The known part of the Bousfield semiring

Neil Strickland

November 1, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- ▶ The literature contains many results about the structure of *L*. We seek a consolidated statement that incorporates as much of this information as possible.
- ▶ The Telescope Conjecture is a key open question about *L*. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring *L* in which TC is true.
- We will give a complete description of a subsemiring A ≤ Z which contains almost all classes that have previously been named and studied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of L. We seek a consolidated statement that incorporates as much of this information as possible.
- ▶ The Telescope Conjecture is a key open question about *L*. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring \overline{L} in which TC is true.
- ▶ We will give a complete description of a subsemiring A ≤ *L* which contains almost all classes that have previously been named and studied.

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- ► The literature contains many results about the structure of *L*. We seek a consolidated statement that incorporates as much of this information as possible.
- ▶ The Telescope Conjecture is a key open question about *L*. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring A ≤ Z which contains almost all classes that have previously been named and studied.

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of L. We seek a consolidated statement that incorporates as much of this information as possible.
- ► The Telescope Conjecture is a key open question about *L*. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring *L* in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \overline{\mathcal{L}}$ which contains almost all classes that have previously been named and studied.

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of L. We seek a consolidated statement that incorporates as much of this information as possible.
- ► The Telescope Conjecture is a key open question about *L*. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring *L* in which TC is true.
- We will give a complete description of a subsemiring A ≤ *L* which contains almost all classes that have previously been named and studied.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\triangleright \ \mathcal{B} = \{p \text{local spectra}\}.$
- ▶ This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object *S*.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- ▶ Theorem of Ohkawa: *L* is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

▶ B = {p − local spectra}.

- ▶ This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object *S*.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- ▶ Theorem of Ohkawa: *L* is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- This is a triangulated category, and in particular is additive.
- ▶ There is a binary coproduct written $X \lor Y$, and more generally an indexed coproduct written $\bigvee_i X_i$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object *S*.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object *S*.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- \blacktriangleright Theorem of Ohkawa: ${\cal L}$ is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- ▶ This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object *S*.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- > This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- ► There is a bilinear symmetric monoidal smash product written X ∧ Y, with unit object S.
- ▶ All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- ▶ Theorem of Ohkawa: *L* is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put 0 = ⟨0⟩ and 1 = ⟨S⟩.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- > This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- ► There is a bilinear symmetric monoidal smash product written X ∧ Y, with unit object S.
- All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- Theorem of Ohkawa: L is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- > This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- ► There is a bilinear symmetric monoidal smash product written X ∧ Y, with unit object S.
- ▶ All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- \blacktriangleright Theorem of Ohkawa: ${\cal L}$ is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- > This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- ► There is a bilinear symmetric monoidal smash product written X ∧ Y, with unit object S.
- ▶ All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- \blacktriangleright Theorem of Ohkawa: ${\cal L}$ is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- $\mathcal{B} = \{p \text{local spectra}\}.$
- > This is a triangulated category, and in particular is additive.
- ► There is a binary coproduct written X ∨ Y, and more generally an indexed coproduct written V_i X_i.
- ► There is a bilinear symmetric monoidal smash product written X ∧ Y, with unit object S.
- ▶ All this is similar to the derived category D(R) of a ring R, with \vee like \oplus and \wedge like \otimes .
- $\blacktriangleright \langle X \rangle = \{ T \mid X \land T = 0 \} \text{ and } \mathcal{L} = \{ \langle X \rangle \mid X \in \mathcal{B} \}.$
- \blacktriangleright Theorem of Ohkawa: ${\cal L}$ is a set, not a proper class.
- ▶ There are well-defined operations $\langle X \rangle \lor \langle Y \rangle = \langle X \lor Y \rangle$ and $\langle X \rangle \land \langle Y \rangle = \langle X \land Y \rangle$. We put $0 = \langle 0 \rangle$ and $1 = \langle S \rangle$.
- ▶ We order Bousfield classes by reverse inclusion, so $\langle X \rangle \leq \langle Y \rangle$ means $\langle X \rangle \supseteq \langle Y \rangle$.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈I} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \land \bigvee_i u_i = \bigvee_i (x \land u_i).$
- \blacktriangleright The set ${\cal L}$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈I} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \land \bigvee_i u_i = \bigvee_i (x \land u_i).$
- \blacktriangleright The set ${\cal L}$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈I} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \wedge \bigvee_i u_i = \bigvee_i (x \wedge u_i).$
- \blacktriangleright The set ${\cal L}$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈I} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \wedge \bigvee_i u_i = \bigvee_i (x \wedge u_i).$
- \blacktriangleright The set ${\cal L}$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈I} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \land \bigvee_i u_i = \bigvee_i (x \land u_i).$
- \blacktriangleright The set $\mathcal L$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈1} has least upper bound V_i u_i.

