Chromatic methods in equivariant stable homotopy

Neil Strickland

23 February 2009

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

 \mathcal{B}_{G} G-spectra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

$$\mathcal{B}_{G}(\Sigma^{\infty}X,\Sigma^{\infty}Y) = [\Sigma^{\infty}X,\Sigma^{\infty}Y]^{G} = [S^{n\mathbb{R}[G]} \wedge X, S^{n\mathbb{R}[G]} \wedge Y]$$
for X, Y finite G-CW complexes and n large.

 $\mathcal{B}_{G}(\Sigma^{\infty}X, \Sigma^{\infty}Y) = [\Sigma^{\infty}X, \Sigma^{\infty}Y]^{G} = [S^{n\mathbb{R}[G]} \wedge X, S^{n\mathbb{R}[G]} \wedge Y]$ for X, Y finite G-CW complexes and n large.

Objects of \mathcal{A}_G are finite *G*-sets $\mathcal{A}_G(X, Y) =$ Grothendieck group of finite *G*-sets over $X \times Y$ $= \mathbb{Z}\{$ iso classes of orbits over $X \times X\}$

Objects of \mathcal{A}_G are finite *G*-sets $\mathcal{A}_G(X, Y) =$ Grothendieck group of finite *G*-sets over $X \times Y$ $= \mathbb{Z}\{$ iso classes of orbits over $X \times X\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\phi^{G}\epsilon^{*}X = X \qquad \phi^{G}(X \wedge Y) = \phi^{G}(X) \wedge \phi^{G}(Y) \qquad \phi^{G}\Sigma^{\infty}X = \Sigma^{\infty}X^{G}$$
$$[\epsilon^{*}X, Y]^{G} = [X, \lambda^{G}Y]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\phi^{G} \epsilon^{*} X = X \qquad \phi^{G} (X \wedge Y) = \phi^{G} (X) \wedge \phi^{G} (Y)$ $[\epsilon^{*} X, Y]^{G} = [X, \lambda^{G} Y]$

$$\phi^G \Sigma^\infty X = \Sigma^\infty X^G$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲□▶

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

 $\Phi(X)(G/H) = \operatorname{Map}_{G}(G/H, X) = X^{H}$

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

 $H^G_*(\Sigma^\infty X) = \widetilde{H}_*(X/G)$

 $KU^0_G(\Sigma^{\infty}_+X) =$ Grothendieck group of equivariant vector bundles over X $KU^0_G(\Sigma^{\infty}_+G/H) =$ representation ring of H

Let G be a finite group, and let \mathcal{B}_G be the homotopy category of G-spectra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• \mathcal{B}_G is additive, and has all (small) coproducts.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^{V} \wedge S^{W} = S^{V \oplus W}$ and $\Sigma^{\infty}_{+} X \wedge \Sigma^{\infty}_{+} Y = \Sigma^{\infty}_{+} (X \times Y).$

- \mathcal{B}_G is additive, and has all (small) coproducts.
- There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.

• If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.

- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then $\Sigma^{\infty}_{+}X$ is dualisable and self-dual.
- ▶ B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- ▶ B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.

• Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.

• Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

Thus, \mathcal{B}_G is a stable homotopy category in the axiomatic sense.

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- ▶ There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- ▶ If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.
- Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

Thus, \mathcal{B}_G is a stable homotopy category in the axiomatic sense. It is thus similar to:

• The derived category D(R) of modules over a commutative ring R

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- ▶ There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.
- Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

Thus, \mathcal{B}_G is a stable homotopy category in the axiomatic sense. It is thus similar to:

- The derived category D(R) of modules over a commutative ring R
- The derived category D(X) of quasicoherent sheaves over a scheme X

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- ▶ B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.
- Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

Thus, \mathcal{B}_G is a stable homotopy category in the axiomatic sense. It is thus similar to:

- The derived category D(R) of modules over a commutative ring R
- The derived category D(X) of quasicoherent sheaves over a scheme X
- The stable category of modules over F_p[G]
 ([M, N] = {G-homs }/{ those that factor through a projective module })

