The known part of the Bousfield semiring

Neil Strickland

November 1, 2016

Outline of the talk

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of \mathcal{L}. We seek a consolidated statement that incorporates as much of this information as possible.
- The Telescope Conjecture is a key open question about \mathcal{L}. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \mathcal{L}$ which contains almost all classes that have previously been named and studied.

Outline of the talk

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of \mathcal{L}. We seek a consolidated statement that incorporates as much of this information as possible.
- The Telescope Conjecture is a key open question about \mathcal{L}. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \overline{\mathcal{L}}$ which contains almost all classes that have previously been named and studied.

Outline of the talk

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of \mathcal{L}. We seek a consolidated statement that incorporates as much of this information as possible.
- The Telescope Conjecture is a key open question about \mathcal{L}. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \overline{\mathcal{L}}$ which contains almost all classes that have previously been named and studied.

Outline of the talk

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of \mathcal{L}. We seek a consolidated statement that incorporates as much of this information as possible.
- The Telescope Conjecture is a key open question about \mathcal{L}. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \overline{\mathcal{L}}$ which contains almost all classes that have previously been named and studied

Outline of the talk

- Fix a prime p, and let \mathcal{L} denote the semiring of p-local Bousfield classes.
- The literature contains many results about the structure of \mathcal{L}. We seek a consolidated statement that incorporates as much of this information as possible.
- The Telescope Conjecture is a key open question about \mathcal{L}. It is widely expected to be false, but this remains unproven. We will work with a quotient semiring $\overline{\mathcal{L}}$ in which TC is true.
- We will give a complete description of a subsemiring $\mathcal{A} \leq \overline{\mathcal{L}}$ which contains almost all classes that have previously been named and studied.

Basic definitions

- $\mathcal{B}=\{p-$ local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
${ }^{-}\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$.

Basic definitions

- $\mathcal{B}=\{p-$ local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with V like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$.

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$.

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with V like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
\Rightarrow All this is similar to the derived category $D(R)$ of a ring R, with V like \oplus and \wedge like \otimes
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
${ }^{\nabla}\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means

Basic definitions

- $\mathcal{B}=\{p$ - local spectra $\}$.
- This is a triangulated category, and in particular is additive.
- There is a binary coproduct written $X \vee Y$, and more generally an indexed coproduct written $\bigvee_{i} X_{i}$.
- There is a bilinear symmetric monoidal smash product written $X \wedge Y$, with unit object S.
- All this is similar to the derived category $D(R)$ of a ring R, with \vee like \oplus and \wedge like \otimes.
- $\langle X\rangle=\{T \mid X \wedge T=0\}$ and $\mathcal{L}=\{\langle X\rangle \mid X \in \mathcal{B}\}$.
- Theorem of Ohkawa: \mathcal{L} is a set, not a proper class.
- There are well-defined operations $\langle X\rangle \vee\langle Y\rangle=\langle X \vee Y\rangle$ and $\langle X\rangle \wedge\langle Y\rangle=\langle X \wedge Y\rangle$. We put $0=\langle 0\rangle$ and $1=\langle S\rangle$.
- We order Bousfield classes by reverse inclusion, so $\langle X\rangle \leq\langle Y\rangle$ means $\langle X\rangle \supseteq\langle Y\rangle$.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
v $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in l}$ has least upper bound $V_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition, $x \wedge \bigvee_{i} u_{i}=\bigvee_{i}\left(x \wedge u_{i}\right)$.
The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in \prime}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition,
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
$\Rightarrow u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in l}$ has least upper bound $V_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition,

The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in \prime}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition,
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in I}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition,
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in I}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition, - The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in I}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition, $x \wedge \bigvee_{i} u_{i}=\bigvee_{i}\left(x \wedge u_{i}\right)$.
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

Ordered semirings

An ordered semiring is a set \mathcal{R} with $0,1 \in \mathcal{R}$ and operations \vee and \wedge such that:
(a) V is commutative and associative, with 0 as an identity element.
(b) \wedge is commutative and associative, with 1 as an identity element.
(c) \wedge distributes over \vee.
(d) For all $u \in \mathcal{R}$ we have $0 \wedge u=0$ and $1 \vee u=1$ and $u \vee u=u$.

- This gives a partial order by the rule $u \leq v$ iff $u \vee v=v$.
- The binary operations preserve this order, and 0 and 1 are the smallest and largest elements.
- $u \vee v$ is the smallest element satisfying $w \geq u$ and $w \geq v$.
- There is no similar statement for $u \wedge v$ in general.
- We say that \mathcal{R} is complete if every family of elements $\left(u_{i}\right)_{i \in I}$ has least upper bound $\bigvee_{i} u_{i}$.
- We say that \mathcal{R} is completely distributive if, in addition, $x \wedge \bigvee_{i} u_{i}=\bigvee_{i}\left(x \wedge u_{i}\right)$.
- The set \mathcal{L} is naturally a completely distributive ordered semiring.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} /$ e that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

Lattices and Boolean algebras

Let \mathcal{R} be an ordered semiring.

