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Other formal properties

I BG is additive, and has all (small) coproducts.

I There is a smash product, with SV ∧ SW = SV⊕W and
Σ∞+ X ∧ Σ∞+ Y = Σ∞+ (X × Y ).

I There are function spectra F (Y ,Z), with [X ,F (Y ,Z)]G = [X ∧ Y ,Z ]G .

I If V is a virtual representation then SV is dualisable with
D(SV ) = F (SV , S0) = S−V .

I If X is a finite G -set then Σ∞+ X is dualisable and self-dual.

I BG is triangulated: there is a good theory of fibrations and they are the
same as cofibrations.

I Every object can be built from the cells Sn ∧ Σ∞+ G/H, which are
dualisable.

Thus, BG is a stable homotopy category in the axiomatic sense. It is thus
similar to:

I The derived category D(R) of modules over a commutative ring R

I The derived category D(X ) of quasicoherent sheaves over a scheme X

I The stable category of modules over Fp[G ]
([M, N] = {G -homs }/{ those that factor through a projective module })

I The nonequivariant stable category B.
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I The derived category D(X ) of quasicoherent sheaves over a scheme X

I The stable category of modules over Fp[G ]
([M, N] = {G -homs }/{ those that factor through a projective module })

I The nonequivariant stable category B.
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Geometry

I One can recover the geometry of a Noetherian scheme X by classifying
certain types of subcategories of the derived category D(X ).

I If we perform the same classification for the stable category of
Fp[G ]-modules, we recover information about the conjugacy classes of
elementary abelian p-subgroups of G .

I If we try to perform the same classification for the category of
nonequivariant spectra, we are led to the lattice of Bousfield classes.

I The Bousfield lattice is related by complex cobordism and Morava
K -theory to the (well-understood) geometry of the moduli stack of formal
groups. This is the “chromatic picture”.

I If I is a nilpotent ideal in a ring R, then spec(R) = spec(R/I ) as spaces.
I The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly

that stable homotopy elements are nilpotent if and only if they appear so
to complex cobordism; so the chromatic approximation is very good.

I Problem: develop a chromatic approximation to BG . This should mix the
nonequivariant chromatic theory with the subgroup structure of G .

I When G is abelian we have a partial understanding of a stack of
G -equivariant formal groups, which we can attempt to relate to BG .

I When G is not abelian we have no definition of G -equivariant formal
groups, and evidence that there cannot be one. Nevertheless, there is a
good chromatic theory.
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Ideals in the Burnside ring

A(G) = AG (1, 1) = Grothendieck group of finite G -sets ' [S0,S0]G

This is a ring with [X ] + [Y ] = [X q Y ] and [X ][Y ] = [X × Y ].

Ideals in A(G) control part of the geometry of BG .

Put B(G) = MapG (Sub(G),Z) =
∏

sub(G) Z.

(Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy
classes of subgroups.)

Define φ : A(G)→ B(G) by φ[X ](H) = |X H |.

Define ρ : B(G)→ B(G)⊗Q by ρ(u)(H) = |NG H|−1 ∑
g∈NG H u(H.〈g〉).

Then φ : A(G) ' ρ−1(B(G)) ≤ B(G), which has finite index in B(G).

Ideals in B(G) are easy to understand. In particular we have
spec(B(G)) ' sub(G)× spec(Z).

It turns out (by a theorem of Dress) that spec(A(G)) is the quotient of this
where (H, p) is identified with (K , p) whenever Op(H) is conjugate to Op(K).
Here Op(H) is the smallest normal subgroup of H of p-power index.
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Above every prime not dividing |G | there is a maximal ideal in A(G) for each
conjugacy class of subgroups.
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subgroups.



The case of A5

D10
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2

A4

A5

There is one minimal prime ideal for each conjugacy class of subgroups. All
prime ideals are maximal or minimal, so the Krull dimension is one.



The nonequivariant chromatic picture
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2 3 5 7 11

I (5,1) I (5,2)

I The stack of formal groups has one minimal prime I (0), lying over
0 ∈ spec(Z).

(All formal groups over Q-algebras are additive.)

I There is one maximal prime I (p,∞) lying over each prime number p.

I Between I (0) and I (p,∞) there is an infinite chain of primes
(p) = I (p, 1) < I (p, 2) < · · · < I (p,∞).

That’s it.
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Prime ideals of spectra

I A prime ideal of finite spectra is a subcategory P such that
I If two terms of a cofibre sequence lie in P, then so does the third.
I If X ∨ Y ∈ P, then X , Y ∈ P.
I If X , Y 6∈ P then X ∧ Y 6∈ P.

I For each (p, n) there is a generalised homology theory K(p, n)∗(X ) defined
for spectra X ∈ B.

These are called Morava K -theories.
We put K(0)∗(X ) = H∗(X ; Q) and K(p,∞)∗(X ) = H∗(X ; Fp).

I We have K(p, n)∗(S0) = Fp[vn, v
−1
n ] with |vn| = 2pn − 2.

I If H∗(X ) is torsion-free then K(p, n)∗(X ) ∼ H∗(X ; Fp)[v±1
n ].

I This covers many popular spaces: U(n), BU(n), ΩU(n), Grassmannians,
projective spaces, toric varieties, . . . .

I Morava K -theory can also be computed effectively for many spaces with
torsion: a basic case is that K(p, n)∗(BZ/p) = Fp[v±1

n , x ]/(xpn

).

I The Nilpotence Theorem: If f : X → Y has K(p, n)∗(f ) = 0 for all (p, n)
then the r -fold smash power f (r) : X (r) → Y (r) is null for large r .

I Put I(p, n) = { finite spectra X | K(p, n)∗(X ) = 0}.

These are the
“prime ideals” in the category of finite spectra. They form a partially
ordered set antiisomorphic to that of the primes in the formal group
moduli stack.
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An initial equivariant conjecture

I (Σ3,0)

I (C3,0)

I (1,0)

I (C2,0)

2 3 5 7 11

Simply replace each maximal ideal in A(G) by an infinite tower of ideals.

We
can define I (H, p, n) and K(H, p, n) and I(H, p, n) for all H, p and n. The
above picture would be correct if these depended only on Op(H).
There is a strong relationship between I (H, p, n) and I (Op(H), p, n), but it is
not equality.
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What we can prove

I We can define equivariant spectra K(H, p, n) representing the theories
X 7→ K(p, n)∗(φHX ).

I In the abelian case, these relate nicely to the classification of equivariant
formal groups over algebraically closed fields.

I We will be sloppy here about the cases n = 0,∞ and the distinction
between subgroups and conjugacy classes of subgroups.

I Each Morava K -theory defines a prime ideal of finite G -spectra,
I(H, p, n) = {X | K(H, p, n)∗X = 0}.

I If C is a thick ideal of equivariant spectra then C is determined by the set
V (C) = {(H, p, n) | C ⊆ I(H, p, n)}.

I To go further we must understand all inclusions between the categories
I(H, p, n).
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Other avenues

I We have focussed on prime ideals of finite G -spectra but there are a
number of related problems that are also important.

I For example, one can hope to classify localising ideals of (possibly infinite)
G -spectra, smashing localisations, Bousfield classes and so on.

I Our methods also give results in these directions.

I The Segal Conjecture (proved by Carlsson) identifies the completions of
finite G -spectra with respect to different ideals of finite G -spectra.

We
hope to classify all such completions: they should depend only on the
Burnside ring. We also hope to illuminate the proof.
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