- \mathcal{B}_G is additive, and has all (small) coproducts.
- ► There is a smash product, with $S^V \wedge S^W = S^{V \oplus W}$ and $\Sigma^{\infty}_+ X \wedge \Sigma^{\infty}_+ Y = \Sigma^{\infty}_+ (X \times Y)$.
- There are function spectra F(Y, Z), with $[X, F(Y, Z)]^G = [X \land Y, Z]^G$.
- If V is a virtual representation then S^V is dualisable with $D(S^V) = F(S^V, S^0) = S^{-V}$.
- If X is a finite G-set then Σ[∞]₊X is dualisable and self-dual.
- ▶ B_G is triangulated: there is a good theory of fibrations and they are the same as cofibrations.
- Every object can be built from the cells $S^n \wedge \Sigma^{\infty}_+ G/H$, which are dualisable.

Thus, \mathcal{B}_G is a stable homotopy category in the axiomatic sense. It is thus similar to:

- The derived category D(R) of modules over a commutative ring R
- The derived category D(X) of quasicoherent sheaves over a scheme X

- ► The stable category of modules over 𝔽_p[G] ([M, N] = {G-homs }/{ those that factor through a projective module })
- The nonequivariant stable category B.

One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Geometry

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝑘_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.

・ロト・日本・モート モー うへで

Geometry

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝑘_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.

Geometry

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝔽_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝔽_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- If I is a nilpotent ideal in a ring R, then $\operatorname{spec}(R) = \operatorname{spec}(R/I)$ as spaces.

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝔽_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- If I is a nilpotent ideal in a ring R, then $\operatorname{spec}(R) = \operatorname{spec}(R/I)$ as spaces.
- The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly that stable homotopy elements are nilpotent if and only if they appear so to complex cobordism; so the chromatic approximation is very good.

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝑘_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- If I is a nilpotent ideal in a ring R, then $\operatorname{spec}(R) = \operatorname{spec}(R/I)$ as spaces.
- The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly that stable homotopy elements are nilpotent if and only if they appear so to complex cobordism; so the chromatic approximation is very good.
- Problem: develop a chromatic approximation to \mathcal{B}_G . This should mix the nonequivariant chromatic theory with the subgroup structure of G.

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝑘_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- If I is a nilpotent ideal in a ring R, then $\operatorname{spec}(R) = \operatorname{spec}(R/I)$ as spaces.
- The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly that stable homotopy elements are nilpotent if and only if they appear so to complex cobordism; so the chromatic approximation is very good.
- Problem: develop a chromatic approximation to B_G. This should mix the nonequivariant chromatic theory with the subgroup structure of G.
- When G is abelian we have a partial understanding of a stack of G-equivariant formal groups, which we can attempt to relate to B_G.

- One can recover the geometry of a Noetherian scheme X by classifying certain types of subcategories of the derived category D(X).
- If we perform the same classification for the stable category of 𝑘_p[G]-modules, we recover information about the conjugacy classes of elementary abelian *p*-subgroups of G.
- If we try to perform the same classification for the category of nonequivariant spectra, we are led to the lattice of Bousfield classes.
- The Bousfield lattice is related by complex cobordism and Morava K-theory to the (well-understood) geometry of the moduli stack of formal groups. This is the "chromatic picture".
- If I is a nilpotent ideal in a ring R, then $\operatorname{spec}(R) = \operatorname{spec}(R/I)$ as spaces.
- The Nilpotence Theorem of Hopkins, Devinatz and Smith states roughly that stable homotopy elements are nilpotent if and only if they appear so to complex cobordism; so the chromatic approximation is very good.
- Problem: develop a chromatic approximation to B_G. This should mix the nonequivariant chromatic theory with the subgroup structure of G.
- ▶ When G is abelian we have a partial understanding of a stack of G-equivariant formal groups, which we can attempt to relate to B_G.
- When G is not abelian we have no definition of G-equivariant formal groups, and evidence that there cannot be one. Nevertheless, there is a good chromatic theory.