- We say that $u \in \mathcal{R}$ is idempotent if $u \wedge u=u$.
- We write $\mathcal{R}_{\text {latt }}$ for the set of idempotent elements. This is a subsemiring of \mathcal{L} and is a distributive lattice.
- We say that $u \in \mathcal{R}$ is complemented if there is a (necessarily unique) element $\neg u$ with $u \vee \neg u=1$ and $u \wedge \neg u=0$.
- We write $\mathcal{R}_{\text {bool }}$ for the set of complemented elements. This is a sublattice of $\mathcal{R}_{\text {latt }}$ and is a Boolean algebra.
- If $e \in \mathcal{R}$ is idempotent then there is a semiring \mathcal{R} / e and a homomorphism $\pi: \mathcal{R} \rightarrow \mathcal{R} / e$ that is initial among homomorphisms sending e to zero.
- In fact, we can take $\mathcal{R} / e=\{x \in \mathcal{R} \mid x \geq e\}$ and $\pi(x)=x \vee e$ and define operations on $\mathcal{R} /$ e so as to make π a homomorphism.
- $\overline{\mathcal{L}}$ will be a colimit of quotients $\mathcal{L} / \epsilon(n)$ for some idempotents $\epsilon(n)$ to be described later.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:

```
> t(q,T) for }q\in\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ and }T\subseteq\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ cosmall.
> j(m,S) for }m\in\mp@subsup{\mathbb{N}}{\omega}{}\mathrm{ and }S\subset\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ small.
* k(U) for U\subseteq\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ arbitrary.}
```

- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\phi)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under U and \cap.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ anc $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\}$
$\mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:

```
* t(q,T) for }q\in\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ and }T\subseteq\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ cosmall.
* j(m,S) for }m\in\mp@subsup{\mathbb{N}}{\omega}{}\mathrm{ and }S\subset\mp@subsup{\mathbb{N}}{\infty}{}\mathrm{ small.
> k(U) for U\subseteq\mathbb{N}\infty arbitrary.
```

- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under U and \cap.
\Rightarrow We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ and $\operatorname{tail}(k(U))=U$. This will be a homomorphism.
- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:
- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall
$\Rightarrow j(m, S)$ for $m \in \mathbb{N}_{w}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under U and \cap.
\Rightarrow We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ and $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.

- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under U and n.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ and $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:
- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\phi)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under \cup and \cap.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ anc $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:
- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under U and \cap.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and tail $(j(m, S))=S$ and
tail $(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:
- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under \cup and \cap.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and tail $(j(m, S))=S$ and $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model

- $\mathbb{N}_{\infty}=\{0,1,2,3,4, \ldots, \infty\} \quad \mathbb{N}_{\omega}=\{0,1,2,3,4, \ldots, \omega, \infty\}$
- A set $S \subset \mathbb{N}_{\infty}$ is small if $S \subseteq[0, n)$ for some $n<\infty$, otherwise large.
- We say that $S \subseteq \mathbb{N}_{\infty}$ is cosmall if $\mathbb{N}_{\infty} \backslash S$ is small, or equivalently $S \supseteq[n, \infty]$ for some finite n.
- The set \mathcal{A} has elements as follows:
- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.
- The top and bottom elements are $1=t\left(0, \mathbb{N}_{\infty}\right)$ and $0=k(\emptyset)$.
- The set $\mathcal{P}=\left\{U \mid U \subseteq \mathbb{N}_{\infty}\right\}$ is an ordered semiring under \cup and \cap.
- We define tail: $\mathcal{A} \rightarrow \mathcal{P}$ by tail $(t(q, T))=T$ and $\operatorname{tail}(j(m, S))=S$ and $\operatorname{tail}(k(U))=U$. This will be a homomorphism.

The combinatorial model: addition

- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.

$$
\begin{aligned}
t(q, T) \vee t\left(q^{\prime}, T^{\prime}\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime}\right) \\
t(q, T) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime}\right) \\
t(q, T) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime}\right) \\
j(m, S) \vee j\left(m^{\prime}, S^{\prime}\right) & =j\left(\max \left(m, m^{\prime}\right), S \cup S^{\prime}\right) \\
j(m, S) \vee k\left(U^{\prime}\right) & = \begin{cases}j\left(m, S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is small } \\
k\left(S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is big } \\
k(U) \vee k\left(U^{\prime}\right) & =k\left(U \cup U^{\prime}\right) .\end{cases}
\end{aligned}
$$

Note that $\operatorname{tail}(a \vee b)=\operatorname{tail}(a) \cup \operatorname{tail}(b)$.

The combinatorial model: multiplication

- $t(q, T)$ for $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ cosmall.
- $j(m, S)$ for $m \in \mathbb{N}_{\omega}$ and $S \subset \mathbb{N}_{\infty}$ small.
- $k(U)$ for $U \subseteq \mathbb{N}_{\infty}$ arbitrary.

$$
\begin{aligned}
t(q, T) \wedge t\left(q^{\prime}, T^{\prime}\right) & =t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime}\right) \\
t(q, T) \wedge j\left(m^{\prime}, S^{\prime}\right) & = \begin{cases}j\left(m^{\prime}, T \cap S^{\prime}\right) & \text { if } q \leq m^{\prime} \\
k\left(T \cap S^{\prime}\right) & \text { if } q>m^{\prime}\end{cases} \\
t(q, T) \wedge k\left(U^{\prime}\right) & =k\left(T \cap U^{\prime}\right) \\
j(m, S) \wedge j\left(m^{\prime}, S^{\prime}\right) & =k\left(S \cap S^{\prime}\right) \\
j(m, S) \wedge k\left(U^{\prime}\right) & =k\left(S \cap U^{\prime}\right) \\
k(U) \wedge k\left(U^{\prime}\right) & =k\left(U \cap U^{\prime}\right) .
\end{aligned}
$$

Note that $\operatorname{tail}(a \wedge b)=\operatorname{tail}(a) \cap \operatorname{tail}(b)$.

