Using q(x)2 = ‖x‖2q(x) and xxT = q(x) this simplifies down to I. The top right entry is

2
√

1− ‖x‖2xT .2
√

1− ‖x‖2x+ (2‖x‖2 − 1)2.

Here xTx = ‖x‖2 and everything cancels down to zero. The bottom left entry is zero by symmetry, and
the bottom right entry simplifies to 1 in a similar way. We therefore see that pk(x) ∈ O(k + 1), which we
regard in the usual way as a subgroup of O(n + 1). Next, any subset J ⊆ {1, . . . , n} can be written as

J = {j1, . . . , jr} with j1 < · · · < jr. We put B[J ] =
∏
j∈J B

j
2 ' Bd(J) and we define

mJ :
∏
j∈J

Bj → O(n+ 1)

by

mJ(xj1 , . . . , xjr ) = pjr (xjr ) · · · pj1(xj1).

These maps fit together to give a map m :
∐
J B[J ] → O(n + 1). This can be combined with the standard

homeomorphisms Bj → Bj2 to give a map φ :
∐
J B

d(J) → O(n+ 1). We claim that this is a CW structure.
To prove this, define fk : Bk2 → Sk by fk(x) = pk(x)ek. By inspecting the formulae, we see that this
is essentially the same map as in Example 30.7, so it is surjective with f−1

k {ek} = Sk−1, and it induces

a homeomorphism
◦
Bk2 → Sk \ {ek}. It follows that the map (x,Q) 7→ pk(x)Q gives a homeomorphism

◦
Bk2 × O(k) → O(k + 1) \ O(k), and an inductive argument based on this shows that φ gives a bijection∐
J

◦
Bd(J) → O(n + 1). In particular, this means that φ :

∐
J B

d(J) → O(n + 1) is surjective. It follows
by Remark 30.4 that φ is a quotient map, so the only thing left to check is that the cell boundaries work
correctly as in axiom CW2. It’s not clear that this is actually correct.

Example 30.13. Explain Schubert cells

Example 30.14. Mention Morse theory

Example 30.15. Simplicial complexes are CW complexes. Also simplicial sets, but that
should probably come later.

Example 30.16. Algebraic varieties, o-minimal stuff?
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30.2. Open subsets of Rn. We now construct CW structures on all open subsets of Rn.

Definition 30.17. [defn-enr-cubes]
Suppose we have an integer k ∈ N, a point a ∈ 2−kZn and a subset J ⊆ {1, . . . , n}. We put

C(k, a, J) = {x ∈ Rn : ai < xi < ai + 2−k for i ∈ J and xi = ai for i 6∈ J}

C(k) = {C(k, a, J) : a ∈ 2−kZn, J ⊆ {1, . . . , n}}.

In the case where J = {1, . . . , n} we will omit it and write

C(k, a) = C(k, a, {1, . . . , n}) =

n∏
i=1

(ai, ai + 2−k).

x=(3/2,1/2) y=(2,1/2)

C(1,x,{1,2})

C(1,x,{1})

C(1,x,{2}) C(1,y,{2})

0 1 2

0

1

Sets of the form C(k, a, J) are called dyadic cubes; those of the form C(k, a) are full dyadic cubes. We say
that the base is a, and set of directions is J .

Remark 30.18. [rem-cube-diameter]
Everywhere in this section we will use the metric

d(x, y) = d∞(x, y) = max(|x1 − y1|, . . . , |xn − yn|)

on Rn. With respect to this metric the diameter of C(k, a, J) is 2−k except in the case J = ∅, when we have
C(k, a, ∅) = {a} and the diameter is zero.

Lemma 30.19. [lem-cubes-cover]
For fixed k, the set Rn is the disjoint union of the cubes in C(k).

Proof. Consider a point x ∈ Rn. It is clear that for each i there is a unique element ai ∈ 2−kZ such
that ai ≤ xi < ai+ 2−k. If we put J = {i : xi = ai}, we find that x ∈ C(k, a, J), and that this is the unique
cube in C(k) containing x. �

Lemma 30.20. [lem-nesting]
Consider a pair of dyadic cubes, say A = C(j, a, J) and B = C(k, b,K). Then precisely one of the

following holds:

(a) A ∩B = ∅
(b) A = B
(c) A ⊂ B and j > k and diam(A) < diam(B) and J ⊆ K
(d) A ⊃ B and j < k and diam(A) > diam(B) and J ⊇ K.

Proof. We may assume without loss that A ∩ B 6= ∅ and j ≥ k; we must then prove that case (b)
or (c) holds. Choose x ∈ A ∩ B. For i 6∈ K we have xi = bi ∈ 2−kZ ⊆ 2−jZ, but for i ∈ J we then have
xi ∈ (ai, ai + 2−j) so xi 6∈ 2−jZ. It follows that J ∩Kc = ∅, or in other words J ⊆ K. Thus:
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(1) If i ∈ J we have xi ∈ (ai, ai + 2−j) and also xi ∈ (bi, bi + 2−k). As these are dyadic intervals and
j ≥ k it follows easily that (ai, ai + 2−j) ⊆ (bi, bi + 2−k), and that ai = bi if j = k.

(2) If i ∈ K \ J we have xi = bi ∈ 2−kZ and also ai < xi < ai + 2−j . This can only happen if j > k.
(3) If i 6∈ K then also i 6∈ J , so ai = xi = bi.

It is clear from this that A ⊆ B. For the inclusion to be strict we must have a strict inclusion in (1) or
case (2) must arise, and in either case j > k. Moreover, as the inclusion is strict B cannot just be a single
point, so diam(B) = 2−k whereas diam(A) ∈ {0, 2−j}, so diam(A) < diam(B), so (c) holds. If the inclusion
is not strict then (b) holds, as required. �

Corollary 30.21. [cor-nesting]
Let A be any family of dyadic cubes. Let X be the union of all the cubes in A, and let M be the set of

those cubes that are maximal in A with respect to inclusion. Then X is the disjoint union of the cubes in
M.

Proof. First, it is clear from Lemma 30.20 that if two different dyadic cubes overlap, then one is
contained in the other, so at most one of them can be maximal in A. Thus, the cubes in M are disjoint.
Now consider a point x ∈ X, so the set Ax = {A ∈ A : x ∈ A} is nonempty. The set of diameters of dyadic
cubes is {0} ∪ {2−k : k ≥ 0}, and every subset of this set has a largest element. Thus, we can choose a
cube A ∈ Ax of maximal diameter. Suppose we have B ∈ A with A ⊆ B; then clearly x ∈ B, so B ∈ Ax, so
diam(B) = diam(A). By inspecting the four possibilities in Lemma 30.20, we see that B = A. This means
that A ∈M. It follows that X is the union of the cubes in M, as claimed. �

Definition 30.22. Given a dyadic cube A = C(k, a, J), we put

N (A) = {C(k, b,K) : K ⊇ J, bi = ai for i ∈ J or i 6∈ K, bi ∈ {ai − 2−k, ai} for i ∈ K \ J}

ν(A) = {x ∈ Rn : ai < xi < ai + 2−k for i ∈ J, ai − 2−k < xi < ai + 2−k for i 6∈ J}.

Lemma 30.23. [lem-nu-cubes]
The set ν(A) is open in Rn and has diameter at most 21−k. It is the disjoint union of the cubes in N (A).

Moreover, if B ∈ N (A) then N (B) ⊆ N (A) and ν(B) ⊆ ν(A).

Proof. It is clear that ν(A) is open, with diameter 2−k if J = {1, . . . , n}, or 21−k otherwise. Consider
a point x ∈ ν(A). Put K = {i : xi 6= ai}, so J ⊆ K. If ai − 2−k < xi < ai then necessarily i ∈ K \ J and
we put bi = ai − 2−k; otherwise we put bi = ai. We then find that x ∈ C(k, b,K) ∈ N (A). Thus, ν(A) is
contained in the union of the cubes in N (A). The reverse inclusion is clear from the definitions.

Now suppose that B = C(k, b,K) ∈ N (A) and C = C(k, c, L) ∈ N (B). We then have L ⊇ K ⊇ J .

• If i ∈ J then i is also in K so ai = bi = ci.
• If i ∈ K \ J then bi ∈ {ai, ai − 2−k} and bi = ci so so ci ∈ {ai, ai − 2−k}.
• If i ∈ L \K then ai = bi and ci ∈ {bi, bi − 2−k} so ci ∈ {ai, ai − 2−k}.
• If i 6∈ L then also i 6∈ K so ai = bi = ci.

It follows that C ∈ N (A). This means that N (B) ⊆ N (A) and so ν(B) ⊆ ν(A). �

Definition 30.24. For any open set U ⊆ Rn we put

A(U) = { dyadic cubes A : ν(A) ⊆ U}
M(U) = { maximal elements in A(U)}.

Proposition 30.25. [prop-open-CW]
Let U be an open subset of Rn. Then U is the disjoint union of the cubes in M(U). Moreover, for any

point x ∈ U there is an open neighbourhood N such that the set {A ∈M(U) : A ∩N 6= ∅} is finite.

Proof. Consider a point x ∈ U . As U is open, there exists ε > 0 such that OBε(x) ⊆ U . Choose k
such that 21−k < ε. By Lemma 30.19 we see that there is a unique cube A ∈ C(k) such that x ∈ A. Put

N = ν(A), which is an open neighbourhood of x of diameter at most 21−k < ε. It follows that ν(A) ⊆ U ,

so A ∈ A(U). More generally, for B ∈ N (A) we have ν(B) ⊆ ν(A) so ν(B) ⊆ U so B ∈ A(U); in other
words, we have N (A) ⊆ A(U). Next, for each B ∈ N (A) we can choose a cube φ(B) ∈ A(U) of maximal
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diameter such that B ⊆ φ(B). Using Lemma 30.20 again we see that φ(B) ∈M(U). In particular, we have
x ∈ A ⊆ φ(A) ∈ M(U), but x was an arbitrary point of U , so the sets in M(U) cover U . They are also
disjoint by Corollary 30.21.

Now consider a cube C ∈M(U) such that C meets N . As N is open this means that C itself must meet
N , but N is the disjoint union of the sets in N (A), so there is some cube B ∈ N (A) such that C meets
B. This means that C also meets the larger set φ(B). Now C and φ(B) are both in M(U) and the sets in
M(U) are disjoint, so we must have C = φ(B). Thus, there are only finitely many possibilities for C. �

30.3. Topological properties. Consider a space X with CW structure φ :
∐
a∈AB

d(a) → X.

Lemma 30.26. [lem-cell-closure]
For all a ∈ A, the cell Ea is the closure of OEa.

Proof. As φa : Bd(a) → X is continuous and Bd(a) is compact, the weak Hausdorff condition means
that φa(Bd(a)) = Ea is closed. It follows that OEa ⊆ Ea. On the other hand, the set φ−1

a (OEa) is closed

in Bd(a) by continuity, and it contains the dense set
◦
Bd(a), so it must be all of Bd(a). This means that

Ea = φ(Bd(a)) ⊆ OEa. �

Lemma 30.27. [lem-cell-intersection]
If a, b ∈ A with d(b) < d(a) then OEa ∩ Eb = ∅.

Proof. By remark 30.2, we have Eb ⊆
⋃
c∈A+

b
OEc, so it will suffice to prove that OEc ∩ OEa = ∅ for

c ∈ A+
b . By axiom CW1 we have d(c) ≤ d(b) < d(a), so c 6= a, so OEc ∩OEa = ∅ by axiom CW0. �

Lemma 30.28. [lem-CW-closure-test]
Suppose that Y ⊆ X, and that φ−1

a (Y ) is closed in Bd(a) for all a such that Y ∩ OEa 6= ∅. Then Y is
closed in X.

Proof. Put Ta = φ−1
a (Y ) ⊆ Bd(a). As φ is a quotient map, it will suffice to show that Ta is closed for

all a, which we will do by induction on d(a). If d(a) = 0 then Bd(a) is just a point so all subsets are closed.

Suppose instead that d(a) > 0. If Ta meets
◦
Bd(a) then Y meets OEa, so Ta is closed by hypothesis. Suppose

instead that Ta ∩
◦
Bd(a) = ∅, so

Y ∩ Ea ⊆ DEa ⊆
⋃
b∈Aa

Eb.

Put Z =
⋃
b∈Aa φb(Tb). By induction we may assume that each Tb is closed in Bd(b) and so is compact, so

Z is closed in X. Using Y ∩Ea ⊆
⋃
bEb we also see that Y ∩Ea = Z ∩Ea, so Y ∩Ea is closed in X, so the

set Ta = φ−1
a (Y ∩ Ea) is closed in Bd(a) as required. �

Corollary 30.29. [cor-CW-closure-test]
Suppose that Y ⊆ X, and that Y ∩Ea is closed in X for all a such that Y ∩OEa 6= ∅. Then Y is closed

in X.

Proof. As φ−1
a (Y ) = φ−a (Y ∩ Ea), this follows from the lemma. �

Lemma 30.30. [lem-open-cell]
Let X be a CW complex, with CW structure φ :

∐
a∈AB

d(a) → X. Consider the subset OEa =

φa(
◦
Bd(a)) ⊆ X with the subspace topology. Then the map φa :

◦
Bd(a) → OEa is a homeomorphism.

Proof. It is clear from the definitions that φa :
◦
Bd(a) → OEa is a continuous bijection, so it will suffice to

check that this map is closed. Consider a subset F ⊆
◦
Bd(a) that is closed in

◦
Bd(a). Put F1 = F ∪∂(Bd(a)), so

F1 is closed in Bd(a) and thus is compact. It follows that φa(F1) is closed in X. Now φa(F1) = φa(F )∪DEa,
and DEa ∩OEa = ∅ (by Remark 30.2) so φa(F ) = φa(F1)∩OEa, and this is closed in OEa as required. �

Definition 30.31. [defn-CW-subcomplex]
A subcomplex of a CW complex (X,A, d, φ) is a system (X ′, A′, d′, φ′) such that
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SCW0: X ′ is a subspace of X, and A′ is a subset of A.
SCW1: X ′ =

⋃
a∈A′ Ea, and A′ = {a ∈ A : OEa ∩X ′ 6= ∅}.

SCW2: d′ is the restriction of d to A′, and φ′ is the restriction of φ to
∐
a∈A′ B

d(a).

A finite subcomplex means a subcomplex (X ′, A′, d′, φ′) where the set A′ is finite.

Remark 30.32. [rem-gives-a-subcomplex]
If we are given a subspace X ′ ⊆ X, it is clear that there is at most one way to define A′, d′ and φ′ so

that (X ′, A′, d′, φ′) is a subcomplex. Similarly, if we are given A′ then there is at most one way to define X ′,
d′ and φ′.

Proposition 30.33. [prop-CW-subcomplex]
Let (X ′, A′, d′, φ′) be a subcomplex of (X,A, d, φ). Then

(a) As a set, X ′ is the disjoint union of the sets OEa for a ∈ A′.
(b) If a ∈ A′ then Aa ⊆ A′.
(c) X ′ is closed in X.
(d) The map φ′ :

∐
a∈A′ B

d(a) → X ′ gives a CW structure on X ′.

Proof.

(a) As X is the disjoint union of the sets OEa, we see that X ′ is the disjoint union of the sets X ′∩OEa.
If X ′ ∩OEa is empty then we can ignore it. It is is nonempty then (by SCW1) we have a ∈ A′ and
OEa ⊆ Ea ⊆ X ′, so X ′ ∩OEa = OEa. The claim follows.

(b) Suppose that a ∈ A′ and b ∈ Aa, so OEb meets Ea. By SCW1 we have Ea ⊆ X ′, so OEb meets
X ′, so b ∈ A′ by SCW1 again.

(c) By Corollary 30.29, it is enough to show that X ′ ∩ Ea is closed whenever X ′ ∩ OEa 6= ∅, or
equivalently a ∈ A′. In that case we have Ea ⊆ X ′ so X ′∩Ea = Ea, which is closed by Lemma 30.26.

(d) We first claim that φ′ is a quotient map. Equivalently, we claim that if Y ⊆ X ′ and φ−1
a (Y ) is

closed in Bd(a) for all a ∈ A′, then Y is closed in X (and therefore also in X ′). This follows easily
from Lemma 30.28, because if OEa ∩ Y 6= ∅ then necessarily a ∈ A′. Axiom CW0 is now clear
from (a), and CW1 for X ′ follows from CW1 for X.

�

Proposition 30.34. [prop-gives-a-subcomplex]

(a) A subset A′ ⊆ A gives a subcomplex iff we have Aa ⊆ A′ for all a ∈ A′.
(b) A subspace X ′ ⊆ X gives a subcomplex iff we have Ea ⊆ X ′ for all a such that OEa ∩X ′ 6= ∅.

Proof.

(a) One direction is given by part (b) of Proposition 30.33. For the converse, suppose that A′ ⊆ A and
that Aa ⊆ A′ for all a ∈ A′. Put X ′ =

⋃
a∈A′ Ea. It is clear that if a ∈ A′ then OEa meets X ′.

Conversely, suppose that a ∈ A and that OEa meets X ′. This means that OEa must meet Eb for
some b ∈ A′, but Remark 30.2 tells us that Eb ⊆

⋃
c∈A+

b
OEc, so OEa must meet OEc for some

c ∈ A+
b . By axiom CW0 this gives a = c so a ∈ A+

b so either a = b ∈ A′ or a ∈ Ab ⊆ A′; either way,
we have a ∈ A′. We now define d′ and φ′ in accordance with SCW2 and we find that all axioms
are satisfied.

(b) First suppose that X ′ gives a subcomplex, so there exist A′, d′ and φ′ such that SCW0, SCW1 and
SCW2 are satisfied. If OEa ∩X ′ 6= ∅ then SCW1 gives a ∈ A′ and then Ea ⊆ X ′, as required.

Conversely, suppose we have a subspace X ′ ⊆ X with the property that Ea ⊆ X ′ whenever
OEa ∩ X ′ 6= ∅. If we put A′ = {a : OEa ∩ X ′ 6= ∅} and X ′′ =

⋃
a∈AEa. Our condition on X ′

ensures that X ′′ ⊆ X ′. On the other hand, if x ∈ X ′ then certainly x ∈ OEa for some a ∈ A, and
x ∈ OEa ∩X ′ so OEa ∩X ′ 6= ∅ so a ∈ A′, so x ∈ Ea ⊆ X ′′, so x ∈ X ′′. This proves that X ′ ⊆ X ′′,
so X ′′ = X ′. This means that SCW1 is satisfied. We can now define d′ and φ′ in accordance with
SCW2 and we see that we have a subcomplex, as required.

�
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Corollary 30.35. [cor-subcomplex-lattice]
The intersection of any family of subcomplexes is a subcomplex. Similarly, the union of any family of

subcomplexes is also a subcomplex.

Proof. This follows easily from criterion (b) in Proposition 30.33. �

Now suppose we have a subspace Y ⊆ X. We can let F be the family of all subcomplexes that contain
Y , and then let X ′ be the intersection of that family. Then X ′ is again a subcomplex, and it clearly contains
Y , so X ′ is the smallest element in F . This validates the following definition.

Definition 30.36. [defn-carrier]
For any subset Y ⊆ X, the carrier of Y is the smallest subcomplex of X that contains Y .

Lemma 30.37. [lem-finite-carrier]
For each a ∈ A, the carrier of Ea is a finite subcomplex of X.

Proof. We argue by induction on d(a). If d(a) = 0 then Ea = OEa and this is a single point. It follows
directly from the definitions that Ea is by itself a subcomplex, so it is its own carrier and the claim holds.
If d(a) > 0 we put

X ′ = Ea ∪
⋃
b∈Aa

carrier(Eb).

Using Proposition 30.34 we see that this is a subcomplex of X, and it clearly contains Ea, so it contains the
carrier of Ea. For b ∈ Aa we have d(b) < d(a) so by induction the carrier of Eb is finite, and Aa is finite, so
X ′ is finite, so the carrier of Ea is finite. (It is not hard to see that X ′ is actually equal to the carrier of Ea,
but we do not need that.) �

Proposition 30.38. [prop-finite-carrier]
If Y ⊆ X is compact, then the carrier of Y is finite.

Proof. Put A′ = {a ∈ A : Y ∩ OEa 6= ∅}, and for each a ∈ A′ choose a point ya ∈ Y ∩ OEa. Put
Z = {ya : a ∈ A′} ⊆ Y . As the sets OEa (for a ∈ A) are all disjoint, we see that |Z ∩OEa| ≤ 1, and thus
that the intersection of Z with any finite subcomplex is finite. Lemma 30.37 tells us that Ea is contained
in a finite subcomplex, so Ea ∩ Z is finite, so Ea ∩ Z is closed in X. It follows by Corollary 30.29 that Z
is closed in X, and therefore also in Y . As Y is compact, the same is true of Z. More generally, the same
argument shows that every subset of Z is closed, so Z is discrete as well as compact, so it must be finite. On
the other hand, Z bijects with A′ by construction, so A′ is finite. Now put X ′ =

⋃
a∈A′ carrier(Ea). This is

a finite subcomplex by Lemma 30.37. For any y ∈ Y we have y ∈ OEa for some a ∈ A, and then a ∈ A′ by
the definition of A′, so Ea ⊆ X ′, so y ∈ X ′. It follows that X ′ is a finite subcomplex containing Y , so the
carrier of Y is finite. �

Corollary 30.39. [cor-finite-compact]
A subcomplex X ′ ⊆ X is a finite subcomplex iff it is compact.

Proof. Let A′ be the indexing set for X ′, so X ′ =
⋃
a∈A′ Ea. The sets Ea are compact, so if A′ is finite

then X ′ is compact. Conversely, if X ′ is compact then the carrier of X ′ is finite, but X ′ is a subcomplex so
it is its own carrier. �

Definition 30.40. [lem-skeleton]
For any k ≥ 0, the k-skeleton of X is the set

skelk(X) =
⋃

d(a)≤k

Ea ⊆ X.

Using part (a) of Proposition 30.34, we see that this is a subcomplex of X.

Proposition 30.41. [prop-skeleta]
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The space skel0(X) is discrete, and for any k > 0 we have a pushout square∐
d(a)=k ∂(Bk)

φ

��

// //
∐
d(a)=k B

k

φ

��

skelk−1(X) // // skelk(X).

Moreover, X is the colimit of the sequence

skel0(X) // // skel1(X) // // skel2(X) // // skel3(X) // // skel4(X) // // · · ·

Proof. First, we see using Corollary 30.29 that every subset of skel0(X) is closed, so skel0(X) is discrete
as claimed. Now suppose that k > 0, and form a pushout square∐

d(a)=k ∂(Bk)

φ

��

// i //
∐
d(a)=k B

k

ψ

��

skelk−1(X)
j

// P

in the category of CGWH spaces. It is clear that i is a closed inclusion, so Proposition 23.47 tells us that j
is also a closed inclusion and that the square is also a pushout in the category of sets. In that category we

have Bk = ∂(Bk)q
◦
Bk, and it follows that

P = skelk−1(X)q
∐

d(a)=k

◦
Bk

as sets, and thus that the evident comparison map ξ : P → skelk(X) is a continuous bijection. Our claim
is that ξ is a homeomorphism, and it will suffice to show that it is a quotient map. Consider a subset
Y ⊆ skelk(X) such that ξ−1(Y ) is closed in P . It follows that the set Y ∩ skelk−1(X) = j−1ξ−1(Y ) is closed
in skelk−1(X) and thus also in X. It also follows that ψ−1ξ−1(Y ) is closed, or equivalently that φ−1

a (Y ) is
closed in Bk for all a ∈ A with d(a) = k. Given this, we can use Lemma 30.28 to see that Y is closed in X,
so ξ is a quotient map as claimed.

Next, it is clear from axiom CW0 that X is the union of the subspaces skelk(X), and using Lemma 30.28
again we see that a subset Y ⊆ X is closed if and only if Y ∩ skelk(X) is closed in skelk(X) for all k. It
follows that a map f : X → Z is continuous iff f |skelk(X) is continuous for all k, and using this we see that
X has the defining property for the colimit of the spaces skelk(X). �

Proposition 30.42. [prop-coprod-CW]
The coproduct of any family of CW complexes has a natural structure as a CW complex.

Proof. Suppose we have CW complexes (Xi, Ai, di, φi) for all i ∈ I. We put X =
∐
iXi and A =

∐
iAi,

and we regard Xi as a subspace of X and Ai as a subset of A in the obvious way. We let d : A→ N be the
map given by di on Ai, and we let

φ :
∐
a∈A

Bd(a) =
∐
i∈I

∐
a∈Ai

Bdi(a) →
∐
i∈I

Xi = X

be the coproduct of the maps φi. We leave it to the reader to check that this gives a CW structure. �

Proposition 30.43. [prop-prod-CW]
The product in CGWH of any two CW complexes has a natural structure as a CW complex.

Proof. Let (X0, A0, d0, φ0) and (X1, A1, d1, φ1) be CW complexes. Put X = X0×X1 and A = A0×A1.
Define d : A→ N by d(a0, a1) = d0(a0) + d1(a1), so

Bd(a0,a1) = Bd0(a0) ×Bd1(a1).

The maps φi,ai : Bdi(ai) → Xi (for i = 0, 1) give a map

φa0,a1 = φ0,a0 × φ1,a1 : Bd(a0,a1) = Bd0(a0) ×Bd1(a1) → X0 ×X1 = X.

236



These fit together to give a map φ :
∐
a∈AB

d(a) → X. The claim is that (X,A, d, φ) is a CW complex. First

note that Proposition 23.30 allows us to identify
∐
aB

d(a) with
(∏

a0
Bd0(a0)

)
×
(∏

a1
Bd1(a1)

)
and thus φ with

φ0×φ1. The maps φ0 and φ1 are quotient maps by hypothesis, so φ is a quotient map by Proposition 23.32.

Next, we can identify
◦
Bd(a) with

◦
Bd0(a0) ×

◦
Bd1(a1), and thus identify the restricted map φ′ :

∐
a

◦
Bd(a) → X

with the product of the corresponding maps φ′0 :
∐
a0

◦
Bd0(a0) → X0 and φ′1 :

∐
a1

◦
Bd1(a1) → X1. Here φ′0

and φ′1 are bijections by hypothesis, so φ′ is a bijection, which is axiom CW0 for X. Next, for any pair
a = (a0, a1) ∈ A we see from the definitions that

Ea = Ea0 × Ea1
OEa = OEa0 ×OEa1
DEa = (DEa0 × Ea1) ∪ (Ea0 ×DEa1).

This means that for any other pair b = (b0, b1) ∈ A, we have

OEb ∩ Ea = (OEb0 ∩ Ea0)× (OEb1 ∩ Ea1).

By considering when this is nonempty, we deduce that

A+
a = (A0)+

b0
× (A1)+

b1

Aa = ((A0)+
b0
× (A1)+

b1
) \ {a}

and axiom CW1 follows from this. �

30.4. Paracompactness.

30.5. Homotopical properties.

Lemma 30.44. [lem-ndr-cell]
There is a continuous retraction

r : [0, 1]×Bn → ([0, 1]× ∂(Bn)) ∪ ({1} ×Bn)

given by

r(t, x) =


(

1, 2x
1+t

)
if 0 ≤ ‖x‖ ≤ 1+t

2(
1+t−‖x‖
‖x‖ , x

‖x‖

)
if 1+t

2 ≤ ‖x‖ ≤ 1.

Proof. Geometrically, this is just radial projection from the point (−1, 0):

t

x

(−1, 0)

a

b

r(a)

r(b)

For a formal proof, put

X = {(t, x) : 0 ≤ ‖x‖ ≤ (1 + t)/2}
Y = {(t, x) : (1 + t)/2 ≤ ‖x‖ ≤ 1}
C = ([0, 1]× ∂(Bn)) ∪ ({1} ×Bn)
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These sets are both closed. The first clause above defines a continuous map rX : X → {1}×Bn ⊆ C. (There
is no problem with the denominator, because 1 + t ≥ 1 on X.) Similarly, we have ‖x‖ ≥ 1/2 on Y , so the
second clause gives a continuous map rY : Y → [0, 1]×∂(Bn) ⊆ C. For (t, x) ∈ X∩Y we have ‖x‖ = (1+t)/2
so rX(t, x) = (1, x/‖x‖) = rY (t, x), so there is a well-defined map r : [0, 1] × Bn → C as described. It is
clear that r(1, x) = (1, x), and that r(t, x) = (t, x) whenever ‖x‖ = 1, so r|C = 1C , so r is a retraction as
claimed. �

Lemma 30.45. Let X be a CW complex, and let X ′ be a subcomplex. Suppose that X is n-dimensional
and that skeln−1(X) ⊆ X ′. Then there is a natural retraction

r : [0, 1]×X → ([0, 1]×X ′) ∪ ({1} ×X).

Proof. More formally, we have a CW complex (X,A, d, φ) where d(a) ≤ n for all a, and a subcomplex
(X ′, A′, d′, φ′) such that a ∈ A′ whenever d(a) < n. Put T = A \ A′, so d(t) = n for all t ∈ T . By a
straightforward adaptation of Proposition 30.41, we have a pushout square∐

t ∂(Bn)

φ

��

// //
∐
tB

n

φ

��

X ′ // // X.

Unfinished �

30.6. Spaces homotopy equivalent to CW complexes.

31. Euclidean neighbourhood retracts

Definition 31.1. [defn-subeuclidean]
Let X be a topological space. We say that X is subeuclidean if it is locally compact, and it admits an

embedding i : X → Rn for some n.

Remark 31.2. [rem-subeuclidean]
Here we mean an embedding as defined in Definition 4.1, so i gives a homeomorphism from X to the

set i(X) ⊆ Rn with its subspace topology. In particular, this means that i(X) is locally compact and thus
locally closed (by Proposition 18.5).

Lemma 31.3. [lem-subeuclidean-closed]
If X is subeuclidean then there is a closed embedding j : X → Rn+1 for some n.

Proof. By definition, there must exist a map i : X → Rn that is an embedding but need not be closed.
However, i(X) is locally closed, so it has the form U ∩ F for some open set U and some closed set F . We
can define a continuous map f : Rn → R by f(z) = d(z, U c) = inf{d(z, z′) : z′ ∈ U c} as in Definition 12.52.
We then put G = {(z, t) ∈ Rn × R : f(z)t = 1}, which is easily seen to be closed in Rn+1. If (z, t) ∈ G
then f(z) 6= 0 and so z ∈ U . We therefore have a projection p : G → U given by p(z, t) = z. In the other
direction, as f is strictly positive on U we can define a continuous map g : U → G by g(z) = (z, 1/f(z)).
These maps are inverse to each other, so g gives a homeomorphism from the open set U ⊆ Rn to the closed
set G ⊆ Rn+1. Now put j = gi, considered as a map X → Rn+1. We have pj = i, which is an embedding,
so j is an embedding by Proposition 4.10. Moreover, as i(X) is closed in U , we see that j(X) = g(i(X)) is
closed in G and therefore in Rn+1. It follows that j is a closed embedding, as required. �

Lemma 31.4. [lem-union-subeuclidean]
Suppose that X is a locally compact Hausdorff space that can be covered by finitely many subeuclidean

open subsets. Then X is itself subeuclidean.

Proof. By hypothesis we have X =
⋃k
i=1Xi say, where Xi is open and subeuclidean. The claim is

trivial if Xi = X for some i, so we assume that all the subsets Xi are proper, so Xc
i 6= ∅. Proposition 18.23

tells us that there is a quotient map qi : X → Xi ∪ {∞} that acts as the identity on Xi and sends Xc
i to

∞. We claim that qi is a closed map. To see this, let F be a closed subset of X and put Fi = qi(F ). We
need to show that Fi is closed, but qi is a quotient map, so it will suffice to show that q−1

i (Fi) is closed in
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X. By inspection we find that q−1
i (Fi) is equal to F (if F ⊆ Xi) or F ∪Xc

i (if F 6⊆ Xi) and in either case it
is closed as required.

Now put X ′ =
∏
i(Xi ∪ {∞}) and define q : X → X ′ by q(x) = (q1(x), . . . , qk(x)). We claim that this

is an embedding. We will test this using closed sets, as in Remark 4.2. First suppose that q(x) = q(x′),
so qi(x) = qi(x

′) for all i. As the sets Xi cover X, we have x ∈ Xi for some i and then qi(x) = x 6= ∞.
By assumption we then have qi(x

′) = x 6= ∞, and this means that x′ ∈ Xi and then that x′ = x. This
shows that q is injective. Now suppose that F ⊆ X is closed. We put Fi = qi(F ) as before, so Fi is
closed in Xi ∪ {∞}. We then put F ′ =

∏
i Fi, which is closed in X ′ by Proposition 5.34. It is clear that

F ⊆ q−1(F ′) =
⋂
i q
−1
i (Fi), and we claim that this is actually an equality. Indeed, if x ∈ q−1(F ′) ⊆ X we

can choose i such that x ∈ Xi, and then we find that x ∈ q−1
i (Fi) = q−1

i (qi(F )) so qi(x) = qi(x
′) for some

x′ ∈ F . On the other hand, as x ∈ Fi we have qi(x) = x 6= ∞, so we see that x′ = x and so x ∈ F as
required. This completes the proof that q is an embedding.

Next, by Lemma 31.3 we can choose closed embeddings fi : Xi → Rni−1 say. Now, if K ⊆ Rni−1 is
compact then the set K ′ = K ∩ fi(Xi) is closed in K and therefore compact, and the map fi : Xi → fi(Xi)
is a homeomorphism so the set f−1

i (K) = f−1
i (K ′) is again compact. This means that fi is proper, so it

extends to give a continuous injective map f i : Xi ∪ {∞} → Rni−1 ∪ {∞}. As the source and target of f i
are compact Hausdorff, we see from Proposition 10.22 that f i is an embedding.

Next, Proposition 18.20 identifies Rni−1 with Sni−1 and so gives an embedding gi : Rni−1∪{∞} → Rni .
The composite gif i is then also an embedding. We now put n =

∑
i ni and h =

∏
i gif i : X

′ → Rn, which
is an embedding by Remark 5.33. Now qh : X → Rn is the required embedding. �

Definition 31.5. [defn-locally-contractible]
We say that X is locally contractible if for all x ∈ X and every neighbourhood U of X, there is a smaller

neighbourhood V with x ∈ V ⊆ U , and a map h : [0, 1] × V → U with h(0, v) = x for all v ∈ V , and
h(1, v) = v. In this situation we say that V contracts to x inside U .

Example 31.6. [eg-locally-contractible]
Let X be open in Rn. We then claim that X is locally contractible. Indeed, given any x ∈ X and any

neighbourhood U , we observe that U is open in Rn and so contains the set V = OBε(x) for some ε > 0. We
can then define h : [0, 1]× V → V ⊆ U by h(t, y) = x+ t(y − x), and this is easily seen to have the required
properties.

