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Bg is additive, and has all (small) coproducts.

There is a smash product, with ¥ A SV = §V®W and

YPXALTY =X (X xY).

There are function spectra F(Y, Z), with [X, F(Y,Z)]° =[X A Y, Z]°.
If V is a virtual representation then S" is dualisable with

D(SY) = F(S",8%) =5s"".

If X is a finite G-set then X2°X is dualisable and self-dual.

Bg is triangulated: there is a good theory of fibrations and they are the
same as cofibrations.

Every object can be built from the cells S” A X°G/H, which are
dualisable.

Thus, Bg is a stable homotopy category in the axiomatic sense. It is thus
similar to:
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The derived category D(R) of modules over a commutative ring R
The derived category D(X) of quasicoherent sheaves over a scheme X

The stable category of modules over F,[G]
([M, N] = {G-homs }/{ those that factor through a projective module })

The nonequivariant stable category B.
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One can recover the geometry of a Noetherian scheme X by classifying
certain types of subcategories of the derived category D(X).

If we perform the same classification for the stable category of
Fy[G]-modules, we recover information about the conjugacy classes of
elementary abelian p-subgroups of G.

If we try to perform the same classification for the category of
nonequivariant spectra, we are led to the lattice of Bousfield classes.

The Bousfield lattice is related by complex cobordism and Morava
K-theory to the (well-understood) geometry of the moduli stack of formal
groups. This is the “chromatic picture”.

If I is a nilpotent ideal in a ring R, then spec(R) = spec(R/!) as spaces.
The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly
that stable homotopy elements are nilpotent if and only if they appear so
to complex cobordism; so the chromatic approximation is very good.
Problem: develop a chromatic approximation to B¢. This should mix the
nonequivariant chromatic theory with the subgroup structure of G.
When G is abelian we have a partial understanding of a stack of
G-equivariant formal groups, which we can attempt to relate to Bg.
When G is not abelian we have no definition of G-equivariant formal
groups, and evidence that there cannot be one. Nevertheless, there is a
good chromatic theory.
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Put B(G) = Mapg(Sub(G), Z) = [ [ () Z-
(Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy
classes of subgroups.)

Define ¢: A(G) — B(G) by #[X](H) = |X"|.
Define p: B(G) — B(G) ® Q by p(u)(H) = [N6H| ™ 3 e, n u(H-(g))-
Then ¢: A(G) ~ p~(B(G)) < B(G), which has finite index in B(G).

Ideals in B(G) are easy to understand. In particular we have
spec(B(G)) ~ sub(G) x spec(Z).

It turns out (by a theorem of Dress) that spec(A(G)) is the quotient of this
where (H, p) is identified with (K, p) whenever OP(H) is conjugate to OP(K).
Here OP(H) is the smallest normal subgroup of H of p-power index.
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Above the prime 5 there is a maximal ideal in A(G) for each conjugacy class of
5-perfect subgroups.
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There is one connected component for each conjugacy class of perfect
subgroups.
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There is one minimal prime ideal for each conjugacy class of subgroups. All
prime ideals are maximal or minimal, so the Krull dimension is one.
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» The stack of formal groups has one minimal prime /(0), lying over
0 € spec(Z). (All formal groups over Q-algebras are additive.)

» There is one maximal prime /(p, co0) lying over each prime number p.

> Between /(0) and /(p, c0) there is an infinite chain of primes
(p) =1(p,1) < I(p,2) <--- < I(p,00). That's it.
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> A prime ideal of finite spectra is a subcategory P such that
> If two terms of a cofibre sequence lie in P, then so does the third.
» IfXVY €eP, then X,Y € P.
> IfX,Y P then XAY & P.

» For each (p, n) there is a generalised homology theory K(p, n).(X) defined
for spectra X € B. These are called Morava K-theories.

We put K(0)«(X) = H.(X; Q) and K(p, 00)«(X) = Hi(X; Fp).

> We have K(p, n).(S%) = Fp[vs, v; '] with |v,| = 2p" — 2.

> If H.(X) is torsion-free then K(p, n).(X) ~ Hy(X;Fp)[vii'].

» This covers many popular spaces: U(n), BU(n), QU(n), Grassmannians,
projective spaces, toric varieties, . ...

> Morava K-theory can also be computed effectively for many spaces with
torsion: a basic case is that K(p, n)*(BZ/p) = F,[vil, x]/(x"").

> The Nilpotence Theorem: If f: X — Y has K(p, n).(f) = 0 for all (p, n)
then the r-fold smash power f(7: X0 — Y() is null for large r.

» Put Z(p, n) = { finite spectra X | K(p, n)«(X) = 0}. These are the
“prime ideals” in the category of finite spectra. They form a partially
ordered set antiisomorphic to that of the primes in the formal group
moduli stack.
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Simply replace each maximal ideal in A(G) by an infinite tower of ideals. We
can define I(H, p, n) and K(H, p, n) and Z(H, p, n) for all H, p and n. The
above picture would be correct if these depended only on OP(H).

There is a strong relationship between /(H, p, n) and I(OP(H), p, n), but it is
not equality.
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generalised Tate cohomology. It is easy to see that

I(H,p,n—1) # I(H',p,n). There is some reason to hope that
I(H,p,n+1) <Z(H',p,n) or even Z(H,p,n+ 1) < Z(H', p, n).

> It may well be enough to settle this when |G| = p.

» In that case we have a complete description of MUS, and an
almost-complete comparison with the theory of equivariant formal groups.

> Recently we have considered a new method in equivariant formal group
theory that may close the gap.
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number of related problems that are also important.

> For example, one can hope to classify localising ideals of (possibly infinite)
G-spectra, smashing localisations, Bousfield classes and so on.

> Our methods also give results in these directions.

» The Segal Conjecture (proved by Carlsson) identifies the completions of
finite G-spectra with respect to different ideals of finite G-spectra. We

hope to classify all such completions: they should depend only on the
Burnside ring. We also hope to illuminate the proof.



