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Outline of the talk

I Fix a prime p, and let L denote the semiring of p-local Bousfield classes.

I The literature contains many results about the structure of L. We seek a
consolidated statement that incorporates as much of this information as
possible.

I The Telescope Conjecture is a key open question about L. It is widely
expected to be false, but this remains unproven. We will work with a
quotient semiring L in which TC is true.

I We will give a complete description of a subsemiring A ≤ L which
contains almost all classes that have previously been named and studied.
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Basic definitions

I B = {p − local spectra}.
I This is a triangulated category, and in particular is additive.

I There is a binary coproduct written X ∨ Y , and more generally an indexed
coproduct written

∨
i Xi .

I There is a bilinear symmetric monoidal smash product written X ∧Y , with
unit object S .

I All this is similar to the derived category D(R) of a ring R, with ∨ like ⊕
and ∧ like ⊗.

I 〈X 〉 = {T | X ∧ T = 0} and L = {〈X 〉 | X ∈ B}.
I Theorem of Ohkawa: L is a set, not a proper class.

I There are well-defined operations 〈X 〉 ∨ 〈Y 〉 = 〈X ∨ Y 〉 and
〈X 〉 ∧ 〈Y 〉 = 〈X ∧ Y 〉. We put 0 = 〈0〉 and 1 = 〈S〉.

I We order Bousfield classes by reverse inclusion, so 〈X 〉 ≤ 〈Y 〉 means
〈X 〉 ⊇ 〈Y 〉.
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Ordered semirings

An ordered semiring is a set R with 0, 1 ∈ R and operations ∨ and ∧ such
that:

(a) ∨ is commutative and associative, with 0 as an identity element.

(b) ∧ is commutative and associative, with 1 as an identity element.

(c) ∧ distributes over ∨.

(d) For all u ∈ R we have 0 ∧ u = 0 and 1 ∨ u = 1 and u ∨ u = u.

I This gives a partial order by the rule u ≤ v iff u ∨ v = v .

I The binary operations preserve this order, and 0 and 1 are the smallest
and largest elements.

I u ∨ v is the smallest element satisfying w ≥ u and w ≥ v .

I There is no similar statement for u ∧ v in general.

I We say that R is complete if every family of elements (ui )i∈I has least
upper bound

∨
i ui .

I We say that R is completely distributive if, in addition,
x ∧

∨
i ui =

∨
i (x ∧ ui ).

I The set L is naturally a completely distributive ordered semiring.
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Lattices and Boolean algebras

Let R be an ordered semiring.

I We say that u ∈ R is idempotent if u ∧ u = u.

I We write Rlatt for the set of idempotent elements. This is a subsemiring of
L and is a distributive lattice.

I We say that u ∈ R is complemented if there is a (necessarily unique)
element ¬u with u ∨ ¬u = 1 and u ∧ ¬u = 0.

I We write Rbool for the set of complemented elements. This is a sublattice
of Rlatt and is a Boolean algebra.

I If e ∈ R is idempotent then there is a semiring R/e and a homomorphism
π : R→ R/e that is initial among homomorphisms sending e to zero.

I In fact, we can take R/e = {x ∈ R | x ≥ e} and π(x) = x ∨ e and define
operations on R/e so as to make π a homomorphism.

I L will be a colimit of quotients L/ε(n) for some idempotents ε(n) to be
described later.
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The combinatorial model

I N∞ = {0, 1, 2, 3, 4, . . . ,∞} Nω = {0, 1, 2, 3, 4, . . . , ω,∞}
I A set S ⊂ N∞ is small if S ⊆ [0, n) for some n <∞, otherwise large.

I We say that S ⊆ N∞ is cosmall if N∞ \ S is small,
or equivalently S ⊇ [n,∞] for some finite n.

I The set A has elements as follows:
I t(q,T ) for q ∈ N∞ and T ⊆ N∞ cosmall.
I j(m, S) for m ∈ Nω and S ⊂ N∞ small.
I k(U) for U ⊆ N∞ arbitrary.

I The top and bottom elements are 1 = t(0,N∞) and 0 = k(∅).