\mathcal{A} is a semiring

Theorem: these operations make \mathcal{A} a completely distributive ordered semiring.

$$
\begin{array}{rlrl}
t(q, T) \vee t\left(q^{\prime}, T^{\prime}\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime}\right) & t(q, T) \wedge t\left(q^{\prime}, T^{\prime}\right) & =t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime}\right) \\
t(q, T) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime}\right) & t(q, T) \wedge j\left(m^{\prime}, S^{\prime}\right) & = \begin{cases}j\left(m^{\prime}, T \cap S^{\prime}\right) & \text { if } q \leq m^{\prime} \\
k\left(T \cap S^{\prime}\right) & \text { if } q>m^{\prime}\end{cases} \\
t(q, T) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime}\right) & t(q, T) \wedge k\left(U^{\prime}\right) & =k\left(T \cap U^{\prime}\right) \\
j(m, S) \vee j\left(m^{\prime}, S^{\prime}\right) & =j\left(\max \left(m, m^{\prime}\right), S \cup S^{\prime}\right) & j(m, S) \wedge j\left(m^{\prime}, S^{\prime}\right) & =k\left(S \cap S^{\prime}\right) \\
j(m, S) \vee k\left(U^{\prime}\right) & =\left\{\begin{array}{lll}
j\left(m, S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is small } \\
k\left(S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is big } & j(m, S) \wedge k\left(U^{\prime}\right)
\end{array}\right)=k\left(S \cap U^{\prime}\right) \\
k(U) \vee k\left(U^{\prime}\right) & =k\left(U \cup U^{\prime}\right) & k(U) \wedge k\left(U^{\prime}\right) & =k\left(U \cap U^{\prime}\right) .
\end{array}
$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.
- Ideals in \mathcal{A} have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

\mathcal{A} is a semiring

Theorem: these operations make \mathcal{A} a completely distributive ordered semiring.

$$
\begin{array}{rlrl}
t(q, T) \vee t\left(q^{\prime}, T^{\prime}\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime}\right) & t(q, T) \wedge t\left(q^{\prime}, T^{\prime}\right) & =t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime}\right) \\
t(q, T) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime}\right) & t(q, T) \wedge j\left(m^{\prime}, S^{\prime}\right) & = \begin{cases}j\left(m^{\prime}, T \cap S^{\prime}\right) & \text { if } q \leq m^{\prime} \\
k\left(T \cap S^{\prime}\right) & \text { if } q>m^{\prime}\end{cases} \\
t(q, T) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime}\right) & t(q, T) \wedge k\left(U^{\prime}\right) & =k\left(T \cap U^{\prime}\right) \\
j(m, S) \vee j\left(m^{\prime}, S^{\prime}\right) & =j\left(\max \left(m, m^{\prime}\right), S \cup S^{\prime}\right) & j(m, S) \wedge j\left(m^{\prime}, S^{\prime}\right) & =k\left(S \cap S^{\prime}\right) \\
j(m, S) \vee k\left(U^{\prime}\right) & =\left\{\begin{array}{lll}
j\left(m, S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is small } \\
k\left(S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is big } & j(m, S) \wedge k\left(U^{\prime}\right)
\end{array}\right)=k\left(S \cap U^{\prime}\right) \\
k(U) \vee k\left(U^{\prime}\right) & =k\left(U \cup U^{\prime}\right) & k(U) \wedge k\left(U^{\prime}\right) & =k\left(U \cap U^{\prime}\right) .
\end{array}
$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.
- Ideals in \mathcal{A} have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

\mathcal{A} is a semiring

Theorem: these operations make \mathcal{A} a completely distributive ordered semiring.

$$
\begin{array}{rlrl}
t(q, T) \vee t\left(q^{\prime}, T^{\prime}\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime}\right) & t(q, T) \wedge t\left(q^{\prime}, T^{\prime}\right) & =t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime}\right) \\
t(q, T) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime}\right) & t(q, T) \wedge j\left(m^{\prime}, S^{\prime}\right) & = \begin{cases}j\left(m^{\prime}, T \cap S^{\prime}\right) & \text { if } q \leq m^{\prime} \\
k\left(T \cap S^{\prime}\right) & \text { if } q>m^{\prime}\end{cases} \\
t(q, T) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime}\right) & t(q, T) \wedge k\left(U^{\prime}\right) & =k\left(T \cap U^{\prime}\right) \\
j(m, S) \vee j\left(m^{\prime}, S^{\prime}\right) & =j\left(\max \left(m, m^{\prime}\right), S \cup S^{\prime}\right) & j(m, S) \wedge j\left(m^{\prime}, S^{\prime}\right) & =k\left(S \cap S^{\prime}\right) \\
j(m, S) \vee k\left(U^{\prime}\right) & =\left\{\begin{array}{lll}
j\left(m, S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is small } \\
k\left(S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is big } & j(m, S) \wedge k\left(U^{\prime}\right)
\end{array}\right)=k\left(S \cap U^{\prime}\right) \\
k(U) \vee k\left(U^{\prime}\right) & =k\left(U \cup U^{\prime}\right) & k(U) \wedge k\left(U^{\prime}\right) & =k\left(U \cap U^{\prime}\right) .
\end{array}
$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.
- Ideals in \mathcal{A} have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