Remark 31.7. With notation as in Definition 31.5, we see that for each v ∈ V the function t 7→ h(t, v)
gives a path γv from x to v, so every point in V lies in the same path component as x. It does not quite
follow that V is path connected, because the path γv : [0, 1]→ U might stray outside V . There are a number
of subtle distinctions that can be made here, but we will not discuss them.

Definition 31.8. [defn-enr]
Let X be a locally compact Hausdorff space. We say that X is a euclidean neighbourhood retract (or

ENR) if it satisfies the following equivalent conditions.

(a) There is an integer n ≥ 0, an open set U ⊆ Rn and continuous maps X
j−→ U

p−→ X with pj = 1X .

(b) There is an integer n ≥ 0 and an embedding X
j−→ Rn (so X is subeuclidean). Moreover, for any

such j there is an open set U ⊆ Rn containing j(X) and a continuous map p : U → X with pj = 1X .
(c) X is subeuclidean and locally contractible.

The proof of equivalence will be split between several lemmas below.

Lemma 31.9. [lem-enr-ab]
In Definition 31.8, conditions (a) and (b) are equivalent.

Proof. It is clear that (b) implies (a). Conversely, suppose that (a) holds, and choose U , j and p
as specified there. Suppose we have another embedding k : X → Rm. As this is an embedding, it can be

regarded as a homeomorphism X → k(X). We therefore have a continuous map r = (k(X)
k−1

−−→ X
j−→ Rn),

with components ri : k(X)→ R for i = 1, . . . , n.
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Next, as X is locally compact and k is an embedding we see that k(X) is locally compact and thus locally
closed, so it has the form F ∩W for some open subset W ⊆ Rm and some closed subset F ⊆ Rm. (Here we
have used Proposition 18.5.) Now W can be regarded as a metric space, so it is normal by Proposition 14.8,
and k(X) is closed in W . The Tietze Extension Theorem (Theorem 17.5) therefore applies, so the maps
ri : k(X) → R can be extended over W . We will use the same notation for the extended maps ri : W → R.
These combine to give a continuous map r : W → Rn with rk = j : X → Rn. Put V = r−1(U), which is
open in W and contains k(X). As r(V ) ⊆ U and p : U → X we have a map q = pr|V : V → X. For x ∈ X
we have qk(x) = prk(x) = pj(x) = x. This proves that (b) holds. �

Lemma 31.10. [lem-enr-ac]
In Definition 31.8, condition (a) implies condition (c).

Proof. Suppose that (a) holds, and that we are given a point x ∈ X and an open neighbourhood W of
x in X. Choose U , j and p as in (a). After shifting everything by a translation if necessary, we may assume
that j(x) = 0. As j gives a homeomorphism X → j(X), it will be harmless to replace X by j(X) and thus
assume that 0 ∈ X ⊆ U ⊆ Rn and that p : U → X with p|X = 1X . As U is open in Rn and W is open in
X we can choose ε > 0 such that OBε(0) ⊆ U and OBε(0) ∩X ⊆ W . As p : U → X is continuous, we can
choose δ such that 0 < δ < ε and OBδ(0) ⊆ p−1(OBε(0)). Put V = OBδ(0) ∩ X ⊆ W . If t ∈ [0, 1] and
y ∈ V then ty ∈ OBδ(0) ⊆ U so p(ty) is defined and lies in X. Moreover, as OBδ(0) ⊆ p−1(OBε(0)) we see
that p(ty) ∈ OBε(0) ∩ X ⊆ W . We can thus define h : [0, 1] × V → W by h(t, y) = p(ty). We then have
h(0, y) = p(0) = 0 (because 0 ∈ X and p|X = 1X). We also have h(1, y) = p(y) = y, because y ∈ V ⊆ X.
This gives the required local contraction. �

All that is left is to prove that (c) implies (a). To do this we will need to subdivide Rn into small cubes.
Redo this using the CW structures on open subsets of Rn discussed previously.

32. The category of arrows

We next define some auxiliary constructions that will be needed for our analysis of fibrations and

cofibrations. Let CGWH↓ be the category whose objects are diagrams in CGWH of shape A = (A0
u−→ A1),

and whose morphisms from (A0
u−→ A1) to (B0

v−→ B1) are the commutative squares

A0
f0 //

u

��

B0

v

��

A1
f1

// B1.

Given objects A and B as above, we put

P = (A0 ×B1) ∪A0×B0 (A1 ×B0),

so we have a diagram

A0 ×B0
//

��

A1 ×B0

��

P

::

{{ $$

A0 ×B1
// A1 ×B1,

in which the top left triangle is a distorted pushout square. We write

A�B = (P −→ A1 ×B1) ∈ CGWH↓ .
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This can also be characterised by a universl property, as follows. If we have a third object C ∈ CGWH↓

then we have two commutative squares as shown:

A0 ×B0
//

��

A1 ×B0

��

C0
1 //

1

��

C0

��

A0 ×B1
// A1 ×B1 C0

// C1.

Maps A�B → C in CGWH↓ biject with maps between the above squares, or equivalently with compatible
systems of maps Ai × Bj → Cij for i, j ∈ {0, 1}. Using this one can check that CGWH↓ is symmetric

monoidal under the above product. The unit is the object (∅ → 1) ∈ CGWH↓, and the triple product is
characterised by the fact that maps A�B�C → D biject with compatible systems of maps Ai ×Bj ×Cj →
Dijk in CGWH.

Next, observe that any map g : B1 → C0 gives a map (gv, wg) : B → C in CGWH↓, as indicated in the
following diagram:

B0

v

��

gv
// C0

w

��

B1

g
==

wg
// C1.

By considering this construction for all possible g, we obtain a diagram as follows:

C(B1, C0)
v∗ //

((

w∗

��

C(B0, C0)

w∗

��

CGWH↓(B,C)

66

vv

C(B1, C1)
v∗

// C(B0, C1).

The bottom right triangle is a distorted pullback square, by the definition of CGWH↓(B,C). We define

F (B,C) = (C(B1, C0) −→ CGWH1(B,C)) ∈ CGWH↓ .

Proposition 32.1. [prop-box-f]

There is a natural bijection CGWH↓(A,F (B,C)) = CGWH↓(A�B,C), making CGWH↓ a closed
symmetric monoidal category.

Proof. A morphism from A to F (B,C) consists of a map f0,1 : A0 → C(B1, C0) together with a map

A1 → CGWH↓(B,C), which in turn consists of maps f1,0 : A1 → C(B0, C0) and f1,1 : A1 → C(B1, C1).

These three maps are subject to some compatibility conditions. Adjointly, we have maps f#
0,1 : A0×B1 → C0

and f#
1,0 : A1×B0 → C0 and f#

1,1 : A1×B1 → C1. One of the compatibility conditions implies that the diagram

A0 ×B0
u×1
//

1×v
��

A1 ×B0

f#
10

��

A0 ×B1
f#
01

// C0

commutes; we write f#
0,0 for the resulting map A0×B0 → C0. We thus have compatible maps f#

i,j : Ai×Bj →
Cij for all i, j ∈ {0, 1}, and thus a map A�B → C as discussed previously. We leave it to the reader to
check that this construction is bijective. �
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Definition 32.2. [defn-orthogonal]

Suppose we have two objects A = (A0
u−→ A1) and B = (B0

v−→ B1) in CGWH↓. We say that A (or u)
is left orthogonal to B (or v), or that B is right orthogonal to A, if for every commutative square as shown
(without the h) there exists a map h making the whole diagram commute.

A0

u

��

f0 // B0

v

��

A1

h

>>

f1

// B1

(We say that h fills in the square.) It is equivalent to say that the map F (A,B) ∈ CGWH↓ is surjective.
Given a class M of maps, we write ⊥M for the class of maps that are left orthogonal to every map in

M , and M⊥ for the class of maps that are right orthogonal to every map in M .

Example 32.3. (a) If M = {∅ → 1} then M⊥ is the class of surjective maps.
(b) If M is the class of all maps of the form ∅ → B, then M⊥ is the class of all split surjections. Dually,

if M is the class of all maps of the form A→ 1, then ⊥M is the class of all split monomorphisms.

(c) If M is the class of all maps, then ⊥M is the class of homeomorphisms. Indeed, if (A0
u−→ A1) ∈ ⊥M

then we can consider B = (A0 → 1) to see that u is a split monomorphism, and then 1 → A1/A0

to see that u is also surjective. By a dual argument, M⊥ is also the class of homeomorphisms.

33. Fibrations, cofibrations and lifting properties

33.1. Cofibrations.

Definition 33.1. [defn-cofibration]
Let j : X −→ Y be a map. Define Cyl(X) = I ×X, and let i1 : X −→ Cyl(X) be the map i1(x) = (0, x).

Let Cyl(j) = (I ×X) ∪X Y be the following pushout:

X
i1 //

j

��

Cyl(X)

��

Y // Cyl(j).

This is called the mapping cylinder of i. There is an evident map k : (I ×X) ∪X Y −→ I × Y , which maps
I ×X by 1× j and Y by i1. We say that j is a cofibration if there is a map r : I × Y −→ (I ×X) ∪X Y such
that rk = 1. This means that I × Y can be pushed down continuously onto the subspace (I ×X) ∪X Y .

A cofibration which is a homotopy equivalence is called an acyclic cofibration. We write cof and acf for
the classes of cofibrations and acyclic cofibrations.

Remark 33.2. The map k : Cyl(j) −→ Cyl(X) above can also be thought of as the smashout map
(1 � I)�j. Thus j is a cofibration if and only if (1 � I)�j is a split monomorphism.

The idea is that a cofibration is a homotopically well-behaved inclusion. The following theorem gives a
convenient test.

Theorem 33.3. [thm-ndr]
A map i : X −→ Y is a cofibration if and only if it is a closed inclusion (so we can think of X as a closed

subspace of Y ) and there are maps u : Y −→ I and h : I × Y −→ Y such that

(1) u−1{0} = X
(2) h1 = 1Y
(3) ht|X = 1X for all t.
(4) h0(y) ∈ X for all y such that u(y) < 1.

Here ht : Y −→ Y is defined by ht(y) = h(t, y).
Moreover, i is an acyclic cofibration if and only if we can choose u, h such that u(y) ≤ 1/2 for all y, and

thus h1(Y ) = X.

242



Example 33.4. [eg-cofibrations]

(1) A smooth closed embedding of manifolds is a cofibration.
(2) The inclusion of a subcomplex in a simplicial complex is a cofibration.
(3) The inclusion of a closed subvariety in a real or complex projective variety is a cofibration.
(4) For an example in the other direction, consider the “Hawaian earrings” space E, which is the union

of the circles of radius 1/n centred at (1/n, 0) ∈ R2 as n runs from 1 to ∞. The inclusion of the
one-point space {(0, 0)} in E is not a cofibration.

The following fact turns out to be crucial.

Proposition 33.5. [prop-smashout-cof]
The smashout of two cofibrations is a cofibration. If either one is a homotopy equivalence, then so is

the smashout. The crossmap of a cofibration and a fibration is a fibration. If either one is a homotopy
equivalence, then so is the crossmap.

The following homotopy extension property of cofibrations is very useful.

Proposition 33.6. Let X be a closed subspace of a space Y , such that the inclusion map i : X −→ Y is
a cofibration. Suppose we are given a map f : Y −→ Z, and a homotopy gt : X −→ Z ending with g1 = f |X .
Then the homotopy can be extended to give a homotopy ht : Y −→ Z with ht|X = gt and h1 = f .

Conversely, if X is any closed subspace of Y with this homotopy extension property, then the inclusion
X −→ Y is a cofibration.

33.2. Fibrations. The dual concept is that of a fibration.

Definition 33.7. [defn-fibration]
Let q : E −→ B be a map. As before we define

Path(B) = C(I,B) = { continuous paths ω : I −→ B}.
Let p1 : Path(B) −→ B be the map p1(ω) = ω(1), and define the mapping path space Path(q) = C(I,B)×BE
by the following pullback:

Path(i) //

��

Path(B)

p1

��

E
q

// B.

In other words,
Path(q) = {(ω, e) ∈ C(I,B)× E : ω(1) = q(e)},

so a point of Path(q) is a path in B together with a lift of the final point to E. There is an evident map
r : Path(E) −→ Path(q), given by r(α) = (q ◦ α, α(1)). We say that q is a (Hurewicz) fibration if there is a
map l : Path(q) −→ Path(E) such that rl = 1. This means that α = l(ω, e) is a path in E which is a lift of
ω (in the sense that q ◦ α = ω), ending at α(1) = e, which is our given lift of ω(1). Such a map l is called
a lifting function for q. A fibration which is also a homotopy equivalence is called an acyclic fibration. We
write fib and afb for the classes of fibrations and acyclic fibrations.

Remark 33.8. The map r : Path(E) −→ Path(q) defined above can also be thought of as the crossmap
F (1 � I, q). Thus, q is a fibration if and only if F (1 � I, q) is a split epimorphism.

The idea is that a fibration is a homotopically well-behaved projection map.

Example 33.9. [eg-bundles]
Under mild technical conditions (for example, if the base space is a metric space or a CW complex —

see Section 33.7), every locally-trivial fibre bundle is a fibration. Here are some interesting examples of
locally-trivial fibre bundles.

(1) Covering maps; in particular, quotients by discrete group actions; for example, the covering of a
compact Riemann surface of genus greater than one by the unit disc.
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(2) Maps of the configuration spaces FkC.

(3) The fibration O(n − 1) −→ O(n)
q−→ Sn−1, where O(n) is the space of n × n orthogonal matrices,

and q(A) = Aen, where en is the last basis vector in Rn. (When we say that F −→ E
q−→ B is a

fibration, we mean that q is a fibration and F = fib(q).)

(4) The fibration Pn−1 −→ H
q−→ Pm, where m ≤ n, H is Milnor’s hypersurface {([z], [w]) ∈ Pn×Pm :∑m

i=0 ziwi = 0}, and q([z], [w]) = [w].

(5) The fibration S1 −→ S2n+1 q−→ Pn. The case n = 1 is especially interesting. There we can identify
S3 with {(z, w) ∈ C2 : |z|2 + |w|2 = 1} and P1 with C ∪ {∞}, and q with the map (z, w) 7→ z/w.
As P1 is also homeomorphic to S2, we get a fibration S1 −→ S3 −→ S2.

(6) It can be shown that any surjective submersion of manifolds is a locally trivial bundle. (A smooth
map f : M −→ N is said to be a submersion if the induced map of tangent spaces TxM −→ Tf(x)N
is surjective for all x ∈M .)

Example 33.10. [eg-fibrations]
We now list some fibrations which are not locally trivial bundles.

(1) For any space X, there is a fibration ΩX −→ PX
p1−→ X.

(2) For any n > 0 there is a 2-local fibration Sn
η−→ ΩSn+1 H−→ ΩS2n+1, called the EHP fibration. This

really means that there is a map H : ΩSn+1 −→ ΩS2n+1 and a map f : Sn −→ PH which induces an
isomorphism π∗(S

n)/2 ' π∗(PH)/2, and that the composite Sn −→ PH −→ ΩSn+1 is η.
(3) It can be shown that the homotopy fibre of the inclusion X ∨ Y −→ X × Y is homotopy equivalent

to Σ((ΩX) ∧ (ΩY )).

Example 33.11. [eg-not-fibration]
If B = R and

E = {(x, y) ∈ R2 : (x ≤ 0 and |y| = |x|) or (x ≥ 0 and y = 0)}

then the vertical projection E −→ B is not a fibration.

Theorem 33.12. [thm-orthogonal]

(1) A map is a cofibration if and only if it is left orthogonal to all maps of the form p1 : Path(B) � B,
if and only if it is left orthogonal to every acyclic fibration. In symbols:

cof = ⊥{ maps of the form p1 : Path(B) � B} = ⊥ afb .

(2) A map is a fibration if and only if it is right orthogonal to all maps of the form i1 : X � Cyl(X),
if and only if it is right orthogonal to every acyclic cofibration. In symbols:

fib = { maps of the form i1 : X � Cyl(X)}⊥ = acf⊥ .

We also have acf = ⊥ fib and afb = cof⊥.

Proof. Prove this �

Corollary 33.13. [cor-orthogonal]
The classes cof and acf are closed under composition, disjoint unions, pushouts, retractions, and se-

quential colimits. The classes fib and afb are closed under compositions, products, pullbacks, retractions,
and sequential inverse limits. All four classes contain all homeomorphisms.

Proof. Prove this �

Proposition 33.14. [prop-factor]
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Any map f : X −→ Y can be fitted into a natural commutative diagram as shown, in which the arrow
marked cof is a cofibration and so on.

X // cof //

heq

��

Cyl(f)

heq

��

Path(f)
fib

// // Y.

Proof. Prove this �

The following propositions are also useful.

Proposition 33.15. [prop-map-cof]
If X is compact and j : Y −→ Z is a cofibration then the map j∗ : C(X,Y ) −→ C(X,Z) is a cofibration.

Proof. Prove this �

Proposition 33.16. [prop-pullback-cof]
Suppose that we have a pullback square as follows, in which j is a cofibration and q is a fibration. Then

j′ is a cofibration and q′ is a fibration.

E′
j′
//

q′

��

E

q

��

B′
j
// B.

Proof. Prove this �

Proposition 33.17. Let j : W −→ X be a map. The following are equivalent:

(a) j is a cofibration.
(b) j is left orthogonal to all maps of the form p1 : Path(E) −→ E.
(c) j has the homotopy extension property: for any map f : X −→ E and any homotopy gt : W −→ E

ending with g1 = fj, there is a homotopy ht : X −→ E extending gt (in the sense that ht ◦ j = gt)
and ending with h1 = f .

Proof. (a)⇒(c): Let j be a cofibration, so there is a retraction r : I ×X −→ I ×W ∪W X. Given maps
f : X −→ E and g : I ×W −→ E as in (c) we define a map k : I ×W ∪W X −→ E by k(t, w) = g(t, w) on I ×W
and k(x) = f(x) on X; this is consistent with the equivalence relation (1, w) = jw because g(1, w) = fj(w).
We then define h = kr : I ×X −→ X, and check that this is as required in (c).

(c)⇒(a): Suppose that (c) holds. Take E = I ×W ∪W X, and let f : X −→ E and g : I ×W −→ E be
the obvious maps. We then get a map h : I ×X −→ E such that h(1, x) = f(x) and h(t, jw) = (t, w) when
w ∈W . It follows that h is a retraction onto I ×W ∪W X, so j is a cofibration.

(b)⇔(c): A square of the form

W

j

��

g#
// Path(E)

p1

��

X
f

// E

is the same thing as a pair of maps f : X −→ E, g : I ×W −→ E such that g(1, w) = fj(w), via the usual
translation g(t, w) = g#(w)(t). A fill in map h# : X −→ Path(E) with p1h

# = f and h#j = g# is the same
as a map h : I −→ E such that h(1, x) = f(x) and h(t, jw) = g(t, w). Thus (b) is just a translation of (c). �

Proposition 33.18. Let q : E −→ B be a map. The following are equivalent:

(a) q is a fibration.
(b) q is right orthogonal to all maps of the form i1 : X −→ I ×X.
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(c) q has the homotopy lifting property: given a homotopy gt : X −→ B and a map f : X −→ E which
lifts g1 (in the sense that qf = g1) there is a lifted homotopy ht : X −→ E with qht = gt and h1 = f .

Proof. Exercise. �

33.3. Neighbourhood deformation retracts.

Definition 33.19. A closed subspace W ⊆ X is a neighbourhood deformation retract (NDR) if there
exist maps u : X −→ I and h : I ×X −→ X such that

(a) W = u−1{0}.
(b) h1 = 1X .
(c) ht|W = 1W for all t ∈ I.
(d) h0(x) ∈W for all x ∈ X such that u(x) < 1.

We say that (u, h) is a representation of W as an NDR. We say that W is a deformation retract (DR) if
we can choose h such that h1(X) ⊆ W . This holds automatically if u(x) < 1 for all x, and conversely if
h1(X) ⊆W then we can replace u by u/2 and assume that u < 1 everywhere. Note also that in this case h1

is a retraction of X onto W .

Proposition 33.20. If W ⊆ X and Y ⊆ Z are NDRs, then so is (W×Z)∪(X×Y ) ⊆ X×Z. Moreover,
this is a DR if either W ⊆ X or Y ⊆ Z is.

Proof. Let (u, h) and (v, k) represent W and Y as NDR’s. Write T = (W × Z) ∪ (X × Y ). Define
w : X × Z −→ I by w(x, z) = min(u(x), v(z)); it is clear that w−1{0} = T . Put

Q = {(t, x, z, a, b) ∈ I ×X × Z × I2 : (1− a)u(x) = (1− t)w(x, z) = (1− b)v(z)}
and define maps

I ×X × Z π←− Q q̃−→ X × Z
by π(t, x, z, a, b) = (t, x, z) and

q̃(t, x, z, a, b) = (h(a, x), k(b, z)).

Note that Q is closed in I × X × Z × I2. Suppose that (t, x, z) ∈ I × X × Z, and we seek a preimage
(t, x, z, a, b) in Q.

• If u(x) > 0 then we note that w(x, z) ≤ u(x) so we can and must take a = 1− (1− t)w(x, z)/u(x).
• On the other hand, if u(x) = 0 then w(x, z) = 0 and we can take a to be any point in I. In these

cases we always have x ∈W and so h(a, x) = x (independent of a).
• Similarly, if v(z) > 0 then we can and must take b = 1− (1− t)w(x, z)/v(z). However, if v(z) = 0

then we can take b to be any element of I, and we always have k(b, z) = z.

In particular, we see that π is surjective. Standard theory of CGWH spaces shows that π is also a closed
map, so it is a quotient map. The above comments also show that q̃ is constant on the fibres of π, so there
is a unique map q : I ×X × Z satisfying qπ = q̃. Because π is a quotient map, we see that q is continuous.
We claim that the pair (w, q) represents (X × Z, T ) as an NDR pair.

(a) We have already remarked that w−1{0} = T .
(b) If (1, x, z, a, b) ∈ Q then we must have (1 − a)u(x) = 0, so a = 1 or u(x) = 0 (which means that

x ∈ W ). In either case we have h(a, x) = x. Similarly, we have k(b, z) = z. This shows that
q1 = 1X×Z .

(c) If (x, z) ∈ T then w(x, z) = 0. Thus, if (t, x, z, a, b) ∈ Q then we again have (1 − a)u(x) =
(1− b)v(z) = 0 and so h(a, x) = x and k(b, z) = z. This shows that qt|T = 1T for all t.

(d) Now suppose that w(x, z) < 1. This means that either (u(x) ≤ v(z) and u(x) < 1), or (v(z) ≤ u(x)
and v(z) < 1). Suppose that the first of these holds, so w(x, z) = u(x). If (0, x, z, a, b) ∈ Q we must
then have (1 − a)u(x) = u(x), so either a = 0 or u(x) = 0. In either case, the axioms for (u, h)
give h(a, x) ∈ W . Similarly, if our second alternative holds, then k(b, z) ∈ Y . Either way, we have
q(0, x, z) ∈ T , as required.

This completes the proof that (X × Z, T ) is an NDR pair.
If W is a DR of X then we may assume that u < 1 everywhere. It follows immediately that w < 1

everywhere and thus that T is a DR of X × Z. Clearly this also applies if Y is a DR of Z. �
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Proposition 33.21. A map j : W −→ X is a cofibration if and only if it is a closed inclusion and jW is
an NDR of X.

Proof. First suppose that j is a closed inclusion (so we can harmlessly think of W as a subspace
of X) and that W is an NDR of X. It is easy to see that {1} is a DR of I (take u(s) = 1 − s and
h(t, s) = 1− t+ ts). It follows from Proposition 33.20 that (1×X)∪ (I ×W ) is a DR of I ×X, so there is a
map r = h1 : I ×X −→ 1×X ∪ I ×W which is the identity on (1×X)∪ (I ×W ). As j is a closed inclusion,
one can check that Cyl(j) is just the space (1 ×X) ∪ (I ×W ), so this map r is precisely what we need to
show that j is a cofibration.

Conversely, suppose that j : W −→ X is a cofibration. One can check from the definitions that the map

W
i1−→ I ×W −→ Cyl(j) is always a closed inclusion. As j is a cofibration, the evident map Cyl(j) −→ I ×X

has a left inverse. As everything is weakly Hausdorff, it follows that Cyl(j) −→ I×X is also a closed inclusion,
and thus that the composite map W −→ I ×X (sending w to (1, j(w))) is also a closed inclusion. It is not
hard to conclude that j is a closed inclusion. We may therefore harmlessly think of W as a subspace of X,
and of Cyl(j) as (1×X)∪ (I×W ). The retraction r : I×X −→ (1×X)∪ (I×W ) ⊆ I×X thus has the form
r(t, x) = (v(t, x), h(t, x)), where v : I ×X −→ I and h : I ×X −→ X. Now v is adjoint to a continuous map
v# : X → C(I, I), and the topology on C(I, I) comes from the metric d(f, g) = sup{|f(t) − g(t)| : t ∈ I},
and the identity map gives a point i ∈ C(I, I). We can thus define a continuous map u : X → I by
u(x) = d(i, v#(x)). We claim that (u, h) represents W as an NDR in X.

(a) If x ∈W then for all t we have (v(t, x), h(t, x)) = r(t, x) = (t, x), so v(t, x) = t; this gives u(x) = 0.
Conversely, suppose that x 6∈ W . This means that the point r(1, x) = (1, x) does not lie in the
closed set I ×W , so by continuity there exists t < 1 such that r(t, x) 6∈ (I ×W ). However, we have
r(t, x) ∈ (I ×W )∪ (1×X), so we must have r(t, x) ∈ (1×X), so v(t, x) = 1 6= t, so u(x) > 0. This
shows that u−1{0} = W .

(b) We know that r is a retraction onto a subspace containing 1×X, and it follows immediately that
h1 = 1X .

(c) We know that r is a retraction onto a subspace containing I ×W , and it follows immediately that
ht|W = 1W for all t.

(d) Note that

u(x) = sup{v(t, x)− t : t ∈ I} ≥ v(0, x),

so if u(x) < 1 then v(0, x) < 1 so r(0, x) 6∈ 1×X so we must have r(0, x) ∈ I ×W , so h(0, x) ∈W .

�

Corollary 33.22. [cor-cof-smashout]
A smashout of cofibrations is a cofibration.

Proof. Let j : W −→ X and k : Y −→ Z be cofibrations. Then we can think of j and k as inclusions of
subspaces, and their smashout is just the inclusion W × Z ∪ X × Y −→ X × Z, so the claim follows from
Proposition 33.20. �

Proposition 33.23. [prop-acf-dr]
A map j : W −→ X is an acyclic cofibration if and only if it is a closed inclusion and jW is a DR of X.

Proof. By proposition 33.21, we may assume that j is the inclusion of a closed subspace and that W
is an NDR of X, represented by (u, h) say. If W is a DR we may assume that h1(X) = W , and it is easy to
check that h1 : X −→W is a homotopy inverse for j, so that j is an acyclic cofibration.

For the converse, suppose that j is an acyclic cofibration. We then have a homotopy inverse f : X −→W
with fj ' 1W and jf ' 1X . After extending the homotopy fj ' 1W over X (using the homotopy extension
property of cofibrations) we may assume that fj = 1W . Let gt : X −→ X be a homotopy with g0 = 1X and
g1 = jf . Define P = {0, 1} ×X ∪ I ×W and Q = I ×X. It is easy to see that {0, 1} ⊂ I is an NDR, so
Proposition 33.20 tells us that P is an NDR of Q, and thus that 1×Q∪ I×P is a retract of I×Q = I2×X.
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We define a map h : 1×Q ∪ I × P −→ X by

h(s, 0, x) = g(s, jf(x))

h(1, t, x) = g(1− t, x)

h(s, 1, x) = x

h(s, t, w) = g(s(1− t), j(w)) for w ∈W.

Note that the first and second clauses are consistent because g0 = jf and fj = 1W so g0jf = jfjf = jf . All
other consistency checks are left to the reader. Because 1×Q ∪ I × P is a retract of I2 ×X, we can extend
h over all of I2 ×X (just compose with the retraction). Having done this, we define k(t, x) = h(0, t, x), so
that k : I ×X −→ X. We find that k(1, x) = x for all x, that k(t, w) = w for all t and all w ∈ W , and that
k(0, x) = f(x) ∈W for all x. It follows that (u, k) represents W as a DR of X. �

Corollary 33.24. [cor-acf-smashout]
The smashout of a cofibration and an acyclic cofibration is an acyclic cofibration.

Proof. This is immediate from Propositions 33.20 and 33.23. �

Proposition 33.25. [prop-acf-retract]
If j : W −→ X is an acyclic cofibration then there is a diagram

W
��

j

��

//
j
// X
��

i1

��

r // // W
��

j

��

X //
k
// I ×X

s
// // X,

in which rj = 1W and sk = 1X . In other words, the map j is a retract of the map i1.

Proof. We may assume that W is a closed subspace of X. Choose (u, h) representing W as a DR
of X. Define g : I × X −→ X by g(t, x) = h(max(t/ux, 1), x). This is clearly continuous on I × (X \W ).
Suppose that (t, w) ∈ I ×W (so that g(t, w) = w) and that U is an open neighbourhood of w in X. Write
U ′ = {x ∈ X : h(I × {x}) ⊆ U}. As in the proof of Proposition 33.20, we see that this is an open
neighbourhood of w. Clearly g(I × U ′) ⊆ U , and thus g is continuous at (t, w). This shows that g is
continuous everywhere. One can check that (u, g) represents W as a DR of X, and that g(t, x) = x whenever
t ≥ ux.

Now define

k(x) = (1− u(x), x)

r(x) = g(0, x)

s(t, x) = g(1− t, x).

One can check that the diagram commutes. �

33.4. Further orthogonality properties.

Corollary 33.26. [prop-acf-perp-fib]
If j : W −→ X is an acyclic cofibration and q : E −→ B is a fibration then j is left orthogonal to q.

Proof. Suppose we are given a diagram of the following form:

W

j

��

f
// E

q

��

X
g
// B.
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Choose maps k, r, s as in Proposition 33.25. The homotopy lifting property tells us that there is a map
h : I ×X −→ E making the following diagram commute:

X
fr

//

i1
��

E

q

��

I ×X
h

;;

gs
// B.

It follows that we can add the map hk : X −→ E to the original diagram and it will still commute. This
means that j is orthogonal to q. �

Proposition 33.27. [prop-afb-over]
If q : E −→ B is an acyclic fibration then it is homotopy equivalent over B to B.

Proof. As q is a homotopy equivalence, there is a map e : B −→ E such that qe ' 1B and eq ' 1E .
After lifting the homotopy qe ' 1B (using the homotopy lifting property of fibrations) we may assume that
qe = 1B . Choose a homotopy gt : E −→ E with g0 = 1E and g1 = eq. Write J = {1} × I ∪ I × {0, 1} ⊂ I2,
and define maps n : J × E −→ E and m : I2 × E −→ B by

n(s, 0, x) = eqg(s, x)

n(1, t, x) = g(1− t, x)

n(s, 1, x) = x

m(s, t, x) = qg(s(1− t), x).

One can check that the following diagram commutes:

J × E n //

��

��

E

q

��

I2 × E
m

// B.

The inclusion J ×E � I2 ×E is an acyclic cofibration, so it is orthogonal to q by Proposition 33.26. Thus,
there is a map l : I2 × E −→ E filling in the square. Define h : I × E −→ E by h(t, x) = l(0, t, x). Then
h(0, x) = eq(x) and h(1, x) = x and qh(t, x) = q(x), so h is a homotopy over B between eq and 1E , as
required. �

Corollary 33.28. [cor-afb-fibres]
If q : E −→ B is an acyclic fibration, then for each b ∈ B the fibre q−1{b} is contractible.

Proof. Prove this �

Proposition 33.29. [prop-cof-perp-afb]
If j : W −→ X is a cofibration and q : E −→ B is an acyclic fibration, then j is left orthogonal to q.

Proof. Let e and h be as in the proof of Proposition 33.27. Given a diagram of the form

W

j

��

f
// E

q

��

X
g
// B,

we consider the diagram

I ×W ∪ 0×X
��

��

k // E

q

��

I ×X
g◦proj

// B.
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The left hand vertical map is an acyclic cofibration, which is orthogonal to q by Proposition 33.26. There is
thus a map l : I ×X −→ E filling in the square. One can check that the map x 7→ l(1, x) fills in the original
square. �

Proposition 33.30. [prop-cof-perp]

We have acf⊥ = fib and cof⊥ = afb.

Proof. We have seen in Propositions 33.26 and 33.29 that acf ⊥ fib and cof ⊥ afb, so that fib ⊆ acf⊥

and afb ⊆ cof⊥. Suppose that q ∈ acf⊥. Recall that Path(q) = {(ω, e) ∈ Path(B)× E : ω(1) = q(e)}. We
define maps f : Path(q) −→ E and g : I × Path(q) −→ B by f(ω, e) = e and g(t, ω, e) = ω(t). This gives a
diagram as follows:

Path(q)
��

i1

��

f
// E

q

��

I × Path(q)
g

// B.

As i1 is clearly an acyclic cofibration, there is a map m : I × Path(q) −→ E filling in the square. One can
check that the adjoint map l = m# : Path(q) −→ Path(E) (defined by l(ω, e)(t) = m(t, ω, e)) is a path-lifting
function for q, so q is a fibration.

Now suppose that q ∈ cof⊥. The above shows that q is a fibration; we need to show that it is also a
homotopy equivalence. By filling in the square on the left below, we get a map e : B −→ E with qe = 1B . We
then fill in the right hand square (in which g(0, x) = eq(x) and g(1, x) = x) to get a homotopy h : I×E −→ E
over B between eq and 1E , as required.

∅
��

��

// // E

q

��

{0, 1} × E
��

��

g
// E

q

��

B
1
// B I × E

q◦proj
// B.

�

Proposition 33.31. [prop-xmap-fib]
If j : W −→ X is a cofibration and q : E −→ B is a fibration then the crossmap F (j, q) : C(X,E) −→

C(W,E)×C(W,B) C(X,B) is a fibration. If j or q is acyclic then so is F (j, q).

Proof. Let i be an acyclic cofibration. Then i�j is an acyclic cofibration and thus orthogonal to q,
so F (i�j, q) is surjective. However, F (i, F (j, q)) = F (i�j, q) so F (i, F (j, q)) is surjective, so i is orthogonal

to F (j, q). This holds for all i ∈ acf, so F (j, q) ∈ acf⊥ = fib as claimed. A similar argument shows that if

j ∈ acf or q ∈ afb then F (j, q) ∈ cof⊥ = fib. �

Corollary 33.32. [cor-restrict-fib]
If j : W −→ X is a cofibration and E is any space, then the restriction map j∗ : C(X,E) −→ C(W,E) is a

fibration. If j is acyclic then so is j∗.