I The set P = {U | U ⊆ N∞} is an ordered semiring under ∪ and ∩.

I We define tail : A → P by tail(t(q,T )) = T and tail(j(m,S)) = S and
tail(k(U)) = U. This will be a homomorphism.
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The combinatorial model: addition

I t(q,T ) for q ∈ N∞ and T ⊆ N∞ cosmall.

I j(m, S) for m ∈ Nω and S ⊂ N∞ small.

I k(U) for U ⊆ N∞ arbitrary.

t(q,T ) ∨ t(q′,T ′) = t(min(q, q′),T ∪ T ′)

t(q,T ) ∨ j(m′, S ′) = t(q,T ∪ S ′)

t(q,T ) ∨ k(U ′) = t(q,T ∪ U ′)

j(m, S) ∨ j(m′, S ′) = j(max(m,m′), S ∪ S ′)

j(m,S) ∨ k(U ′) =

{
j(m,S ∪ U ′) if U ′ is small

k(S ∪ U ′) if U ′ is big

k(U) ∨ k(U ′) = k(U ∪ U ′).

Note that tail(a ∨ b) = tail(a) ∪ tail(b).



The combinatorial model: multiplication

I t(q,T ) for q ∈ N∞ and T ⊆ N∞ cosmall.

I j(m, S) for m ∈ Nω and S ⊂ N∞ small.

I k(U) for U ⊆ N∞ arbitrary.

t(q,T ) ∧ t(q′,T ′) = t(max(q, q′),T ∩ T ′)

t(q,T ) ∧ j(m′,S ′) =
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j(m′,T ∩ S ′) if q ≤ m′

k(T ∩ S ′) if q > m′

t(q,T ) ∧ k(U ′) = k(T ∩ U ′)

j(m, S) ∧ j(m′,S ′) = k(S ∩ S ′)

j(m, S) ∧ k(U ′) = k(S ∩ U ′)

k(U) ∧ k(U ′) = k(U ∩ U ′).

Note that tail(a ∧ b) = tail(a) ∩ tail(b).



A is a semiring

Theorem: these operations make A a completely distributive ordered semiring.

t(q, T ) ∨ t(q′, T ′) = t(min(q, q′), T ∪ T ′) t(q, T ) ∧ t(q′, T ′) = t(max(q, q′), T ∩ T ′)

t(q, T ) ∨ j(m′, S′) = t(q, T ∪ S′) t(q, T ) ∧ j(m′, S′) =

{
j(m′, T ∩ S′) if q ≤ m′

k(T ∩ S′) if q > m′
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k(S ∪ U′) if U′ is big
j(m, S) ∧ k(U′) = k(S ∩ U′)

k(U) ∨ k(U′) = k(U ∪ U′) k(U) ∧ k(U′) = k(U ∩ U′).

Outline of proof:

I It is long but straightforward to check that the operations satisfy all
axioms for an ordered semiring.

I A lemma shows that complete distributivity reduces to a statement about
least upper bounds for ideals.

I Ideals in A have a fairly simple structure. In many cases, they have a
largest element, which makes other questions trivial.
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The order on A

The order on A can be made more explicit as follows:

I We have t(q,T ) ≤ t(q′,T ′) iff T ⊆ T ′ and q ≥ q′.

I We never have t(q,T ) ≤ j(m, S) or t(q,T ) ≤ k(U).

I We have j(m, S) ≤ t(q,T ) iff S ⊆ T .

I We have j(m, S) ≤ j(m′,S ′) iff S ⊆ S ′ and m ≤ m′.

I We have j(m, S) ≤ k(U) iff S ⊆ U and U is big.

I We have k(U) ≤ t(q,T ) iff U ⊆ T .

I We have k(U) ≤ j(m, S) iff U ⊆ S .

I We have k(U) ≤ k(U ′) iff U ⊆ U ′.

I Alatt consists of all elements of the form t(q,T ) or k(U).

I Abool consists of all elements of the form k(S) or ¬k(S) = t(0,N∞ \ S)
with S small.
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I Alatt consists of all elements of the form t(q,T ) or k(U).