 $A(G) = \mathcal{A}_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

 $A(G) = \mathcal{A}_G(1,1) = \text{ Grothendieck group of finite } G\text{-sets } \simeq [S^0,S^0]^G$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

 $A(G) = \mathcal{A}_G(1, 1) = \text{ Grothendieck group of finite } G\text{-sets } \simeq [S^0, S^0]^G$ This is a ring with $[X] + [Y] = [X \amalg Y] \text{ and } [X][Y] = [X \times Y].$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

 $A(G) = \mathcal{A}_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_G(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

 $A(G) = \mathcal{A}_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_{G}(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

Define $\phi: A(G) \to B(G)$ by $\phi[X](H) = |X^H|$.

 $A(G) = A_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_G(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

Define $\phi: A(G) \to B(G)$ by $\phi[X](H) = |X^H|$.

Define $\rho \colon B(G) \to B(G) \otimes \mathbb{Q}$ by $\rho(u)(H) = |N_G H|^{-1} \sum_{g \in N_G H} u(H \cdot \langle g \rangle).$

 $A(G) = A_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_G(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

Define $\phi: A(G) \to B(G)$ by $\phi[X](H) = |X^H|$.

Define $\rho \colon B(G) \to B(G) \otimes \mathbb{Q}$ by $\rho(u)(H) = |N_G H|^{-1} \sum_{g \in N_G H} u(H \cdot \langle g \rangle).$

Then $\phi: A(G) \simeq \rho^{-1}(B(G)) \leq B(G)$, which has finite index in B(G).

 $A(G) = A_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_G(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

Define $\phi: A(G) \to B(G)$ by $\phi[X](H) = |X^H|$.

Define $\rho: B(G) \to B(G) \otimes \mathbb{Q}$ by $\rho(u)(H) = |N_G H|^{-1} \sum_{g \in N_G H} u(H, \langle g \rangle).$

Then $\phi: A(G) \simeq \rho^{-1}(B(G)) \leq B(G)$, which has finite index in B(G).

Ideals in B(G) are easy to understand. In particular we have $spec(B(G)) \simeq sub(G) \times spec(\mathbb{Z})$.

 $A(G) = A_G(1,1) =$ Grothendieck group of finite G-sets $\simeq [S^0, S^0]^G$

This is a ring with $[X] + [Y] = [X \amalg Y]$ and $[X][Y] = [X \times Y]$.

Ideals in A(G) control part of the geometry of \mathcal{B}_G .

Put $B(G) = \text{Map}_{G}(\text{Sub}(G), \mathbb{Z}) = \prod_{\text{sub}(G)} \mathbb{Z}$. (Here Sub(G) is the set of subgroups, and sub(G) is the set of conjugacy classes of subgroups.)

Define $\phi \colon A(G) \to B(G)$ by $\phi[X](H) = |X^H|$.

Define $\rho \colon B(G) \to B(G) \otimes \mathbb{Q}$ by $\rho(u)(H) = |N_G H|^{-1} \sum_{g \in N_G H} u(H \cdot \langle g \rangle).$

Then $\phi: A(G) \simeq \rho^{-1}(B(G)) \le B(G)$, which has finite index in B(G).

Ideals in B(G) are easy to understand. In particular we have $spec(B(G)) \simeq sub(G) \times spec(\mathbb{Z})$.

It turns out (by a theorem of Dress) that spec(A(G)) is the quotient of this where (H, p) is identified with (K, p) whenever $\mathcal{O}^{p}(H)$ is conjugate to $\mathcal{O}^{p}(K)$. Here $\mathcal{O}^{p}(H)$ is the smallest normal subgroup of H of p-power index.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Above every prime not dividing |G| there is a maximal ideal in A(G) for each conjugacy class of subgroups.

Above the prime 2 there is a maximal ideal in A(G) for each conjugacy class of 2-perfect subgroups.