Proof. Apply Proposition 33.31 to the map q : E −→ 0. �

Proposition 33.33. [prop-perp-fib]
We have acf = ⊥ fib and cof = ⊥ afb.

Proof. We already know that acf ⊆ ⊥ fib and cof ⊆ ⊥ afb. Suppose that j ∈ ⊥ afb. Let f : I ×W −→
Cyl(j) and g : X −→ Cyl(j) be the evident maps, so that f(1, w) = gj(w). As usual, we write f# : W −→
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Path Cyl(j) for the adjoint map, defined by f#(w)(t) = f(t, w). This gives a commutative square as follows:

W
��

j

��

f#

// Path Cyl(j)

p1

��

X
g
// Cyl(j).

We know from Corollary 33.32 that the map p1 is an acyclic fibration and thus is orthogonal to j, so there is a
map r# : X −→ Path Cyl(j) filling in the square. One can check that the corresponding map r : I×X −→ Cyl(j)
(defined by r(t, x) = r#(t)(x)) is a retraction, so that j is a cofibration.

Now suppose that j ∈ ⊥ fib. From the above, we know that j is a cofibration, and we need to show that
it is also a homotopy equivalence. We first fill in the left hand diagram below to get a map f : X −→W with
fj = 1W . We then define c : W −→ Path(X) by c(w)(t) = j(w), and apply Corollary 33.32 to the inclusion
{0, 1} � I to see that (p0, p1) : Path(E) −→ E × E is a fibration. This means that we can fill in the right
hand square below to get a map h# : X −→ Path(X) whose adjoint is a homotopy between 1X and fj under
W . This shows that j is a homotopy equivalence, as claimed. �

33.5. Measured paths. So far we have dealt with paths u : [0, 1] → X, which we can think of as
having length one. It is sometimes convenient to work instead with paths of variable length (which will allow
us to avoid awkward reparametrisation when we join paths together). The relevant definitions are as follows.

Definition 33.34. [defn-mpath]
Let X be a space. We put

MPath(X) = {(a, u) : a ∈ R+, u ∈ C(R+, X), u(t) = u(a) for all t ≥ a}.
There is a closed subspace of R+ × C(R+, X), and we give it the subspace topology. The elements
of MPath(X) are called measured paths. We also define continuous maps σ, τ : MPath(X) → X and
λ : MPath(X) → R+ by σ(a, u) = u(0) and τ(a, u) = u(a) and λ(a, u) = a. We call these the source,
target and length of (a, u), respectively. We put

MPath(X)(x, y) = { measured paths in X from x to y }
= {(a, u) ∈ MPath(X) : σ(a, u) = x, τ(a, u) = y}.

Remark 33.35. [rem-mpath]
For a slightly different picture, we can put

MPath′(X) = {(r, ω) : r ∈ R+, ω ∈ C([0, r], X)}.
It is clear that there is a bijection MPath′(X)→ MPath(X) given by (a, u) 7→ (a, u◦min(−, a)). Conceptually
it is more natural to work with MPath′(X) but to define the topology and verify that various constructions
are continuous it is easier to use the original definition.

Remark 33.36. [rem-mpath-join]
Suppose we have a measured path (a, u) from x to y, and a measured path (b, v) from y to z. We define

(b, v) ∗ (a, u) = (a+ b, w), where

w(t) =

{
u(t) if 0 ≤ t ≤ a
v(t− a) if a ≤ t.

This gives a measured path from x to z, called the join of (a, u) and (b, v). It is not hard to see that this
gives a continuous operation

∗ : MPath(X)×X MPath(X)→ MPath(X)

that is strictly associative (not just up to homotopy). Moreover, if we put 1x = (0, cx) (where cx : R+ → X
is the constant map with value x) then we have u = u∗1x = 1y ∗u for all u ∈ MPath(X)(x, y). We therefore
have a category whose objects are the points of X and whose morphisms are the measured paths.

We can compare measured and unmeasured paths as follows:
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Proposition 33.37. [prop-mpath-path]
There are continuous maps

i : Path(X)→ MPath(X) p : MPath(X)→ Path(X)

h : [0, 1]× Path(X) k : [0, 1]×MPath(X)→ MPath(X)

such that

h(0, u) = pi(u)

h(1, u) = u

k(0, (a, v)) = ip(a, v)

k(1, (a, v)) = (a, v)

σ(h(t, u)) = σ(i(u)) = σ(u)

σ(k(t, (a, v))) = σ(p(a, v)) = σ(a, v)

τ(h(t, u)) = τ(i(u)) = τ(u)

τ(k(t, (a, v))) = τ(p(a, v)) = τ(a, v).

Specifically, we can take

i(u) = (1, i1(u)) i1(u)(s) = u(min(s, 1))

p(a, v)(s) = v(s+ as)

h(t, u)(s) = u(min(2s− ts, 1))

k(t, (a, v)) = (1− t+ at, k1(t, (a, v))) k1(t, (a, v))(s) = v(s+ as− ast).

Proof. Almost all of the claimed identities follow directly from the formulae. We will just explain two
points that are less obvious. Firstly, to check that k(0, (a, v)) = ip(a, v), we need to know that v(s+ as) =
v(min(s, 1) + amin(s, 1)) for all (a, v) ∈ MPath(X) and s ≥ 0. This is clear when s ≤ 1. If s ≥ 1 then
the claim is that v(s + as) = v(1 + a), and this again holds because s + as, 1 + a ≥ a and v is constant
on [a,∞) by assumption. Secondly, we need to show that τ(k(t, (a, v))) = τ(a, v), or equivalently that
v((1 − t + at)(1 + a − at)) = v(a). As v is constant on [a,∞), it will suffice to check that the number
b = (1− t+ at)(1 + a− at)− a is nonnegative (for all a ∈ R+ and t ∈ [0, 1]). One can check directly that

b = (1− t)(1 + a2t− at) = (1− t)(1 + ((a− 1
2 )2 − 1

4 )t) ≥ (1− t)(1− t/4) ≥ 0

as required.
The only other thing to check is that the maps i, p, h and k are continuous. We will prove this for k;

the other cases can be handled in a similar way and are left to the reader. As the first component of k is
clearly continuous, we need only discuss k1. We can define a map

k1 : [0, 1]× (R+ × C(R+, X))→ C(R+, X)

by the same formula as above, and it will be enough to check that this extended map is continuous. This is
adjoint to the map

K : R+ × [0, 1]× R+ × C(R+, X)→ X

given by K(s, t, a, v) = v(s + as − ast). We can define a continuous map L : R+ × [0, 1] × R+ → R+ by
L(s, t, a) = s+ as− ast and then K is the composite

R+ × [0, 1]× R+ × C(R+, X)
L×1−−−→ R+ × C(R+, X)

ev−→ X.

This shows that K is continuous, so k1 is also continuous, as required. �

Corollary 33.38. [cor-mpath-path]
For all x and y in X, the space MPath(X)(x, y) is homotopy equivalent to Path(X)(x, y). Thus, we

have Π1(X)(x, y) = π0 MPath(X)(x, y).

Proof. Because the maps i, p, h and k commute with σ and τ , they restrict to give the required maps
and homotopies. �
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Definition 33.39. [defn-hurewicz-fibration]
Consider a continuous map q : E → B.

(a) Recall that

Path(q) = Path(B)×B E = {(u, e) ∈ Path(B)× E : u(0) = q(e)}.
(b) Analogously, we write

MPath(q) = MPath(B)×B E = {(a, u, e) ∈ MPath(B)× E : u(0) = q(e)}.
(c) Recall that a lifting function for q is a continuous map l : Path(q)→ Path(E) such that q(l(u, e)(s)) =

u(s) for all s ∈ [0, 1] and l(u, e)(0) = e. Equivalently, we must have

q∗ ◦ l = π0 : Path(B)×B E → Path(B)

σ ◦ l = π1 : Path(B)×B E → E.

(d) Analogously, measured lifting function for q is a continuous map m : MPath(q)→ MPath(E) such
that

q∗ ◦ l = π0 : MPath(B)×B E → MPath(B)

σ ◦ l = π1 : MPath(B)×B E → E.

Equivalently, m must have the form m(a, v, e) = (a,m1(a, v, e)) for some m1 : MPath(q) →
C(R+, E) with q(m1(a, v, e)(s)) = v(s) for all s ∈ R+ and m1(a, v, e)(0) = e.

Proposition 33.40. [prop-measured-lifting]
The map q is a Hurewicz fibration iff there is a lifting function for q iff there is a measured lifting function

for q.

Proof. The first iff is just the definition of a Hurewicz fibration, recorded as a reminder. The real point
is the second iff.

If m(a, u, e) = (a,m1(a, u, e)) is a measured lifting function then we can define a lifting function by
l(u, e) = m1(1, u, e). Conversely, suppose we start with a lifting function l. We then define

m1(a, v, e)(s) = l(p(a, v), e)(min(s, a)/(1 + a))

m(a, v, e) = (a,m1(a, v, e)).

This has m1(a, v, e)(0) = l(p(a, v), e)(0) = e and

q(m1(a, v, e)(s)) = q(l(p(a, v), e)(min(s, a)/(1 + a))) = p(a, v)(min(s, a)/(1 + a))) = v(min(s, a)) = v(s).

It follows that m is a measured lifting function. �

33.6. Schedules. From now on, we suppose that we have a set I and an open cover (Bi)i∈I for B. We
also put Ei = q−1(Bi), and let qi : Ei → Bi be the restriction of q. Suppose that we are given measured
lifting functions mi : MPath(Bi)×Bi Ei → MPath(Ei) for all i. We would like to combine these to construct
a measured lifting function m : Path(B) ×B E → Path(E). The basic idea is clear: given a measured path
(a, v) ∈ MPath(B) and a lift e ∈ E of v(0), we can break v into shorter paths each of which is contained in
some set Bi, then use the functions mi to lift these shorter paths in such a way that they can be rejoined to
give a lift of v. The problem is that we need to choose the breakpoints and the indices i in such a way that
the lifted path depends continuously on the original data. To make this work, we need two extra ingredients.

(a) We will assume that the index set I is well-ordered. If it does not have an obvious well-ordering,
we can use Theorem 35.27 to choose one.

(b) We need a partition of unity (fi)i∈I subordinate to the cover (Bi)i∈I . This means that the sets
Ci = {b ∈ B : fi(b) > 0} are open with Ci ⊆ Bi and the family (Ci)i∈I is locally finite. It will be
convenient to combine the maps fi into a single map f : I ×B → [0, 1] given by f(i, b) = fi(b).

Given these data, we can construct the combined lifting function m without any further arbitrary choices.
However, we will need some preparatory theory, which we now start to develop.

Definition 33.41. [defn-schedule]
A schedule (with values in I) is a triple s = (a, P, c), where:
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(a) a is a nonnegative real number.
(b) P is an equivalence relation on the interval (0, a] such that there are finitely many equivalence

classes, and each class has the form (x, y] for some x, y with 0 ≤ x < y ≤ a.
(c) c is a function from (0, a] to I that is constant on each equivalence class of P . (This means that

there is an induced map c : (0, a]/P → I. We do not assume that this is injective.)

We write λ(s) = a and call this the length of s. We also write Sched(I) for the set of all schedules. Note
that there is a unique schedule of length zero.

We introduce a topology on Sched(I) as follows. First, we put

Sched′(I) =
∐
n∈N

(Rn+ × In) =
∐
n∈N

∐
i∈In

Rn+,

and give this the obvious coproduct topology (which is locally compact Hausdorff and thus CGWH). Given
n ∈ N and a = (a1, . . . , an) ∈ Rn+ and i = (i1, . . . , in) ∈ In we have a schedule s = φ(n, a, i) = (a, P, c) given
by:

• a =
∑
k ak

• The equivalence classes for P are the intervals (bk, bk+1] (for 0 ≤ k < n), where bk =
∑
j<k aj .

• The map c : (0, a]→ I takes the value ik on the interval (bk, bk+1].

This construction gives a surjective map

φ : Sched′(I)→ Sched(I).

We declare that a set F ⊆ Sched(I) is closed iff φ−1(F ) is closed in
∐
n(Rn+ × In). Thus, φ is a quotient

map with respect to this topology.

Proposition 33.42. The space Sched(I) is CGWH.

Proof. Write this �

Definition 33.43. [dfn-follows]
Suppose we have a measured path (a, v) and a schedule s = (a, P, c) (with the same value of a). We

say that v (or (a, v)) follows s if v(t) ∈ Cc(t) for all t ∈ (0, a]. We write SPath(B) for the set of quadruples
(a, P, c, v) with this property, topologised as a subspace of Sched(I) ×MPath(B). Elements of SPath(B)
will be called scheduled paths. For z = (a, P, c, v) ∈ SPath(B) we put σ(z) = σ(a, v) = v(0) ∈ B and
τ(z) = τ(a, v) = v(a) ∈ B and λ(z) = a ∈ R+ and π(z) = (a, v) ∈ MPath(B).

Remark 33.44. [rem-follows]
Suppose we have a point z = (n, a, i) ∈ Sched′(I), and a measured path (a′, v) ∈ MPath(B). Put

bk =
∑
j<k aj as usual. We see that (a′, v) follows φ(z) iff a′ =

∑
k ak, and for all k ∈ {1, . . . , n} we have

(ak = 0 or v([bk, bk+1]) ⊆ Ck).

Proposition 33.45. [prop-spath-topology]
Put

SPath′(B) = {(z, a, v) : z ∈ Sched′(I), (a, v) ∈ MPath(B), and (a, v) follows φ(z)}.
Then there is a pullback square as follows, in which the horizontal maps are quotient maps and the vertical
maps are closed inclusions.

SPath′(B)
(φ×1)|SPath′(B)

// //

��

��

SPath(B)
��

��

Sched′(I)×MPath(B)
φ×1

// // Sched(I)×MPath(B).

Proof. First, it is clear from the definitions that the vertical maps are injective, the horizontal maps
are surjective, and the square is a pullback in the category of sets.

The map φ is a quotient map by the definition of the topology on Sched(I), so the bottom map φ × 1
is a quotient map by Proposition 23.32. Next, we claim that SPath′(B) is closed in Sched′(I)×MPath(B).
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As Sched′(I) is a coproduct of copies of Rn+, it will suffice to check that the intersection of SPath′(B) with
each copy of Rn+ ×MPath(B) is closed. More explicitly, fix an integer n ≥ 0 and a sequence i = (i1, . . . , in).
We need to show that the set

Q0 = {(a, a′, v) ∈ Rn+ ×MPath(B) : (a′, v) follows φ(n, a, i)}

is closed in Rn+ ×MPath(B). It is clear that the larger set

Q1 = {(a, a′, v) ∈ Rn+ ×MPath(B) : a′ =
∑
k

ak}

is closed. Define αk : Q1 → C(R+, X) by

αk(a, a′, v)(t) = v(min(t, ak) +
∑
j<k

aj).

By considering the adjoint map Q1 × R+ → X, we see that this is continuous. We also know from Re-
mark 23.22 that C(R+, Cik) is closed in C(R+, B). It follows that the set

Q2,k = α−1
k (C(R+, Cik)) ∪ {(a, a′, v) ∈ Q1 : ak = 0}

is closed in Q1. We also see from Remark 33.44 that Q0 =
⋂n
k=1Q2,k, so Q0 is closed in Rn+ ×MPath(B),

so SPath′(B) is closed in Sched′(I) ×MPath(B) as claimed. Now SPath′(B) = (φ × 1)−1(SPath(B)) and
φ× 1 is a quotient map. We can thus conclude that SPath(B) is closed in Sched(I)×MPath(B). As we are
topologising SPath(B) and SPath′(B) as subspaces of Sched(I)×MPath(B) and Sched′(I)×MPath(B), we
see that the vertical maps are closed inclusions. It follows that the square is a pullback of spaces, and thus
(by Proposition 23.48) that the top horizontal map is also a quotient map. �

Proposition 33.46. [prop-scheduled-lifting]
There is a canonical map m : SPath(B)×B E → MPath(E) with σ(m(z, e)) = e and q ◦m(z, e) = π(z).

Thus, any map θ : MPath(B)→ SPath(B) with πθ = 1 gives a measured lifting function m ◦ θ for q.

Of course it is not obvious that any such map θ exists, but we will construct one below.

Proof. First, we will modify the lifting functions mk slightly. Let Z be the space of measured paths of
length zero in B. This is closed in MPath(B) and is homeomorphic to B. The space MPath(Ck) is also closed
in MPath(B), and we put MPath+(Ck) = Z ∪MPath(Ck). As Ck ⊆ Bk and lifting paths of length zero is
trivial we see that there is an obvious way to define a lifting map mk : MPath+(Ck) → MPath(E). This is
continuous on Z and on MPath(Ck), and these sets are both closed, so mk is continuous on MPath+(Ck).

Now consider a point (n, a, i, a′, v) ∈ SPath′(B) and an element e0 ∈ E with q(e0) = v(0). Put (a, P, c) =
φ(n, a, i) ∈ Sched(I). Write bk =

∑
j<k aj so the equivalence classes for P are the intervals (bk, bk+1] (except

that some of these intervals may be empty, in which case they do not count as equivalence classes). We
then define vk : R+ → B by vk(t) = v(min(bk + t, bk+1)), so (ak, vk) ∈ MPath(B). Moreover, as v follows
(a, P, c) we must have vk((0, ak]) ⊆ Ck. If ak > 0 then it follows easily that (ak, vk) ∈ MPath(Ck), and if
ak = 0 then (ak, vk) ∈ Z, so in all cases we have (ak, vk) ∈ MPath+(Ck). We now define points ek ∈ E
and (ak, uk) ∈ MPath(E) recursively by (ak, uk) = mk(ak, vk, ek−1) and ek = uk(ak). We then define
m′(n, a, i, a′, v, e0) to be the join of all the measured paths (ak, uk), which has the form (a, u) for some
u : R+ → X. This gives a function m′ : SPath′(B)×BE → MPath(E). It is clear that any terms with ak = 0
can be omitted without changing u, so this induces a well-defined function m : SPath(B)×BE → MPath(E)
with m(a, P, c, v, e0) = (a, u). It is also clear that we have q ◦ u = v and u(0) = e0. We thus have a lifting
function as claimed, provided that m is continuous.

Recall that the map SPath′(B)→ SPath(B) is a quotient map. It follows using Proposition 23.48 that
the induced map SPath′(B)×B E → SPath(B)×B E is also a quotient map. Because of this, it will suffice
to check that m′ is continuous. Now fix n ∈ N and i ∈ In, and put

Q = {(t, a, a′, v, e0) ∈ R+ × Rn+ ×MPath(B)×B E : (a′, v) follows φ(n, a, i)}.

Define q : Q → X by q(t, a, a′, v) = u(t), where u is as constructed above. Thus, q is a restriction of the
adjoint of the second component of m. By a straightforward argument, it will suffice to show that q is
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continuous. We now put
Qk = {(t, a, a′, vv, e0) ∈ Q : bk ≤ t ≤ bk+1}

for 1 ≤ k ≤ n, and
Qn+1 = {(t, a, a′, vv, e0) ∈ Q : a ≤ t}.

This gives a finite list of closed subspaces whose union is Q, so it will suffice to prove that q|Qk is continuous
for all k. This restriction is built in a straightforward way from the maps mk, so continuity is clear. �

33.7. Numerably local fibrations are fibrations. This section should be removed in favour
of the previous one.

In this section we use the concept of a numerable open covering, as introduced in Section 22. We recall
from that section that most commonly considered spaces are paracompact, and in that context, every open
covering is numerable.

Definition 33.47. We say that a map q : E −→ B is a numerably local fibration if there is a numerable
covering B =

⋃
i∈I Bi such that the maps q : q−1Bi −→ Bi are all fibrations.

Definition 33.48. We say that a map q : E −→ B is a numerable fibre bundle if there is a numerable
covering B =

⋃
i∈I Bi and homeomorphisms fi : Bi × Fi −→ q−1Bi (for some collection of spaces Fi) such

that qfi(b, x) = b. It is easy to see that a numerable fibre bundle is a numerable fibration.

We now prove the following result:

Theorem 33.49. [thm-loc-fibn]
A numerable local fibration is a fibration. In particular, a numerable fibre bundle is a fibration. �

For the rest of these notes, we assume that q : E −→ B is a numerable local fibration, with a numerable
cover {Bi} as above and given functions fi : B −→ I with Bi = f−1

i (0, 1]. We will prove a number of lemmas
and then prove the theorem at the end of the notes.

Definition 33.50. Given a subset W ⊆ Path(B), we define

F (W ) = {(ω, e) ∈ U × E : ω(1) = q(e)} ⊆ Path(q)

G(W ) = {(ω, t, e) ∈ U × I × E : ω(t) = q(e)}.
A lifting function over W is a map l : F (W ) −→ Path(E) such that l(ω, e)(1) = e and q ◦ l(ω, e) = ω. An
extended lifting function for W is a map m : G(W ) −→ Path(E) such that m(ω, t, e)(t) = e and q◦m(ω, t, e) =
ω.

Thus, q : E −→ B is a fibration if and only if there is a lifting function over the whole of Path(B).

Lemma 33.51. Let B′ be a subspace of B and E′ = q−1B′. Then the following are equivalent:

(a) q : E′ −→ B′ is a fibration.
(b) There is a lifting function over Path(B′).
(c) There is an extended lifting function over Path(B′).

Proof. It is immediate from the definitions that (a)⇔(b). If m is an extended lifting function over
Path(B′) then l(ω, e) = m(ω, 1, e) is a lifting function, so (c)⇒(b). Conversely, suppose that l is a lifting
function. Suppose that (ω, t, e) ∈ G(Path(B′)), so ω : I −→ B′ and q(e) = ω(t). We then define

ω+(s) = ω(max(s− 1 + t, 0))

ω−(s) = ω(min(1 + t− s, 1)).

Thus ω+ sits at ω(0) for a while then runs forwards to reach ω(t) when s = 1, and ω− sits at ω(1) for a
while and then runs backwards to reach ω(t) when s = 1. We next define

m(ω, t, e)(s) =

{
0 ≤ s ≤ t l(ω+, e)(s+ 1− t)
t ≤ s ≤ 1 l(ω−, e)(1 + t− s).

One can check that this gives an extended lifting function. �

It follows that we can choose extended lifting functions mi over Path(Bi).
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Definition 33.52. Let i = (i1, . . . , ir) be a sequence of indices. We write len(i) = r and

Wi = {ω : I −→ B : ω([(j − 1)/r, j/r]) ⊆ Bir for 1 ≤ j ≤ r}.

We also define fi : Path(B) −→ I by

fi(ω) = min
1≤j≤r

min
(j−1)/r≤t≤j/r

fij (ω(t)).

One can check that this is a continuous map Path(B) −→ I and that fij (ω) > 0 if and only if ω ∈Wi.

Lemma 33.53. The sets Wi form an open cover of Path(B).

Proof. It is easy to see that Wi is open. Suppose that ω ∈ Path(B). For each t ∈ I there is an index
it and a number εt > 0 such that (t − εt, t + εt) ∩ [0, 1] ⊆ ω−1Bit . The open sets Ut = (t − εt/2, t + εt/2)
cover [0, 1], so [0, 1] = Ut1 ∪ . . .∪Utn for some finite sequence t1, . . . , tn. Write ε = min(εt1 , . . . , εtn). It is not
hard to check that for any open interval (a, b) of length at most ε, we have ω((a, b)) ⊆ Bi for some i. Thus
if we choose r such that 1/r < ε then there is a sequence i = (i1, . . . , ir) such that ω([(j − 1)/r, j/r]) ⊆ Bij
for all j and thus ω ∈Wi. �

Lemma 33.54. There is an extended lifting function mi over Wi.

Proof. Consider a point (ω, t, e) ∈ G(Wi), so that ω ∈Wi and q(e) = ω(t). Write r = len(i) and let n
be an integer such that (n − 1)/r ≤ t ≤ n/r. There is only one such n unless t has the form m/r in which
case n could be m or m+ 1; one can check that the constructions below do not depend on which we take in
that case. For 1 ≤ j ≤ r we define a path ωj : I −→ Bij by

ωj(s) = ω(max(min(s, (j − 1)/r), j/r),

so that ωj is constant at ω((j − 1)/r) until s = (j − 1)/r, then it moves to ω(j/r) when s = j/r, then it sits
there until s = 1. We define points ej ∈ E for j = 0, . . . , r inductively by

en = min(ωn, t, e)(n/r)

en−1 = min(ωn, t, e)((n− 1)/r)

ej+1 = mij+1(ωj+1, j/r, ej)((j + 1)/r) for n ≤ j < r

ej−1 = mij−1(ωj−1, j/r, ej)((j − 1)/r) for 0 < j < n.

We then define α : I −→ E by

α(s) =


mij (ωj , j/r, ej)(s) if s ∈ [(j − 1)/r, r] and j < n

min(ωn, t, e)(s) if s ∈ [(n− 1)/r, r]

mij (ωj , (j − 1)/r, ej−1)(s) if s ∈ [(j − 1)/r, r] and n < j.

One can check that this is well-defined and continuous, and that the assignment mi(ω, t, e) = α gives an
extended lifting function for Wi. �

We have now covered Path(B) by open sets Wi such that there is an extended lifting function defined
over each i. We next need a way to glue together (extended) lifting functions over open sets V and W to
get one over V ∪W . We first make a preliminary definition which does something a bit weaker.

Definition 33.55. Let W be a subset of Path(B), let l be a lifting function over W and let m be an
extended lifting function over W . For each s ∈ [0, 1] we define a “merged” lifting function by

Ms(l,m)(ω, e)(t) =

{
l(ω, e)(t) if s ≤ t ≤ 1

m(ω, s, l(ω, e)(s))(t) if 0 ≤ t ≤ s.

In other words, we lift the section of ω from t = s up to t = 1 using l. This gives us a lift l(ω, e)(s) of ω(s)
and we feed this into m to lift the section of ω from t = 0 up to t = s. It is easy to check that Ms(l,m) is
indeed a lifting function. Moreover, M0(l,m) = l and M1(l,m) = m(−, 1,−).
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Lemma 33.56. [lem-combine]
Let V,W be open subsets of Path(B). Suppose that we have functions g, f : Path(B) −→ I such that

g−1(0, 1] = V and f−1(0, 1] = W . Suppose that we also have a lifting function l over V and an extended
lifting function m over W . Then there is a lifting function over V ∪W which agrees with l over V \W .

Proof. Define h : V ∪W −→ I by h = f/(f+g), and note that ω ∈ V if and only if h(ω) < 1 and ω ∈W
if and only if h(ω) > 0. Thus if h(ω) ≤ 1/3 we have ω ∈ V , if 1/3 ≤ h(ω) ≤ 2/3 we have h(ω) ∈ U ∩ V , and
if h(ω) ≥ 2/3 we have ω ∈W . We can thus define a lifting function over V ∪W by

n(ω, e) =


l(ω, e) if 0 ≤ h(ω) ≤ 1/3

M3h(ω)−1(l,m)(ω, e) if 1/3 ≤ h(ω) ≤ 2/3

m(ω, 1, e) if 2/3 ≤ h(ω) ≤ 1.

If ω ∈ V \W then h(ω) = 0 and so n(ω, e) = l(ω, e) as claimed. �

This gives us a lifting function defined over any finite union of sets of the form Wi. Unfortunately, we
need to work a bit harder to get a lifting function defined over an infinite union of such sets.

Lemma 33.57. For any r, the collection of sets {Wi : len(i) = r} is locally finite.

Proof. Consider a path ω ∈ Path(B). We need to produce a neighbourhood V of ω in Path(B) such
that the set S = {(i1, . . . , ir) : V ∩Wi 6= ∅} is finite. We know that {Bi} is locally finite, so for each
j = 1, . . . , r there is a neighbourhood Vj of ω(j/r) such that the set Sj = {i : Vj ∩Bi 6= ∅} is finite. Write
V = {α ∈ Path(B) : α(j/r) ∈ Vj for j = 1, . . . , r}. This is a neighbourhood of ω, and it is easy to see that
for this V we have S ⊆ S1 × . . .× Sr, so S is finite as required. �

Corollary 33.58. The function gr(ω) = r
∑

len(i)<r fi(ω) is finite and continuous.

Definition 33.59. We now define

f ′i = min(max(0, fi − glen(i)), 1) : Path(B) −→ I

and

W ′i = {ω : f ′i(ω) > 0}.
It is easy to check that W ′i ⊆Wi, so there is an extended lifting function over W ′i .

Lemma 33.60. The collection of sets {W ′i} is a numerable covering of Path(B).

Proof. Consider a path ω ∈ Path(B). Choose a set Wi such that ω ∈ Wi with r = len(i) as small
as possible. We then have gr(ω) = 0 and thus f ′i(ω) = fi(ω) > 0, so ω ∈ W ′i . This means that the sets

W ′i form an open cover of Path(B). We next need to show that our collection is locally finite. To do this,

choose N > r such that 1/N < fi(ω), and note that gN (ω) > 1. Set V = {α ∈ Path(B) : gN (ω) > 1},
which is an open neighbourhood of ω. If α ∈ V then for m ≥ N we have gm(α) > 1 and thus f ′j(α) = 0

whenever len(j) = m. Thus, if V meets W ′j then we must have len(j) < N . We know that the collection

{Wj : len(j) < N} is locally finite, so there is a neighbourhood V ′ of ω which meets only finitely many of

the Wj ’s with len(j) < N . It follows that V ∩V ′ meets only finitely many of the W ′j ’s. Thus {W ′i} is locally

finite. We also have a map f ′i : Path(B) −→ I with (f ′i)
−1(0, 1] = W ′i . This shows that {W ′i} is a numerable

covering. �

Proof of Theorem 33.49. We will write the proof in terms of transfinite recursion; it can be rewritten
to use Zorn’s lemma instead if you prefer. We may assume that the collection of tuples i is well-ordered. (If the
collection of indices i is already well-ordered, we can order the tuples lexicographically; if not, we can appeal
to the axiom of choice to get a random well-ordering of the tuples.) Thus, after a slight change of notation
we have a locally finite covering {W ′α} indexed by the ordinals α < κ for some fixed ordinal κ. We also have
functions f ′α : Path(B) −→ I with W ′α = (f ′α)−1(0, 1] and extended lifting functions mα over W ′α. Because the
family is locally finite, the function gα =

∑
β<α f

′
α is continuous. We write Vα =

⋃
β<αW

′
β = (gα)−1(0, 1].

We next define lifting functions lα over Vα by transfinite recursion, such that when α < β and ω ∈ Vα we
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have lα(ω, e) = lβ(ω, e) unless ω ∈ W ′γ for some γ ∈ [α, β). (Note that there are only finitely many ordinals
γ such that ω ∈W ′γ , so the lift lα(ω, e) will only change a finite number of times as α varies.)

As V0 = ∅, the recursion starts. Given a successor ordinal α+, we feed lα,mα, fα and gα into Lemma 33.56
to define a lifting function lα+ on Vα ∪W ′α = Vα+ which agrees with lα on Vα \W ′α. Now consider a limit
ordinal λ, and a point (ω, e) ∈ F (Vλ). Because {W ′α} is locally finite, we can choose a neighbourhood U
of ω such that S = {α : U ∩W ′α 6= ∅} is finite. Choose any ordinal α with max(S) < α < λ and define
lλ(ω, e) = lα(ω, e). This is independent of the choice of α because lα(ω, e) = lβ(ω, e) unless ω ∈W ′γ for some
γ ∈ [α, β). Note that lλ actually agrees with lα on the neighbourhood Vα ∩ U of ω and lα is continuous so
lλ is continuous at (ω, e). As (ω, e) was arbitrary, we see that lλ is continuous.

At the end of the recursion we have a lifting function defined over Vκ = Path(B), as required. �

34. Real and complex numbers

[apx-real]

34.1. The construction of the reals. Many results and examples in topology are based on real
numbers, so for a rigorous treatment we need some background about the structure of R. Most obviously, we
need a definition of R. Perhaps the most obvious approach would be to define a nonnegative real number to
be a doubly infinite string of decimal digits, with all digits sufficiently far to the left being zero. One would
need to modify this slightly to take account of the fact that 0.9̇ = 1. Next, one would have to define addition
and multiplication, by a careful specification of the usual algorithms for manipulating decimals. The full
rules for carrying and borrowing are rather intricate, and it is very awkward to complete this approach. It is
better to define R in terms of Q and N in a more abstract way, and derive facts about decimal representation
at the end if necessary. In this appendix we will sketch some details.

As well as a construction of R, it is useful to have an axiomatic characterisation of what we have
constructed.

Definition 34.1. [defn-ring]
A commutative ring is a set R equipped with elements 0, 1 ∈ R and binary operations +, · : R×R→ R

such that:

R0: The operation + is commutative and associative, with 0 as a neutral element. Moreover, every
element a ∈ R has an inverse with respect to +, written as −a, so a+ (−a) = 0.

R1: The operation · is commutative and associative, with 1 as a neutral element.
R2: For all a, b, c ∈ R we have a(b+ c) = ab+ ac.

A field is a commutative ring with the following additional properties:

F0: For and a ∈ R \ {0} there exists b ∈ R with ab = 1.
F1: 1 6= 0.

Definition 34.2. [defn-order]
A total order on a set X is a relation on X (written x ≤ y) such that

TO0: For all x ∈ X we have x ≤ x
TO1: For all x, y, z ∈ X, if x ≤ y and y ≤ z then x ≤ z.
TO2: For all x, y ∈ X, either x ≤ y or y ≤ x. Moreover, if both of these hold then x = y.

Definition 34.3. [defn-bound]
Let X be a set equipped with a total order. Consider a subset A ⊆ X.

(a) An upper bound for A is an element u ∈ X such that a ≤ u for all a ∈ A.
(b) A lower bound for A is an element v ∈ X such that v ≤ a for all a ∈ A.
(c) A least upper bound (or supremum) for A is an upper bound u with the property that u ≤ u′

for any other upper bound u′. It is clear that A has at most one supremum, which we denote by
sup(A) if it exists.

(d) A greatest lower bound (or infimum) for A is a lower bound u with the property that u ≥ u′ for
any other lower bound u′. It is clear that A has at most one infimum, which we denote by inf(A)
if it exists.
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(e) We say that X is order-complete if every nonempty subset that has an upper bound, also has a
supremum.

Definition 34.4. [defn-ordered-field]
An ordered field is a field K equipped with a total order with the following compatibility properties:

OF0: If a ≤ b and c ≤ d then a+ c ≤ b+ d.
OF1: If a ≤ b and 0 ≤ c then ac ≤ bc.

For n ∈ N, we let n.1K denote the sum in K of n copies of the identity element 1K . We say that K is
Archimedean if it has the following additional property:

OF2: If a ∈ K then there exists n ∈ N with a < n.1K .