I Abool consists of all elements of the form k(S) or ¬k(S) = t(0,N∞ \ S)
with S small.
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The main theorem

I Theorem: There is an injective semiring homomorphism φ : A → L which
preserves all joins.

I This is defined as a composite A φ0−→ L π−→ L, but φ0 is not a
homomorphism of semirings unless TC holds.

I For each element x in A, we will define an element in L with the same
name, which will be the image of x under φ0.
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Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I K(n) = Morava K -theory (K(0) = HQ, K(∞) = H/p); k(n) = 〈K(n)〉.
I For U ⊆ N∞ we put K(U) =

∨
i∈U K(i) and k(U) = 〈K(U)〉.

I F (n) = a finite spectrum of type n, so K(i)∗F (n) = 0 iff i < n. This can
be chosen so F (n) is a self-dual ring spectrum and F (0) = S . Put
f (n) = 〈F (n)〉.

I For q ∈ N we recall that the Bott periodicity isomorphism ΩSU = BU
gives a natural virtual vector bundle over ΩSU(pq), and the associated
Thom spectrum X (pq) has a natural ring structure. The p-localisation of
this has a p-typical summand called T (q). We have T (0) = S and
T (∞) = BP. In all cases we put t(q) = 〈T (q)〉 and t(q; n) = t(q)∧ f (n).

I Suppose q ∈ N∞ and T ⊆ N∞ is cosmall.
If [n,∞] ⊆ T , we put t(q,T ; n) = t(q; n) ∨ k(T ).
Put t(q,T ) = t(q,T ; n0), where n0 is smallest such that [n0,∞] ⊆ T .

I For m ∈ N∞ we let J(m) denote the Brown-Comenetz dual of T (m), so
there is a natural isomorphism

[X , J(m)] ' Hom(π0(T (m) ∧ X ),Q/Z).

Put J(ω) =
∨

m∈N J(m), and j(m) = 〈J(m)〉 for all m ∈ Nω.
Given a small set S , put j(m,S) = j(m) ∨ k(S).



Basic Bousfield classes

I For n ∈ N we choose a good vn element wn ∈ π∗(F (n)). This means that

wn = vpdn
n in BP∗F (n) for some dn, plus some additional properties. Put

K ′(n) = F (n)[w−1
n ] and k ′(n) = 〈K ′(n)〉.

I Now fix n ∈ N. Let Ln denote the Bousfield localisation functor with
respect to the Johnson-Wilson spectrum E(n), and let CnX denote the
fibre of the natural map X → LnX . We also put A(n) = CnK

′(n) and
a(n) = 〈A(n)〉. We also put ε(n) =

∨
i<n a(i) for all n ∈ N∞.

I Proposition: the elements a(i) and ε(n) are idempotent.

I The Telescope Conjecture is equivalent to a(i) = 0 for all i , or ε(n) = 0
for all n ∈ N, or ε(∞) = 0.

I We work with L = lim
−→n
L/ε(n). One can also consider L̂ = L/ε(∞),

which is a quotient of L, but that gives weaker results.

I We have k ′(n) = k(n) ∨ a(n), so k ′(n) = k(n) in L.
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General facts about Bousfield classes

(a) If R is a ring spectrum then 〈R〉 ∧ 〈R〉 = 〈R〉. Moreover, if M is any
R-module spectrum then 〈M〉 = 〈R〉 ∧ 〈M〉 ≤ 〈R〉.

(b) Let K be a ring spectrum such that all nonzero homogeneous elements of
K∗ are invertible. Then for any X we have either K∗X = 0 and
〈K〉 ∧ 〈X 〉 = 0, or K∗X 6= 0 and 〈K〉 ∧ 〈X 〉 = 〈K〉 and 〈X 〉 ≥ 〈K〉.

(c) Let X be a spectrum, and let v : ΣdX → X be a self-map with cofibre
X/v and telescope X [v−1]. Then 〈X 〉 = 〈X/v〉 ∨ 〈X [v−1]〉.