\mathcal{A} is a semiring

Theorem: these operations make \mathcal{A} a completely distributive ordered semiring.

$$
\begin{array}{rlrl}
t(q, T) \vee t\left(q^{\prime}, T^{\prime}\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime}\right) & t(q, T) \wedge t\left(q^{\prime}, T^{\prime}\right) & =t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime}\right) \\
t(q, T) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime}\right) & t(q, T) \wedge j\left(m^{\prime}, S^{\prime}\right) & = \begin{cases}j\left(m^{\prime}, T \cap S^{\prime}\right) & \text { if } q \leq m^{\prime} \\
k\left(T \cap S^{\prime}\right) & \text { if } q>m^{\prime}\end{cases} \\
t(q, T) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime}\right) & t(q, T) \wedge k\left(U^{\prime}\right) & =k\left(T \cap U^{\prime}\right) \\
j(m, S) \vee j\left(m^{\prime}, S^{\prime}\right) & =j\left(\max \left(m, m^{\prime}\right), S \cup S^{\prime}\right) & j(m, S) \wedge j\left(m^{\prime}, S^{\prime}\right) & =k\left(S \cap S^{\prime}\right) \\
j(m, S) \vee k\left(U^{\prime}\right) & =\left\{\begin{array}{lll}
j\left(m, S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is small } \\
k\left(S \cup U^{\prime}\right) & \text { if } U^{\prime} \text { is big } & j(m, S) \wedge k\left(U^{\prime}\right)
\end{array}\right)=k\left(S \cap U^{\prime}\right) \\
k(U) \vee k\left(U^{\prime}\right) & =k\left(U \cup U^{\prime}\right) & k(U) \wedge k\left(U^{\prime}\right) & =k\left(U \cap U^{\prime}\right) .
\end{array}
$$

Outline of proof:

- It is long but straightforward to check that the operations satisfy all axioms for an ordered semiring.
- A lemma shows that complete distributivity reduces to a statement about least upper bounds for ideals.
- Ideals in \mathcal{A} have a fairly simple structure. In many cases, they have a largest element, which makes other questions trivial.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

```
* We have t(q,T)\leqt(q', T') iff T\subseteq T' and q\geqq
- We never have t(q,T)\leqj(m,S) or t(q,T)\leqk(U).
- We have j(m,S)<t(q,T) iff S\subseteqT
- We have j(m,S)\leqj(m', S') iff S\subseteq S' and m\leqm'.
- We have }j(m,S)\leqk(U)\mathrm{ iff }S\subseteqU\mathrm{ and }U\mathrm{ is big.
- We have k(U)<t(q,T) iff U\subseteqT
* We have }k(U)\leqj(m,S) iff U\subseteqS
- We have }k(U)\leqk(\mp@subsup{U}{}{\prime})\mathrm{ iff U}\subseteq\mp@subsup{U}{}{\prime
```

- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$
with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$
- We have $j(m, S) \leq i\left(m^{\prime}, S^{\prime}\right)$ iff $S \subset S^{\prime}$ and $m \leq m^{\prime}$
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$
- We have $k(U)<i(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subseteq U^{\prime}$
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subset U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subseteq U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.

- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U)<k\left(U^{\prime}\right)$ iff $U \subset U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, \mathbb{N}_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subseteq U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, N_{\infty} \backslash S\right)$ with S small.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subseteq U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.

The order on \mathcal{A}

The order on \mathcal{A} can be made more explicit as follows:

- We have $t(q, T) \leq t\left(q^{\prime}, T^{\prime}\right)$ iff $T \subseteq T^{\prime}$ and $q \geq q^{\prime}$.
- We never have $t(q, T) \leq j(m, S)$ or $t(q, T) \leq k(U)$.
- We have $j(m, S) \leq t(q, T)$ iff $S \subseteq T$.
- We have $j(m, S) \leq j\left(m^{\prime}, S^{\prime}\right)$ iff $S \subseteq S^{\prime}$ and $m \leq m^{\prime}$.
- We have $j(m, S) \leq k(U)$ iff $S \subseteq U$ and U is big.
- We have $k(U) \leq t(q, T)$ iff $U \subseteq T$.
- We have $k(U) \leq j(m, S)$ iff $U \subseteq S$.
- We have $k(U) \leq k\left(U^{\prime}\right)$ iff $U \subseteq U^{\prime}$.
- $\mathcal{A}_{\text {latt }}$ consists of all elements of the form $t(q, T)$ or $k(U)$.
- $\mathcal{A}_{\text {bool }}$ consists of all elements of the form $k(S)$ or $\neg k(S)=t\left(0, \mathbb{N}_{\infty} \backslash S\right)$ with S small.

The main theorem

- Theorem: There is an injective semiring homomorphism $\phi: \mathcal{A} \rightarrow \overline{\mathcal{L}}$ which preserves all joins.
- This is defined as a composite $\mathcal{A} \xrightarrow{\phi_{0}} \mathcal{L} \xrightarrow{\pi} \overline{\mathcal{L}}$, but ϕ_{0} is not a homomorphism of semirings unless TC holds.
- For each element x in \mathcal{A}, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_{0}.