A complete ordered field means an ordered field that is order-complete.

The main result is as follows:

Theorem 34.5. [thm-ordered-field]
There exists an Archimedean complete ordered field. Moreover, if K and L are two Archimedean complete

ordered fields, then there is a unique field isomorphism φ : K → L, and this also satisfies φ(a) ≤ φ(b) if and
only if a ≤ b, so it is an isomorphism of ordered fields.

The rest of this appendix will constitute the proof.
We will take all facts about N and Z as given. We write N+ = N \ {0} = {1, 2, 3, . . . }. We then

introduce an equivalence relation on Z× N+ by (a, b) ∼ (c, d) iff ad = bc. We write a/b for the equivalence
class of (a, b), and Q for the set of all equivalence classes. This can be made into a field by the usual rules
a/b + c/d = (ad + bc)/(bd) and (a/b).(c/d) = (ac)/(bd). There is also an ordering given by a/b ≤ c/d iff
ad ≤ bc, which makes Q into an ordered field. However, it is not order-complete. We put

Q+ = {q ∈ Q : q > 0} = {a/b : a, b ∈ N+}.

Definition 34.6. [defn-dedekind]
A Dedekind set is a subset a ⊆ Q+ such that:

DS0: a 6= ∅
DS1: a has an upper bound
DS2: If 0 < p < q ∈ a with p, q ∈ Q then p ∈ a.
DS3: If q ∈ a then there exists r with q < r ∈ a.

We write R+ for the collection of all Dedekind sets. For any q ∈ Q+ we put φ(q) = {t ∈ Q : 0 < t < q},
which is easily seen to be a Dedekind set. We write 1R for φ(1). We also define a+ b, ab ⊆ Q+ by

a+ b = {r ∈ Q+ : r = p+ q for some p ∈ a and q ∈ b}
ab = {r ∈ Q+ : r = pq for some p ∈ a and q ∈ b}.

Proposition 34.7. [prop-dedekind-product]
R+ is a group under multiplication, with 1R as the identity element.

Proof. We first show that if a, b ∈ R+ then ab ∈ R+. Indeed, as a and b are nonempty, it is clear that
ab 6= ∅. If x is an upper bound for a and y is an upper bound for b then xy is an upper bound for ab. Now
suppose that 0 < p < q ∈ ab. We must then have q = uv for some u ∈ a and v ∈ b. As p < q we have p = uw
for some w with 0 < w < v. As 0 < w < v ∈ b we must have w ∈ b, so p = uw ∈ ab. Moreover, as v ∈ b
we can choose x with v < x ∈ b, and put r = ux; then q < r ∈ ab. This shows that ab is a Dedekind set, so
ab ∈ R+. It is clear that ab = ba. If we have a third element c ∈ R+, it is also clear that

(ab)c = {pqr : p ∈ a, q ∈ b, r ∈ c} = a(bc),

so multiplication is associative as well as commutative. Next, observe that

a.1R = {pq : p ∈ a, 0 < q < 1}.
For p and q as above, we note that 0 < pq < p ∈ a, so pq ∈ a. This means that a.1R ⊆ a. On the other
hand, if p ∈ a then we can choose r such that p < r ∈ a. We then put q = p/r, so 0 < q < 1, so q ∈ 1R.
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As r ∈ a and q ∈ 1R we see that p = rq ∈ a.1R. This shows that a ⊆ a.1R, and thus a = a.1R, so 1R is an
identity element for multiplication.

Next, for any a ∈ R+ we define

a∗ = {p ∈ Q+ : there exists x < 1 with pq < x for all q ∈ a}.
We claim that this is a Dedekind set. Indeed, if u is an upper bound for a, then (2u)−1 ∈ a∗, so a∗ 6= ∅. As
a is nonempty we can choose q ∈ a, and then q−1 is an upper bound for a∗. It is clear from the definition
that if 0 < m < p ∈ a∗ then m ∈ a∗. Now suppose that p ∈ a∗, and choose x < 1 as in the definition, so
pq < x for all q ∈ a. Choose y with 1 < y < x−1; then xy < 1 and (py)q < xy for all q ∈ a, so p < py ∈ a∗.
Thus a∗ ∈ R+ as claimed. We will now show that a∗a = 1R. It is clear from the definitions that when
p ∈ a∗ and q ∈ a we have pq ∈ 1R, so a∗a ⊆ 1R. For the reverse inclusion, consider a positive integer n, large
enough that 1/n ∈ a. As a has an upper bound, there will be a smallest value of k such that k/n2 6∈ a. As
1/n ∈ a we must have k > n. Put p = n2/(k + 1) and x = k/(k + 1) = 1 − 1/(k + 1). For q ∈ a we must
have q < k/n2, so pq < k/(k + 1) = x < 1, which shows that p ∈ a∗. By the definition of k we also have
(k − 1)/n2 ∈ a and so p(k − 1)/n2 ∈ aa∗, or in other words 1 − 2

k+1 ∈ a
∗a. As remarked above, we have

k > n, so 1− 2
n < 1− 2

k+1 , so 1− 2
n ∈ a

∗a, so every rational r with 0 < r < 1− 2/n lies in a∗a. This holds
for all sufficiently large n, and it follows that every r with 0 < r < 1 lies in a∗a, so a∗a = 1R as claimed. �

Proposition 34.8. [prop-dedekind-sum]
Addition defines a commutative and associative operation on R+. Moreover, if a, b, c ∈ R+ and a+ b =

a+ c then b = c.

Proof. Suppose that a, b ∈ R+. As a and b are nonempty, it is clear that a + b 6= ∅. If x is an upper
bound for a and y is an upper bound for b then x + y is an upper bound for a + b. Now suppose that
0 < p < q ∈ a + b. We can then write q = u + v for some u ∈ a and v ∈ b. Put t = p/q < 1. Then
0 < tu < u ∈ a, so tu ∈ a. Similarly 0 < tv < v ∈ b, so tv ∈ b. It follows that tu + tv ∈ a + b, but
tu + tv = t(u + v) = (p/q)q = p, so p ∈ a + b. Finally, as v ∈ b we can choose w with v < w ∈ b and then
the number r = u+w has q < r ∈ a+ b. This proves that a+ b is a Dedekind set, so a+ b ∈ R+. It is clear
that a+ b = b+ a and that

a+ (b+ c) = {p+ q + r : p ∈ a, q ∈ b, r ∈ c} = (a+ b) + c,

so we have a commutative and associative operation.
Now suppose that a + b = a + c. Given v ∈ b, we can choose x with v < x ∈ b. We can then choose

n ∈ N large enough that 1/n < x − v and also 1/n ∈ a. Let k be the smallest integer such that k/n 6∈ a.
This means that (k − 1)/n ∈ a, so (k − 1)/n+ x ∈ a+ b = a+ c, so (k − 1)/n+ x = u+ w for some u ∈ a
and w ∈ c. By the definition of k we must have u ≤ k/n, so

w = x+
k − 1

n
− u ≥ x+

k − 1

n
− k

n
= x− 1

n
> v.

Thus v < w ∈ c, so v ∈ c. This proves that b ⊆ c, and by symmetry we also have c ⊆ b, so b = c as
claimed. �

Proposition 34.9. [prop-dedekind-distrib]
If a, b, c ∈ R+ then a(b+ c) = ab+ ac.

Proof. By definition we have

a(b+ c) = {pq + pr : p ∈ a, q ∈ b, r ∈ c}
ab+ ac = {p0q + p1r : p0, p1 ∈ a, q ∈ b, r ∈ c},

and we have seen already that both of these are Dedekind sets. By taking p0 = p1 = p we see that
a(b+ c) ⊆ ab + ac. By taking p = max(p0, p1) we see that every element of ab + ac is less than or equal to
some element of a(b+ c), and so lies in a(b+ c) because a(b+ c) is a Dedekind set. The claim follows. �

We next consider the order properties of R+.

Definition 34.10. [defn-R-plus-order]
For a, b ∈ R+ we write a ≤ b if and only if a ⊆ b. We also write a < b if and only if a ⊆ b and a 6= b.
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Proposition 34.11. [prop-R-plus-complete]
This defines a total order on R+, with respect to which it is order-complete.

Proof. Suppose that a, b ∈ R+; we claim that either a ≤ b or b ≤ a. If not, then we can choose
p ∈ a \ b and q ∈ b \ a. Clearly we cannot have p = q, so either p < q or q < p. In the first case we have
0 < p < q ∈ b and b is a Dedekind set so p ∈ b, contrary to our assumption about p. In the second case we
have 0 < q < p ∈ a and a is a Dedekind set, so q ∈ a, contrary to our assumption about a. Either way we
have a contradiction, so we must have a ≤ b or b ≤ a after all. All other axioms in Definition 34.2 are clear,
so we have a total order on R+.

Suppose that A is a nonempty subset of R+ that has an upper bound, say b. Each element x ∈ A is
a subset of b ⊆ Q+, so we can take the union of all these sets to get a set a ⊆ b. We claim that this is a
Dedekind set. Indeed, as A is nonempty and each element of A is nonempty we see that a 6= ∅. As b is a
Dedekind set there exists u such that p < u for all p ∈ b, so clearly p < u for all p ∈ a. Now suppose we
have 0 < p < q ∈ a. As q ∈ a we must have q ∈ x for some x ∈ A. As x is a Dedekind set and 0 < p < q ∈ x
we have p ∈ x ⊆ a and so p ∈ A. Moreover, as x is a Dedekind set and q ∈ x there must also exist r > q
with r ∈ x and therefore also r ∈ a. This proves that a ∈ R+, and a is clearly a supremum for A. �

Proposition 34.12. Suppose that a, b, c, d ∈ R+ with a ≤ b and c ≤ d. Then a+ c ≤ b+ d and ac ≤ bd
and a−1 ≥ b−1.

Proof. As the order is just given by subset inclusion, the first two claims are immediate from the
definitions. We can take c = d = (ab)−1 in the second claim to see that b−1 ≤ a−1. �

Corollary 34.13. [cor-inf]
If A is a nonempty subset of R+ that has a lower bound, then it has an infimum.

Proof. Put B = {a−1 : a ∈ A}. This is nonempty and bounded above, so it has a supremum by
Proposition 34.11. One can then check that sup(B)−1 is an infimum for A. �

Proposition 34.14. [prop-R-plus-subtract]
For a, b ∈ R+ we have a < b if and only if there exists c ∈ R+ with b = a+ c.

Proof. First suppose that b = a+c. Choose any t ∈ c, and note that for p ∈ a we have p+ t ∈ a+c = b
so 0 < p < p + t ∈ b, so p ∈ b. This proves that a ⊆ b. Next, choose n large enough that 1/n < t and also
1/n ∈ a. Let k be the smallest positive integer such that k/n 6∈ a. Then (k − 1)/n ∈ a and 1/n ∈ c so
k/n ∈ a+ c = b, but k/n 6∈ a, so a 6= b. Thus a < b as required.

Conversely, suppose that a < b. Put

c = {q : there exists x ∈ b with p+ q < x for all p ∈ a}.
We claim that c is a Dedekind set. Indeed, as a < b we can choose w ∈ b \ a. As b is a Dedekind set we can
then choose x with w < x ∈ b. We then put q = (x−w)/2. For p ∈ a we must have p ≤ w and so p+ q < x;
it follows that q ∈ c, so c 6= ∅. Next, it is clear that c ⊆ b, and b has an upper bound, so c has an upper
bound. Now suppose that q ∈ c, and let x be as in the definition. If 0 < q′ < q then for all p ∈ a we have
p + q′ < p + q < x, so again q′ ∈ c. Finally, as b is a Dedekind set we can choose y ∈ b with x < y, and it
follows that q < (y−x)+q ∈ c. This shows that c is a Dedekind set as claimed, and it is clear that a+ c ⊆ b.
For the reverse inclusion, choose n ∈ N large enough that 2/n ∈ a∩ c ⊂ b. Let j be the smallest integer such
that j/n 6∈ a, and let k be the smallest integer such that k/n 6∈ b. As 2/n ∈ c we find that k− j− 1 > 0. We
claim that the number q = (k− j − 1)/n lies in c. Indeed, we certainly have (k− 1)/n ∈ b, and for p ∈ a we
have p < j/n and so p+ q < j/n+ (k − j − 1)/n = (k − 1)/n ∈ b, so q ∈ c. We also have (j − 1)/n ∈ a and
so (k − 2)/n = (j − 1)/n + q ∈ a + c. Now consider an arbitrary element r ∈ b. By taking n large enough
we can arrange that r < (k − 2)/n and so r ∈ a+ c. It follows that a+ c = b as required. �

Proposition 34.15. [prop-Q-R]
The map φ : Q+ → R+ satisfies φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b). Moreover, we have

φ(a) ≤ φ(b) if and only if a ≤ b.

Proof. Left to the reader. �
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We next want to define R in terms of R+. The idea is that any element x ∈ R can be written in the form
a − b for some a, b ∈ R+, with a − b = c − d if and only if a + d = b + c. Formally, we will define R as the
quotient of R+ × R+ by an equivalence relation, and the equivalence class of (a, b) will correspond to a− b.

Definition 34.16. [defn-R]
We now introduce a relation on R+ × R+ by (a, b) ∼ (c, d) if and only if a + d = b + c. This is clearly

reflexive and symmetric. If (a, b) ∼ (c, d) and (c, d) ∼ (e, f) then a + d = b + c and c + f = d + e. We can
add these to get (a + f) + (c + d) = (b + e) + (c + d), and then appeal to the last part of Proposition 34.8
to deduce that a + f = b + e, which means that (a, b) ∼ (e, f). Our relation is thus transitive, so it is an
equivalence relation. We let R denote the set of equivalence classes, and write [a, b] for the equivalence class
of (a, b). We define a map λ : R+ → R by λ(a) = [a+ 1R+ , 1R+ ].

Proposition 34.17. [prop-R-field]
The set R has a unique ring structure for which the map λ preserves addition and multiplication. With

this ring structure, R is a field. Moreover, R is the disjoint union of λ(R+), −λ(R+) and {0}.

Proof. We first define operations on R+ × R+ as follows:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac+ bd, ad+ bc).

It is clear that addition is commutative and associative, and that multiplication is commutative. One can
also check that

((a, b)(c, d))(e, f) = (ace+ adf + bcf + bde, acf + ade+ bce+ bdf) = (a, b)((c, d)(e, f))

so multiplication is also associative. Another straightforward check gives the distributivity rule

(a, b)((c, d) + (e, f)) = (a, b)(c, d) + (a, b)(e, f).

Next, if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) then a+ b′ = a′ + b and c+ d′ = c′ + d, which gives

(a+ c) + (b′ + d′) = (a+ b′) + (c+ d′) = (a′ + b) + (c′ + d) = (a′ + c′) + (b+ d),

so (a+ c, b+ d) ∼ (a′+ c′, b′+ d′). It follows that there is an induced operation on R given by [a, b] + [c, d] =
[a + c, b + d], and this is again commutative and associative. Next, note that (a + 1, b + 1) ∼ (a, b), so the
element 0R = [1, 1] is a neutral element for addition. Moreover, we find that (1, 1) ∼ (c, c) for all c, so
[a, b] + [b, a] = [a+ b, a+ b] = [1, 1] = 0R, so [b, a] is an additive inverse for [a, b].

We now consider multiplication. Suppose that (c, d) ∼ (c′, d′), so c+ d′ = c′ + d. It follows that

(ac′ + bd′) + (ad+ bc) = a(c′ + d) + b(c+ d′)

= a(c+ d′) + b(c′ + d) = (ac+ bd) + (ad′ + bc′),

so
(a, b)(c′, d′) = (ac′ + bd′, ad′ + bc′) ∼ (ac+ bd, ad+ bc) = (a, b)(c, d).

By symmetry, if (a, b) ∼ (a′, b′) we also have (a′, b′)(c′, d′) = (a, b)(c′, d′). It follows that there is a well-defined
product on R given by

[a, b][c, d] = [ac+ bd, ad+ bc].

It follows from the corresponding properties of R+ × R+ that this is commutative and associative and
distributes over addition. We also note that (2, 1)(a, b) = (2a + b, 2b + a) ∼ (a, b), so the element 1R =
[2, 1] = λ(1R+) is a neutral element for multiplication. We have thus made R into a commutative ring.

Next, note that

λ(a) + λ(b) = [a+ 1, 1] + [b+ 1, 1] = [a+ b+ 2, 2] = [a+ b+ 1, 1] = λ(a+ b)

λ(a)λ(b) = [a+ 1, 1][b+ 1, 1] = [ab+ a+ b+ 2, a+ b+ 2] = [ab+ 1, 1] = λ(ab).

Consider an arbitrary element x = [a, b] ∈ R. If a = b then x = [1, 1] = 0R. If a < b then Proposition 34.14
tells us that b = a + c for some c, so x = [a, b] = [a, a + c] = [1, 1 + c] = −λ(c). Similarly, if a > b then
a = b+ d for some d, and so x = λ(d). It follows that R = {0}qλ(R+)q−λ(R+) as claimed. We also know
that every element a ∈ R+ has a multiplicative inverse a∗ ∈ R+, so λ(a) has inverse λ(a∗), and −λ(a) has
inverse −λ(a∗). It follows that R is a field. �
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Definition 34.18. For x, y ∈ R we declare that x ≤ y if x = y or y − x ∈ λ(R+).

Proposition 34.19. This makes R into an Archimedean complete ordered field.

Proof. First, it is clear from the definition that x ≤ x. If x < y and y < z then y = x + λ(a) and
z = y + λ(b) say, so z = x + λ(a + b), so x < z. It follows easily that if x ≤ y ≤ z then x ≤ z. For an
arbitrary pair x, y ∈ R we have y − x ∈ R = {0} q λ(R+) q −λ(R+), which implies that x = y or x < y or
y < x. It follows that we have defined a total order on R.

If w < x and y < z then x = w+λ(a) and z = y+λ(b) say, so x+ z = w+y+λ(a+ b), so w+y < x+ z.
It follows that the order is compatible with addition. If we also have y > 0 then we can write y = λ(c) say,
so xy − wy = λ(ac), so wy < xy. This means that the order is compatible with multiplication, so we have
an ordered field.

Now suppose we have a nonempty subset B ⊂ R, and an upper bound u for B. Choose x ∈ B, and put
A = {a ∈ R+ : x− 1 + λ(a) ∈ B}. We have 1 ∈ A so A 6= ∅. We also have u > x− 1 so u = x− 1 + φ(t) for
some t, and we find that t is an upper bound for A. It follows that A has a supremum in R+, and we find
that x− 1 + λ(sup(A)) is a supremum for B in R.

All that is left is to check the Archimedean property. If x ∈ −λ(R+) or x = 0 then x < 1R. If x = λ(a)
for some a ∈ R+ then we can choose a rational number q that is an upper bound for a, and then an integer
n such that q < n, and we find that x < n.1R. �

Remark 34.20. [rem-archimedean]
It is useful to record some slight variants of the Archimedean property. First, for any ε > 0 we claim

that there is an integer n > 0 such that 1/n < ε. This is just because the Archimedean property gives us an
integer n > 0 with n > 1/ε. Next, an easy induction gives 2n ≥ n + 1 for all n ∈ N, so for all x ∈ R there
exists n ∈ N with 2n ≥ x.

Lemma 34.21. [lem-ordered-field]
Let K be an ordered field.

(a) For a ∈ K we have a ≥ 0 if and only if −a ≤ 0.
(b) For any a ∈ K we have a2 ≥ 0.

Proof. (a) If a ≥ 0 we can add −a ≤ −a to that inequality (using axiom OF0) to see that 0 ≥ −a.
(b) We must either have a = 0 or a > 0 or a < 0. If a = 0 then the claim is clear. If a > 0 then we

can multiply that inequality by a (using axiom OF1) to see that a2 > 0. If a < 0 then −a > 0 so
(−a)2 > 0 by the previous case, but (−a)2 = a2 so a2 > 0.

�

Proposition 34.22. Let K be a complete Archimedean ordered field. Then there is a unique field
isomorphism φ : R→ K, and moreover φ also preserves the order.

Proof. First, as 1K = 12
K we see from Lemma 34.21(b) that 1K > 0. It follows by induction that

n.1K > 0 for all n ∈ N+. We can thus define φ0 : Q → K by φ0(p/n) = (p.1K)(n.1K)−1 for all p ∈ Z and
n ∈ N+; it is easy to check that this is well-defined and is a homomorphism of fields and that it preserves
order. Now put K+ = {x ∈ K : x > 0}. For a ∈ R+, consider the set

φ0(a) = {φ0(p) : p ∈ a} ⊆ K+.

This is nonempty, because a is. If u is an upper bound for a, then φ0(u) is an upper bound for φ0(a). As
K is complete, it follows that φ0(a) has a supremum, and we define φ+(a) = sup(φ0(a)). This gives a map
φ+ : R+ → K+, which again preserves the order.

In the opposite direction, suppose we have x ∈ K+. We then define ψ+(x) = {p ∈ Q+ : φ0(p) < x}. We
claim that this is a Dedekind set. Indeed, as K is Archimedean we can find n ∈ N with x−1 < n.1K . It then
follows that 1/n ∈ ψ+(x), so ψ+(x) 6= ∅. Similarly, we can find m ∈ N such that x < m.1K , so m is an upper
bound for ψ+(x). If 0 < p < q ∈ ψ+(x) it is clear that p ∈ ψ+(x). If q ∈ ψ+(x) then (x − φ0(q))−1 ∈ K+

and we can use the Archimedean axiom again to find k ∈ N with (x − φ0(q))−1 < k.1K . This rearranges
to give φ0(q + 1/k) < x, so q < q + 1/k ∈ ψ+(x). This proves that ψ+(x) is a Dedekind set as claimed, so
we have defined ψ+ : K+ → R+. As φ0 preserves order we find that ψ+φ+ = 1: R+ → R+. In the other

264



direction, we see from the definitions that x is an upper bound for φ0(ψ+(x)). Suppose that 0 < y < x; we
claim that y is not an upper bound for φ0(ψ+(x)). Indeed, we can use the Archimedean axiom to find n
such that φ0(2/n) < x− y, and then once more to see that there is a smallest integer m with φ0(m) > nx.
As x > x − y > φ0(2/n) we see that m > 2. We find that φ0(m − 2) < nx and so (m − 2)/n ∈ ψ+(x)
and φ0((m− 2)/n) ∈ φ0(ψ+(x)). Now φ0(m/n) > x and φ0(2/n) < x− y so φ0((m− 2)/n) > y. It follows
that y is not an upper bound, as claimed. This means that x is the least upper bound of φ0(ψ+(x)), so
φ+ψ+ = 1: K+ → K+.

We still need to check that φ and ψ respect the algebraic structure. �

34.2. Complex numbers. Write this

34.3. The exponential map. For completeness, we will outline a rigorous treatment of the exponential
map. To make everything as self-contained as possible, we will allow ourselves to use some theory of metric
spaces, but no differentiation or integration.

Definition 34.23. [defn-exp-trunc]
For all x ∈ C and n ∈ N we put en(x) =

∑n
k=0 x

k/k!. For 0 ≤ t < n+ 2 we also put

rn(t) =
tn+1

(n+ 1)!

1

1− t/(n+ 2)
> 0.

Remark 34.24. [rem-rn-inc]
For 0 ≤ t < n+2 we note that 1− t/(n+2) is a positive and decreasing function of t, so 1/(1− t/(n+2))

is positive and increasing, so rn(t) is also positive and increasing.

Lemma 34.25. [lem-exp-gap]
Suppose that |x| ≤ R. Then the terms ak = xk/k! satisfy

|ak+j | ≤ (|x|/(k + 1))j |ak| ≤ (R/(k + 1))j |ak|
for all j ≥ 0. Moreover, if R < n+ 2 ≤ m+ 2 then

|em(x)− en(x)| ≤ rn(|x|) ≤ rn(R).

Proof. First, we have

|ak+j+1| = |ak+j |.
|x|

k + j + 1
≤ |ak+j |.

|x|
k + 1

≤ |ak+j |.
R

k + 1

and it follows by induction that

|ak+j | ≤ (|x|/(k + 1))j |ak| ≤ (R/(k + 1))j |ak|
as claimed. Now suppose that |x| ≤ R < n + 2 ≤ m + 2 and put α = |x|/(n + 2), so 0 ≤ α < 1. We then
have |an+1+j | ≤ |an+1|αj , so

|em(x)− en(x)| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ≤
m−n−1∑
j=0

|an+1|αj

≤ |x|n+1

(n+ 1)!

1− αm−n

1− α
≤ |x|n+1

(n+ 1)!

1

1− α
= rn(|x|)

as claimed. We also have rn(|x|) ≤ rn(R) by Remark 34.24. �

Lemma 34.26. [lem-rn-bound]
For all R ≥ 0 we have rn(R)→ 0 as n→∞.

Proof. Suppose we are given R ≥ 0 and ε > 0. Put an = Rn/n!. Choose N0 ∈ N such that N0 ≥ 2R,
so R/(N0 +1) < 1/2. Lemma 34.25 then tells us that aN0+j ≤ aN0

/2j . Next, by Remark 34.20 we can choose
N1 ∈ N with 2N1 > 2aN0

/ε, and put N = N0 +N1. We find that aN < ε/2. We also have R/(N + 2) < 1/2,
so 1− R/(N + 2) > 1/2, so 1/(1− R/(N + 2)) < 2. It follows that rN (R) = aN/(1− R/(N + 2)) < ε, and
similarly rn(R) < ε for all n ≥ N , as required. �

265



Corollary 34.27. [cor-exp-cauchy]
For all ε > 0 and R > 0 there exists N ∈ N such that |en(x) − em(x)| < ε whenever n,m ≥ N and

|x| ≤ R.

Proof. By Lemma 34.26 we can find N with rn(R) < ε for all n ≥ N , and the claim then follows from
Lemma 34.25. �

Corollary 34.28. [cor-exp-exists]
There is a unique function exp: C → C with the following property: whenever |x| < n + 2 we have

| exp(x)− en(x)| ≤ rn(|x|).

Proof. Fix x ∈ C. Corollary 34.27 shows that the sequence (en(x))n∈N is a Cauchy sequence in the
complete metric space C, so it has a unique limit, which we take to be exp(x). The inequality | exp(x) −
en(x)| ≤ rn(|x|) then follows from Lemmas 34.25 and 12.5. As rn(|x|)→ 0 as n→∞, this inequality forces
exp(x) to be the limit of {en(x)}, which gives uniqueness. �

Remark 34.29. [rem-exp-conjugate]

It is clear from the definition that en(x) = en(x), and it follows by passing to the limit that exp(x) =

exp(x). In particular, if x is real then exp(x) is real.

Definition 34.30. [defn-trig]
For z ∈ C we put cos(z) = (exp(iz) + exp(−iz))/2 and sin(z) = (exp(iz)− exp(−iz))/2, so

exp(iz) = cos(z) + sin(z)i.

Remark 34.31. [rem-trig]

For real x we note that exp(−ix) = exp(ix), so cos(x) = Re(exp(ix)) and sin(x) = Im(exp(ix)). In
particular, cos(x) and sin(x) are real.

Lemma 34.32. For all x, y ∈ C with |x|, |y| ≤ R we have

|en(x)en(y)− en(x+ y)| ≤ e2n(2R)− en(2R).

Proof. From the definitions we have

en(x)en(y) =

n∑
i,j=0

xiyj

i!j!

en(x+ y) =

n∑
k=0

(x+ y)k

k!
=

n∑
k=0

k∑
i=0

(
k
i

)
xiyk−i

k!

=
∑
i+j≤n

xiyj

i!j!

en(x)en(y)− en(x+ y) =
∑

i,j≤n, i+j>n

xiyj

i!j!

|en(x)en(y)− en(x+ y)| ≤
∑

i,j≤n, i+j>n

Ri+j

i!j!
≤

∑
n<i+j≤2n

Ri+j

i!j!

=
∑

n<k≤2k

(2R)k

k!
= e2n(2R)− en(2R).

�

Corollary 34.33. [cor-exp-hom]
For all x, y ∈ C we have exp(x) exp(y) = exp(x+ y).

Proof. We know that en(z) → exp(z) for all z. Using this and the continuity of multiplication and
subtraction, we see that e(x)en(y) − en(x + y) → exp(x) exp(y) − exp(x + y). On the other hand, we see
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that e2n(2R) − en(2R) converges to exp(2R) − exp(2R) = 0. It therefore follows from the lemma that
en(x)en(y)− en(x+ y)→ 0, but limits are unique so exp(x) exp(y)− exp(x+ y) = 0. �

Corollary 34.34. [cor-exp-nonzero]
For all x ∈ C we have exp(x) 6= 0, and exp(−x) = 1/ exp(x).

Proof. It is clear that en(0) = 1 for all n, so exp(0) = 1. It follows that exp(x) exp(−x) = exp(x +
(−x)) = exp(0) = 1, so exp(x) is nonzero with inverse exp(−x). �

Corollary 34.35. [cor-exp-cts]
The map exp: C→ C \ {0} is continuous.

Proof. First, Corollary 34.28 gives

| exp(t)− 1| = | exp(t)− e0(t)| ≤ r0(|t|) =
|t|

1− |t|/2
.

Now, if |t| < 1 then 1 − |t| > 1/2 so | exp(t) − 1| ≤ 2|t|. Now consider an arbitrary point x ∈ C and a
number ε > 0. Put δ = min(1, ε/(2| exp(x)|)). If |y − x| < δ then y = x + t for some t with |t| < 1 and
| exp(t)− 1| ≤ 2|t| < ε/| exp(x)| so | exp(y)− exp(x)| = | exp(t)− 1|| exp(x)| < ε, as required. �

Lemma 34.36. [lem-exp-homeo-R]
The map exp restricts to give a strictly increasing homeomorphism R → (0,∞). (We will write log for

the inverse map (0,∞)→ R.)

Proof. First, for x ≥ 0 it is clear that en(x) ≥ e1(x) = 1+x for all n, and thus that exp(x) ≥ 1+x ≥ 1.
We also have exp(x) exp(−x) = exp(0) = 1, so exp(−x) = 1/ exp(x), so 1/(1 + x) ≤ exp(−x) ≤ 1. It follows
that for all x ∈ R we have exp(x) > 0. Now suppose we have x, y ∈ R with x < y. The number t = y − x
is then strictly positive, so exp(t) ≥ 1 + t > 1, so exp(y) = exp(t) exp(x) > exp(x). This proves that
exp: R → (0,∞) is strictly increasing (and therefore injective). It follows by Proposition 8.5 that exp(R)
is a convex open subset of (0,∞), and that exp: R → exp(R) is a homeomorphism. If x ≥ 0 then exp(R)
is convex and contains 1 and exp(x) ≥ 1 + x, so it must contain 1 + x. It follows that [1,∞) ⊆ exp(R),
and using exp(−x) = 1/ exp(x) we deduce that (0, 1] ⊆ exp(R). It follows that exp gives a homeomorphism
R→ (0,∞) as claimed. �

Lemma 34.37. [lem-abs-exp]
For all z ∈ C we have | exp(z)| = exp(Re(z)). In particular, for y ∈ R we have | exp(iy)| = 1.

Proof. We have exp(z) exp(−z) = exp(0) = 1, so exp(z) 6= 0. For the more precise statement, put
x = Re(z) = (z + z)/2. We have

| exp(z)|2 = exp(z)exp(z) = exp(z)ε(z) = exp(z + z) = exp(2x) = exp(x)2.

As | exp(z)| and exp(x) are both positive, we can deduce that | exp(z)| = exp(x). In particular, for z = iy
we have x = 0 and so | exp(z)| = 1. �

Lemma 34.38. [lem-ker-discrete]
If 0 < |z| < 6/5 then exp(z) 6= 1.

Proof. Corollary 34.28 gives

| exp(z)− 1− z| = | exp(z)− e1(z)| ≤ r1(|z|),
so

| exp(z)− 1| ≥ |z| − r1(|z|).
From the definitions we have

t− r1(t) = t− t2

2− 2t/3
=

5t

2

6/5− t
3− t

,

and this is strictly positive for 0 < t < 6/5. �

Lemma 34.39. [lem-exp-two-i]
The number exp(2i) has negative real part and positive imaginary part.
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Proof. Corollary 34.28 gives | exp(2i)−e5(2i)| < r5(2), and direct calculation gives e5(2i) = 14i/15−1/3
and r5(2) = 28/225 < 1/3. The claim follows easily from this. �

Corollary 34.40. [cor-pi-exists]
There is a unique number π > 0 such that exp(it) = 1 if and only if t ∈ 2πZ. Moreover, we have

3/5 ≤ π < 4.

Proof. First, as | exp(z)| = exp(Re(z)) and exp: R→ (0,∞) is strictly increasing, we see that exp(it)
can only be one if t is real. We will assume this from now on.

Put K = {t ∈ R : exp(it) = 1} and K+ = K∩(0,∞). Lemma 34.38 tells us that K∩(−6/5, 6/5) = {0}.
More generally, if s, t ∈ K then s− t ∈ K so either s = t or |s− t| ≥ 6/5.

The function cos(t) = Re(exp(it)) has cos(0) = 1 and cos(2) < 0, so there exists α ∈ (0, 2) with
cos(α) = 0. This means that exp(iα) = iy for some y, but we also know that | exp(iα)| = 1, so exp(iα) = ±i.
It follows that exp(4αi) = exp(iα)4 = 1, so 4α ∈ K+. This means that K+ is nonempty, and it is visibly
bounded below by 0, so we can define π = inf(K+)/2. As K ∩ (−6/5, 6/5) = {0} we have π ≥ 3/5. As
4α ∈ K+ and α < 2 we have π < 4. As distinct points in K are separated by at least 6/5, we see that the
interval (2π − 3/5, 2π + 3/5) can contain at most one point in K. The only way this can be consistent with
2π = inf(K+) is if K ∩ (2π − 3/5, 2π + 3/5) = {2π}. In particular, we must have 2π ∈ K, so exp(2πi) = 1.
Now consider a general element t ∈ K. Let n be the largest integer with n ≤ t/2π, so 2πn ≤ t < 2π(n+ 1).
Put u = t− 2πn. As t and 2π lie in K, we see that u ∈ K. As 0 ≤ u < 2π and 2π = inf(K+) we must have
u = 0, so t = 2nπ, as claimed. �

Lemma 34.41. [lem-tan]
Put S1 = {z ∈ C : |z| = 1}. There is a homeomorphism f : S1 \ {−1} → R given by f(z) =

(z−1)/(i(z+1)), with inverse f−1(t) = (1+it)/(1−it). If z = x+iy (with x2+y2 = 1) then f(z) = y/(1+x),
so f(z) has the same sign as Im(z). Moreover, we have f(z) = f(1/z) = −f(z).