- We say that R is completely distributive if, in addition, x ∧ V_i u_i = V_i(x ∧ u_i).
- \blacktriangleright The set $\mathcal L$ is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈1} has least upper bound V_i u_i.

- We say that R is completely distributive if, in addition, x ∧ V_i u_i = V_i(x ∧ u_i).
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

- (a) \lor is commutative and associative, with 0 as an identity element.
- (b) \wedge is commutative and associative, with 1 as an identity element.
- (c) \land distributes over \lor .
- (d) For all $u \in \mathcal{R}$ we have $0 \land u = 0$ and $1 \lor u = 1$ and $u \lor u = u$.
 - This gives a partial order by the rule $u \leq v$ iff $u \vee v = v$.
 - The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
 - $u \lor v$ is the smallest element satisfying $w \ge u$ and $w \ge v$.
 - There is no similar statement for $u \wedge v$ in general.
 - We say that *R* is *complete* if every family of elements (u_i)_{i∈1} has least upper bound V_i u_i.

- We say that \mathcal{R} is *completely distributive* if, in addition, $x \wedge \bigvee_i u_i = \bigvee_i (x \wedge u_i).$
- \blacktriangleright The set ${\cal L}$ is naturally a completely distributive ordered semiring.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- \blacktriangleright We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of $\mathcal L$ and is a distributive lattice.
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- $\blacktriangleright \mbox{ We write } \mathcal{R}_{latt} \mbox{ for the set of idempotent elements. This is a subsemiring of } \mathcal{L} \mbox{ and is a distributive lattice.}$
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- ▶ We write R_{latt} for the set of idempotent elements. This is a subsemiring of L and is a distributive lattice.
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- ▶ In fact, we can take $\mathcal{R}/e = \{x \in \mathcal{R} \mid x \ge e\}$ and $\pi(x) = x \lor e$ and define operations on \mathcal{R}/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- ▶ We write R_{bool} for the set of complemented elements. This is a sublattice of R_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- ▶ We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- ▶ In fact, we can take $\mathcal{R}/e = \{x \in \mathcal{R} \mid x \ge e\}$ and $\pi(x) = x \lor e$ and define operations on \mathcal{R}/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- We say that $u \in \mathcal{R}$ is *idempotent* if $u \wedge u = u$.
- We write \mathcal{R}_{latt} for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is *complemented* if there is a (necessarily unique) element $\neg u$ with $u \lor \neg u = 1$ and $u \land \neg u = 0$.
- We write \mathcal{R}_{bool} for the set of complemented elements. This is a sublattice of \mathcal{R}_{latt} and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R}/e and a homomorphism $\pi: \mathcal{R} \to \mathcal{R}/e$ that is initial among homomorphisms sending *e* to zero.
- In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define operations on R/e so as to make π a homomorphism.
- ▶ $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L}/\epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

- ▶ $\mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\}$ $\mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- The set \mathcal{A} has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m,S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- ▶ We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

The combinatorial model

$\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$

- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- The set A has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m,S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- ▶ We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

The combinatorial model

 $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$

▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.

- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- The set A has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m, S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

The combinatorial model

- $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- The set A has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m,S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.
- $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- The set A has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m, S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

- $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- ▶ The set *A* has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m, S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

- $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- ▶ The set *A* has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m, S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

- $\blacktriangleright \mathbb{N}_{\infty} = \{0, 1, 2, 3, 4, \dots, \infty\} \qquad \qquad \mathbb{N}_{\omega} = \{0, 1, 2, 3, 4, \dots, \omega, \infty\}$
- ▶ A set $S \subset \mathbb{N}_{\infty}$ is *small* if $S \subseteq [0, n)$ for some $n < \infty$, otherwise *large*.
- We say that S ⊆ N_∞ is cosmall if N_∞ \ S is small, or equivalently S ⊇ [n,∞] for some finite n.
- ▶ The set *A* has elements as follows:
 - t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
 - j(m, S) for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
 - k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1 = t(0, \mathbb{N}_{\infty})$ and $0 = k(\emptyset)$.
- ▶ The set $\mathcal{P} = \{ U \mid U \subseteq \mathbb{N}_{\infty} \}$ is an ordered semiring under \cup and \cap .
- We define tail: $A \to P$ by tail(t(q, T)) = T and tail(j(m, S)) = S and tail(k(U)) = U. This will be a homomorphism.

The combinatorial model: addition

• t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.

•
$$j(m, S)$$
 for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.

• k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.

$$t(q, T) \lor t(q', T') = t(\min(q, q'), T \cup T')$$

$$t(q, T) \lor j(m', S') = t(q, T \cup S')$$

$$t(q, T) \lor k(U') = t(q, T \cup U')$$

$$j(m, S) \lor j(m', S') = j(\max(m, m'), S \cup S')$$

$$j(m, S) \lor k(U') = \begin{cases} j(m, S \cup U') & \text{if } U' \text{ is small} \\ k(S \cup U') & \text{if } U' \text{ is big} \end{cases}$$

$$k(U) \lor k(U') = k(U \cup U').$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that $tail(a \lor b) = tail(a) \cup tail(b)$.

The combinatorial model: multiplication

• t(q, T) for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.

•
$$j(m, S)$$
 for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.

• k(U) for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.

$$\begin{aligned} t(q, T) \wedge t(q', T') &= t(\max(q, q'), T \cap T') \\ t(q, T) \wedge j(m', S') &= \begin{cases} j(m', T \cap S') & \text{if } q \leq m' \\ k(T \cap S') & \text{if } q > m' \end{cases} \\ t(q, T) \wedge k(U') &= k(T \cap U') \\ j(m, S) \wedge j(m', S') &= k(S \cap S') \\ j(m, S) \wedge k(U') &= k(S \cap U') \\ k(U) \wedge k(U') &= k(U \cap U'). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that $tail(a \land b) = tail(a) \cap tail(b)$.

\mathcal{A} is a semiring

Theorem: these operations make A a completely distributive ordered semiring.

$$\begin{aligned} t(q, T) \lor t(q', T') &= t(\min(q, q'), T \cup T') \\ t(q, T) \lor j(m', S') &= t(q, T \cup S') \\ t(q, T) \lor j(m', S') &= t(q, T \cup S') \\ t(q, T) \lor k(U') &= t(q, T \cup U') \\ j(m, S) \lor j(m', S') &= j(\max(m, m'), S \cup S') \\ j(m, S) \lor k(U') &= \begin{cases} j(m, S \cup U') & \text{if } U' \text{ is small} \\ k(S \cup U') & \text{if } U' \text{ is big} \\ k(U) \lor k(U') &= k(U \cup U') \end{cases} \\ t(q, T) \land k(U') &= k(U \cup U') \end{aligned}$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ideals in A have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

\mathcal{A} is a semiring

Theorem: these operations make A a completely distributive ordered semiring.

$$\begin{aligned} t(q, T) \lor t(q', T') &= t(\min(q, q'), T \cup T') \\ t(q, T) \lor j(m', S') &= t(q, T \cup S') \\ t(q, T) \lor k(U') &= t(q, T \cup U') \\ j(m, S) \lor j(m', S') &= j(\max(m, m'), S \cup S') \\ j(m, S) \lor k(U') &= \begin{cases} j(m, S \cup U') & \text{if } U' \text{ is small} \\ k(S \cup U') & \text{if } U' \text{ is big} \end{cases} \\ f(U) \lor k(U') &= k(U \cup U') \\ f(U) \lor k(U') &= k(U \cup U') \end{aligned}$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.