The main theorem

- Theorem: There is an injective semiring homomorphism $\phi: \mathcal{A} \rightarrow \overline{\mathcal{L}}$ which preserves all joins.
- This is defined as a composite $\mathcal{A} \xrightarrow{\phi_{0}} \mathcal{L} \xrightarrow{\pi} \overline{\mathcal{L}}$, but ϕ_{0} is not a homomorphism of semirings unless TC holds.
- For each element x in \mathcal{A}, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_{0}.

The main theorem

- Theorem: There is an injective semiring homomorphism $\phi: \mathcal{A} \rightarrow \overline{\mathcal{L}}$ which preserves all joins.
- This is defined as a composite $\mathcal{A} \xrightarrow{\phi_{0}} \mathcal{L} \xrightarrow{\pi} \overline{\mathcal{L}}$, but ϕ_{0} is not a homomorphism of semirings unless TC holds.
- For each element x in \mathcal{A}, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_{0}.
- Theorem: There is an injective semiring homomorphism $\phi: \mathcal{A} \rightarrow \overline{\mathcal{L}}$ which preserves all joins.
- This is defined as a composite $\mathcal{A} \xrightarrow{\phi_{0}} \mathcal{L} \xrightarrow{\pi} \overline{\mathcal{L}}$, but ϕ_{0} is not a homomorphism of semirings unless TC holds.
- For each element x in \mathcal{A}, we will define an element in \mathcal{L} with the same name, which will be the image of x under ϕ_{0}.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
$\Rightarrow F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$.
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall.

If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$.
Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$.

- For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism

$$
[X, J(m)] \simeq \operatorname{Hom}\left(\pi_{0}(T(m) \wedge X), \mathbb{Q} / \mathbb{Z}\right)
$$

Put $J(\omega)=\bigvee_{m \in \mathbb{N}} J(m)$, and $j(m)=\langle J(m)\rangle$ for all $m \in \mathbb{N}_{\omega}$. Given a small set S, put $j(m, S)=j(m) \vee k(S)$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=V_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall.

If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$.
Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$

- For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism

$$
[X, J(m)] \simeq \operatorname{Hom}\left(\pi_{0}(T(m) \wedge X), \mathbb{Q} / \mathbb{Z}\right)
$$

Put $J(\omega)=\bigvee_{m \in \mathbb{N}} J(m)$, and $j(m)=\langle J(m)\rangle$ for all $m \in \mathbb{N}_{\omega}$ Given a small set S, put $j(m, S)=j(m) \vee k(S)$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$. Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$
- For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism

$$
[X, J(m)] \simeq \operatorname{Hom}\left(\pi_{0}(T(m) \wedge X), \mathbb{Q} / \mathbb{Z}\right)
$$

Put $J(\omega)=\bigvee_{m \in \mathbb{N}} J(m)$, and $j(m)=\langle J(m)\rangle$ for all $m \in \mathbb{N}_{\omega}$ Given a small set S, put $j(m, S)=j(m) \vee k(S)$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$.

> For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T^{\prime}(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$
> - Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$ Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$
> - For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism

$[X, J(m)] \simeq \operatorname{Hom}\left(\pi_{0}(T(m) \wedge X), \mathbb{Q} / \mathbb{Z}\right)$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$.
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$.
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$ Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$. - For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism
$[X, \prime(m)] \simeq \operatorname{Hom}(\pi 0(T(m) \wedge X), \mathbb{Q} / \mathbb{Z})$. Given a small set S, put $j(m, S)=j(m) \vee k(S)$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$.
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$.
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$.
Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$.
there is a natural isomorphism
$[X, J(m)] \simeq \operatorname{Hom}(\pi o(T(m) \wedge X), \mathbb{Q} / \mathbb{Z})$.

Basic Bousfield classes

- $K(n)=$ Morava K-theory $(K(0)=H \mathbb{Q}, K(\infty)=H / p) ; k(n)=\langle K(n)\rangle$.
- For $U \subseteq \mathbb{N}_{\infty}$ we put $K(U)=\bigvee_{i \in U} K(i)$ and $k(U)=\langle K(U)\rangle$.
- $F(n)=$ a finite spectrum of type n, so $K(i)_{*} F(n)=0$ iff $i<n$. This can be chosen so $F(n)$ is a self-dual ring spectrum and $F(0)=S$. Put $f(n)=\langle F(n)\rangle$.
- For $q \in \mathbb{N}$ we recall that the Bott periodicity isomorphism $\Omega S U=B U$ gives a natural virtual vector bundle over $\Omega S U\left(p^{q}\right)$, and the associated Thom spectrum $X\left(p^{q}\right)$ has a natural ring structure. The p-localisation of this has a p-typical summand called $T(q)$. We have $T(0)=S$ and $T(\infty)=B P$. In all cases we put $t(q)=\langle T(q)\rangle$ and $t(q ; n)=t(q) \wedge f(n)$.
- Suppose $q \in \mathbb{N}_{\infty}$ and $T \subseteq \mathbb{N}_{\infty}$ is cosmall. If $[n, \infty] \subseteq T$, we put $t(q, T ; n)=t(q ; n) \vee k(T)$.
Put $t(q, T)=t\left(q, T ; n_{0}\right)$, where n_{0} is smallest such that $\left[n_{0}, \infty\right] \subseteq T$.
- For $m \in \mathbb{N}_{\infty}$ we let $J(m)$ denote the Brown-Comenetz dual of $T(m)$, so there is a natural isomorphism

$$
[X, J(m)] \simeq \operatorname{Hom}\left(\pi_{0}(T(m) \wedge X), \mathbb{Q} / \mathbb{Z}\right)
$$

Put $J(\omega)=\bigvee_{m \in \mathbb{N}} J(m)$, and $j(m)=\langle J(m)\rangle$ for all $m \in \mathbb{N}_{\omega}$. Given a small set S, put $j(m, S)=j(m) \vee k(S)$.