Proof. We can define f : C \ {−1} → C by the given formula, and then define g : C \ {i} → C by
g(t) = (1 + it)/(1− it). It is straightforward algebra to check that f(g(t)) = t and (f(z)) = z in cases where

everything is defined. If z ∈ S1 \ {−1} we have z = z−1 and using this we obtain f(z) = f(z), so f(z) is
real. If t is real we have |g(t)| = |1 + it|/|1 − it| = 1, so g(t) ∈ S1, and it is clear that 1 + it 6= −(1 − it)
so g(t) 6= −1. It follows that f and g give homeomorphisms as described. The identity f(1/z) = −f(z) is
straightforward algebra, as is the identity

f(x+ iy)− y

1 + x
=

i(1− x2 − y2)

(1 + x)(1 + x+ iy)
,

which reduces to f(x + iy) = y/(1 + x) for x + iy ∈ S1 \ {−1}. Note that 1 + x > 0 here, so f(x + iy) has
the same sign as the imaginary part y, as claimed. �

Proposition 34.42. [prop-tan]
Let f be as in Lemma 34.41, and put g(t) = f(exp(it)). Then g gives a strictly increasing homeomor-

phism (−π, π)→ R.

Proof. We have seen that | exp(it)| = 1. To show that g is well-defined, we must check that exp(it) 6=
−1 for t ∈ (−π, π). As exp(0) = 1 and exp(−it) = 1/ exp(it), it will suffice to treat the case 0 < t < π. Here
we have exp(it)2 = exp(2it) 6= 1 (by the definition of π) and so exp(it) 6= −1 as required.

We next claim that g is injective. Suppose that g(s) = g(t). As f is a homeomorphism, this means
that exp(is) = exp(it), so t − s ∈ dirπZ. However, we have |s|, |t| < π so |t − s| < 2π so s = t as required.
It follows by Proposition 8.5 that g is either strictly increasing or strictly decreasing, and that it gives a
homeomorphism (−π, π)→ g(−π, π). We have seen that π > 3/5, so 1/2 is in the domain of g. We have

| exp(i/2)− (1 + i/2)| = | exp(i/2)− e1(i/2)| ≤ r1(1/2) = 3/20,

and from this it follows that Im(exp(i/2)) > 0 and so g(1/2) > 0. We also have g(0) = 0, so it follows that
g is strictly increasing. As t approaches ±π we see that the number z = exp(it) approaches exp(±iπ) = −1,
so the absolute value of g(t) = f(z) = (z − 1)/(i(z + 1)) must become unboundedly large. As g is strictly
increasing, we deduce that g(t) tends to +∞ as t approaches π from below, and that g(t) approaches −∞
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as t approaches −π from above. This means that g((−π, π)) is a convex open set that is unbounded in both
directions, so it is all of R. �

Corollary 34.43. [cor-exp-homeo-circle]
The map e(t) = exp(it) gives a homeomorphism e : (−π, π)→ S1 \ {−1}.

Proof. Combine Lemma 34.41 and Proposition 34.42. �

Remark 34.44. [rem-pi-value]
We see from Proposition 34.42 that exp(iπ/2) has positive imaginary part, and it satisfies exp(iπ/2)2 =

exp(iπ) = −1, so we must have exp(iπ/2) = i. We therefore have g(π/2) = f(i) = 1. We can use the explicit
bound in Corollary 34.28 to prove that g(3/2) < 1 < g(11/7) and deduce that 3 < π < 22/7, for example.
If we prefer to work with small angles so that convergence is more rapid, we can do the following. Consider
the number

z = (
√

6 +
√

2 +
√

6i−
√

2i)/4.

One can check that z12 = 1 and that Im(zk) > 0 for 0 < k < 12. It follows that z = exp(πi/12). One can
also check that the number u = f(z) = (z − 1)/(i(z + 1)) is

u =
√

6 +
√

2−
√

3− 2 ≈ 0.13.

We have π = 12g−1(u), and we can locate this by computing g(t) for numbers t close to 0.26. Of course, if
we really want an efficient computation of an accurate value for π, it is better to develop more theory first.

Corollary 34.45. [cor-exp-homeo]
Put U = {x + iy ∈ C : −π < y < π}. Then the exponential map restricts to give a homeomorphism

exp: U → C \ (−∞, 0].

Proof. Define e : (−π, π)→ S1\{−1} by e(t) = exp(it). Recall that we previously defined log : (0,∞)→
R to be the inverse of the homeomorphism exp: R → (0,∞). We now extend this to define a map
log : C \ (−∞, 0]→ U by

log(z) = log(|z|) + i e−1(z/|z|).

It is now straightforward to check that this is continuous and is inverse to the exponential map. �

Corollary 34.46. [cor-exp-open]
The map exp: C→ C \ {0} is open and surjective, as is the map e : R→ S1 given by e(t) = exp(it).

Proof. Consider a point z ∈ C \ {0}. If z does not lie on the negative real axis, Corollary 34.45
immediately gives w ∈ C with exp(w) = z. If z does lie on the negative real axis then −z does not, so
Corollary 34.45 gives w ∈ C with exp(w) = −z and so exp(w + iπ) = z. It follows that exp: C→ C \ {0} is
surjective.

Now suppose we have an open set V ⊆ C. The claim is that exp(V ) is open in C \ {0} (or equivalently,
in C). Put

Un = {z ∈ C : (n− 1)π < Im(z) < (n+ 1)π},

and note that these sets give an open cover of C. Corollary 34.45 tells us that exp: U0 → C is open. For
z ∈ Un we have z − nπi ∈ U0 and exp(z) = (−1)n exp(z − nπi); it follows that exp: Un → C is open. We
now see that exp(V ) =

⋃
n exp(V ∩ Un), which is an open set as required.

This proves that exp: C→ C \ {0} is open and surjective, and the proof for e : R→ S1 is essentially the
same. �

35. Set theory

[apx-sets]

269



35.1. Countability.

Definition 35.1. [defn-countable]
A set X is countable if the following equivalent conditions are satisfied:

(a) Either X = ∅, or there is a surjective map f : N→ X.
(b) There is an injective map g : X → N.
(c) Either X is finite, or there is a bijection h : X → N.

Proof of equivalence. First suppose that (a) holds. It is also tautological that there is a unique
map ∅ → N and that this is injective. We can thus restrict attention to the case where there is a surjective
map f : N → X. This means that for each x ∈ X we have a nonempty set f−1{x} of natural numbers, so
this set must have a smallest element. We can therefore define g : X → N by

g(x) = min{n : f(n) = x}.
As f(g(x)) = x we see that g is injective, so (b) holds.

Suppose instead that we start with (b). If X is finite then (c) holds trivially, so we can restrict attention
to the case where X is infinite. As g : X → N is injective, it follows that the set g(X) ⊆ N is also infinite.
We can therefore list the elements in order as g(X) = {m0,m1,m2, . . . } say, with m0 < m1 < m2 < · · · . As
g is injective, there is a unique element xk ∈ X with g(xk) = mk. For each x ∈ X we have g(x) ∈ g(X), so
g(x) must appear as mk for some k, so x = xk for some k. If xj = xk then g(xj) = g(xk) or in other words
mj = mk, but the elements mi form a strictly increasing sequence, so we must have j = k. It follows that
we have a bijection h : X → N given by h(xk) = k (or equivalently, by h(x) = |{y : g(y) < g(x)}|). This
proves that (b) implies (c), and it is clear that (c) implies (a). �

Proposition 35.2. [prop-countable-examples]
The sets N, N2, Z and Q are countable, as is the set

Pf (N) = {A ⊆ N : A is finite }.
However, the set P(N) of all subsets of N is uncountable, as is the set R.

Proof. First, N is trivially countable. Next, we can define a bijection f : N → Z by f(2n) = n and
f(2n+ 1) = −n− 1; so Z is countable. Now define g : N2 → N by

g(n,m) = 1
2 (n+m+ 1)(n+m) + n.

Note here that the first term (n+m+1)(n+m)/2 is just the number of pairs (j, k) ∈ N2 with j+k < n+m.
Using this, we see that the pattern of values is as follows:

n

m 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

It follows that g is a bijection, so N2 is countable. Now define h : Z× N→ Q by h(n,m) = n/(m+ 1); this
is clearly surjective. The following composite therefore gives a surjection N→ Q:

N
g

'
// N× N

f×1

'
// Z× N h // // Q.
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We deduce that Q is also countable.
Next, define b : Pf (N)→ N by b(A) =

∑
a∈A 2a. We will take it as given that every natural number has

a unique binary representation, which means precisely that b is a bijection. (The conscientious reader may
wish to give a more detailed proof by induction.) Thus, we see that Pf (N) is countable.

Now consider instead the larger set P(N) of all subsets of N. Given any map f : N → P(N), we can
consider the set A = {n ∈ N : n 6∈ f(n)}. Fix a natural number m; we claim that A 6= f(m). Indeed,
we must either have m ∈ f(m) or m 6∈ f(m). By the definition of A, in the first case we have m 6∈ A, and
in the second we have m ∈ A. Either way, we see that f(m) is different from A, as claimed. As m was
arbitrary we deduce that A is not in the image of f . Thus, f cannot be surjective, which proves that P(N)
is uncountable. (This proof is called Cantor’s diagonal argument.)

Finally, we can define k : P(N) → R by k(A) =
∑
a∈A 3−a. We leave it to the reader to check that

this sum is convergent, so k is well-defined, and that k is injective. If R were countable we could choose an
injective map j : R→ N and then we could use jk to prove that P(N) is countable, which is a contradiction.
Thus, R must actually be uncountable. �

Proposition 35.3.

(a) If f : X → Y is injective and Y is countable then so is X.
(b) If g : X → Y is surjective and X is countable then so is Y .
(c) If X and Y are countable, then so is X × Y . More generally, if we have a family (Xi)i∈I where

the index set I is finite and each set Xi is countable, then the product
∏
i∈I Xi is also countable.

(d) Suppose we have a set X and a family of subsets (Xi)i∈I where the index set I is countable, and
each set Xi is countable. Then the union

⋃
i∈I Xi is also countable.

Proof.

(a) As Y is countable there exists an injective map j : Y → N, so jf : X → N is injective, so X is
countable.

(b) If X is empty and there is a surjection X → Y then Y is also empty and therefore countable.
Otherwise, as X is countable we can choose a surjective map q : N → X, and then the surjection
gq : N→ Y shows that Y is countable.

(c) Suppose that X and Y are countable. To avoid trivialities, we assume that X and Y are also
nonempty, so we can choose surjections p : N → X and q : N → Y . We then have a surjection
p× q : N2 → X × Y but N2 is countable so it follows from (b) that X × Y is countable.

(d) If any of the sets Xi are empty we can harmlessly remove them from the family. We therefore
assume that each Xi is nonempty, so we can choose a surjection fi : N → Xi. We then define
g : N × N →

⋃
iXi by g(n,m) = fn(m). This is surjective, and N × N is countable, so

⋃
iXi is

countable by (a).

�

Example 35.4. [eg-algebraic-numbers]
Recall that a number z ∈ C is said to be algebraic if there is a nonzero polynomial f(t) ∈ Q[t] with

f(z) = 0; otherwise, we say that z is transcendental. Let Q denote the set of algebraic numbers; we will
show that this is countable. First, the set Qn is countable by part (c) of the Proposition. Next, if we
let Q[t]<n denote the set of polynomials of degree less than n, we have a bijection Qn → Q[t]<n given by
(a0, . . . , an−1) 7→

∑
i ait

i. This shows that Q[t]<n is countable, so the set Q[t] =
⋃
nQ[t]<n is countable by

part (d). Finally, for each f ∈ Q[t] \ {0} the set Rf = {z ∈ C : f(z) = 0} is finite, so the set Q =
⋃
f Rf is

countable by another application of part (d).
As Q is countable but R and C are uncountable, it is clear that most real or complex numbers are

transcendental. For example, it is known that π and e are transcendental, but the proofs are quite hard.

Example 35.5. [eg-definable-numbers]
Now let D be the set of all complex numbers that are definable by some finite formula. To make

this completely rigorous would require a large detour into mathematical logic, but the idea should be clear
enough. A “finite formula” should mean a finite list taken from some agreed alphabet of mathematical
symbols (including the quantifiers ∀ and ∃), subject to certain syntactic rules (so that brackets match
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properly, for example). We would then need to spell out further rules about how such formulae can be
interpreted and manipulated. For example, the number e can be defined by the formula e =

∑∞
n=0 1/n!. We

probably do not want to take infinite sums as a primitive part of the language but we can instead say that
for all m we have

∑m
n=0 1/n! < e, and that for all x < e there exists m such that

∑m
n=0 1/n! > x. Again,

we probably do not want to take n! as a primitive symbol, so we should ensure that our formal language is
sufficiently expressive to encode the recursive definition of n!. Note also that any algebraic number can be
defined by some formula such as “x is the unique real number with x5 − 3x+ 1 = 0 and −3/2 < x < −1”.

The main point for our present purposes is this: provided that we have only a finite (or even countable)
number of symbols in our alphabet, the set of finite formulae will be countable, so the set D of defineable
numbers will be countable.

35.2. Ordinals. Here we give a brief outline of the theory of ordinals. More details can be found in
books on axiomatic set theory.

(a) There is a class of objects called ordinals, of which the first few are

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , 2ω, . . . , ω2, . . . , ωω, . . .

(b) There are too many ordinals for the class of ordinals to be a set; it is “roughly the same size” as
the class of all sets.

(c) Algebraic operations with ordinals (e.g. ω2) must be treated with caution. For example, 1 + ω =
ω 6= ω + 1. The reason is essentially as follows: the ordinal 1 + ω corresponds to what you get by
adding an extra point at the beginning of the ordered set N, which gives a new ordered set that is
isomorphic to N. On the other hand, ω + 1 corresponds to what you get by adding an extra point
at the end of N, which gives a new ordered set that is not isomorphic to N.

(d) There is a linear order relation on ordinals. In other words, for any pair of ordinals α and β precisely
one of the alternatives α < β, α = β and α > β is true.

(e) The ordinals are well-ordered by this relation — any nonempty collection S of ordinals has a least
element α, so α ∈ S and α ≤ β for any β ∈ S.

(f) For any ordinal κ, the collection S(κ) of ordinals α < κ is a set.
(g) For any set X there is an ordinal κ and a bijection S(κ) −→ X, so X = {xα : α < κ} say.
(h) For any set X there is an ordinal λ so large that there is no injective map S(λ) −→ X.
(i) An ordinal α is a successor ordinal if and only if α = β + 1 for some β if and only if there is no

ordinal γ with β < γ < α. A limit ordinal is an ordinal (such as ω) which is not a successor.
(j) Transfinite induction over ordinals is valid. Suppose we have a statement P (α) about ordinals α,

and we can show that P (α) is true whenever P (β) is true for all β < α. Then P (α) is true for
all α. Indeed, consider the collection S of ordinals for which P is false. If S were nonempty, it
would have a least element α. This would mean that P (β) holds for all β < α, leading swiftly to a
contradiction.

(k) Transfinite recursion is valid. We can define a function f of ordinals by specifying f(α) in terms
of the values f(β) for β < α. (In particular, we must specify f(0) in terms of no data at all, so
f(0) must be defined in a non-recursive manner.) This is really a special case of (j): we prove by
induction on α that there is a unique function fα defined on S(α) with the required proprties, and
by uniqueness we have fα|S(β) = fβ for all β < α so the functions fα fit together to give a single
function f as required.

We now discuss the formal definitions used in axiomatic set theory, which are very compact and elegant
but take some digestion. An ordinal is a particular kind of set. In particular, the numbers 0, 1, 2 and 3 are
identified with certain sets, as follows:

0 = ∅
1 = {∅} = {0}
2 = {∅, {∅}} = {0, 1}
3 = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}.

Note that 1 is both an element and a subset of 3, and similarly 2 is both an element and a subset of 3.
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For any set α, an ∈-minimal element in α is an element s ∈ α such that for all t ∈ α we have s = t or
s ∈ t. An ordinal is by definition a set α such that every nonempty subset α′ ⊆ α has an ∈-minimal element.
In particular, we can consider α′ = {x, y} for some pair of distinct elements x, y ∈ α, and we see that either
x ∈ y or y ∈ x. In conjunction with the standard axioms of set theory, this implies that the set α can be
linearly ordered by the rule x < y if and only if x ∈ y. One checks that every element of an ordinal is again
an ordinal, and we can order the class of all ordinals by the rule α < β if and only if α ∈ β. The set S(α) is
thus actually equal to α. The successor ordinal α+ 1 is α ∪ {α}

Discuss the von Neumann heierarchy

35.3. Zorn’s lemma.

Definition 35.6. [defn-poset-zorn]
A partial order on a set P is an relation on P (written p ≤ q) such that

PO0: For all p ∈ P we have p ≤ p
PO1: For all p, q, r ∈ P , if p ≤ q and q ≤ r then p ≤ r.
PO2: For all p, q ∈ P , if p ≤ q and q ≤ p then p = q.

A partially ordered set or poset is a set with a specified partial order. We say that m ∈ P is largest if for all
p ∈ P we have p ≤ m. We say that m ∈ P is maximal if whenever p ∈ P and m ≤ p we have p = m.

Remark 35.7. If m is largest in P then it is also the unique maximal element.

Example 35.8. [eg-maximal-elements]

(a) Take P = N with its usual order. Then there is no maximal element and no largest element.
(b) Put P = {A ⊆ N : |A| ≤ 5}, ordered by inclusion (so we define A ≤ B to be true iff A is a subset

of B). Then all sets of size five are maximal, but there is no largest element.
(c) Put Q = N2 with the order (a, b) ≤ (c, d) iff (a ≤ c and b ≤ d). Then put

P = {(0, b) : 0 ≤ b ≤ 4} ∪ {(a, 0) : a ≥ 0}.

· · ·

m

Then the point m = (0, 4) is the unique maximal element, but it is not largest.
(d) Let X be a topological space and let Y be a subset of X. Let P be the set of all open subsets of

Y , ordered by inclusion. Then P has a largest element, namely the interior of Y .

For many applications, it is useful to know that certain posets have maximal elements. We will prove a
powerful result in this direction, known as Zorn’s Lemma.

Definition 35.9. [defn-chain-bound]
Let P be a partially ordered set. A subset C ⊆ P is a chain if for all p, q ∈ C we have either p ≤ q or

q ≤ p. An upper bound for C is an element b ∈ P such that p ≤ b for all p ∈ C.

Theorem 35.10 (Zorn’s Lemma). [thm-zorn]
Let P be a partially ordered set in which every chain has an upper bound. Then P has a maximal

element.

After some preliminaries, we will give two proofs of this. The first will be short and conceptual but it
will rely on the theory of ordinals which we have not fully explained. The second will be self-contained but
less easy to follow.

For historical reasons it is common to emphasise the fact that Zorn’s Lemma depends on the Axiom of
Choice, although in fact there are many other places in topology (and other fields of mathematics) where
that axiom is used, often without explicit mention. We will at least give a formal statement here.
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Definition 35.11. [defn-choice-function]
Let X be a set, and let P ′(X) denote the set of nonempty subsets of X. A choice function for X is a

function c : P ′(X) → X such that c(A) ∈ A for all A ∈ P ′(X). In other words, for every nonempty subset
A ⊆ X, the function c gives a “chosen element” c(A) ∈ A. The Axiom of Choice says that every set has a
choice function.

It is standard to take the Axiom of Choice as one of the basic assumptions of set theory. This is
philosophically displeasing, because for many sets X we cannot specify a choice function explicitly, because
there are too many arbitrary choices to make. However, in Remark 35.29 we will mention some ideas that
may alleviate this displeasure.

Example 35.12. [eg-countable-choice]
We can define a choice function cN : P ′(N) → N by cN(A) = min(A). If we have a surjective map

f : N→ X we can define a choice function cf : P ′(X)→ X by

cf (A) = f(min(f−1(A))) = f(min({n : f(n) ∈ A})).
For most countable sets X that occur in practice, one can write down an explicit surjection f : N → X, so
this procedure gives an explicit choice function.

Example 35.13. Suppose we have sets X and Y with choice functions c and d. Consider subset A ⊆
X × Y . For x ∈ X we put A[x] = {y : (x, y) ∈ A}, and then we put π(A) = {x : A[x] 6= ∅}. If A 6= ∅ we
find that π(A) 6= ∅ so we can define

e(A) = (c(π(X)), d(A[c(π(X))])).

This gives a choice function for X × Y . Less formally: to choose an element of A, we use c to choose an
element x such that A[x] 6= ∅, then use d to choose y ∈ A[x], then take (x, y) as our chosen element of A.

Example 35.14. [eg-choice-R]
Let P ′C(R) denote the set of nonempty closed subsets of R. For any A ∈ P ′C(R) we can let n be the

smallest integer such that A ∩ [−n, n] 6= ∅, then let c(A) be the largest element of A ∩ [−n, n] (which exists
because A∩ [−n, n] is compact). This defines a choice function for closed sets. Now consider instead the set
P ′O(R) of nonempty open subsets of R. For B ∈ P ′O(R) and n ≥ 1 we put

Fn(B) = {x ∈ R : (x− 1/n, x+ 1/n) ⊆ B}.
One can check that this is closed and that B is the union of the sets Fn(B), so in particular Fn(B) 6= ∅ for
large n. Let m be the smallest integer such that Fm(B) 6= ∅ (so Fm(B) ∈ P ′C(R)) and put d(B) = c(Fm(B)).
This defines a choice function for open sets. By more elaborate constructions along similar lines, one can
define choice functions for very large classes of subsets of R, including all those that are likely to occur in
applications. However, it does not seem to be possible to define a choice function for all nonempty subsets
explicitly. Extract reference from MathOverflow

As an example of the use of the Axiom of Choice, we offer the following:

Proposition 35.15. [prop-epis-split]
Let f : X → Y be a surjective map. Then there is a map g : Y → X with fg = 1Y .

Proof. Let c be a choice function for X. As f is surjective, we see that each set f−1{y} ⊆ X is
nonempty, so we can define g(y) = c(f−1{y}) ∈ f−1{y} ⊆ X, so g : Y → X with fg(y) = y as required. �

Normally we would just say “choose an element g(y) ∈ f−1{y} for each y” rather than referring explicitly
to a choice function.

First proof of Zorn’s Lemma. Let P be a poset in which every chain has an upper bound. In
particular, the empty chain has an upper bound, so P 6= ∅. Let c be a choice function for P . We now put
f(0) = c(P ) ∈ P . If this is maximal then we are finished. Otherwise, we put V (0) = {p : p > f(0)} and
f(1) = c(V (0)) so f(0) < f(1). If this is not maximal we put V (2) = {p : p > f(1)} and f(2) = c(V (2)),
and so on. It may be that after infinitely many steps we still do not have a maximal element. In that case
we have a chain C(ω) = {f(n) : n < ω}, and we let V (ω) denote the set of upper bounds for this chain, and

274



put f(ω) = c(V (ω)). If this is not maximal we put V (ω + 1) = {p : p > f(ω)} and f(ω + 1) = c(V (ω + 1))
and so on.

More formally, the construction is as follows. For each ordinal α we define f(α) ∈ P recursively as
follows. Put C(α) = {f(β) : β < α}.

(a) If C(α) is not a chain, we put f(α) = c(P ).
(b) Now suppose that C(α) is a chain, and let U(α) be the set of upper bounds for C(α), which is

nonempty by assumption. If the set V (α) = U(α) \ C(α) is nonempty, we put f(α) = c(V (α)).
(c) This just leaves the case where U(α) ⊆ C(α). If u, v ∈ U(α) then u ∈ C(α) and v ∈ U(α) so u ≤ v,

but also v ≤ u by symmetry, so u = v. Thus U(α) is a singleton, say U(α) = {u}. In this case we
put f(α) = u.

We can now check by induction that f(α) ≥ f(β) for all α ≥ β, and thus that clause (a) is never used. If
clause (c) were never used we would have f(α) > f(β) for all α > β, so f would be injective, contradicting
fact (h) in Section 35.2. Thus for some α we must have U(α) ⊆ C(α) and so U(α) = {f(α)}. If f(α) ≤ p
then it is clear that p is still an upper bound for C(α), so p ∈ U(α), so p = f(α). This proves that f(α) is
maximal in P . �

We now start working towards an alternative proof that does not use ordinals.

Proposition 35.16. [prop-zorn-special]
Let X be a set, and let Q be a collection of subsets of X. We order Q by inclusion, making it a poset.

Suppose that

(a) Whenever A ∈ Q and B ⊆ A we have B ∈ Q.
(b) For every chain C ⊆ Q, the union⋃

C = {x ∈ X : x ∈ A for some A ∈ C}

is an element of Q.

Then Q has a maximal element.

Proof. Let c be a choice function for X. For any set A ∈ Q, we put

f(A) = {x ∈ X \A : A ∪ {x} ∈ Q}.

If A is not maximal then we can choose A′ ∈ Q with A ⊂ A′. Then, for any x ∈ A′ \ A we have A ∪ {x} ⊆
A′ ∈ Q so A ∪ {x} ∈ Q by (a), so x ∈ f(A), so f(A) 6= ∅. We can thus define g : Q → Q by

g(A) =

{
A if A is maximal in Q
A ∪ {c(f(A))} otherwise.

Note that we can apply (b) to the empty chain to see that ∅ ∈ Q.
Next, we say that a subset T ⊆ Q is a tower if

(p) Whenever A ∈ T we have g(A) ∈ T .
(q) Whenever C ⊆ T is a chain we have

⋃
C ∈ T .

For example, the set Q itself is a tower. Now put A0 = ∅, A1 = g(∅), A2 = g(A1) = g2(∅) and so on. By
the case C = ∅ of (q) we have A0 ∈ T for every tower T , and thus An ∈ T for every tower T by induction
using (p). Now put

T1 = {A ∈ Q : A ∈ T for every tower T }.
For example, we have An ∈ T1 for all n. From the definitions it is clear that T1 is itself a tower.

We would like to prove that T1 is a chain. We will use the following definitions:

(1) We say that a set A ∈ T1 is comparable if for all B ∈ T1 we have either A ⊆ B or B ⊆ A.
(2) We let T2 ⊆ T1 be the set of comparable sets.
(3) For any comparable set A, we put

T3(A) = {B ∈ T1 : B ⊆ A or g(A) ⊆ B}.
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We will prove that T3(A) is a tower, and thus that T3(A) = T1. Using this we will show that T2 is a tower,
and thus that T2 = T1, or in other words that every set in T1 is comparable, or in other words that T1 is a
chain.

First, let C be a chain contained in T3(A), so for every set B ∈ C we have either B ⊆ A or g(A) ⊆ B.
If there is some set B with g(A) ⊆ B, then clearly g(A) ⊆

⋃
C. Otherwise, all the sets B ∈ C must have

B ⊆ A, so
⋃
C ⊆ A. This proves that T3(A) has property (q). For property (p), consider a set B ∈ T3(A).

By the definition of T3(A), one of the following three cases must occur:

(i) Suppose that B is a proper subset of A. Now g(B) ∈ T1 and A is assumed to be comparable, so
either g(B) ⊆ A or A is a proper subset of g(B). In the latter case we would have B ⊂ A ⊂ g(B) so
g(B)\B would have size at least two, which is impossible by the definition of g. We must therefore
have g(B) ⊆ A, so g(B) ∈ T3(A).

(ii) Suppose that B = A; then g(B) = g(A) ∈ T3(A).
(iii) Suppose that g(A) ⊆ B. As B ⊆ g(B) we also have g(A) ⊆ g(B), so g(B) ∈ T3(A).

This shows that T3(A) has property (p), so it is a tower, so it contains T1 by the definition of T1. On the
other hand, T3(A) is visibly a subset of T1, so T3(A) = T1. From this it is clear that g(A) is comparable, so
T2 has property (p).

Now consider a chain C contained in T2, and a set B ∈ T1. As every set A ∈ C is comparable, we have
either A ⊆ B or B ⊆ A. If B ⊆ A for some A ∈ C, it is clear that B ⊆

⋃
C. Otherwise we must have A ⊆ B

for all A ∈ C, so
⋃
C ⊆ B. Using this we see that

⋃
C is comparable. This means that T2 has property (q)

as well as property (p), so it is a tower contained in T1, so it must be all of T1. This means that all elements
of T1 are comparable, so T1 is a chain.

Now put T =
⋃
T1, so for all A ∈ T1 we have A ⊆ T . As T1 is both a tower and a chain, we see that

T ∈ T1, and then that g(T ) ∈ T1, so g(T ) ⊆ T . By inspecting the definition of g, we deduce that T is
maximal in Q. �

Remark 35.17. [rem-ordinal-tower]
If we allowed ourselves to use ordinals we could define Aα ∈ Q recursively by Aα+1 = g(Aα), and

Aλ =
⋃
α<λAα for limit ordinals α. We would then find that T1 is just the set of all Aα’s.

Second proof of Zorn’s Lemma. Let P be a poset in which every chain has an upper bound. Let
P denote the set of chains in P , ordered by inclusion. We claim that this satisfies the conditions of Propo-
sition 35.16. Indeed, it is clear that every subset of a chain is a chain, so (a) holds. Now let C be a chain
of chains, and suppose we have p, q ∈

⋃
C. As p ∈

⋃
C there exists C ∈ C with p ∈ C. As q ∈

⋃
C there

exists D ∈ C with q ∈ D. As C is a chain we have either C ⊆ D or D ⊆ C. Without loss of generality we
may assume that C ⊆ D, so p, q ∈ D. As D is a chain we see that either p ≤ q or q ≤ p. This proves that⋃
C is a chain, so hypothesis (b) also holds. The proposition therefore tells us that there is a maximal chain

C ⊆ P . By assumption, this chain has an upper bound, say m. This means that C ∪ {m} is a chain, but
C is maximal, so we must have m ∈ C. Now suppose we have m ≤ p. This means that p is another upper
bound for C, so by the same logic p ∈ C, but m is an upper bound for C, so p ≤ m, so p = m. Thus, m is
maximal in P . �

We now explain a standard algebraic application of Zorn’s Lemma, by way of example.

Proposition 35.18. [prop-maximal-ideal]
Let R be a nonzero ring. Then there is an ideal M < R that is maximal among all proper ideals.

Proof. Let P denote the set of all proper ideals of R. Note that an ideal I ≤ R is proper iff 1 6∈ I, and
that 0 ∈ P because R 6= 0. Now let C be a chain in P, and put I = {0} ∪

⋃
C (the zero only being necessary

in the degenerate case C = ∅). If a, b ∈
⋃
C then we can find ideals J,K ∈ C with a ∈ J and b ∈ K. As C is

a chain we have either J ≤ K or K ≤ J , and we can harmlessly assume the former. We then have a, b ∈ K
so a± b ∈ K ⊆ I and similarly ra, rb ∈ K ⊆ I for all r ∈ R. This proves that I is an ideal. For all J ∈ C we
have 1 6∈ J , so it follows that 1 6∈ I, so I ∈ P. It is clear that I is an upper bound for C, so we have verified
the conditions of Zorn’s Lemma and the claim follows. �

Definition 35.19. [defn-hamel-basis]
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Let K be a field, and let V be a vector space (possibly not finite-dimensional) over K. Consider a set
X ⊆ V . For any map a : X → K, we put supp(a) = {x : a(x) 6= 0}, and then we put

K{X} = {a : X → K : supp(a) is finite }.
We define σX : K{X} → V by

σX(a) =
∑
x∈X

a(x).x =
∑

x∈supp(a)

a(x).x

(The second expression makes it clear that this is a well-defined finite sum, but the first expression is
conceptually more natural.) We say that X is a basis for V if σX is an isomorphism.

Proposition 35.20. [prop-hamel-basis]
Every vector space has a basis.

Proof. Let V be a vector space over K, and put

P = {X ⊆ V : σX is injective }.
We order this by inclusion and so regard it as a poset. Consider a chain C ⊆ P, and put X =

⋃
C. Consider

an element a ∈ K{X} with σX(a) = 0. The support of a must be finite, say supp(a) = {w1, . . . , wn}.
As wi ∈ X =

⋃
C, there exists Wi ∈ C with wi ∈ Wi. As C is a chain, the sets W1, . . . ,Wn are all

comparable, so after renumbering them if necessary we may assume that W1 ⊆ · · · ⊆ Wn. We then have
supp(a) = {w1, . . . , wn} ⊆ Wn, which means that σWn

(a|Wn
) = σX(a) = 0. As Wn ∈ C ⊆ P it follows that

a|Wn = 0, but supp(a) ⊆ Wn, so a = 0. This proves that σX is injective, so X ∈ P. It is clear that X is an
upper bound for C, so we have checked the hypothesis for Zorn’s Lemma. It follows that there is a maximal
element X ∈ P. We claim that this is a basis. To see this, consider an element v ∈ V . If v ∈ X we can define
a ∈ K{X} by a(v) = 1 and a(x) = 0 for x 6= v, and we have σX(a) = v. Suppose instead that v 6∈ X. As
X is maximal in P, we see that σX∪{v} cannot be injective, so there is a nonzero element a ∈ K{X ∪ {v}}
with σX∪{v}(a) = 0. If a(v) = 0 then we find that a|X is a nonzero element of K{X} with σX(a|X) = 0,
contradicting the fact that X ∈ P. We therefore have a(v) 6= 0, so we can put b = −(a|X)/a(v) ∈ K{X}
and we find that σX(b) = v. Thus σX is surjective as required. �

We conclude with another application that will be more directly useful for us.

Definition 35.21. [defn-well-order]
A well-ordering on a set I is a partial ordering with the following property: for every nonempty subset

J ⊆ I, there is an element j0 ∈ J such that j0 ≤ j for all j ∈ J . (In other words, every nonempty subset
has a smallest element.) It is clear that such an element j0 is unique if it exists.

Example 35.22. [eg-well-order]
The obvious ordering of N is a well-ordering, as is the obvious ordering on N ∪ {∞}. The obvious

ordering on Z is not a well-ordering, because the whole set does not have a smallest element. We can choose
a bijection f : N → Z (for example, by setting f(2n) = n and f(2n + 1) = −n− 1) and use this to transfer
the standard ordering of N to a nonstandard ordering of Z that is a well-ordering. Alternatively, we can
specify a well-ordering on Z by the rules

0 < 1 < 2 < 3 < 4 < · · · < −1 < −2 < −3 < · · · .
The obvious ordering on [0,∞) is not a well-ordering either, because the subset (0, 1) does not have a smallest
element.

Example 35.23. [eg-ordinal-order]
For any set α, we can try to define an ordering on α as follows: we have x ≤ y iff (x = y or x ∈ y). As

discussed in Section 35.2, an ordinal is precisely a set for which this rule defines a well-ordering.