Ideals in A have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

${\mathcal A}$ is a semiring

Theorem: these operations make A a completely distributive ordered semiring.

$$\begin{aligned} t(q, T) \lor t(q', T') &= t(\min(q, q'), T \cup T') \\ t(q, T) \lor j(m', S') &= t(q, T \cup S') \\ t(q, T) \lor j(m', S') &= t(q, T \cup U') \\ t(q, T) \lor k(U') &= t(q, T \cup U') \\ j(m, S) \lor j(m', S') &= j(\max(m, m'), S \cup S') \\ j(m, S) \lor k(U') &= \begin{cases} j(m, S \cup U') & \text{if } U' \text{ is small} \\ k(S \cup U') & \text{if } U' \text{ is big} \end{cases} \\ j(m, S) \land k(U') &= k(U \cup U') \\ k(U) \lor k(U') &= k(U \cup U') \end{aligned}$$

$$\begin{aligned} t(q, T) \land t(q', T') &= t(\max(q, q'), T \cap T') \\ t(q, T) \land j(m', S') &= \begin{cases} j(m', T \cap S') & \text{if } q \leq m' \\ k(T \cap S') & \text{if } q > m' \end{cases} \\ t(q, T) \land k(U') &= k(T \cap U') \\ j(m, S) \land k(U') &= k(S \cap S') \\ j(m, S) \land k(U') &= k(S \cap U') \\ k(U) \land k(U') &= k(U \cup U'). \end{aligned}$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.

Ideals in A have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

${\mathcal A}$ is a semiring

Theorem: these operations make A a completely distributive ordered semiring.

$$\begin{aligned} t(q, T) \lor t(q', T') &= t(\min(q, q'), T \cup T') \\ t(q, T) \lor j(m', S') &= t(q, T \cup S') \\ t(q, T) \lor j(m', S') &= t(q, T \cup U') \\ t(q, T) \lor k(U') &= t(q, T \cup U') \\ j(m, S) \lor j(m', S') &= j(\max(m, m'), S \cup S') \\ j(m, S) \lor k(U') &= \begin{cases} j(m, S \cup U') & \text{if } U' \text{ is small} \\ k(S \cup U') & \text{if } U' \text{ is big} \end{cases} \\ j(m, S) \land k(U') &= k(U \cup U') \\ k(U) \lor k(U') &= k(U \cup U') \end{aligned}$$

$$\begin{aligned} t(q, T) \land t(q', T') &= t(\max(q, q'), T \cap T') \\ t(q, T) \land j(m', S') &= \begin{cases} j(m', T \cap S') & \text{if } q \leq m' \\ k(T \cap S') & \text{if } q > m' \end{cases} \\ t(q, T) \land k(U') &= k(T \cap U') \\ j(m, S) \land k(U') &= k(S \cap S') \\ j(m, S) \land k(U') &= k(S \cap U') \\ k(U) \land k(U') &= k(U \cup U'). \end{aligned}$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.
- Ideals in A have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- ▶ A_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- \mathcal{A}_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- \mathcal{A}_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- \mathcal{A}_{bool} consists of all elements of the form k(S) or $\neg k(S) = t(0, \mathbb{N}_{\infty} \setminus S)$ with S small.

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t(q', T')$ iff $T \subseteq T'$ and $q \geq q'$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j(m', S')$ iff $S \subseteq S'$ and $m \leq m'$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k(U')$ iff $U \subseteq U'$.
- A_{latt} consists of all elements of the form t(q, T) or k(U).
- A_{bool} consists of all elements of the form k(S) or ¬k(S) = t(0, N_∞ \ S) with S small.

- ▶ Theorem: There is an injective semiring homomorphism $\phi: A \to \overline{L}$ which preserves all joins.
- ► This is defined as a composite A ^{φ₀}→ L ^π→ L
 , but φ₀ is not a homomorphism of semirings unless TC holds.
- For each element x in A, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_0 .