Basic Bousfield classes

－For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$ ．This means that $w_{n}=v_{n}^{d^{d}}$ in $B P_{*} F(n)$ for some d_{n} ，plus some additional properties．Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $K^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$ ．
－Now fix $n \in \mathbb{N}$ ．Let L_{n} denote the Bousfield localisation functor with respect to the Johnson－Wilson spectrum $E(n)$ ，and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$ ．We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$ ．We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$ ．
－Proposition：the elements $a(i)$ and $\epsilon(n)$ are idempotent．
－The Telescope Conjecture is equivalent to $a(i)=0$ for all i ，or $\epsilon(n)=0$ for all $n \in \mathbb{N}$ ，or $\epsilon(\infty)=0$ ．
－We work with $\overline{\mathcal{L}}=\lim \mathcal{L} / \epsilon(n)$ ．One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$ ， which is a quotient of $\overline{\mathcal{L}}$ ，but that gives weaker results．
－We have $k^{\prime}(n)=k(n) \vee a(n)$ ，so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$ ．

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{d_{n}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to $a(i)=0$ for all i, or $\epsilon(n)=0$ for all $n \in \mathbb{N}$, or $\epsilon(\infty)=0$.
- We work with $\overline{\mathcal{L}}=\lim \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of \mathcal{L}. but that gives weaker results.
- We have $k^{\prime}(n)=k(n) \vee a(n)$, so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{p_{n}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to $a(i)=0$ for all i, or $\epsilon(n)=0$ for all $n \in \mathbb{N}$, or $\epsilon(\infty)=0$.
- We work with $\overline{\mathcal{L}}=\lim \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results. - We have $k^{\prime}(n)=k(n) \vee a(n)$, so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{p_{n}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- We work with $\overline{\mathcal{L}}=\lim \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$. but that gives weaker results. - We have $k^{\prime}(n)=k(n) \vee a(n)$, so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{p_{n}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to $a(i)=0$ for all i, or $\epsilon(n)=0$ for all $n \in \mathbb{N}$, or $\epsilon(\infty)=0$.
- We work with $\overline{\mathcal{L}}=\lim \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results. - We have $k^{\prime}(n)=k(n) \vee a(n)$, so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$.

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{p^{d_{n}}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to $a(i)=0$ for all i, or $\epsilon(n)=0$ for all $n \in \mathbb{N}$, or $\epsilon(\infty)=0$.
- We work with $\overline{\mathcal{L}}=\lim _{\rightarrow_{n}} \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.

Basic Bousfield classes

- For $n \in \mathbb{N}$ we choose a good v_{n} element $w_{n} \in \pi_{*}(F(n))$. This means that $w_{n}=v_{n}^{p^{d_{n}}}$ in $B P_{*} F(n)$ for some d_{n}, plus some additional properties. Put $K^{\prime}(n)=F(n)\left[w_{n}^{-1}\right]$ and $k^{\prime}(n)=\left\langle K^{\prime}(n)\right\rangle$.
- Now fix $n \in \mathbb{N}$. Let L_{n} denote the Bousfield localisation functor with respect to the Johnson-Wilson spectrum $E(n)$, and let $C_{n} X$ denote the fibre of the natural map $X \rightarrow L_{n} X$. We also put $A(n)=C_{n} K^{\prime}(n)$ and $a(n)=\langle A(n)\rangle$. We also put $\epsilon(n)=\bigvee_{i<n} a(i)$ for all $n \in \mathbb{N}_{\infty}$.
- Proposition: the elements $a(i)$ and $\epsilon(n)$ are idempotent.
- The Telescope Conjecture is equivalent to $a(i)=0$ for all i, or $\epsilon(n)=0$ for all $n \in \mathbb{N}$, or $\epsilon(\infty)=0$.
- We work with $\overline{\mathcal{L}}=\lim _{\rightarrow_{n}} \mathcal{L} / \epsilon(n)$. One can also consider $\widehat{\mathcal{L}}=\mathcal{L} / \epsilon(\infty)$, which is a quotient of $\overline{\mathcal{L}}$, but that gives weaker results.
- We have $k^{\prime}(n)=k(n) \vee a(n)$, so $k^{\prime}(n)=k(n)$ in $\overline{\mathcal{L}}$.

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(c) Let X be a spectrum, and let $v: \Sigma^{d} X \rightarrow X$ be a self-map with cofibre X / v and telescope $X\left[v^{-1}\right]$. Then $\langle X\rangle=\langle X / v\rangle \vee\left\langle X\left[v^{-1}\right]\right\rangle$.
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$.
(e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$, and that they are not all torsion groups. Then $\langle X\rangle=\left\langle X_{p}^{\wedge}\right\rangle=\langle H \mathbb{Q}\rangle \vee\langle X / p\rangle$.