Remark 35.24. [rem-ordinal-ops]
Let I and J be well-ordered sets. We can define an ordering on I × J as follows: we have (i, j) < (i′, j′)

iff i < i′, or (i = i′ and j < j′). This is called the lexicographic ordering. If A is a nonempty subset of I × J
we can let i0 be the smallest element of I such that A meets {i0}×J , then let j0 be the smallest element of J
such that (i0, j0) ∈ {i0}×J . We find that (i0, j0) is the smallest element in A, so I×J is again well-ordered.
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Now consider instead the set I q J . There is an obvious way to order this such that every element of I
comes before every element of J . More explicitly, we declare that k ≤ k′ if and only if

(a) k, k′ ∈ I and k ≤ k′ with respect to the given order on I; or
(b) k ∈ I and k′ ∈ J ; or
(c) k, k′ ∈ J and k ≤ k′ with respect to the given order on J .

We write I : J for the set I q J equipped with this relation, which is easily seen to be a well-ordering.
Addition and multiplication of ordinals are characterised by the following properties: for any ordinals α

and β, the ordered set α× β is isomorphic to the ordered set αβ, and the ordered set α : β is isomorphic to
the ordered set α+ β.

Remark 35.25. [rem-wo-restrict]
If I is a well-ordered set and J is a subset of I, we can restrict the ordering on I to get an ordering on

J , and it is clear that this is again a well-ordering.

Remark 35.26. [rem-well-ordered-choice]
If we have a well-ordering of I, we can use it to define a choice function c : P ′(I)→ I just by taking c(J)

to be the smallest element in J .

Theorem 35.27. [thm-well-order]
Every set admits a well-ordering.

This is another highly non-constructive result. There does not seem to be any hope of exhibiting an
explicit well-ordering of R, for example. Reference?

Proof. In this proof we will use letters such as R (rather than the symbol ≤) for generic orderings. Fix
a set I, and let P denote the set of pairs (J,R), where J ⊆ I and R is a well-ordering of J . If (J,R) ∈ P and
K ⊆ J then we can restrict R to give a well-ordering of K, which we denote by R|K . Consider two elements
(K,S) and (J,R) in P. We say that (K,S) is an initial segment in (J,R) if

(a) K ⊆ J and S = R|K .
(b) Whenever j ∈ J and k ∈ K and jRk we have j ∈ K.

We order P by declaring that (K,S) ≤ (J,R) iff (K,S) is an initial segment in (J,R).
Let C be a chain in P. Put

J = {k ∈ I : k ∈ K for some (K,S) ∈ C}.
Consider a pair of points j, k ∈ J . We claim that there is an element (K,S) ∈ C such that j and k both lie
in K. Indeed, from the definitions we see that there is an element (K0, S0) ∈ C with j ∈ K0, and another
element (K1, S1) ∈ C with k ∈ K1. As C is a chain we have either K0 ⊆ K1 or K1 ⊆ K0. In the former case
we take (K,S) = (K1, S1), and in the latter case we take (K,S) = (K0, S0).

Now suppose we have two different elements in C, say (K,S) and (L, T ), where j, k ∈ K and also j, k ∈ L.
As C is a chain we have either (K,S) ≤ (L, T ) or (L, T ) ≤ (K,S). In the former case we have S = T |K and
in the latter we have T = S|L. Either way, we see that jSk iff jTk. There is thus a well-defined relation R
given by jRk iff (jSk for every (K,S) ∈ C with j, k ∈ K). It is easy to see that this is a total order, and
that for all (K,S) ∈ C we have S = R|K .

Consider a nonempty subset A ⊆ J . Choose any element a ∈ A, then choose an element (K,S) =
(K,R|K) ∈ C with a ∈ K, then let b be the smallest element in A ∩ K with respect to R|K . We claim
that b is actually smallest in A with respect to R. To see this, consider an arbitrary element c ∈ A ⊆ J .
We can then find (L,R|L) ∈ C such that c ∈ L. As C is a chain we either have (L,R|L) ≤ (K,R|K) or
(K,R|K) ≤ (L,R|L). In the former case we have c ∈ A ∩ L ⊆ A ∩K so b ≤ c by the defining property of b.
In the latter case we note that K is an initial segment of L, and it again follows that b is smallest in A ∩ L
and so b ≤ c. This shows that b is smallest in A as claimed, so R is a well-ordering of J . This means that
(J,R) is an upper bound for C, so we have checked the hypothesis of Zorn’s Lemma. It follows that there is
a maximal element (J,R) ∈ P. We claim that J is actually equal to I. If not, we can choose any element
i ∈ I \ J and give the set J ′ = J ∪ {i} the obvious order R′ for which i is largest in J ′; this gives an element
(J ′, R′) ∈ P strictly larger than (J,R), which is a contradiction. Thus R is the required well-ordering of I
itself. �
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Proposition 35.28. [prop-woset-ordinal]
Let I be a well-ordered set. Then there is an ordinal λ and an order-preserving bijection f : S(λ)→ I.

Proof. Take a point ∗ 6∈ I and define f0(α) ∈ I ∪ {∗} for all ordinals α by the recursive rule

f0(α) =

{
smallest element of I \ f0(S(α)) if I \ f0(S(α)) 6= ∅
∗ if I \ f0(S(α)) = ∅.

It is clear by construction that if α < β and f0(α), f0(β) 6= ∗ then f0(α) 6= f0(β). If we had f0(α) 6= ∗ for
all α then f0 would give injections S(λ)→ I for all α, which would contradict fact (h) in Section 35.2. We
can thus let λ be the least ordinal such that f0(λ) = ∗, and we see that f0 restricts to give an injective map
f : S(λ) → I. Moreover, as f0(λ) = ∗ we have I \ f(S(λ)) = ∅ and so f is also surjective. Now suppose
we have α < β < λ. As f is injective, we see that f(α) and f(β) are both elements of I \ f(S(α)), but
f(α) is by definition the smallest element of that set, so f(α) < f(β). Thus, the bijection f : S(λ) → I is
order-preserving. �

Remark 35.29. [rem-constructible]
Write this

36. Categories and functors

[apx-categories]

36.1. Basics.

Definition 36.1. [defn-category]
A category C consists of:

• A class obj(C) of objects.
• For each pair of objects X and Y , a set C(X,Y ) of morphisms from X to Y . We write f : X → Y

or X
f−→ Y to indicate that f ∈ C(X,Y ).

• For each object X a morphism 1X ∈ C(X,X), called the identity morphism for X.
• For each triple of objects X, Y and Z and each pair of morphisms f : X → Y and g : Y → Z, a

morphism g ◦ f : X → Z, called the composite of g and f . Where convenient we will just write gf
rather than g ◦ f .

These must satisfy the following axioms:

C0: For all X
f−→ Y we have f ◦ 1X = f = 1Y ◦ f .

C1: For all W
e−→ X

f−→ Y
g−→ Z we have g ◦ (f ◦ e) = (g ◦ f) ◦ e : W → Z.

Remark 36.2. [rem-in-obj]
By a slight abuse of notation, we will often write X ∈ C (rather than X ∈ obj(C)) to indicate that X is

an object of C.

Example 36.3. [eg-cat-sets]
There is a category called Sets. The objects are sets, and the morphisms from X to Y are just the

functions from X to Y . The identity morphism 1X : X → X is just the usual identity function, and the
composition rule is just (g ◦ f)(x) = g(f(x)).

Remark 36.4. [rem-proper-class]
Various paradoxes arise if one tries to talk about the set of all sets. Because of this, accounts of axiomatic

set theory have been developed which specify carefully how sets can be described and constructed, and these
rules mean that the collection of all sets cannot itself be regarded as a set; instead, it is a “proper class”. It
is because of this that we say that a category has a class (rather than a set) of objects. We will not delve
into these questions beyond a few passing remarks.

Example 36.5. [eg-cat-groups]
There is a category called Groups. The objects are groups, and the morphisms from G to H are the

group homomorphisms. The identity morphisms and the composition rule are the same as for Sets. We can
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define a category Rings (of rings and ring homomorphisms) and a category VectR (of vector spaces over R
and linear maps) in an analogous way.

Example 36.6. [eg-cat-top]
There is a category Spaces whose objects are topological spaces, and whose morphisms are continuous

maps. Once again, the identity morphisms and the composition rule are the same as for Sets.

In some sense, examples like those above are the point of category theory. However, it turns out to be
very useful to compare and relate such examples to much smaller categories of various types, some of which
we introduce below.

Example 36.7. [eg-bG]
Fix a group G. We can define a category bG as follows. There is only one object, called 1. The set

bG(1, 1) (of morphisms from 1 to 1) is just G itself. Thus, if f, g ∈ bG(1, 1) = G then we can use the group
law of G to define gf ∈ G. The composition rule for bG is just g ◦ f = gf . The identity morphism is the
identity element of the group. Many authors refer to bG as “the group G, considered as a category” rather
than using the notation bG.

Example 36.8. [eg-sP]
Let P be a partially ordered set, so we have a relation ≤ on P such that for all x, y, z ∈ P we have

• x ≤ x.
• If x ≤ y and y ≤ z then x ≤ z.
• If x ≤ y and y ≤ x then x = y.

We can define a category sP as follows. The objects are just the elements of P . The morphism sets are

sP (x, y) =

{
{(x, y)} if x ≤ y
∅ if x 6≤ y.

(The real point here is that there is a single morphism from x to y whenever x ≤ y. It is not important
what that morphism is, but we take it to be the pair (x, y).) The identity morphism 1x is the pair (x, x),
and the composition rule is (y, z) ◦ (x, y) = (x, z). Many authors refer to sP as “the poset P , considered as
a category” rather than using the notation sP .

Example 36.9. [eg-discrete-category]
For any set X, we can define two different categories dX and eX. In both cases, the objects are the

elements of X. In dX, the only morphisms are the identity morphisms 1x for each x ∈ X. Categories of this
type are called discrete categories. In eX, there is precisely one morphism uxy from x to y for each pair of
objects x and y. The composition rule is uyz ◦uxy = uxz, and the identity morphism for x is uxx. Categories
of this type are called indiscrete categories.

Example 36.10. [eg-cat-square]
We can describe certain small categories by drawing pictures. For example, consider the pictures below:

0
p
//

q

��

1

r

��

2
s
// 3

• //

��

•

��
• // •

The picture on the left refers to a category with four objects (namely, the numbers 0, 1, 2, 3) and nine
morphisms. There are four morphisms p : 0→ 1, q : 0→ 2, r : 1→ 3 and s : 2→ 3. There is also a composite
morphism r ◦ p = s ◦ q : 0→ 3 and identity morphisms 10, 11, 12 and 13, none of which are shown explicitly.
Often when we use such categories it will not be necessary to name the objects or morphisms so we will just
draw the picture on the right instead.

Example 36.11. [eg-cat-mat]
We can define a category MatR as follows. The objects are the natural numbers. The morphisms from

n to m are the m × n matrices with entries in R. The identity morphism 1n is the n × n identity matrix,
and the composition rule is A ◦B = AB.
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Definition 36.12. Let C be a category. We can define a new category Cop (called the dual of C) as
follows. The objects of Cop are the same as the objects of C. For each morphism f ∈ C(X,Y ), there is a
morphism fop ∈ Cop(Y,X). The identities are just the morphisms 1op

X , where 1X is the identity morphism in
C. The composition rule is fop ◦ gop = (g ◦ f)op. In other words, Cop is “the same as C but with the arrows
turned around”.

Remark 36.13. Whenever we have a definition or construction or theorem that works for all categories
C, we can generate a new definition or construction or theorem by applying the old one to Cop. This idea is
called duality ; when used judiciously it can save a lot of work.

36.2. Special classes of morphisms.

Definition 36.14. [defn-morphism-types]
Let C be a category, and let f : X → Y be a morphism in C.
(a) Consider a morphism g : Y → X. We say that g is a left inverse for f if gf = 1X , and a right

inverse for f if fg = 1Y . We say that g is an inverse (or two-sided inverse, where emphasis is
necessary) if it is both a left inverse and a right inverse.

(b) We say that f is a monomorphism if whenever we have maps p, q : W → X with fp = fq : W → Y ,
we actually have p = q.

(c) We say that f is an epimorphism if whenever we have maps r, s : Y → Z with rf = sf : X → Z,
we actually have r = s.

(d) We say that f is a bimorphism if it is both a monomorphism and an epimorphism.
(e) We say that f is a split monomorphism if it has a left inverse, and a split epimorphism if it has a

right inverse. If it has a two-sided inverse, we say that f is an isomorphism.
(f) We say that objects X and Y are isomorphic if there exists an isomorphism from X to Y . If so,

we write X ' Y .

Remark 36.15. It is clear that f is a monomorphism (or epimorphism, or split monomorphism, or split
epimorphism) in C if and only if fop is an epimorphism (or monomorphism, or split epimorphism, or split
monomorphism) in Cop.

We first check that the terminology in (e) above is sensible.

Lemma 36.16. Any split monomorphism is a monomorphism, and any split epimorphism is an epimor-
phism.

Proof. We will prove the first statement, and then the second one will follow by duality. If f : X → Y
is a split monomorphism, then we can choose a left inverse g : Y → X with gf = 1X . Now suppose we have
p, q : W → X with f ◦p = f ◦ q, as in the definition of monomorphisms. We then have g ◦ (f ◦p) = g ◦ (f ◦ q).
Here g ◦ (f ◦ p) = (g ◦ f) ◦ p = 1X ◦ p = p, and similarly g ◦ (f ◦ q) = q. It follows that p = q as required. �

Corollary 36.17. Any isomorphism is a bimorphism. �

We now discuss some examples.

Example 36.18. In the category bG every morphism is an isomorphism (and thus has all of the other
properties mentioned above). In the category sP , every morphism is a bimorphism. The identity morphisms
are isomorphisms, but no other morphism is a split monomorphism, a split epimorphism, or an isomorphism.

Proposition 36.19. [prop-sets-mono-epi]
Consider the category of sets.

(a) The monomorphisms are the same as the injective maps.
(b) Every monomorphism f : X → Y is split, except when X = ∅ and Y 6= ∅.
(c) The epimorphisms are the surjective maps, and these are all split.
(d) The isomorphisms are the same as the bimorphisms which are the same as the bijective functions.

Proof. (a) Consider an injective map f : X → Y . Suppose we have p, q : W → X with fp = fq.
This means that for all w ∈ W we have f(p(w)) = f(q(w)), but f is injective, so we must have
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p(w) = q(w). This shows that p = q as required, so f is a monomorphism. Conversely, suppose
that f is a monomorphism. To show that it is injective, consider x, x′ ∈ X with f(x) = f(x′).
Put W = {0} and define p, q : W → X by p(0) = x and q(0) = x′. Then fp = fq but f is a
monomorphism so p = q, so x = x′ as required.

(b) Now let f : X → Y be an injective map, or equivalently a monomorphism. If X = Y = ∅ then 1∅
is an inverse for f , so f is split. Suppose instead that X 6= ∅. Choose a point x0 ∈ X, and define
g : Y → X by

g(y) =

{
x if y = f(x) for some x ∈ X
x0 if y 6∈ img(f).

(Note that the first clause is well-defined because f is injective.) We then have gf = 1X , so g is a
left inverse for f .

(c) Consider a surjective map f : X → Y . This means that for each y ∈ Y there exists x ∈ X with
f(x) = y. We choose one such x and call it g(y). (In general this may involve an infinite number
of arbitrary choices, so to be set-theoretically rigorous we must appeal to the Axiom of Choice.)
This gives a map g : Y → X with fg = 1Y , so f is a split epimorphisms. Conversely, suppose that
f : X → Y is an epimorphism. Put Z = {0, 1} and define r, s : Y → Z by r(y) = 1 for all y, and

s(y) =

{
1 if y ∈ img(f)

0 if y 6∈ img(f).

We find that rf = sf , but f is assumed to be an epimorphism, so r = s. By inspecting the
definition of r and s, this means that img(f) must be all of Y , so f is surjective.

(d) This is now clear from (a) to (c).
�

Proposition 36.20. [prop-rings-mono-epi]
Consider the category of commutative rings and ring homomorphisms. (Here all rings are implicitly

assumed to have identity elements, and ring homomorphisms are required to preserve them.)

(a) The monomorphisms are the same as the injective homomorphisms.
(b) Every split epimorphism is surjective.
(c) Every surjective homomorphism is an epimorphism.
(d) The quotient map Z→ Z/2Z is a surjective homomorphism that is not split.
(e) The inclusion Z→ Q is an bimorphism that is not surjective (and so is not an isomorphism).
(f) The isomorphisms are precisely the bijective homomorphisms.

Proof. (a) Every injective homomorphism is a monomorphism, by the same argument as for the
category of sets. Conversely, let f : R → S be a monomorphism. Suppose we have a, b ∈ R with
f(a) = f(b). Define p, q : Z[x]→ R by p(

∑
i nix

i) =
∑
i nia

i and q(
∑
i nix

i) =
∑
i nib

i. These are
homomorphisms with p(x) = a and q(x) = b. We also have

fp(
∑
i

nix
i) =

∑
i

nif(a)i =
∑
i

nif(b)i = fq(
∑
i

nix
i),

so fp = fq. As f is a monomorphism, we deduce that p = q. In particular p(x) = q(x), so a = b.
This shows that f is injective.

(b) Suppose that f : R → S is a split epimorphism, so fg = 1S for some homomorphism g : S → R.
Then for all b ∈ S we have a = f(g(b)), which shows that b is in the image of f . This means that
f is surjective as claimed.

(c) Suppose that f : R → S is a surjective homomorphism. Consider a pair of homomorphisms
g, h : S → T with gf = hf . For each b ∈ S we can (by surjectivity) choose a ∈ R with f(a) = b. It
follows that g(b) = gf(a) = hf(a) = h(b). As b was arbitrary we have g = h, as required.

(d) The quotient map f : Z → Z/2Z is surjective, so it is an epimorphism by (c). Write 0 and 1 for
the elements of Z/2Z. Any ring homomorphism g : Z/2Z → Z would have to have g(0) = 0 and
g(1) = 1 and thus 0 = g(0) = g(1 + 1) = g(1) + g(1) = 1 + 1, which is impossible. Thus, there are
no morphisms Z/2Z→ Z, so in particular f cannot have a right inverse.
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(e) Let f : Z → Q be the inclusion, which is clearly not surjective. Suppose we have homomorphisms
g, h : Q → T for some ring T , with gf = hf : Z → T say. This means that g(a) = h(a) whenever
a ∈ Z ⊆ Q. If a 6= 0 we note that g(1/a) and h(1/a) are both inverses for g(a) = h(a), and
inverses are unique, so g(1/a) = h(1/a). Now consider a rational number q ∈ Q, say q = a/b
for integers a, b with b > 0. We then have g(a) = h(a) and g(1/b) = h(1/b) by the above, so
g(q) = g(a)g(1/b) = h(a)h(1/b) = h(q). This means that g = h as required, so f is an epimorphism
and thus a bimorphism.

(f) Suppose that f : R → S is a bijective homomorphism, so there is a function g : S → R with
g(f(r)) = r for all r ∈ R and f(g(s)) = s for all s ∈ S. As f is a homomorphism we have
f(g(s)+g(s′)) = f(g(s))+f(g(s′)) = s+s′. It follows that g(s+s′) = g(f(g(s)+g(s′))) = g(s)+g(s′).
Similar arguments show that g(ss′) = g(s)g(s′) and g(1) = 1, so g is a ring homomorphism. Thus
g is an inverse for f in Rings, so f is an isomorphism. The converse is trivial.

�

Proposition 36.21. [prop-fields-mono-epi]
Let Fieldsp denote the category of fields of characteristic p (where p is zero or a prime number).

(a) All morphisms in Fieldsp are injective functions and thus are monomorphisms. The isomorphisms
are precisely the bijective homomorphisms.

(b) If f : K → L is a morphism in Fields0 then f is an epimorphism iff it is surjective iff it is an
isomorphism.

(c) If p > 0 then we can define a homomorphism φK : K → K by φK(a) = ap, and this is an epimor-
phism that need not be surjective.

Proof.

(a) Let f : K → L be a field homomorphism. If a 6= 0 in K then we have aa−1 = 1 in K so
f(a)f(a−1) = f(aa−1) = f(1) = 1 in L, so f(a) 6= 0. This shows that f is an injective function.
Now suppose we have morphisms g, h : M → K with fg = fh. This means that for all m ∈M we
have f(g(m)) = f(h(m)) but f is injective so g(m) = h(m). As m was arbitrary we have g = h;
so f is a monomorphism. We also see as in Proposition 36.20(f) that f is an isomorphism iff it is
bijective.

(b) It would lead us too far astray to give a complete proof of this, but some indications are as follows.
Let f : K → L be a homomorphism that is not surjective. It will be harmless to replace K by f(K)
and thus assume that f is just the inclusion of a subfield. Using Zorn’s Lemma we can choose an
intermediate field M such that K ≤M ≤ L, and M is a purely transcendental extension of K and
L is algebraic over M . Let j : M →M be an algebraic closure for M . If L has finite degree d > 1
over M then Galois theory tells us that there are distinct maps g1, . . . , gd : L → M extending j.
As these agree on M we have g1f = · · · = gdf , so f is not an epimorphism. A similar approach
works if L has infinite degree, but we need to use a version of Galois theory that covers infinite
extensions, or an auxiliary argument with Zorn’s lemma to pass from finite subextensions of L to
L itself. This just leaves the case where d = 1, so L = M , so L is a purely transcendental extension
of K. We thus have L = K(xi : i ∈ I) for some family of elements xi, and we can define g : L→ L
by g(xi) = xi + 1 for all i. This is different from the identity but we have gf = f , so f is not an
epimorphism.

(c) Now let K be a field of characteristic p > 0, and define φK : K → K by φK(a) = ap. It is clear
that φK(1) = 1 and φK(ab) = φK(a)φK(b). One can also show (by considering prime factorisations
of binomial coefficients) that (x + y)p = xp + yp (mod p), so φK(a + b) = φK(a) + φK(b) for all
a, b ∈ K. This proves that φK is a homomorphism of fields.

Now suppose we have homomorphisms g, h : K → L with gφK = hφK . This means that for
a ∈ K we have g(ap) = h(ap), or equivalently g(a)p = h(a)p, or equivalently (g(a) − h(a))p = 0
in L. As L is a field we can only have up = 0 in L if u = 0, so g(a) = h(a). Thus, φK is an
epimorphism. If K is the field (Z/p)(t) of rational functions, then the image of φK is (Z/p)(tp), so
φK is not surjective.

�
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We could ask for an analogue of Proposition 36.20 covering groups rather than rings. Most of this is
easy and is left to the reader. We will just explain one point:

Proposition 36.22. [eg-group-epi]
Every epimorphism in the category Groups is surjective.

Proof. Let p : G→ H be an epimorphism. Put K = p(G), which is a subgroup of H. We can then form
the set H/K = {hK : h ∈ K} of cosets of K in H. For any h ∈ H we have a bijection m(h) : H/K → H/K
given by m(h)(xK) = hxK. Let a denote the coset K, and put X = H/K q {b} for some b 6∈ H/K. We
extend m(h) to give a map X → X by putting m(h)(b) = b. This construction gives a homomorphism
m : H → Σ, where Σ is the set of bijective maps X → X, considered as a group under composition. Now
define s ∈ Σ by s(a) = b and s(b) = a and s(x) = x for all x 6∈ {a, b}. Define m′ : H → Σ by m′(h) = sm(h) s.
As s2 = 1 we have

m′(h0)m′(h1) = sm(h0)s2m(h1)s = sm(h0)m(h1)s = sm(h0h1)s = m′(h0h1),

so m′ is a homomorphism. It is easy to check that m(h) = m′(h) iff m(h)(a) = a iff h ∈ K. As p(G) = K,
we deduce that m ◦ p = m′ ◦ p. As p is assumed to be an epimorphism, it follows that m(h) = m′(h) for all
h, so H = K, so p is surjective. �

Proposition 36.23. [prop-inverses]
Consider a morphism f : X → Y in a category C.

(a) If f is a monomorphism and a split epimorphism, then it is an isomorphism. More precisely, any
right inverse for f is actually a two-sided inverse.

(b) If f is a split monomorphism and an epimorphism, then it is an isomorphism. More precisely, any
left inverse for f is actually a two-sided inverse.

(c) If f is an isomorphism then it has a unique inverse, which is also the unique left inverse and the
unique right inverse.

Proof. (a) Suppose that f is a monomorphism and a split epimorphism. The latter means that
there is a right inverse morphism g : Y → X with fg = 1Y . It follows that fgf = 1Y f = f = f1X ,
so the parallel maps gf, 1X : X → X become the same when composed with f : X → Y . As f is a
monomorphism we can conclude that gf = 1X , which means that g is a two-sided inverse for f .

(b) This is dual to (a).
(c) Suppose that f has an inverse, say g, so fg = 1Y and gf = 1X . Let p be any left inverse for f ,

so pf = 1X . Then p = p1Y = pfg = 1Xg = g, which shows that g is the only left inverse for f .
Dually, g is the only right inverse for f . A fortiori, it is the only two-sided inverse for f .

�

Definition 36.24. [defn-inverse]
If f : X → Y is an isomorphism, we write f−1 : Y → X for the inverse of f (which is well-defined by the

above proposition).

Proposition 36.25. [prop-isos]

Let X
f−→ Y

g−→ Z be morphisms in a category C.

(a) 1X is an isomorphism (with inverse 1X).
(b) If f : X → Y is an isomorphism, then so is f−1 : Y → X (with inverse f).
(c) If f : X → Y and g : Y → Z are isomorphisms, then gf : X → Z is an isomorphism (with inverse

f−1g−1).

Proof. Clear. �

Corollary 36.26. (a) Any object is isomorphic to itself.
(b) X is isomorphic to Y if and only if Y is isomorphic to X.
(c) If X is isomorphic to Y and Y is isomorphic to Z then X is isomorphic to Z.

Proof. Immediate from the proposition. �
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Definition 36.27. [defn-groupoid]
A groupoid is a category in which every morphism is an isomorphism.

One very important example is the fundamental groupoid of a space, which we discuss in in Section 28.
Here we will give some more algebraic examples.

Example 36.28. [eg-fields-fixed-order]
Fix a number q that is a power of a prime, and let F(q) be the category of finite fields of order q. Every

homomorphism of fields is injective, so if the source and target have the same finite order then it must be
an isomorphism. It follows that F(q) is a groupoid.

Example 36.29. [eg-translation-groupoid]
Let G be a group, and let X be a set with an action of G. We can define a groupoid Trans(G,X) as

follows: the objects are the elements of X, and the morphisms from x to y are the elements g ∈ G for which
g.x = y. Composition is given by the group operation in G.

36.3. Subcategories.

Definition 36.30. Let C be a category. A subcategory of C is a category D such that:

(a) Every object of D is an object of C.
(b) For every pair of objects X,Y of D, the set D(X,Y ) is a subset of C(X,Y ).
(c) For every object X of D, the identity morphism 1X ∈ C(X,X) lies in D(X,X).
(d) The composition rule for D is just the restriction of the composition rule for C. In particular, if

f ∈ D(X,Y ) ⊆ C(X,Y ) and g ∈ D(Y,Z) ⊆ C(Y,Z) then the composite gf ∈ C(X,Z) actually lies
in D(X,Z).

Definition 36.31. Let C be a category, and let D be a subcategory.

(a) We say that D is full if for all objects X,Y ∈ D we have D(X,Y ) = C(X,Y ).
(b) We say that D is replete if it is full, and whenever X is isomorphic to an object of D, it actually

lies in D.
(c) We say that D is skeletal (or is a skeleton of C) if it is full, and contains precisely one object in

each isomorphism class of objects of C.
(d) We say that D is wide if every object of C is an object of D (so C and D have the same objects).

Example 36.32. [eg-subcat-groups]
In the category Groups we have a replete subcategory FinGroups of finite groups, and another replete

subcategory AbGroups of abelian groups. We can also let D be the category whose objects are all the
subgroups of Z, and whose morphisms are all group homomorphisms between such subgroups. This is a
subcategory of Groups that is full but not replete.

Example 36.33. [eg-subcat-vs]
Let C be the category of finite-dimensional vector spaces over R, and let D be the full subcategory whose

objects are the space Rn for n ∈ N. Then D is a skeleton of C.

Example 36.34. [eg-wide-subcat]
Let D be the category whose objects are all groups, and whose morphisms are all surjective group

homomorphisms. This is legitimate because identity homomorphisms are surjective, and the composite of
any two surjective homomorphisms is again surjective. This defines a wide subcategory D of Groups.

36.4. Functors.

Definition 36.35. [defn-functor]
Let C and D be categories. A functor from C to D is a rule that assigns to each object X ∈ C and object

F (X) ∈ D, and to each morphism f : X → Y in C a morphism F (f) : F (X) → F (Y ) in D, in such a way
that

F0: For each X ∈ C we have F (1X) = 1F (X).

F1: For each composable pair of morphisms X
f−→ Y

g−→ Z in C, we have F (gf) = F (g)F (f) in
D(F (X), F (Z)).
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Remark 36.36. [rem-star-notation]
In cases where the notation for the functor F is cumbersome, it is common to write f∗ rather than F (f)

for the map F (X)→ F (Y ) induced by a map f : X → Y . With this notation the axioms say (1X)∗ = 1FX
and (gf)∗ = g∗f∗.

Remark 36.37. [rem-cat-cat]
For any category C, there is an identity functor 1C : C → C. Given functors F : C → D and G : D → E

we can compose them in an evident way to get a functor GF : C → E . This almost means that we have a
category of categories and functors, but in fact there are some set-theoretic difficulties which we shall not
explore here.

Example 36.38. [eg-involutions]
We can define a functor F : Groups→ Sets as follows. On objects, we put F (G) = {g ∈ G : g2 = 1}.

Given a homomorphism α : G → H and an element g ∈ F (G) we note that α(g)2 = α(g2) = α(1) = 1, so
α(g) ∈ F (H). We can thus put F (α) = α|F (α), which is a map of sets from F (G) to F (H). It is clear that
F (1G) = 1F (G) and F (βα) = F (β)F (α), so we have a functor as claimed.

Example 36.39. [eg-group-algebra]
Let Rings be the category of (not necessarily commutative) rings. For any finite group G, we let C[G]

denote the set of all functions a : G → C, considered as a ring using the convolution product (a ∗ b)(y) =∑
x∈G a(x)b(x−1y). Equivalently, if we let [g] : G → C denote the function that sends g to 1 and all

other elements to 0, then the convolution product is characterised by the fact that [g] ∗ [h] = [gh]. For
any homomorphism α : G → H and any a ∈ C[G] we define α∗(a) ∈ C[H] by α∗(a)(h) =

∑
α(g)=h a(g).

Equivalently, this is characterised by the fact that α∗[g] = [α(g)] for all g ∈ G. We find that α∗(a ∗ b) =
α∗(a) ∗ α∗(b), so α∗ is a homomorphism of rings. If β : H → K is another homomorphism we find that
β∗(α∗([g])) = β∗([α(g)]) = [β(α(g))] = (βα)∗([g]). As the elements [g] form a basis for C[G] over C, it follows
that β∗ ◦ α∗ = (βα)∗ : C[G]→ C[K]. This means that we can define a functor R : FinGroups→ Rings by
R(G) = C[G] on objects, and R(α) = α∗ on morphisms.

Example 36.40. [eg-centre-functor]
For any group G we let Z(G) denote the centre of G. If φ : G→ H is a homomorphism, and g ∈ Z(G),

then f(g) need not lie in Z(H). For an example, take G = C2 = {1, g} and let H be the symmetric group Σ3

and define φ : G→ H by φ(g) = (1 2). Thus, there is no obvious way to make Z into a functor. In fact, there
is no way at all. To see this, let G and H be as above, and note that the signature gives a homomorphism

ψ : H → G with ψφ = 1G. If Z were a functor we would have homomorphisms ZG
φ∗−→ ZH

ψ∗−−→ ZG whose
composite is the identity. Here ZG = G and ZH = 1 so this is clearly impossible.

Now let D be the wide subcategory of groups and surjective homomorphisms. If φ : G→ H is surjective,
it is easy to check that φ carries central elements to central elements. Thus, we can define a functor
Z : D → AbGroups by Z(φ) = φ|Z(G).

Example 36.41. [eg-group-action]
Suppose we have a set X and a group G that acts on X. Thus, for each g ∈ G we have a map µg : X → X

given by µg(x) = gx, and these maps satisfy µ1 = 1X and µg ◦ µh = µgh. We can then define a functor
F : bG → Sets which sends the unique object of bG to the set X, and sends each morphism g of bG to the
map µg.

Example 36.42. Suppose we have any category C, and some objects X0, X1, X2 and X3 in C, and
morphisms

X0
f
//

g

��

X1

h

��

X2
k
// X3

such that the square commutes (ie kg = hf). Let Q be the category described in Example 36.10. Then
there is a functor F : Q → C given on objects by by F (i) = Xi, and on morphisms by F (p) = f , F (q) = g,
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F (r) = h and F (s) = k. Indeed, commutative squares in C are essentially the same thing as functors from
Q to C.

Example 36.43. [eg-mat-functor]
Let MatR be as in Example 36.11, and let FinVectR be the category of finite dimensional vector spaces

over R and linear maps. We can define F : MatR → FinVectR as follows. On objects, we put F (n) = Rn
(regarded as the space of column vectors of length n). On morphisms, if A is an m × n matrix we let
F (A) : Rn → Rm be the linear map given by F (A)(u) = Au.

Example 36.44. [eg-forgetful]
We can define a functor U : Groups→ Sets as follows. On objects, U(G) is just the underlying set of

elements of the group G. For a homomorphism α : G→ H, the function U(α) is just α itself. This is called
the forgetful functor. There are similar forgetful functors from rings to sets, or from topological spaces to
sets. There is also a partially forgetful functor from rings to abelian groups, that remembers the additive
group structure and forgets the multiplication.

Example 36.45. [eg-inclusion-functor]
If D is a subcategory of C then there is an inclusion functor J : D → C given by J(X) = X and J(f) = f .

Definition 36.46. Let F : C → D be a functor.

(a) We say that F is faithful if the maps F : C(X,Y )→ C(F (X), F (Y )) are all injective.
(b) We say that F is full if the maps F : C(X,Y )→ C(F (X), F (Y )) are all surjective.
(c) We say that F is essentially surjective if for all objects U ∈ D there exists an object X ∈ C such

that U is isomorphic to F (X).
(d) We say that F is an equivalence if it is full, faithful, and essentially surjective.

Example 36.47. [eg-func-props]

(a) Forgetful functors are faithful but not full.
(b) Consider the forgetful functor U : FinGroups → FinSets. This is not essentially surjective,

because the empty set does not biject with the underlying set of any group. Now let FinSets′

denote the category of finite nonempty sets, and let U ′ : FinGroups→ FinSets′ be the forgetful
functor. If T ∈ FinSets′ then the order n = |T | is nonzero, so there is a finite cyclic group Z/nZ of
order n, and we can choose a bijection U ′(Z/nZ)→ T . This shows that U ′ is essentially surjective.