- ▶ Theorem: There is an injective semiring homomorphism $\phi: A \to \overline{L}$ which preserves all joins.
- ► This is defined as a composite A ^{φ₀}→ L ^π→ L
 [¯], but φ₀ is not a homomorphism of semirings unless TC holds.
- For each element x in A, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_0 .

- ▶ Theorem: There is an injective semiring homomorphism $\phi: A \to \overline{L}$ which preserves all joins.
- ► This is defined as a composite A ^{φ₀}→ L ^π→ L
 [¯], but φ₀ is not a homomorphism of semirings unless TC holds.
- For each element x in A, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_0 .

- ▶ Theorem: There is an injective semiring homomorphism $\phi: A \to \overline{L}$ which preserves all joins.
- ► This is defined as a composite A ^{φ₀}→ L ^π→ L
 , but φ₀ is not a homomorphism of semirings unless TC holds.
- For each element x in A, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_0 .

- ▶ K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p)$; $k(n) = \langle K(n) \rangle$.
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)_∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- ▶ For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \land f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

• K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$

▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.

- F(n) = a finite spectrum of type n, so K(i)_∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- ▶ For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \land f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

- ▶ K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)_∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- ▶ For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \land f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

- ▶ K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- ▶ For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \land f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

- K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \wedge f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

- K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- ▶ For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \land f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

 $[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$

- K(n) = Morava K-theory $(K(0) = H\mathbb{Q}, K(\infty) = H/p); k(n) = \langle K(n) \rangle.$
- ▶ For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U) = \bigvee_{i \in U} K(i)$ and $k(U) = \langle K(U) \rangle$.
- F(n) = a finite spectrum of type n, so K(i)∗F(n) = 0 iff i < n. This can be chosen so F(n) is a self-dual ring spectrum and F(0) = S. Put f(n) = ⟨F(n)⟩.</p>
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega SU = BU$ gives a natural virtual vector bundle over $\Omega SU(p^q)$, and the associated Thom spectrum $X(p^q)$ has a natural ring structure. The *p*-localisation of this has a *p*-typical summand called T(q). We have T(0) = S and $T(\infty) = BP$. In all cases we put $t(q) = \langle T(q) \rangle$ and $t(q; n) = t(q) \wedge f(n)$.
- ▶ Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T; n) = t(q; n) \lor k(T)$. Put $t(q, T) = t(q, T; n_0)$, where n_0 is smallest such that $[n_0, \infty] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let J(m) denote the Brown-Comenetz dual of T(m), so there is a natural isomorphism

$$[X, J(m)] \simeq \operatorname{Hom}(\pi_0(T(m) \wedge X), \mathbb{Q}/\mathbb{Z}).$$

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

(日) (同) (三) (三) (三) (○) (○)

▶ We work with $\overline{\mathcal{L}} = \lim_{n \to \infty} \mathcal{L}/\epsilon(n)$. One can also consider $\widehat{\mathcal{L}} = \mathcal{L}/\epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.

• We have
$$k'(n) = k(n) \lor a(n)$$
, so $k'(n) = k(n)$ in $\overline{\mathcal{L}}$.

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

(日) (同) (三) (三) (三) (○) (○)

- ▶ We work with $\overline{\mathcal{L}} = \lim_{n \to \infty} \mathcal{L}/\epsilon(n)$. One can also consider $\widehat{\mathcal{L}} = \mathcal{L}/\epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.
- We have $k'(n) = k(n) \lor a(n)$, so k'(n) = k(n) in $\overline{\mathcal{L}}$.

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_\infty$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

- ▶ We work with $\overline{\mathcal{L}} = \lim_{n \to \infty} \mathcal{L}/\epsilon(n)$. One can also consider $\widehat{\mathcal{L}} = \mathcal{L}/\epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.
- We have $k'(n) = k(n) \lor a(n)$, so k'(n) = k(n) in $\overline{\mathcal{L}}$.