(d) Let T and X be spectra such that the homotopy groups of X are finitely
generated over Z(p). Then T ∧ IX = 0 iff T ∧ I (X/p) = 0 iff
F (T ,X/p) = 0.

(e) Suppose again that the homotopy groups of X are finitely generated over
Z(p), and that they are not all torsion groups. Then
〈X 〉 = 〈X∧p 〉 = 〈HQ〉 ∨ 〈X/p〉.
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Some intermediate results

I The classes t(q), f (n), t(q; n) and k ′(n) are represented by ring spectra
and so are idempotent. The class k(U) is also idempotent.

I For any x , the class k(n) ∧ x is 0 or k(n), and standard arguments tell us
which possibility holds for all our x .

I From this it is easy to understand k(U) ∧ x and also k(U) ∨ x , except for
the fact that k(U) ∨ j(m,S) = k(U ∪ S) when U is big.

I We have ring maps T (0)→ T (1)→ · · · → T (∞) = BP → K(n), giving
t(0) ≥ t(1) ≥ · · · ≥ t(∞) ≥ k(n).

I However, j(0) ≤ j(1) ≤ · · · ≤ j(ω) ≤ j(∞) by applying Brown-Comenetz
duality to a T (q + 1)-based Adams resolution of T (q).

I A similar argument with generalised Adams resolutions gives
t(q) ∧ j(m) = 0 for q > m. However, if q ≤ m then J(m) is a
T (q)-module and so t(q) ∧ j(m) = j(m).

I The spectrum J(q) is bounded above with torsion homotopy groups and
so satisfies 〈J(q)〉 ≤ 〈H/p〉, or j(q) ≤ k(∞).

I There are various equations u ∨ v = x and u ∧ v = y that hold by
definition in A; we need to show that they also hold in L. In the cases
where x and y are not of the form t(q,T ), we now have enough
information to see that the relevant equations hold already in L.
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Adjusted equations in L

I Recall that t(q,T ; n) = t(q) ∧ f (n) ∨ k(T ) for sufficiently large n.

I The following rules are valid in L (provided that n is large enough for the
terms on the left to be defined):

t(q,T ; n) ∧ t(q′,T ′; n) = t(max(q, q′),T ∩ T ′; n))

t(q,T ; n) ∨ t(q′,T ′; n) = t(min(q, q′),T ∪ T ′; n)

t(q,T ; n) ∨ j(m′, S ′) = t(q,T ∪ S ′; n)

t(q,T ; n) ∨ k(U ′) = t(q,T ∪ U ′; n).

I In the quotient L, the class t(q,T ; n) is independent of n.
(Increasing n by 1 swaps a k ′(n) for a k(n).)
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Popular Bousfield classes

0 = k(∅)
S = S∧p = T (0) = t(0,N∞)

S/p = S/p∞ = t(0, [1,∞])

F (n) = t(0, [n,∞])

HQ = SQ = I (HQ) = k({0})
H/p = H/p∞ = I (H) = I (H/p) = I (BP〈n〉) = k({∞})

H = k({0,∞})

v−1
n F (n) = K ′(n) ' k({n})

T (q) = t(q,N)

BP = BP∧p = T (∞) = t(∞,N)

P(n) = BP/In = t(∞, [n,∞])

B(n) = v−1
n P(n) = K(n) = MnS = k({n})

IB(n) = IK(n) = k({n})



Popular Bousfield classes

E(n) = v−1
n BP〈n〉 = v−1

n BP = LnS = k([0, n])

Ê(n) = LK(n)S = k([0, n])

CnS ' t(0, [n + 1,∞])

BP〈n〉 = k([0, n] ∪ {∞})
BP〈n〉/In = k({n,∞})
KU = KO = k({0, 1})
kU = kO = k({0, 1,∞})

Ell = TMF = k({0, 1, 2})
I (S) = I (T (0)) = I (F (n)) = j(0, ∅)

I (S∧p ) = I (S/p∞) = j(0, {0})
I (T (m)) = I (T (m) ∧ F (n)) = j(m, ∅)