(c) It is a standard fact of linear algebra that every linear map Rn → Rm comes from a unique m× n
matrix, and that every finite-dimensional vector space over R is isomorphic to Rn for some n. From
this we see that the functor MatR → FinVectR in Example 36.43 is an equivalence.

Definition 36.48. [defn-nat-trans]
Let F and G be two functors from C to D. A natural transformation α from F to G consists of morphisms

αX : F (X)→ G(X) in D (for all X ∈ C) such that for every morphism f : X → Y in C, the following diagram
commutes:

F (X)
αX //

F (f)

��

G(X)

G(f)

��

F (Y )
αY
// G(Y ).

(This diagram is called a naturality square.) We say that α is a natural isomorphism if, in addition, all the
morphisms αX : F (X)→ G(X) are isomorphisms.

Remark 36.49. If α is a natural isomorphism from F to G, it is straightforward to check that the inverse
maps α−1

X : G(X)→ F (X) comprise another natural isomorphism from G to F .

Example 36.50. [eg-nat-trans-i]
Define functors F,G : AbGroup→ AbGroup by

F (A) = {a ∈ A : 4a = 0} F (f) = f |F (A)

G(A) = {a ∈ A : 2a = 0} G(f) = f |G(A).
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Then define αA : F (A)→ G(A) by αA(a) = 2a. We claim that this is a natural transformation. Indeed, the
naturality condition just says that for any homomorphism f : A → B and any element a ∈ F (A) we have
f(2a) = 2f(a), which is immediate from the definition of a homomorphism.

Example 36.51. [eg-nat-trans-ii]
Let U : Rings→ Sets be the forgetful functor. For any ring R, we can define a function αR : R→ R by

αR(x) = x−x2. This is not a homomorphism, so it is better to think of it as a morphism αR : U(R)→ U(R)
in the category of sets. We claim that this defines a natural transformation α : U → U . Indeed, the naturality
condition says that for all ring homomorphisms f : R→ S, the diagram

U(R)
αR //

U(f)

��

U(R)

U(f)

��

U(S)
αS
// U(S).

In other words, for all x ∈ R we should have f(x− x2) = f(x)− f(x)2. This is an easy consequence of the
fact that f is a ring homomorphism.

Example 36.52. [eg-frobenius-natural]
Let p be a prime, and let 1 : Fieldsp → Fieldsp be the identity functor. As in Proposition 36.21, we

define a homomorphism φK : K → K by φK(a) = ap. We claim that this gives a natural map φ : 1 → 1.
Equivalently, we claim that for any homomorphism f : K → L, the following diagram commutes:

K
φK //

f

��

K

f

��

L
φL

// L.

This just says that f(ap) = f(a)p, which is clear.

Definition 36.53. Suppose we have functors F : C → D and G : D → C. Let 1C denote the identity
functor from C to C, and similarly for 1D. We say that G is inverse to F (and vice versa) if there exist
natural isomorphisms 1C → GF and 1D → FG.

Proposition 36.54. [prop-cat-equiv]
If F : C → D has an inverse, then it is an equivalence. Conversely, if F : C → D is an equivalence, then

we can construct an inverse provided that we ignore set-theoretic difficulties.

This will rely on a simple lemma:

Lemma 36.55. [lem-PQRP]

Let P
f−→ Q

g−→ R
h−→ P be functions between sets, such that f and g are injective and h is bijective and

hgf = 1P . Then f and g are also bijective.

Proof. First, as h is bijective we have an inverse map h−1 : P → R. As hgf = 1P we have h−1hgf =
h−11P , or in other words gf = h−1. It then follows that gfh = h−1h = 1R. Now for any r ∈ R we can
put q = fh(r) and we find that r = g(q). This shows that g is surjective, but it was also assumed to be
injective, so it is a bijection. Now the equation gf = h−1 gives f = g−1h−1, with g and h bijections, so f is
a bijection. �

Proof of Proposition 36.54. First suppose that F has an inverse. We choose an inverse G : D → C,
and natural isomorphisms α : 1C → GF and β : 1D → FG. For X,Y ∈ C we define

φXY : C(GF (X), GF (Y ))→ C(X,Y )

by

φXY (GF (X)
w−→ GF (Y )) = (X

αX−−→ GF (X)
w−→ GF (Y )

α−1
Y−−→ Y ).
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This is clearly a bijection, with φ−1
XY (u) = αY ◦ u ◦ α−1

X . On the other hand, by inspecting the naturality
square

X

u

��

αX

'
// GF (X)

GF (u)

��

Y
αY

' // GF (Y )

we see that the composite

C(X,Y )
FXY−−−→ D(F (X), F (Y ))

GF (X),F (Y )−−−−−−−→ C(GF (X), GF (Y ))
φXY−−−→ C(X,Y )

is the identity. It follows easily that FXY is injective. A similar argument shows that GUV : D(U, V ) →
C(G(U), G(V )) is injective for all U and V . In particular, we can take U = F (X) and V = F (Y ) to see
that GF (X),F (Y ) is injective. We can now apply Lemma 36.55 to the above composite to see that FXY is a
bijection, which means that F is full and faithful. Moreover, for any Y ∈ D we have Y ' FG(Y ) via βY ,
which shows that F is essentially surjective.

Now suppose we start instead from the assumption that F is full, faithful, and essentially surjective. As F
is essentially surjective, for each U ∈ D we can choose an object GU ∈ C and an isomorphism βU : U → FGU .
Often we will know that F is essentially surjective by some kind of constructive argument that provides a
choice of GU and βU . In other cases we may need to make an arbitrary choice, simultaneously for all objects
U ∈ D, and there may be a proper class of such objects. This is set-theoretically dubious, although there
are various ways to make it respectable. This will not be a crucial point for us, so we will ignore the details.
So far we have only defined G on objects. Suppose we have a morphism s : U → V in D. Let ψUV (s) be the
composite

FG(U)
β−1
U−−→ U

s−→ V
βV−−→ FG(V ).

As F is assumed full and faithful, we see that the map FG(U),G(V ) : C(G(U), G(V ))→ C(FG(U), FG(V )) is
bijective. There is thus a unique morphism s′ : G(U)→ G(V ) such that F (s′) = ψUV (s). We define G(s) to
be this morphism s′. In other words, G(s) is characterised uniquely by the fact that the square

U

s

��

βU

'
// FG(U)

FG(s)

��

V
'
βV

// FG(V )

is commutative. Now suppose we have another morphism t : V → W . It is easy to see that G(t) ◦G(s) has
the defining property of G(ts), so G(ts) = G(t)G(s). It is also clear from the definition that G(1U ) = 1G(U),
so we have defined a functor G : D → C. We can now regard the above square as a naturality square, showing
that β is a natural isomorphism 1D → FG. Next, consider the isomorphism βFX : FX → FGFX. As F is
full and faithful, there is a unique morphism αX : X → GFX such that F (αX) = βFX . Similarly, there is
also a unique α′X : GFX → X with F (α′X) = β−1

FX . This means that

F (α′XαX) = F (α′X)F (αX) = β−1
FXβFX = 1FX = F (1X).

As F is faithful, we can deduce that α′XαX = 1X . A similar argument shows that αXα
′
X = 1GF (X), so α′X

is inverse to αX , proving that αX is an isomorphism. We claim that α is also natural, or in other words that
the left hand square below commutes:

X
αX //

u

��

GF (X)

GF (u)

��

F (X)
F (αX)

//

F (u)

��

FGF (X)

FGF (u)

��

F (X)
βFX //

F (u)

��

FGF (X)

FGF (u)

��

Y
αY
// GF (Y ) F (Y )

F (αY )
// FGF (Y ) F (Y )

βFY

// FGF (Y ).

This says that two maps X → GF (Y ) are the same. As F is faithful, it will suffice to check that the
resulting maps F (X)→ FGF (Y ) are the same, or equivalently that the middle square above commutes. By
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the definition of α, the middle square is the same as the right hand square, which is commutative because β
is natural. We have thus constructed a natural isomorphism α : 1C → GF as well as a natural isomorphism
β : 1D → FG, so G is inverse to F as claimed. �

Example 36.56. [eg-choose-basis]
As in Example 36.43 we define F : MatR → FinVectR by F (n) = Rn. We observed in Example 36.47(c)

that this is full, faithful and essentially surjective. In principle this must therefore have an inverse. However,
to construct one, we would need to choose a basis for every finite-dimensional real vector space simultaneously.

36.5. Adjoint functors.

Definition 36.57. [defn-adjoint]
Let C andD be categories. An adjoint pair consists of functors F : C → D (the left adjoint) andG : D → C

(the right adjoint), together with natural transformations η : 1C → FG (the unit) and ε : GF → 1D (the
counit) such that the following diagrams commute for all X ∈ C and U ∈ D:

G(X)
G(ηX)
//

1G(X) %%

GFG(X)

εG(X)

��

F (X)
ηF (X)
//

1F (X) %%

FGF (X)

F (εX)

��

G(X) F (X).

These are called the triangular identities.

Example 36.58. [eg-abelianisation]
In this example we will write the group law for a generic group using multiplicative notation, whether

or not it is abelian.
Let J : AbGroups → Groups be the inclusion functor. For any group G, let G′ be the subgroup

generated by all elements of the form xyx−1y−1. It is standard (and not hard to check) that G′ is a normal
subgroup, that G/G′ is an abelian group, and that G′ is the smallest subgroup with these two properties.
If α : G → H is a homomorphism then α(xyx−1y−1) = α(x)α(y)α(x)−1α(y)−1, so α(G′) ≤ H ′, so there is
an induced homomorphism α : G/G′ → H/H ′ given by α(xG′) = α(x)H ′. We can thus define a functor
Q : Groups→ AbGroups by Q(G) = G/G′ and Q(α) = α. Next, we can define ηG : G→ JQ(G) = G/G′

by η(g) = gG′. This is easily seen to be natural. Next, let A be an abelian group. Then QJ(A) = A/A′ =
A/{1}. Strictly speaking, this is not the same as A; the elements of A/{1} are the cosets {a} for a ∈ A, not
the elements a themselves. We can define an isomorphism εA : QJ(A)→ A by εA({a}) = a, and this gives a
natural isomorphism ε : QJ → 1. We claim that this gives an adjoint pair, with Q as the left adjoint and J
as the right adjoint. Indeed, the triangular diagrams take the form

A
η
//

1
  

A/1

ε

��

G/G′
η
//

1
%%

(G/G′)/1

ε

��

A G/G′

and they are easily seen to commute.

Example 36.59. [eg-topological-adjunctions]
Consider the category Spaces of topological spaces, and the category Sets of sets. We have already seen

the forgetful functor U : Spaces→ Sets. In the opposite direction, for any set T we let D(T ) denote T with
the discrete topology, and we let I(T ) denote T with the indiscrete topology. For any function f : T → S,
we see that f is continuous when regarded as a map D(T ) → D(S), or as a map I(T ) → I(S). We can
therefore make D and I into functors Sets→ Spaces by putting D(f) = f and I(f) = f . Next, for any set
T we let ηT : T → UD(T ) be the identity map. For any space X, we note that DU(X) is the same set as X,
but with the discrete topology. We let εX denote the identity function, considered as a map from DU(X)
to X. This is continuous, because every subset of DU(X) is open, so there is nothing to check. We claim
that this gives an adjunction, with D as the left adjoint and U as the right adjoint. Indeed, all that is left is
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to check the triangular identities, which are trivial, because all maps involved are the identity maps of the
underlying sets.

Next, for any space X we define ζX to be the identity map, considered as a map X → IU(X). This is
continuous, because the only open sets in IU(X) are ∅ and X, which are open in the original topology as
well. We also let ξT denote the identity map T → T = UI(T ). We find that this gives another adjunction,
with U now being the left adjoint, I the right adjoint, ζ the unit and ξ the counit.

Proposition 36.60. [prop-adjoint]
Any adjunction (F,G, η, ε) gives a system of bijections

ρXU : C(X,G(U))→ D(F (X), U)

given by

ρXU (X
q−→ G(U)) = (F (X)

F (q)−−−→ FG(U)
εU−→ U

ρ−1
XU (F (X)

p−→ U) = (X
ηX−−→ GF (X)

G(p)−−−→ G(U)).

These are natural in the sense that for all

W
f−→ X X

p−→ GU U
m−→ V

we have

ρWV (W
f−→ X

p−→ G(U)
G(m)−−−→ G(V )) = (F (W )

F (f)−−−→ F (X)
ρ(p)−−→ U

m−→ V ).

Conversely, if we have functors F and G and maps ρXU with this naturality property, then there is a unique
adjunction (F,G, η, ε) giving rise to them.

Proof. We can certainly define maps

C(X,G(U))
ρXU

.. D(F (X), U)
λXU

nn

by
ρXU (q) = εU ◦ F (q) λXU (p) = G(p) ◦ ηX .

Now consider the left hand diagram below:

X
q

//

ηX

��

G(U)

ηG(U)

��

1

%%

GF (X)
GF (q)

// GFG(U)
G(εU )

// G(U)

F (X)
F (ηX)
//

1
%%

FGF (X)

εF (X)

��

FG(p)
// FG(U)

εU

��

F (X)
p

// U

The square commutes because η is natural, and the triangle commutes by the triangular identities. The
composite along the bottom is G(εU ◦ F (q)) = G(ρ(q)), so the left edge followed by the bottom is G(ρ(q)) ◦
ηX = λ(ρ(q)). As the diagram commutes, we have λ(ρ(q)) = q. Similarly, we can use the right hand diagram
to show that ρ(λ(p)) = p for all p : F (X)→ U , so ρ and λ are mutually inverse bijections, as claimed.

Now suppose we have maps

W
f−→ X X

p−→ GU U
m−→ V

and consider the diagram

F (W )
F (f)

// F (X)
F (p)
//

ρ(p)
$$

FG(U)
FG(m)

//

εU

��

FG(V )

εV

��

U
m

// V.

The triangle commutes by the definition of ρ(p), and the square commutes by the naturality of ε. The upper
composite from F (X) to V is by definition ρ(G(m) ◦ p ◦ f), whereas the lower composite it m ◦ ρ(p) ◦ F (f),
and the diagram commutes so these are the same.
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Now suppose instead that we start with a system of bijections

ρXU : C(X,G(U))→ D(F (X), U)

satisfying

ρWV (W
f−→ X

p−→ G(U)
G(m)−−−→ G(V )) = (F (W )

F (f)−−−→ F (X)
ρXU (p)−−−−−→ U

m−→ V )

for all f , p and m as before. We put

λXU = ρ−1
XU : D(F (X), U)→ C(X,G(U)).

Note that the naturality rule for ρ gives

ρWV (W
f−→ X

λXU (q)−−−−−→ G(U)
G(m)−−−→ G(V )) = (F (W )

F (f)−−−→ F (X)
q−→ U

m−→ V )

and we can apply λWV to this to get

λWV (F (W )
F (f)−−−→ F (X)

q−→ U
m−→ V ) = W

f−→ X
λXU (q)−−−−−→ G(U)

G(m)−−−→ G(V ).

Now note that we have an element 1G(U) ∈ C(G(U), G(U)) and a bijection

ρG(U),U : C(G(U), G(U))→ D(FG(U), U),

giving a morphism

εU = ρG(U),U (1G(U)) : FG(U)→ U.

Now suppose we have a morphism m : U → V in D. The naturality rule for the triple (f, p,m) =
(1GU , 1GU ,m) gives ρ(G(m)) = m ◦ εU , whereas the naturality rule for (Gm, 1GV , 1V ) gives ρ(G(m)) =
εV ◦ FG(m). It follows that m ◦ εU = εV ◦ FG(m), which means precisely that the maps εU give a natural
transformation FG→ 1D. The naturality rule for (q, 1GU , 1U ) gives ρ(q) = εU ◦F (q), so ε determines ρ just
as before. By a dual argument, we see that the maps

ηX = λX,F (X)(1F (X)) : X → GF (X)

give a natural transformation, and that λ(p) = G(p) ◦ ηX for all p : F (X) → U . In particular, we can take
X = G(U) and p = εU to get λ(εU ) = G(εU ) ◦ ηG(U). On the other hand, we also have εU = ρ(1G(U)),
so λ(εU ) = 1G(U). This gives G(εU ) ◦ ηG(U) = 1G(U), which is one of the triangular identities. A similar
argument gives the other triangular identity, so we have an adjunction as claimed. �

Example 36.61. [eg-group-ring-adjunction]
Let Rings be the category of (not necessarily commutative) rings. For any ring R, we let U(R) denote the

set of invertible elements in R, which is a group under multiplication. If f : R→ S is a ring homomorphism
and u ∈ U(R) then f(u−1) is an inverse for f(u), so f(u) ∈ U(S). Thus, f restricts to give a group
homomorphism U(R) → U(S), so we can regard U as a functor Rings → Groups. We will show that
this has a left adjoint. The construction is essentially the same as in Example 36.39: for any group G we
form a free abelian group Z[G] with one basis element [g] for each g ∈ G, and we make this a ring by
the rule [g] ∗ [h] = [gh]. Given a group homomorphism p : G → U(R) we define a ring homomorphism
ρGR(p) : Z[G]→ R by

ρGR(p)(
∑
i

ni[gi]) =
∑
i

nip(gi).

This gives a bijection

ρGR : Groups(G,U(R))→ Rings(Z[G], R)

which has the naturality property described in Proposition 36.60 and so leads to an adjunction. The unit
map η : G→ U(Z[G]) is just η(g) = [g], and the counit map ε : Z[U(R)]→ R is ε(

∑
i ni[ui]) =

∑
i niui.
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36.6. Products and coproducts.

Definition 36.62. [defn-terminal]
Let C be a category. An object A ∈ C is initial if for each X ∈ C, there is a unique morphism A → X.

An object B ∈ C is terminal if for each X ∈ C, there is a unique morphism X → B.

Proposition 36.63. [prop-terminal-unique]
If A and A′ are both initial objects, then there is a unique isomorphism from A to A′. Similarly, if B

and B′ are both terminal objects, then there is a unique isomorphism from B to B′.

Proof. First note that there is a unique map from A to A, and the identity is one such map, so it
must be the only one. Similarly, the identity is the only morphism from A′ to A′. Next, as A is initial there
is a unique morphism f : A → A′, and as A′ is initial there is a unique morphism f ′ : A′ → A. Now f ′f
is a morphism from A to itself so we must have f ′f = 1A, and similarly ff ′ = 1A′ . Thus, f and f ′ are
isomorphisms. The terminal case is proved dually. �

Because of this proposition, it is usually harmless to talk about “the initial object” or “the terminal
object”, even though it may not strictly be unique.

Example 36.64.

(a) In Sets, the empty set is initial, and any set with precisely one element is terminal.
(b) The empty set has a unique topology, and with that topology it becomes an initial object in Spaces.

Similarly, any singleton set has a unique topology, and with that topology it is terminal in Spaces.
(c) In Groups, the trivial group is both initial and terminal.
(d) In Rings, the ring Z is initial and the zero ring is terminal.
(e) In the category of fields of characteristic p > 0, the field Z/p is initial and there is no terminal

object. Similarly, in the category of fields of characteristic zero, Q is initial and there is no terminal
object. In the category of all fields there is neither an initial object nor a terminal object.

(f) If G is a nontrivial group then bG has neither an initial object nor a terminal object.

Definition 36.65. [defn-categorical-product]
Let C be a category, and let A and B be objects of C. A product diagram for A and B is a diagram

A
p←− P

q−→ B such that for any other diagram A
f←− T

g−→ B there is a unique morphism m : T → P with
pm = f and qm = g. Equivalently, for any object T there is a map

λT : C(T, P )→ C(T,A)× C(T,B)

given by λT (m) = (pm, qm), and the diagram A
p←− P

q−→ B is a product diagram iff the maps λT is a
bijection for all T .

Example 36.66. [eg-product-set]
In the category Sets, we can take P = A × B and p(a, b) = a and q(a, b) = b. Given another diagram

A
f←− T

g−→ B we can define m : T → A × B by m(t) = (f(t), g(t)), and this is clearly the unique function
with pm = f and qm = g.

Example 36.67. [eg-product-space]
Let X and Y be topological spaces, and give the set X×Y the product topology as in Definition 5.14. As

proved in Proposition 5.16, this makes the diagram X
p←− X × Y q−→ into a product diagram in the category

Spaces.

Example 36.68. [eg-product-group]
Now consider instead the category Groups. We can again take P = A × B, equipped with the usual

group structure so that (a, b).(a′, b′) = (aa′, bb′). Then the projections p and q are group homomorphisms,

so we have a diagram A
p←− P q−→ B in Groups. If we have another diagram A

f←− T g−→ B in Groups we can
again define m : T → A×B by m(t) = (f(t), g(t)), and we find that this is also a group homomorphism, and
it is clearly the unique one with pm = f and qm = g. The same procedure works in the category of rings.
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Example 36.69. [eg-poset-product]
Let X be a set. Let P the set of subsets of X, ordered by inclusion, and let sP be the corresponding

category. Thus, for any pair of subsets U, V ⊆ X, there is a unique morphism U → V if U ⊆ V , and no

morphisms otherwise. For any pair of subsets A and B, we have a diagram A
p←− A ∩B q−→ B, and we claim

that this is a product diagram. Indeed, if we have a diagram A
f←− T

g−→ B then T must be a subset of A
and also a subset of B, so T ⊆ A ∩B, so we have a morphism m : T → A ∩B. Because parallel maps in sP
are always equal, we see that m is unique and satisfies pm = f and qm = g as required.

Example 36.70. [eg-matrix-product]
Let d and e be natural numbers, and consider them as objects of the category MatR. Put

p = [Id | 0de] : d+ e→ d

q = [0ed | Ie] : d+ e→ e.

Suppose we are given morphisms d
f←− t

g−→ e, so f is a d× t matrix and g is an e× t matrix. We can stack

them to form a (d+ e)× t matrix m =

[
f
g

]
, and we find that this is the unique matrix such that pm = f

and qm = g. Thus, the diagram d
p←− (d+ e)

q−→ e is a product diagram in MatR.

Example 36.71. [eg-field-product]
The theory of products in Fields0 is complex. Given fields K and L of characteristic zero, we can always

form the product ring K × L, but that will not be a field, so it will not give a product diagram in Fields0.
In some cases, there will be a be a different diagram that does provide a product in Fields0. For one class
of examples, recall that K has a unique subfield K0 isomorphic to Q, and similarly for L, so K0 ' L0.
Suppose that there are no other cases where a subfield of K is isomorphic to a subfield of L. (When K and
L are finite extensions of Q, there are only finitely many subfields and this condition can often be checked

explicitly by Galois theory.) If we have a diagram K
f←− T

g−→ L then f(T ) ' T ' g(T ) so f(T ) = K0

and g(T ) = L0 and T ' Q. Using this we see that the diagram K ←− Q −→ L is a product diagram. For

example, this applies when K = Q(
√

2) and L = Q(
√

3). Using similar methods one can show that the

diagram Q( 3
√

2)
1←− Q( 3

√
2)

1−→ Q( 3
√

2) is also a product diagram, but that there is no product diagram of the

form Q(
√

2) ←− P −→ Q(
√

2). (These two cases are different because Aut(Q( 3
√

2)) = {1}, but Q(
√

2) has a

nontrivial automorphism sending
√

2 to −
√

2.)

Remark 36.72. [rem-products-terminal]
Suppose we have a category C and objects A,B ∈ C. We can define an auxiliary category D as follows:

the objects are diagrams of type (A
f←− T

g−→ B) with T ∈ C, and the morphisms from (A
f←− T

g−→ B) to

(A
f ′←− T ′

g′−→ B) are the morphisms m : T → T ′ in C for which f ′m = f and g′m = g. Equivalently, they
are the morphisms m that make the following diagram commute:

T
f

ww

g

''
m

��

A B

T ′
f ′

gg

g′

77

We now see from the definitions that a product diagram for A and B is precisely the same as a terminal
object in the category D. Proposition 36.63 therefore tells us that any two product diagrams are connected

by a unique morphism, and that that morphism is an isomorphism in D. More explicitly, if (A
p←− P

q−→ B)

and (A
p′←− P ′ q

′

−→ B) are both product diagrams, then there is a unique morphism m : P → P ′ with p′m = p
and q′m = q, and that morphism is an isomorphism. Because of this, it is generally harmless to refer to P
as “the product of A and B” and to denote it by A×B, even though it may not strictly be unique.

We now consider the dual notion.
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Definition 36.73. [defn-categorical-coproduct]
Let C be a category, and let A and B be objects of C. A coproduct diagram for A and B is a diagram

A
i−→ P

j←− B such that for any other diagram A
f−→ T

g←− B there is a unique morphism m : P → T with
mi = f and mj = g. Equivalently, for any object T there is a map

µT : C(P, T )→ C(A, T )× C(B, T )

given by µT (m) = (mi,mj), and the diagram A
i−→ P

j←− B is a coproduct diagram iff the map µT is a
bijection for all T .

Remark 36.74. [rem-coproducts-initial]
By the dual of Remark 36.72, coproducts are initial objects in a certain auxiliary category, so they are

unique up to canonical isomorphism if they exist. It is therefore usually harmless to refer to P as “the
coproduct of A and B” and to denote it by AqB.

Example 36.75. [eg-coproduct-set]
Let A and B be sets. We then let AqB denote the set of pairs of the form (0, a) (with a ∈ A) or (1, b)

(with b ∈ B), and define maps A
i−→ A q B j←− B by i(a) = (0, a) and j(b) = (1, b). If we are given another

diagram A
f−→ T

g←− B, we can define m : A q B → T by m(0, a) = f(a) and m(1, b) = g(b); this is clearly
the unique map with mi = f and mj = g, so we have a coproduct diagram.

Alternatively, if A and B happen to come as disjoint subsets of some other set C, we can just define
P ′ = A ∪ B and i′(a) = a and j′(b) = b. This gives another coproduct diagram. As expected, there is a
bijection m : P → P ′ given by m(0, a) = a and m(1, b) = b.

Example 36.76. [eg-biproduct]
Let A and B be abelian groups; we will write the group operation as addition. In this context, it

is traditional to write A ⊕ B instead of A × B for the product group. As well as the projection maps

A
p←− A ⊕ B q−→ B, we also have maps A

i−→ A ⊕ B j←− B given by i(a) = (a, 0) and j(b) = (0, b). We claim
that this gives a coproduct diagram in AbGroups. Indeed, suppose we have another abelian group T and

homomorphisms A
f−→ T

g←− B. We can then define m : A⊕B → T by m(a, b) = f(a) + g(b). Using the fact
that (a, b) = i(a) + j(b), we see that m is the unique homomorphism with mi = f and mj = g, as required.

Example 36.77. [eg-free-product]
Let G and H be groups (now written with multiplicative notation) that need not be abelian. There is

then a group G∗H (called the free product of G and H) and morphisms G
i−→ G∗H j←− H giving a coproduct

diagram. To describe G ∗ H, put G′ = G \ {1} and H ′ = H \ {1}. Then G ∗ H is the set of sequences
u = (u1, . . . , ur) such that either

(a) ui ∈ G′ for all odd i, and ui ∈ H ′ for all even i; or
(b) ui ∈ H ′ for all odd i, and ui ∈ G′ for all even i.

The empty sequence is permitted, and gives the identity element of G ∗ H. The inverse of (u1, . . . , ur)
is (u−1

r , . . . , u−1
1 ). To define uv, we first join them together to get a longer sequence w that may or may

not lie in G ∗ H. If w contains adjacent terms that lie in the same group then we combine them by
multiplying in that group. If the resulting sequence contains an identity element anywhere, then we discard
it. After a finite number of steps of these two types, we obtain a element of G ∗ H, which we take to
be uv. Some work is required to prove that this is well-defined and associative, but we will not give
details here. For g ∈ G′ we define i(g) to be the sequence (g), and we also define i(1) to be the empty
sequence. This gives a homomorphism i : G→ G ∗H, and we define j : H → G ∗H in the same way. Given

homomorphisms G
p−→ T

q←− H we define m : G ∗H → T by m(u1, . . . , ur) = p(u1)q(u2)p(u3) · · · (in case (a))
or m(u1, . . . , ur) = q(u1)p(u2)q(u3) · · · (in case (b)). One can check that this is a homomorphism. Given
that, it is clearly the unique one for which mi = p and mj = q. We thus have a coproduct diagram as
claimed.

In some special cases we can be more explicit. For one example, define maps rk, sk : Z→ Z by rk(n) =
k − n and sk(n) = k + n. The set

A = {rk : k ∈ Z} ∪ {sk : k ∈ Z} = {n 7→ εn+ k : ε ∈ {1,−1}, k ∈ Z}
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is then a group under composition (with s0 = 1), and the sets G = {1, r0} and H = {1, r1} are subgroups.
We have r2

0 = r2
1 = 1 and sk = (r1r0)k and rk = (r1r0)k−1r1, and using these we find that the evident

homomorphism G ∗ H → A is an isomorphism, or equivalently that the inclusion maps give a coproduct
diagram G −→ A←− H. Note here that G and H are abelian but G ∗H is not, so the coproduct of G and H
in Groups is different from the coproduct in AbGroups.

For another example, consider the group SL2(Z) of 2×2 integer matrices with determinant one, and the
quotient group P = SL2(Z)/{I,−I}. Put g =

[
0 −1
1 0

]
and h =

[
0 −1
1 −1

]
(considered as elements of P ). These

generate cyclic groups G = 〈g〉 and H = 〈h〉 of order 2 and 3 respectively. It is known that the diagram
G −→ P ←− H is a coproduct, but we will not discuss the proof here.

Example 36.78. [eg-coproduct-ring]
Readers who are familiar with tensor products can consider the following. Let CRings denote the

category of commutative rings. If A,B ∈ CRings, we can make A⊗B into a ring by defining(∑
i∈I

ai ⊗ bi

)∑
j∈J

cj ⊗ dj

 =
∑
i∈I

∑
j∈J

(aicj)⊗ (bidj).

Equivalently, multiplication is defined by the distributivity rule together with the rule (a ⊗ b)(c ⊗ d) =

(ac)⊗ (bd). We then have homomorphisms A
i−→ A⊗ B j←− B given by i(a) = a⊗ 1 and j(b) = 1⊗ b. If we

are given another diagram A
f−→ T

g←− B, we can define a homomorphism m : A⊗B → T by the rule

m

(∑
i∈I

ai ⊗ bi

)
=
∑
i

f(ai)g(bi),

and we find that this is the unique homomorphism with mi = f and mj = g. Thus A⊗B is the coproduct
of A and B in CRings.

Example 36.79. [eg-poset-coproduct]
Let X be a set, and let P the poset of subsets of X. By arguments similar to those in Example 36.69,

we see that A ∪B is the coproduct of A and B in sP .

We now discuss (co)products of more than two factors.

Definition 36.80. [defn-indexed-product]
Let C be a category, and let (Ai)i∈I be a family of objects of C. A cone for the family is an object P

equipped with a family of morphisms pi : P → Ai for all i. Such a cone is a product diagram if for every

other cone (T
fi−→ Ai)i∈I , there is a unique morphism m : T → P with pim = fi for all i. This means that

the maps pi induce a bijection

C(T, P )→
∏
i∈I
C(T,Ai)

for all T .
Dually, a cocone is an object Q with a family of morphisms qi : Ai → Q. Such a cocone is a coproduct

diagram if for every other cocone (Ai
gi−→ T )i∈I there is a unique morphism m : Q → T such that mqi = gi

for all i. This means that the maps qi induce a bijection

C(Q,T )→
∏
i∈I
C(Ai, T )

for all T .

Remark 36.81. [rem-terminal-product-cones]
There is a evident way to define a category of cones, and we find that a product diagram is simply

a terminal object in that category. Similarly, a coproduct diagram is an initial object in the category of
cocones. This means that products and coproducts are unique up to canonical isomorphism if they exist.
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Example 36.82. [eg-infinite-products]
Let (Ai)i∈I be a family of sets. Recall that the cartesian product

∏
i∈I Ai is the set of all families

a = (ai)i∈I , where ai ∈ Ai for all i. We have maps πj :
∏
iAi → Aj given by πj((ai)i∈I) = aj , giving a cone.

Now suppose we have another set T and a family of maps fi : T → Ai. We can then define m : T →
∏
iAi

by m(t) = (fi(t))i∈I , and this is clearly the unique map with πim = fi for all i. Thus, we have a product
diagram in Sets. If each Ai is a group then we can make

∏
iAi into a group using the obvious rule

(ai)i∈I .(bi)i∈I = (aibi)i∈I .

We find that the maps πi are group homomorphisms and that they give a product diagram in Groups as
well as in Sets. Products in Rings can be constructed in the same way. Similarly, if each Ai is a topological
space then we can equip

∏
iAi with the product topology and the maps πi then give a product diagram in

Spaces, as we see from Proposition 5.16.

Example 36.83. [eg-infinite-coproducts]
Again, let (Ai)i∈I be a family of sets. Recall that the disjoint union

∐
i∈I Ai is the set of all pairs (i, a)

where i ∈ I and a ∈ Ai. We have maps ιj : Aj →
∐
iAi given by ιj(a) = (j, a). Given maps gi : Ai → T

for all i, we can define m :
∐
iAi → T by m(i, a) = gi(a), and this is the unique map with mιi = gi for all

i. Thus, the maps ιi give a coproduct diagram in Sets. If the sets Ai have given topologies, then we can
topologise

∐
iAi as in Definition 5.40, and we see using Proposition 5.43 that this gives a coproduct diagram

in Spaces.

Example 36.84. [eg-infinite-direct-sum]
Now let (Ai)i∈I be a family of abelian groups. We let

⊕
iAi denote the subgroup of

∏
iAi consisting of

families (ai)i∈I for which ai = 0 for all but finitely many indices i. We have homomorphisms ιj : Aj →
⊕

iAi
given by

ιj(a)i =

{
a if i = j

0 otherwise.

If we have a family of homomorphisms gi : Ai → T , we can define m :
⊕

iAi → T by

m((ai)i∈I) =
∑
i∈I

gi(ai)

(which is well-defined, because only finitely many of the terms are nonzero). We find that this is the unique
homomorphism with mιi = gi for all i. This shows that the homomorphisms ιi give a coproduct diagram.

We next discuss the sense in which products and coproducts are functorial.

Definition 36.85. [defn-power-category]
Let C be a category, and let I be a set. We introduce a new category [I, C] as follows. An object of [I, C]

is a family of objects (Ai)i∈I with Ai ∈ C for all i. A morphism in [I, C] from (Ai)i∈I to (Bi)i∈I is a system
of morphisms fi : Ai → Bi for each i ∈ I. Equivalently, we have

[I, C]((Ai)i∈I , (Bi)i∈I) =
∏
i∈I
C(Ai, Bi).