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_\infty$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

- ▶ We work with $\overline{\mathcal{L}} = \lim_{n \to \infty} \mathcal{L}/\epsilon(n)$. One can also consider $\widehat{\mathcal{L}} = \mathcal{L}/\epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.
- We have $k'(n) = k(n) \lor a(n)$, so k'(n) = k(n) in $\overline{\mathcal{L}}$.
Basic Bousfield classes

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_\infty$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

▶ We work with $\overline{\mathcal{L}} = \lim_{n \to \infty} \mathcal{L}/\epsilon(n)$. One can also consider $\widehat{\mathcal{L}} = \mathcal{L}/\epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.

• We have
$$k'(n) = k(n) \lor a(n)$$
, so $k'(n) = k(n)$ in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_\infty$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

- We work with *L* = lim_{→n} *L*/ε(n). One can also consider *L* = *L*/ε(∞), which is a quotient of *L*, but that gives weaker results.
- We have $k'(n) = k(n) \lor a(n)$, so k'(n) = k(n) in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- ▶ For $n \in \mathbb{N}$ we choose a good v_n element $w_n \in \pi_*(F(n))$. This means that $w_n = v_n^{p^{d_n}}$ in $BP_*F(n)$ for some d_n , plus some additional properties. Put $K'(n) = F(n)[w_n^{-1}]$ and $k'(n) = \langle K'(n) \rangle$.
- ▶ Now fix $n \in \mathbb{N}$. Let L_n denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum E(n), and let $C_n X$ denote the fibre of the natural map $X \to L_n X$. We also put $A(n) = C_n K'(n)$ and $a(n) = \langle A(n) \rangle$. We also put $\epsilon(n) = \bigvee_{i < n} a(i)$ for all $n \in \mathbb{N}_\infty$.
- Proposition: the elements a(i) and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to a(i) = 0 for all i, or e(n) = 0 for all n ∈ N, or e(∞) = 0.

- We work with *L* = lim_→ *L*/ε(*n*). One can also consider *L* = *L*/ε(∞), which is a quotient of *L*, but that gives weaker results.
- We have $k'(n) = k(n) \lor a(n)$, so k'(n) = k(n) in $\overline{\mathcal{L}}$.

- (a) If *R* is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if *M* is any *R*-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v: \Sigma^d X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \lor \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over Z_(p), and that they are not all torsion groups. Then ⟨X⟩ = ⟨X_p[∧]⟩ = ⟨HQ⟩ ∨ ⟨X/p⟩.

General facts about Bousfield classes

- (a) If R is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if M is any R-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v: \Sigma^d X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \lor \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over Z_(p), and that they are not all torsion groups. Then ⟨X⟩ = ⟨X_p[∧]⟩ = ⟨HQ⟩ ∨ ⟨X/p⟩.

General facts about Bousfield classes

- (a) If R is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if M is any *R*-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v : \Sigma^{a} X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \vee \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$, and that they are not all torsion groups. Then $\langle X \rangle = \langle X_p^{\wedge} \rangle = \langle H \mathbb{Q} \rangle \vee \langle X/p \rangle.$

General facts about Bousfield classes

- (a) If R is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if M is any *R*-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v: \Sigma^d X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \lor \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over Z_(p), and that they are not all torsion groups. Then ⟨X⟩ = ⟨X_p[∧]⟩ = ⟨HQ⟩ ∨ ⟨X/p⟩.

- (a) If R is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if M is any R-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v: \Sigma^d X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \lor \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over Z_(p), and that they are not all torsion groups. Then ⟨X⟩ = ⟨X_p[∧]⟩ = ⟨HQ⟩ ∨ ⟨X/p⟩.