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(c) Let X be a spectrum, and let $v: \Sigma^{d} X \rightarrow X$ be a self-map with cofibre X / v and telescope $X\left[v^{-1}\right]$. Then $\langle X\rangle=\langle X / v\rangle \vee\left\langle X\left[v^{-1}\right]\right\rangle$
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$
(e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(\rho)}$, and that they are not all torsion groups. Then $\langle X\rangle=\left\langle X_{p}^{\wedge}\right\rangle=\langle H O\rangle \vee\langle X / p\rangle$

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$
(e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$, and that they are not all torsion groups. Then

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(c) Let X be a spectrum, and let $v: \Sigma^{d} X \rightarrow X$ be a self-map with cofibre X / v and telescope $X\left[v^{-1}\right]$. Then $\langle X\rangle=\langle X / v\rangle \vee\left\langle X\left[v^{-1}\right]\right\rangle$.
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$
(e) Suppose again that the homotopy groups of X are finitely generated over and that they are not all torsion groups. Then

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(c) Let X be a spectrum, and let $v: \Sigma^{d} X \rightarrow X$ be a self-map with cofibre X / v and telescope $X\left[v^{-1}\right]$. Then $\langle X\rangle=\langle X / v\rangle \vee\left\langle X\left[v^{-1}\right]\right\rangle$.
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$.
(e) Suppose again that the homotopy groups of X are finitely generated over and that they are not all torsion groups. Then

General facts about Bousfield classes

(a) If R is a ring spectrum then $\langle R\rangle \wedge\langle R\rangle=\langle R\rangle$. Moreover, if M is any R-module spectrum then $\langle M\rangle=\langle R\rangle \wedge\langle M\rangle \leq\langle R\rangle$.
(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K_{*} are invertible. Then for any X we have either $K_{*} X=0$ and $\langle K\rangle \wedge\langle X\rangle=0$, or $K_{*} X \neq 0$ and $\langle K\rangle \wedge\langle X\rangle=\langle K\rangle$ and $\langle X\rangle \geq\langle K\rangle$.
(c) Let X be a spectrum, and let $v: \Sigma^{d} X \rightarrow X$ be a self-map with cofibre X / v and telescope $X\left[v^{-1}\right]$. Then $\langle X\rangle=\langle X / v\rangle \vee\left\langle X\left[v^{-1}\right]\right\rangle$.
(d) Let T and X be spectra such that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$. Then $T \wedge I X=0$ iff $T \wedge I(X / p)=0$ iff $F(T, X / p)=0$.
(e) Suppose again that the homotopy groups of X are finitely generated over $\mathbb{Z}_{(p)}$, and that they are not all torsion groups. Then $\langle X\rangle=\left\langle X_{p}^{\wedge}\right\rangle=\langle H \mathbb{Q}\rangle \vee\langle X / p\rangle$.

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) V x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$.
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$.
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already in \mathcal{L}.

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) V x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already in \mathcal{L}.

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already in \mathcal{L}.

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cas ϵ where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$.
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$.
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$.
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$.
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$.
- There are various equations u definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already in \mathcal{L}.

Some intermediate results

- The classes $t(q), f(n), t(q ; n)$ and $k^{\prime}(n)$ are represented by ring spectra and so are idempotent. The class $k(U)$ is also idempotent.
- For any x, the class $k(n) \wedge x$ is 0 or $k(n)$, and standard arguments tell us which possibility holds for all our x.
- From this it is easy to understand $k(U) \wedge x$ and also $k(U) \vee x$, except for the fact that $k(U) \vee j(m, S)=k(U \cup S)$ when U is big.
- We have ring maps $T(0) \rightarrow T(1) \rightarrow \cdots \rightarrow T(\infty)=B P \rightarrow K(n)$, giving $t(0) \geq t(1) \geq \cdots \geq t(\infty) \geq k(n)$.
- However, $j(0) \leq j(1) \leq \cdots \leq j(\omega) \leq j(\infty)$ by applying Brown-Comenetz duality to a $T(q+1)$-based Adams resolution of $T(q)$.
- A similar argument with generalised Adams resolutions gives $t(q) \wedge j(m)=0$ for $q>m$. However, if $q \leq m$ then $J(m)$ is a $T(q)$-module and so $t(q) \wedge j(m)=j(m)$.
- The spectrum $J(q)$ is bounded above with torsion homotopy groups and so satisfies $\langle J(q)\rangle \leq\langle H / p\rangle$, or $j(q) \leq k(\infty)$.
- There are various equations $u \vee v=x$ and $u \wedge v=y$ that hold by definition in \mathcal{A}; we need to show that they also hold in $\overline{\mathcal{L}}$. In the cases where x and y are not of the form $t(q, T)$, we now have enough information to see that the relevant equations hold already in \mathcal{L}.

Adjusted equations in \mathcal{L}

- Recall that $t(q, T ; n)=t(q) \wedge f(n) \vee k(T)$ for sufficiently large n.
- The following rules are valid in \mathcal{L} (provided that n is large enough for the terms on the left to be defined):

$$
\begin{aligned}
t(q, T ; n) \wedge t\left(q^{\prime}, T^{\prime} ; n\right) & \left.=t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime} ; n\right)\right) \\
t(q, T ; n) \vee t\left(q^{\prime}, T^{\prime} ; n\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime} ; n\right) \\
t(q, T ; n) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime} ; n\right) \\
t(q, T ; n) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime} ; n\right) .
\end{aligned}
$$

- In the quotient $\overline{\mathcal{L}}$, the class $t(q, T ; n)$ is independent of n. (Increasing n by 1 swaps a $k^{\prime}(n)$ for a $k(n)$.)