If we have morphisms

(Ai)i∈I
(fi)i∈I−−−−→ (Bi)i∈I

(gi)i∈I−−−−→ (Ci)i∈I

then the composite is defined to be the family (hi)i∈I , where hi = gifi.

Proposition 36.86. [prop-product-functor]

Suppose that we have a construction that produces a product diagram (
∏
I Ai

πj−→ Aj)j∈I for each family
(Ai)i∈I in [I, C]. Then for any morphism

f = (fi)i∈I : (Ai)i∈I → (Bi)i∈I
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there is a unique morphism
∏
i fi in C making the following diagram commute for all j:

∏
I Ai

∏
i fi //

πj

��

∏
I Bi

πj

��

Aj
fj

// Bj .

Moreover, this construction gives us a functor
∏
I : [I, C]→ C.

We will leave it to the reader to formulate the dual statement.

Proof. We have a family of morphisms fjπj :
∏
I Ai → Bj . As the morphisms πj :

∏
I Bi → Bj form

a product diagram, there is a unique morphism m :
∏
I Ai →

∏
iBi with πjm = fjπj for all j. We define∏

i fi to be m; this clearly has the stated property. Now suppose we have another family of morphisms
gi : Bi → Ci. Consider the diagram:

∏
I Ai

πj

��

∏
I fi //

∏
I Bi

πj

��

∏
I gi //

∏
I Ci

πj

��

Aj
fj

// Bj gj
// Cj .

By inspecing this, we see that the composite (
∏
I gi) ◦ (

∏
I fi) has the property that defines

∏
i(gifi). A

similar argument shows that the identity morphism 1∏
I Ai

has the property that defines
∏
I 1Ai . This shows

that
∏
I : [I, C]→ C is a functor, as claimed. �

Remark 36.87. [rem-diagonal-adjoint]
For each object A ∈ C we have a constant family ∆(A) ∈ [I, C] defined by ∆(A)i = A for all i. If we

have another family (Bi)i∈I , then a morphism from ∆(A) to B is just a family of morphisms fi : A → Bi,
which gives rise to a morphism f : A→

∏
I Bi in C. In other words, we have a bijection

C(A,
∏
I

Bi) ' [I, C](∆(A), (Bi)i∈I).

One can check that this has the naturality property described in Proposition 36.60, so we see that the functor∏
I : [I, C]→ C is right adjoint to ∆. By a dual argument, the functor

∐
I : [I, C]→ C is left adjoint to ∆.

36.7. Limits and colimits.

Definition 36.88. [defn-diagram-category]
We say that a category I is small if the collection of objects is a set (rather than a proper class). Given

a small category I and an arbitrary category C, we write [I, C] for the category of functors from I to C.
More precisely, the objects of [I, C] are functors, and the morphisms are the natural transformations. We
will often refer to [I, C] as a diagram category, and to the objects as I-shaped diagrams. The examples below
will make it clear why this is reasonable.

Example 36.89. [eg-discrete-diagrams]
Let I be a set. We then have a category dI with object set I and only identity morphisms (this is called

a discrete category). We find that a functor A : dI → C is determined by the family of objects (A(i))i∈I , so
[dI, C] is equivalent to the category [I, C] discussed in Section 36.6. We will usually not distinguish between
the set I and the discrete category dI.

Example 36.90. [eg-equivariant]
Let G be a group, and let C be a category. A G-object in C is an object A ∈ C equipped with morphisms

µg : A → A for each g ∈ G satisfying µ1 = 1A and µgh = µgµh. For example, we can consider G-sets,
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G-spaces, G-rings and so on. Suppose we have G-objects A and B, and a morphism f : A→ B. We say that
f is G-equivariant if the following diagram commutes for all g ∈ G:

A

µg

��

f
// B

µg

��

A
f
// B.

We write GC for the category of G-objects and equivariant morphisms. By a slight elaboration of Exam-
ple 36.41, we see that GC is equivalent to the functor category [bG, C].

Example 36.91. [eg-square-functor]
Let I be the category with four objects that we discussed in Example 36.10:

• //

��

•

��
• // •

Then an object of [I, C] is just a commutative square in C.

Example 36.92. [eg-sequence-functor]
Consider N as a poset in the obvious way, and consider the category sN. For each n ≤ m there is a

unique morphism un,m : n→ m in sN. If we put vn = un,n+1, we see that un,m is the composite

n
vn−→ (n+ 1)

vn+1−−−→ (n+ 2)
vn+2−−−→ · · · vm−2−−−→ (m− 1)

vm−1−−−→ m.

Thus, for any functor F : sN→ C we have

F (un,m) = (F (n)
F (vn)−−−−→ · · · F (vm−1)−−−−−−→ F (m)).

Using this, we see that the objects of [sN, C] are just the diagrams of type

A0
f0−→ A1

f2−→ A2 −→ · · · .
A morphism between two such diagrams is given by a commutative ladder as follows:

A0

p0

��

f0 // A1

p1

��

f1 // A2

p2

��

f2 // A3

p3

��

f3 // A4

p4

��

f4 // · · ·

B0 g0
// B1 g1

// B2 g2
// B3 g3

// B4 g4
//

Remark 36.93. [rem-diagram-notation]
Let X be an I-shaped diagram in C, so X : I → C. We will often emphasise the analogy with Exam-

ples 36.89 and 36.92 by writing Xi instead of X(i) for the objects in the diagram.

Definition 36.94. [defn-limit-cone]
Let X be an I-shaped diagram in C. A cone for X is an object P ∈ C together with a system of

morphisms pi : P → Xi such that for all u : i→ j in I the left-hand diagram below commutes:

P
pi

~~

pj

  

Xi u∗
// Xj .

P
m //

pi
��

Q

qi
��

Xi

Now suppose we have two cones, say (P
pi−→ Xi)i∈I and (Q

qi−→ Xi)i∈I . A morphism of cones between them
is a morphism m : P → Q in C such that for all i ∈ I, the right-hand diagram above commutes. This defines
a category of cones. A limit cone is a terminal object in this category. If a limit cone exists then it is unique
up to canonical isomorphism, and we denote it by lim

←−I
Xi.
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Example 36.95. [eg-products-as-limits]
If I is a set (regarded as a discrete category) then an I-shaped diagram in C is just an I-indexed family

of objects of C, and we have lim
←−I

Xi =
∏
I Xi. More precisely: if a product for the family exists, then it is a

limit for the diagram, and vice versa.

Example 36.96. [eg-fixpoints-as-limit]
Let X be a G-set, regarded as a functor bG → Sets. As bG has only a single object, a cone for this

diagram just consists of a set P with a single map p : P → X, and the cone condition says that µg ◦ p = p
for all g ∈ G. Put

XG = {x ∈ X : gx = x for all g ∈ G},

and let i : XG → X be the inclusion map. It is now easy to see that XG i−→ X is a limit cone, or in other
words that lim

←−bG
X = XG.

Example 36.97. [eg-equaliser]
Let I denote the following category:

• ++33 •

I-shaped diagrams are called forks; they have the form

X
u

,,

v
22 Y

A limit for this fork is called an equaliser of u and v. A cone for the fork consists of an object P together
with maps p : P → X and q : Q → Y such that up = q = vp. As p determines q we need not mention q
explicitly. Thus, we can say that a cone is a morphism p : P → X with up = vp.

Now let C be the category of sets, and put E = {x ∈ X : u(x) = v(x)}, and let i : E → X be the

inclusion. For any cone P
p−→ X we see that p(P ) must be a subset of E, so p gives a map m : P → E with

im = p. Using this, we see that E is an equaliser. If X and Y are groups and u and v are homomorphisms
then E is a subgroup of X and we see that we have a limit cone in Groups. By similar arguments, we see
that this construction gives equalisers in Rings, Fields, VectR and similar algebraic categories. In the case
of abelian groups we can also describe E as ker(u− v).

Example 36.98. [eg-pullback]
Consider a commutative square

W
p
//

q

��

X

r

��

Y
s
// Z

(in some category C). We say that this is a pullback square if for every object T and every pair of maps

(Y
g←− T f−→ X) with rf = sg, there is a unique map m : T →W with pm = f and qm = g.

T

m

  

f

��g

//

W
p
//

q

��

X

r

��

Y
s
// Z

This can be reinterpreted in terms of limits as follows. We can regard the diagram (Y
s−→ Z

r←− X) as a
functor from the category I = (• ←− • −→ •) to C. A cone for this is an object T together with morphisms f ,
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g and h making the following diagram commute:

T
f
//

g

��

h

  

X

r

��

Y
s
// Z

Note that h = sg = rf , so we need not mention h as a separate datum: we can just say that a cone is a

diagram (Y
g←− T

f−→ X) with sg = rf , so that the square above commutes. Given this, it is clear that our

original square is a pullback iff (Y
q←−W p−→ X) is a limit cone for (Y

s−→ Z
r←− X).

In the category of sets, we can construct a pullback for (Y
s−→ Z

r←− X) by taking

W = {(x, y) ∈ X × Y : r(x) = s(y)}
with p(x, y) = x and q(x, y) = y. The same construction works in Groups, Rings, Fields, VectR and
so on. (The case of fields requires a little extra thought, because X × Y is then a ring but not a field.
However, after recalling that r and s are necessarily injective we find that W is a field, and this turns out
to be enough.)

Example 36.99. [eg-tower]
A tower in C is a functor sNop → C, or equivalently a diagram of the form

X0
u0←− X1

u1←− X2
u2←− · · ·

In the category of sets (or groups, or rings) we can construct a limit by the rule

lim
←−
i

Xi = {x = (xi)
∞
i=0 : fi(xi+1) = xi for all i}.

Example 36.100. [eg-limit-initial]
Suppose that I has an initial object, say i0. We claim that for any diagram X : I → C we have

lim
←−I

Xi = Xi0 . For a more precise statement, let ai be the unique morphism from i0 to i in I, so for each

u : i→ j we must have u ◦ ai = aj . We then have a family of maps (ai)∗ : Xi0 → Xi, and using the fact that

uai = aj we see that they form a cone. We claim that it is a limit cone. Indeed, if (T
fi−→ Xi) is any other

cone, we have a morphism fi0 : T → Xi0 . The cone condition for T says that whenever u : i → j we have
u∗ ◦ fi = fj ; by taking u = ai, we see that (ai)∗ ◦ fi0 = fi, which means that fi0 is a morphism of cones. If
g : T → Xi0 is any morphism of cones, then by definition we have (ai)∗ ◦ g = fi for all i. We can take i = i0
and note that ai0 = 1 to see that g = fi0 . Thus, we have a unique morphism of cones, proving that Xi0 is
the limit as claimed.

Proposition 36.101. [prop-product-equaliser]
Suppose that C has a product for every family of objects, and an equaliser for every fork. Then C has a

limit for every diagram.

Proof. Consider a diagram X : I → C. Let M be the set of all morphisms in I. For each morphism

(u : i → j) ∈ M , we put s(u) = i (the source of u) and t(u) = j (the target). We then let (P
pi−→ Xi)i∈I be

a product diagram for the family (Xi)i∈I , and we let (Q
qu−→ Xt(u))u∈M be a product cone for the family

(Xt(u))u∈M . We define maps λu, µu : P → Xt(u) as follows: λu is just the projection pt(u), whereas µu is the
composite

P
ps(u)−−−→ Xs(u)

u∗−→ Xt(u).

By the defining property of Q, there is a unique morphism λ : P → Q with quλ = λu for all u ∈ M , and

also a unique morphism µ : P → Q with quµ = µu for all u ∈ M . Let L
φ−→ P be an equaliser for λ and µ,

and put ri = piφ. Note that λφ = µφ, so for each (u : i → j) ∈ M we have λuφ = quλφ = quµφ = µuφ.
Filling in the definitions of λu and µu, this gives pjφ = u∗piφ, or in other words rj = u∗ri. This means

that the maps (L
ri−→ Xi)i∈I form a cone. Suppose we have another cone (Ti

fi−→ Xi)i∈I . By the defining
property of P , there is a unique map g : T → P with pig = fi for all i. We claim that λg = µg. By the
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uniqueness clause in the defining property of Q, it will suffice to check that quλg = quµg for all u : i → j.
Here quλg = λug = pjg = fj and quµg = µug = u∗pig = u∗fi. As (fi)i∈I is a cone, these are the same, as
required. As φ : L → P is an equaliser of λ and µ, we see that there is a unique h : T → L with φh = g.

We now have rih = piφh = pig = fi, so h is a morphism of cones from (T
fi−→ Xi)i∈I to (L

ri−→ Xi)i∈I . By
partially reversing the argument we see that it is the unique such morphism. We thus have a limit cone, as
required. �

Corollary 36.102. Each of the categories Sets, Groups, AbGroups, Rings and VectR has limits
for all diagrams. �

Remark 36.103. [rem-limit-too-big]
Recall that according to our definitions, a diagram in Sets is a functor from a small category to Sets.

One can formulate the notion of a limit cone for a functor I → Sets even if I is large, but no such cone need
exist. For example, we can consider the class of all ordinals as a large discrete category, and consider the
constant functor sending each ordinal to the set {0, 1}; this has no limit. (Informally we can say that the
limit should be

∏
α{0, 1}, and that this is too big to exist as a set.) On the other hand, we can consider the

constant functor α 7→ {0} and we find that this does have a limit, which is again the set {0}. Thus, some
large diagrams do have limits.

Proposition 36.104. [prop-preserves-limits]
Suppose that G : D → C has a left adjoint. Then for any diagram Y : I → D and any limit cone

(Q
qi−→ Yi)i∈I , the system (GQ

G(qi)−−−→ GYi)i∈I is a limit cone for the diagram I
Y−→ D G−→ C. More loosely, we

can say that

G(lim
←−
I

Yi) = lim
←−
I

GYi,

or that G preserves limits.

Proof. Let F : C → D be left adjoint to G, so we have bijections

ρ : D(C,GD)→ C(FC,D)

with naturality properties as in Proposition 36.60. Now consider a cone (P
pi−→ GYi)i∈I , so for u : i → j

in I we have G(u∗) ◦ pi = pj : P → GYj . We then have morphisms ρ(pi) : FP → Yi. These satisfy

u∗ ◦ ρ(pi) = ρ(G(u∗) ◦ pi) = ρ(pj), so they form a cone. As (Q
qi−→ Yi)i∈I is assumed to be a limit cone, there

is a unique morphism m : FP → Q with qim = ρ(pi) for all i. If we put n = ρ−1(m) : P → GQ we find that
ρ(G(qi)n) = qiρ(n) = qim = ρ(pi), but ρ is a bijection so G(qi)n = pi. Thus, n is a morphism of cones from

(P
pi−→ GYi) to (GQ

G(qi)−−−→ GYi). By similar arguments, we see that it is the unique such morphism. �

Example 36.105. [eg-preserves-limits]
Define F,G : AbGroups → AbGroups by F (A) = A/2A and G(A) = A[2] = {a ∈ A : 2a = 0}.

There are then evident bijections

AbGroups(F (A), B) ' {f : A→ B : 2f = 0} ' AbGroups(A,G(B)),

so F is left adjoint to G. Proposition 36.104 therefore tells us that G preserves limits. For example, for
any family of abelian groups Bi we have (

∏
iBi)[2] =

∏
iBi[2]. Similarly, if we have two homomorphisms

f, g : A → B with equaliser E, then the equaliser of the restricted maps A[2] → B[2] is E[2]. Both of these
facts can easily be seen directly.

Proposition 36.106. [prop-limit-as-adjoint]
Fix a small category I and an arbitrary category C. Suppose we have a construction that gives, for each

diagram X : I → C, a limit cone (lim
←−I

Xi
pj−→ Xj)j∈I . Then there is a canonical way to define an action

on morphisms giving a functor lim
←−I

: [I, C] → C. Moreover, we also have a functor ∆: C → [I, C] given by

∆(T )(i) = T for all I, and lim
←−I

is right adjoint to ∆.
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Proof. This is just a slight elaboration of Proposition 36.86, which is the special case where I is
discrete. Suppose we have diagrams X and Y , and a morphism f : X → Y in [I, C]; we need to define a map
lim
←−I

fi : lim
←−I

Xi → lim
←−I

Yi. Consider the diagram

lim
←−I

Xi

pj
//

lim
←−I

fi

��

Xj

fj

��

u∗ // Xk

fk

��

lim
←−I

Yi pj
// Yj u∗

// Yk.

For every j we have a morphism fjpj : lim
←−I

Xi → Yj as above. For every morphism u : j → k we have a

square as shown on the right, which commutes because f is assumed to be a morphism of diagrams. We also
have u∗pj = pk, and using this we see that the maps fjpj form a cone for Y . By the defining property of
lim
←−I

Yi, there is a unique map lim
←−I

Xi → lim
←−I

Yi such that the left square commutes for all j. This defines an

action on morphisms, and we leave it to the reader to check that this makes lim
←−I

into a functor. A morphism

of diagrams from ∆(A) to X is just the same as a cone of the form (A
ei−→ Xi)i∈I , and such cones biject with

morphisms A→ lim
←−I

Xi. This shows that lim
←−I

is left adjoint to ∆, as claimed. �

It is also useful to know that different types of limit constructions commute with each other, in a sense
that we now explain.

Proposition 36.107. Let I and J be small categories, let C be a category to which Proposition 36.106
applies, and let X : I × J → C be a functor. Then there are natural isomorphisms

lim
←−
I

lim
←−
J

Xij = lim
←−
I×J

Xij = lim
←−
J

lim
←−
I

Xij .

Proof. Roughly speaking, the idea is as follows. For any test object T , morphisms from T to the iterated
limit lim

←−I
lim
←−J

Xij biject with compatible families of morphisms T → lim
←−J

Xij for all i. Moreover, for fixed

i, morphisms from T to lim
←−J

Xij biject with compatible families of morphisms to Xij . By combining these

descriptions, we see that morphisms from T to lim
←−I

lim
←−J

Xij biject with compatible families of morphisms

T → Xij for all i and j, and this is the definining property of lim
←−I×J

Xij .

We will now give a more detailed account.
We start by formulating the statement in a more careful way. By definition we have

(I × J)((i, j), (i′, j′)) = I(i, i′)× J(j, j′).

Thus, for each i ∈ I we can define a functor φi : J → I × J by φi(j) = (i, j) on objects, and φi(v) = (1i, v)
on morphisms. We then have a functor X ◦ φi : J → C and thus an inverse limit lim

←−J
(X ◦ φi)j , which we

also denote more briefly by lim
←−J

Xij . Next, for any morphism u : i→ i′ in I we have a family of morphisms

(u, 1j) : (i, j)→ (i′, j) in I × J , and thus morphisms

(u, 1j)∗ : (X ◦ φi)j = Xij → Xi′j = (X ◦ φi′)j

in C. It is straightforward to check that these give a morphism of diagrams λu : X ◦ φi → X ◦ φi′ , and thus
a morphism

µu = lim
←−
J

λu : lim
←−
J

(X ◦ φi)j → lim
←−
J

(X ◦ φi′)j

in C. The objects lim
←−J

(X ◦ φi)j together with the morphisms µu give a diagram I → C, whose limit is

naturally denoted by lim
←−I

lim
←−J

Xij . It is this that we claim is isomorphic to lim
←−I×J

Xij . In the proof, we
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will use the notation

pij : lim
←−
J

Xij → Xij

qi : lim
←−
I

lim
←−
J

Xij → lim
←−
J

Xij

rij : lim
←−
I×J

Xij → Xij

for the canonical projections.
From the definitions, we see that the following two diagrams commute (for all u : i→ i′ in I and v : j → j′

in J).

Xij

(1,v)∗

��

(u,1)∗
// Xi′j

(1,v)∗

��

lim
←−J

Xij

pij

;;

pij′
##

lim
←−I×J

Xij

rij

dd

ri′j

::

rij′

zz

ri′j′

$$

lim
←−J

Xi′j

pi′j

dd

pi′j′
zz

Xij′
(u,1)∗

// Xi′j′

lim
←−I

lim
←−J

Xij

qi

xx

qi′

&&

lim
←−J

Xij

pij′

{{

pij

��

µu
// lim
←−J

Xi′j

pi′j′

$$

pi′j

��

Xij′ Xij
(1,v)∗

oo
(u,1)∗

// Xi′j
(1,v)∗

// Xi′j′

Unfinished �

We next discuss the dual theory briefly.

Definition 36.108. [defn-colimit-cone]
Let X be an I-shaped diagram in C. A cocone for X is an object Q ∈ C together with a system of

morphisms qi : Xi → Q such that for all u : i→ j in I the left-hand diagram below commutes:

Xi
u∗ //

qi
��

Xj

qj
��

Q

Xi

qi

��

ri

  

Q
n

// R.

Now suppose we have two cocones, say (Xi
qi−→ Q)i∈I and (Xi

ri−→ R)i∈I . A morphism of cocones between
them is a morphism n : Q → R in C such that for all i ∈ I, the right-hand diagram above commutes. This
defines a category of cocones. A colimit cocone is an initial object in this category. If a colimit cocone exists
then it is unique up to canonical isomorphism, and we denote it by lim

−→I
Xi.

Example 36.109. In the case where I is a discrete category, colimits are the same as coproducts. If
X is a G-set considered as a functor bG → Sets, then the quotient map from X to the orbit set X/G is a
colimit cocone.

Example 36.110. [eg-coequaliser]
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The colimit of a fork is called a coequaliser. In the category of abelian groups, the coequaliser of a fork

A
u

,,

v
22 B

is the quotient group B/ img(u− v). Now consider instead a fork

X
u

,,

v
22 Y

in the category of sets. Put

R0 = {(y, y) : y ∈ Y } ∪ {(u(x), v(x)) : x ∈ X} ∪ {(v(x), u(x)) : x ∈ X}
then define Rn recursively for n > 0 by

Rn+1 = {(y, z) ∈ Y 2 : there exists a ∈ Y with (y, a) ∈ Rn and (a, z) ∈ Rn}.
Finally, we put R∞ =

⋃
nRn. We identify subsets of Y 2 with relations on Y in the usual way, so ySz means

that (y, z) ∈ S. With this convention, we see that each of the relations Rn is reflexive and symmetric, that
Rn ⊆ Rn+1, and that R∞ is also transitive. This means that R∞ is an equivalence relation, and in fact it
is the smallest equivalence relation containing {(u(x), v(x)) : x ∈ X}. We can therefore put Q = Y/R∞
(the set of equivalence classes) and let q : Y → Q be the quotient map (sending y ∈ Y to the corresponding
equivalence class [y]). As (u(x), v(x)) ∈ R0 ⊆ R∞ we see that [u(x)] = [v(x)], so qu = qv : X → Q, so q
is a cocone for the fork. We claim that it is a coequaliser. Indeed, if r : Y → R is another cocone, we can
put E = {(y, z) ∈ Y 2 : r(y) = r(z)}. This is easily seen to be an equivalence relation containing R0, so it
contains Rn for all n by induction on n, so it contains R∞. In other words, if [y] = [z] we have r(y) = r(z).
We thus have a well-defined map n : Q→ R given by n([y]) = r(y), and this is the unique map with nq = r,
as required.

Example 36.111. [eg-coproduct-coequaliser]
Let C be a category (such as Sets or AbGroups) that has a coproduct for every family of objects, and

a coequaliser for every fork. We can then construct a colimit for an arbitrary diagram X : I → C by the dual
of Proposition 36.101. With some slight abuse of language, we can say that lim

−→I
Xi is the coequaliser of the

fork ∐
uXs(u)

α
--

β

11
∐
iXi

where α maps Xs(u) to Xs(u) by the identity, and β maps Xs(u) to Xt(u) by u∗.

Example 36.112. [eg-pushout]
Consider a commutative square

W
p
//

q

��

X

r

��

Y
s
// Z

(in some category C). We say that this is a pushout square if for every object T and every pair of maps

(X
f−→ T

g←− Y ) with fp = gq, there is a unique map m : Z → T with mr = f and ms = g.

W
p
//

q

��

X

r

��

f

��

Y
s
//

g
//

Z

m

  

T

It is equivalent to say that (X
r−→ Z

s←− Y ) is a colimit cocone for the diagram (X
p←−W q−→ Y )
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In the category of abelian groups, we can construct a pushout for B
p←− A

q−→ C as follows. We have a
homomorphism d : A→ B⊕C given by d(a) = (p(a),−q(a)), and thus a quotient group D = (B⊕C)/d(A).

We define maps (B
r−→ D

s←− C) by r(b) = (b, 0)+d(A) and s(c) = (0, c)+d(A). We then find that the square

A
p
//

q

��

B

r

��

C
s
// D

is a pushout.

Proposition 36.113. [prop-preserves-colimits]
Suppose that F : C → D has a right adjoint. Then for any diagram X : I → C and any colimit cocone

(Xi
qi−→ Q)i∈I , the system (FXi

F (qi)−−−→ Q)i∈I is a colimit cocone for the diagram I
X−→ C F−→ D. More loosely,

we can say that

F (lim
−→
I

Xi) = lim
−→
I

FXi,

or that F preserves colimits.

Proof. Dual to Proposition 36.104. �

36.8. Filtered colimits.

Definition 36.114. [defn-filtered]
Let I be a small category. We say that I is filtered if

FC0: There is at least one object in I.

FC2: For all i, j ∈ I there exists an object k ∈ I and morphisms i
u−→ k

v←− j.
FC3: For any two parallel morphisms u, v : i → j in I, there is an object k and a morphism w : j → k

with wu = wv.

A filtered diagram means a diagram indexed by a filtered category, and a filtered colimit means the colimit
of such a diagram.

We will show that filtered colimits behave better than more general colimits in a variety of ways. First,
however, we give some examples.

Definition 36.115. [defn-directed]
A directed set is a partially ordered set in which every finite subset has an upper bound.

Remark 36.116. [rem-directed]
Let D be a nonempty partially ordered set in which every pair of elements has an upper bound. Consider

a finite subset F ⊆ D. If F = ∅ then any element is an upper bound, if F = {i} then i is an upper bound,
and if F = {i, j} then by hypothesis there is an upper bound. If |F | > 2 then we can write F = F ′ q {j}
say, and by induction there is an upper bound (say i) for F ′, and by hypothesis there is an upper bound
(say k) for {i, j}, and we see that k is an upper bound for F . This means that the category sD is filtered.
(Note that axiom FC3 is vacuous here, because parallel morphisms in sD are always equal.)

Example 36.117. [eg-Nr-directed]
For any r ≥ 0, the poset Nr is directed. Indeed, it is clearly nonempty, and if i, j ∈ Nr we can put

k = (max(i1, j1), . . . ,max(ir, jr))

to get an element k ∈ Nr that is an upper bound for {i, j}.

Example 36.118. [eg-subsets-directed]
Let X be any set, and let D be the set of finite subsets of X, ordered by inclusion. Given any finite

subset F = {A1, . . . , Ar}, the union B =
⋃
iAi is an upper bound for F in D. It follows that D is directed.
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Example 36.119. [eg-discrete-not-filtered]
Let I be a set, regarded as a discrete category. Then I can only be filtered if |I| = 1. Similarly, if G is

a nontrivial group, then bG is not filtered.

Example 36.120. If I is any small category with a terminal object, then I is filtered.

36.9. The Yoneda lemma.

Definition 36.121. [defn-representable]
Let C be a category. For any object A ∈ C, we define a functor Y A : C → Sets by (Y A)(X) = C(A,X).

For a morphism f : W → X in C, the induced map

f∗ : (Y A)(W ) = C(A,W )→ C(A,X) = (Y A)(X)

is defined by f∗(u) = f ◦ u. We say that a functor F : C → Sets is representable if there is a natural
isomorphism Y A→ F for some A (in which case we say that A represents F ).

Example 36.122. [eg-representable-abgroups]
We can define functors F,G,H : AbGroups→ Sets by

F (A) = A/2A

G(A) = {a ∈ A : 2a = 0}
H(A) = A2.

It is easy to see that AbGroups(Z/2, A) ' G(A) and AbGroups(Z ⊕ Z, A) ' H(A) and that these
isomorphisms are natural in A; so G and H are representable. On the other hand, the inclusion i : Z→ Q is
injective but the induced map i∗ : F (Z)→ F (Q) is not; it follows easily from this that F is not representable.

Example 36.123. [eg-representable-crings]
Let CRings be the category of commutative rings. We can define functors F,G : CRings→ Sets by

F (R) = {(a, b, c) ∈ R3 : a3 + b3 + c3 = 0}
G(R) = {a ∈ R : a is invertible }.

We claim that F is represented by the ring A = Z[x, y, z]/(x3 + y3 + z3 − 1), and that G is represented by
the ring B = Z[x, y]/(xy − 1). Indeed, suppose we have an element (a, b, c) ∈ F (R). We can then define
f0 : Z[x, y, z]→ R by

f0

 ∑
i,j,k≥0

mijkx
iyjzk

 =
∑

i,j,k≥0

mijka
ibjck.

Now let I be the ideal in Z[x, y, z] generated by x3 + y3 + z3 − 1. As a3 + b3 + c3 = 1 we see that
f0(x3 + y3 + z3 − 1) = 0 and so f0(I) = 0, so we can define f : A → R by f(p + I) = f0(p). We define
αR(a, b, c) to be this homomorphism f , so we have a function αR : F (R)→ CRings(A,R). In the opposite
direction, given a homomorphism f : A→ R we put βR(f) = (f(x+ I), f(y+ I), f(z+ I)) ∈ F (R). One can
check that α and β are natural and mutually inverse, so A represents F . The proof that B represents G is
similar.

Theorem 36.124 (The Yoneda Lemma). Let C be a category, let F : C → Sets be a functor, and let A
be an object of C. Then natural transformations from Y A to F biject with elements of FA.

A more precise and detailed statement is embedded in the proof.

Proof. Let α : Y A→ F be a natural map. This means that for every object P ∈ C we have a function
αP : (Y A)(P ) = C(A,P )→ FP , and for every morphism u : P → Q the diagram

C(A,P )
αP //

u∗

��

FP

Fu

��

C(A,Q)
αQ

// FQ.
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commutes. In particular, we can take P = A to get a function αA : C(A,A)→ F (A) and thus an element x =
αA(1A) ∈ F (A). Now consider an element u ∈ (Y A)(Q), or in other words a morphism u : A→ Q. We can
again take P = A above and chase the element 1A around the diagram to get αQ(u∗(1A)) = (Fu)(αA(1A)),
or in other words αQ(u) = (Fu)(x). This shows that α is determined by x.

Suppose instead that we start with an element x ∈ FA. We can then define φP : (Y A)(P ) = C(A,P )→
F (P ) by φP (u) = (Fu)(x). We claim that this gives a natural map φ : Y A → F , or equivalently that for
every morphism u : P → Q the diagram

C(A,P )
φP //

u∗

��

FP

Fu

��

C(A,Q)
φQ

// FQ.

commutes, or that for every v : A→ P we have (Fu)(φP (v)) = φQ(uv). Note that (Fu) ◦ (Fv) = F (uv), so
from the definitions we have

(Fu)(φP (v)) = (Fu)((Fv)(x)) = F (uv)(x) = φQ(uv)

as required. It is also clear that φA(1A) = F (1A)(x) = x, so our two constructions are mutually inverse, as
claimed. �

Definition 36.125. [defn-universal-example]
We say that an element x ∈ F (A) is a universal example for F if the associated natural transformation

Y A → F is an isomorphism (so for each P and a ∈ FP there is a unique morphism u : A → P with
u∗(x) = a).

Example 36.126. In Example 36.122, the element 1 ∈ G(Z/2) is a universal example for G, and the
element ((1, 0), (0, 1)) ∈ H(Z⊕Z) is a universal example for H. In Example 36.123, we let x, y and z denote
the images of x, y and z in the quotient ring A = Z[x, y, z]/(x3 + y3 + z3 − 1); we then find that the triple
(x, y, z) ∈ F (A). Similarly, the image of x in B = Z[x, y]/(xy − 1) gives a universal example for G.

Example 36.127. [eg-yoneda-units]
As in Example 36.123, we define a functor G : CRings→ Sets by

G(R) = {a ∈ R : a is invertible }.

For each n ∈ Z we can define a natural map αn : G→ G by αn(a) = an, and another natural map βn : G→ G
by βn(a) = −an. We claim that these are the only natural maps from G to G. To see this, recall that G is
represented by the ring B = Z[x, y]/(xy−1), so natural maps from G to G biject with elements of G(B). Now

B can also be described as the ring of Laurent polynomials f(x) =
∑N
k=−N ckx

k with integer coefficients. If

f(x) is invertible then there must be another Laurent polynomial g(x) =
∑M
m=−M dmx

m with f(x)g(x) = 1.
By considering the highest and lowest terms in f(x), g(x) and f(x)g(x) we see that f(x) must consist of a
single term (say f(x) = ckt

k) and g(x) must also consist of a single term (say g(x) = dmx
m). The relation

f(x)g(x) = 1 then reduces to m = −k and ckdm = 1 but ck, dm ∈ Z so ck = dm = ±1. We therefore see that
f(x) is either xk (corresponding to αk) or −xk (corresponding to βk) and the claim follows.

Example 36.128. [eg-yoneda-idempotents]
Now define another functor E : CRings→ Sets by

E(R) = { idempotents in R} = {e ∈ R : e2 = e}.

Note that if e ∈ E(R) then (1− 2e)2 = 1− 4e+ 4e2 = 1, so 1− 2e ∈ G(R), and similarly 2e− 1 ∈ G(R). We
thus have four natural maps E → G given by

φ0(e) = 1 φ1(e) = −1 φ2(e) = 1− 2e φ3(e) = 2e− 1.

We claim that there are no others. To see this, note that E is represented by the ring C = Z[x]/(x2 − x).
There is a unique ring map ρ : C → Z × Z given by ρ(x) = (1, 0), and one can check that this is an
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isomorphism, with ρ−1(n,m) = nx + m(1 − x). It follows that natural transformations from E to G biject
with the set

G(Z× Z) = {(1, 1), (−1,−1), (−1, 1), (1,−1)}.
By chasing through the various identifications, we find that these four elements correspond to φ0, φ1, φ2 and
φ3 respectively.

Proposition 36.129. [prop-auto-functor]
Let G : D → C be a functor. Suppose we have an object F (X) ∈ D for each X ∈ C, and a system of

bijections ρXU : C(X,G(U))→ D(F (X), U) for all U ∈ D. Suppose that these are natural in U , in the sense
that for all p : X → G(U) and m : U → V we have

ρXV (X
p−→ G(U)

G(m)−−−→ G(V )) = (F (X)
ρXU (p)−−−−−→ U

m−→ V ).

Then there is a unique compatible way to define F on morphisms, so that F becomes a functor and the maps
ρUV give an adjunction between F and G.

Proof. Prove this. �

36.10. Regular monomorphisms and epimorphisms. Write this

36.11. Cartesian closure. Write this

36.12. Monoidal structures. Write this
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