- (a) If R is a ring spectrum then $\langle R \rangle \wedge \langle R \rangle = \langle R \rangle$. Moreover, if M is any *R*-module spectrum then $\langle M \rangle = \langle R \rangle \wedge \langle M \rangle \leq \langle R \rangle$.
- (b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either K_{*}X = 0 and (K) ∧ (X) = 0, or K_{*}X ≠ 0 and (K) ∧ (X) = (K) and (X) ≥ (K).
- (c) Let X be a spectrum, and let $v: \Sigma^d X \to X$ be a self-map with cofibre X/v and telescope $X[v^{-1}]$. Then $\langle X \rangle = \langle X/v \rangle \lor \langle X[v^{-1}] \rangle$.
- (d) Let T and X be spectra such that the homotopy groups of X are finitely generated over Z_(p). Then T ∧ IX = 0 iff T ∧ I(X/p) = 0 iff F(T, X/p) = 0.
- (e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$, and that they are not all torsion groups. Then $\langle X \rangle = \langle X_p^{\wedge} \rangle = \langle H \mathbb{Q} \rangle \lor \langle X/p \rangle.$

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- We have ring maps $T(0) \to T(1) \to \cdots \to T(\infty) = BP \to K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in Z. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- We have ring maps $T(0) \to T(1) \to \cdots \to T(\infty) = BP \to K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in Z. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- We have ring maps $T(0) \to T(1) \to \cdots \to T(\infty) = BP \to K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- However, j(0) ≤ j(1) ≤ · · · ≤ j(ω) ≤ j(∞) by applying Brown-Comenetz duality to a T(q + 1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in L. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- We have ring maps $T(0) \to T(1) \to \cdots \to T(\infty) = BP \to K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in L. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- ▶ We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty) = BP \rightarrow K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- However, j(0) ≤ j(1) ≤ · · · ≤ j(ω) ≤ j(∞) by applying Brown-Comenetz duality to a T(q + 1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in Z. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- ▶ We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty) = BP \rightarrow K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- However, j(0) ≤ j(1) ≤ ··· ≤ j(ω) ≤ j(∞) by applying Brown-Comenetz duality to a T(q + 1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- ▶ The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies $\langle J(q) \rangle \leq \langle H/p \rangle$, or $j(q) \leq k(\infty)$.
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in Z. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- ▶ We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty) = BP \rightarrow K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in L. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- ▶ We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty) = BP \rightarrow K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- There are various equations u ∨ v = x and u ∧ v = y that hold by definition in A; we need to show that they also hold in L. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in L.

- The classes t(q), f(n), t(q; n) and k'(n) are represented by ring spectra and so are idempotent. The class k(U) is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or k(n), and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand k(U) ∧ x and also k(U) ∨ x, except for the fact that k(U) ∨ j(m, S) = k(U ∪ S) when U is big.
- ▶ We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty) = BP \rightarrow K(n)$, giving $t(0) \ge t(1) \ge \cdots \ge t(\infty) \ge k(n)$.
- ▶ However, $j(0) \le j(1) \le \cdots \le j(\omega) \le j(\infty)$ by applying Brown-Comenetz duality to a T(q+1)-based Adams resolution of T(q).
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m) = 0$ for q > m. However, if $q \le m$ then J(m) is a T(q)-module and so $t(q) \wedge j(m) = j(m)$.
- The spectrum J(q) is bounded above with torsion homotopy groups and so satisfies ⟨J(q)⟩ ≤ ⟨H/p⟩, or j(q) ≤ k(∞).
- ▶ There are various equations $u \lor v = x$ and $u \land v = y$ that hold by definition in \mathcal{A} ; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form t(q, T), we now have enough information to see that the relevant equations hold already in \mathcal{L} .

Adjusted equations in $\ensuremath{\mathcal{L}}$

- ▶ Recall that $t(q, T; n) = t(q) \land f(n) \lor k(T)$ for sufficiently large *n*.
- ▶ The following rules are valid in *L* (provided that *n* is large enough for the terms on the left to be defined):

$$t(q, T; n) \land t(q', T'; n) = t(\max(q, q'), T \cap T'; n))$$

$$t(q, T; n) \lor t(q', T'; n) = t(\min(q, q'), T \cup T'; n)$$

$$t(q, T; n) \lor j(m', S') = t(q, T \cup S'; n)$$

$$t(q, T; n) \lor k(U') = t(q, T \cup U'; n).$$

Adjusted equations in $\ensuremath{\mathcal{L}}$

- ▶ Recall that $t(q, T; n) = t(q) \land f(n) \lor k(T)$ for sufficiently large n.
- ▶ The following rules are valid in *L* (provided that *n* is large enough for the terms on the left to be defined):