Adjusted equations in \mathcal{L}

- Recall that $t(q, T ; n)=t(q) \wedge f(n) \vee k(T)$ for sufficiently large n.
- The following rules are valid in \mathcal{L} (provided that n is large enough for the terms on the left to be defined):

$$
\begin{aligned}
t(q, T ; n) \wedge t\left(q^{\prime}, T^{\prime} ; n\right) & \left.=t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime} ; n\right)\right) \\
t(q, T ; n) \vee t\left(q^{\prime}, T^{\prime} ; n\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime} ; n\right) \\
t(q, T ; n) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime} ; n\right) \\
t(q, T ; n) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime} ; n\right) .
\end{aligned}
$$

- In the quotient $\overline{\mathcal{L}}$, the class $t(q, T ; n)$ is independent of n. (Increasing n by 1 swaps a $k^{\prime}(n)$ for a $k(n)$.)

Adjusted equations in \mathcal{L}

- Recall that $t(q, T ; n)=t(q) \wedge f(n) \vee k(T)$ for sufficiently large n.
- The following rules are valid in \mathcal{L} (provided that n is large enough for the terms on the left to be defined):

$$
\begin{aligned}
t(q, T ; n) \wedge t\left(q^{\prime}, T^{\prime} ; n\right) & \left.=t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime} ; n\right)\right) \\
t(q, T ; n) \vee t\left(q^{\prime}, T^{\prime} ; n\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime} ; n\right) \\
t(q, T ; n) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime} ; n\right) \\
t(q, T ; n) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime} ; n\right) .
\end{aligned}
$$

- In the quotient $\overline{\mathcal{L}}$, the class $t(q, T ; n)$ is independent of n. (Increasing n by 1 swaps a $k^{\prime}(n)$ for a $k(n)$.)

Adjusted equations in \mathcal{L}

- Recall that $t(q, T ; n)=t(q) \wedge f(n) \vee k(T)$ for sufficiently large n.
- The following rules are valid in \mathcal{L} (provided that n is large enough for the terms on the left to be defined):

$$
\begin{aligned}
t(q, T ; n) \wedge t\left(q^{\prime}, T^{\prime} ; n\right) & \left.=t\left(\max \left(q, q^{\prime}\right), T \cap T^{\prime} ; n\right)\right) \\
t(q, T ; n) \vee t\left(q^{\prime}, T^{\prime} ; n\right) & =t\left(\min \left(q, q^{\prime}\right), T \cup T^{\prime} ; n\right) \\
t(q, T ; n) \vee j\left(m^{\prime}, S^{\prime}\right) & =t\left(q, T \cup S^{\prime} ; n\right) \\
t(q, T ; n) \vee k\left(U^{\prime}\right) & =t\left(q, T \cup U^{\prime} ; n\right) .
\end{aligned}
$$

- In the quotient $\overline{\mathcal{L}}$, the class $t(q, T ; n)$ is independent of n. (Increasing n by 1 swaps a $k^{\prime}(n)$ for a $k(n)$.)

Popular Bousfield classes

$$
\begin{aligned}
0 & =k(\emptyset) \\
S=S_{p}^{\wedge}=T(0) & =t\left(0, \mathbb{N}_{\infty}\right) \\
S / p=S / p^{\infty} & =t(0,[1, \infty]) \\
F(n) & =t(0,[n, \infty]) \\
H \mathbb{Q}=S \mathbb{Q}=I(H \mathbb{Q}) & =k(\{0\}) \\
H / p=H / p^{\infty}=I(H)=I(H / p)=I(B P\langle n\rangle) & =k(\{\infty\}) \\
H & =k(\{0, \infty\}) \\
v_{n}^{-1} F(n)=K^{\prime}(n) & \simeq k(\{n\}) \\
T(q) & =t(q, \mathbb{N}) \\
B P=B P_{p}^{\wedge}=T(\infty) & =t(\infty, \mathbb{N}) \\
P(n)=B P / I_{n} & =t(\infty,[n, \infty]) \\
B(n)=v_{n}^{-1} P(n)=K(n)=M_{n} S & =k(\{n\}) \\
I B(n)=I K(n) & =k(\{n\})
\end{aligned}
$$

Popular Bousfield classes

$$
\begin{aligned}
E(n)=v_{n}^{-1} B P\langle n\rangle=v_{n}^{-1} B P=L_{n} S & =k([0, n]) \\
\widehat{E(n)}=L_{K(n)} S & =k([0, n]) \\
C_{n} S & \simeq t(0,[n+1, \infty]) \\
B P\langle n\rangle & =k([0, n] \cup\{\infty\}) \\
B P\langle n\rangle / I_{n} & =k(\{n, \infty\}) \\
K U=K O & =k(\{0,1\}) \\
k U=k O & =k(\{0,1, \infty\}) \\
E I I=T M F & =k(\{0,1,2\}) \\
I(S)=I(T(0))=I(F(n)) & =j(0, \emptyset) \\
I\left(S_{p}^{\wedge}\right)=I\left(S / p^{\infty}\right) & =j(0,\{0\}) \\
I(T(m))=I(T(m) \wedge F(n)) & =j(m, \emptyset)
\end{aligned}
$$