$$t(q, T; n) \land t(q', T'; n) = t(\max(q, q'), T \cap T'; n))$$

$$t(q, T; n) \lor t(q', T'; n) = t(\min(q, q'), T \cup T'; n)$$

$$t(q, T; n) \lor j(m', S') = t(q, T \cup S'; n)$$

$$t(q, T; n) \lor k(U') = t(q, T \cup U'; n).$$

Adjusted equations in $\mathcal L$

- ▶ Recall that $t(q, T; n) = t(q) \land f(n) \lor k(T)$ for sufficiently large *n*.
- ▶ The following rules are valid in *L* (provided that *n* is large enough for the terms on the left to be defined):

$$t(q, T; n) \land t(q', T'; n) = t(\max(q, q'), T \cap T'; n))$$

$$t(q, T; n) \lor t(q', T'; n) = t(\min(q, q'), T \cup T'; n)$$

$$t(q, T; n) \lor j(m', S') = t(q, T \cup S'; n)$$

$$t(q, T; n) \lor k(U') = t(q, T \cup U'; n).$$

Adjusted equations in \mathcal{L}

- ▶ Recall that $t(q, T; n) = t(q) \land f(n) \lor k(T)$ for sufficiently large *n*.
- ▶ The following rules are valid in *L* (provided that *n* is large enough for the terms on the left to be defined):

$$t(q, T; n) \land t(q', T'; n) = t(\max(q, q'), T \cap T'; n))$$

$$t(q, T; n) \lor t(q', T'; n) = t(\min(q, q'), T \cup T'; n)$$

$$t(q, T; n) \lor j(m', S') = t(q, T \cup S'; n)$$

$$t(q, T; n) \lor k(U') = t(q, T \cup U'; n).$$

$$0 = k(\emptyset)$$

$$S = S_{p}^{\wedge} = T(0) = t(0, \mathbb{N}_{\infty})$$

$$S/p = S/p^{\infty} = t(0, [1, \infty])$$

$$F(n) = t(0, [n, \infty])$$

$$H\mathbb{Q} = S\mathbb{Q} = I(H\mathbb{Q}) = k(\{0\})$$

$$H/p = H/p^{\infty} = I(H) = I(H/p) = I(BP\langle n \rangle) = k(\{\infty\})$$

$$H = k(\{0, \infty\})$$

$$V_{n}^{-1}F(n) = K'(n) \simeq k(\{n\})$$

$$T(q) = t(q, \mathbb{N})$$

$$BP = BP_{p}^{\wedge} = T(\infty) = t(\infty, \mathbb{N})$$

$$P(n) = BP/I_{n} = t(\infty, [n, \infty])$$

$$B(n) = v_{n}^{-1}P(n) = K(n) = M_{n}S = k(\{n\})$$

$$IB(n) = IK(n) = k(\{n\})$$

◆□ → <圖 → < Ξ → < Ξ → < Ξ · 9 < @</p>

$$E(n) = v_n^{-1}BP \langle n \rangle = v_n^{-1}BP = L_n S = k([0, n])$$

$$\widehat{E(n)} = L_{K(n)}S = k([0, n])$$

$$C_n S \simeq t(0, [n+1, \infty])$$

$$BP \langle n \rangle = k([0, n] \cup \{\infty\})$$

$$BP \langle n \rangle = k(\{0, n] \cup \{\infty\})$$

$$KU = KO = k(\{0, 1\})$$

$$kU = KO = k(\{0, 1, \infty\})$$

$$EII = TMF = k(\{0, 1, \infty\})$$

$$I(S) = I(T(0)) = I(F(n)) = j(0, \emptyset)$$

$$I(S_p^{\wedge}) = I(S/p^{\infty}) = j(0, \{0\})$$

$$I(T(m)) = I(T(m) \wedge F(n)) = j(m, \emptyset)$$

(ロ)、