Above the prime 3 there is a maximal ideal in A(G) for each conjugacy class of 3-perfect subgroups.

Above the prime 5 there is a maximal ideal in A(G) for each conjugacy class of 5-perfect subgroups.

There is one connected component for each conjugacy class of perfect subgroups.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

There is one minimal prime ideal for each conjugacy class of subgroups. All prime ideals are maximal or minimal, so the Krull dimension is one.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ The stack of formal groups has one minimal prime I(0), lying over $0 \in \text{spec}(\mathbb{Z})$.

The nonequivariant chromatic picture

- ▶ The stack of formal groups has one minimal prime I(0), lying over $0 \in \operatorname{spec}(\mathbb{Z})$. (All formal groups over \mathbb{Q} -algebras are additive.)
- There is one maximal prime $I(p, \infty)$ lying over each prime number p.

The nonequivariant chromatic picture

- ▶ The stack of formal groups has one minimal prime I(0), lying over $0 \in \operatorname{spec}(\mathbb{Z})$. (All formal groups over \mathbb{Q} -algebras are additive.)
- There is one maximal prime $I(p, \infty)$ lying over each prime number p.

Between *I*(0) and *I*(*p*,∞) there is an infinite chain of primes (*p*) = *I*(*p*, 1) < *I*(*p*, 2) < · · · < *I*(*p*,∞).

The nonequivariant chromatic picture

- ▶ The stack of formal groups has one minimal prime I(0), lying over $0 \in \operatorname{spec}(\mathbb{Z})$. (All formal groups over \mathbb{Q} -algebras are additive.)
- There is one maximal prime $I(p, \infty)$ lying over each prime number p.

Between *I*(0) and *I*(*p*,∞) there is an infinite chain of primes (*p*) = *I*(*p*,1) < *I*(*p*,2) < · · · < *I*(*p*,∞). That's it.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in \mathcal{P} , then so does the third.

- If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
- If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.

- \blacktriangleright A prime ideal of finite spectra is a subcategory ${\cal P}$ such that
 - ▶ If two terms of a cofibre sequence lie in *P*, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \land Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_∗(X) defined for spectra X ∈ B.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_∗(X) defined for spectra X ∈ B. These are called Morava K-theories.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories. We put K(0)_{*}(X) = H_{*}(X; 𝔅) and K(p, ∞)_{*}(X) = H_{*}(X; 𝔅_n).

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p,∞)_{*}(X) = H_{*}(X; F_p).

• We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n - 2$.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p,∞)_{*}(X) = H_{*}(X; F_p).

- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p,∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- ► This covers many popular spaces: U(n), BU(n), $\Omega U(n)$, Grassmannians, projective spaces, toric varieties,

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p,∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- This covers many popular spaces: U(n), BU(n), ΩU(n), Grassmannians, projective spaces, toric varieties,
- Morava K-theory can also be computed effectively for many spaces with torsion: a basic case is that K(p, n)^{*}(BZ/p) = 𝔽_ρ[v_n^{±1}, x]/(x^{pⁿ}).
- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p,∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- This covers many popular spaces: U(n), BU(n), ΩU(n), Grassmannians, projective spaces, toric varieties,
- Morava K-theory can also be computed effectively for many spaces with torsion: a basic case is that K(p, n)*(BZ/p) = 𝔽_p[v_n^{±1}, x]/(x^{pⁿ}).
- ▶ The Nilpotence Theorem: If $f: X \to Y$ has $K(p, n)_*(f) = 0$ for all (p, n) then the *r*-fold smash power $f^{(r)}: X^{(r)} \to Y^{(r)}$ is null for large *r*.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p, ∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- This covers many popular spaces: U(n), BU(n), ΩU(n), Grassmannians, projective spaces, toric varieties,
- Morava K-theory can also be computed effectively for many spaces with torsion: a basic case is that K(p, n)*(BZ/p) = 𝔽_p[v_n^{±1}, x]/(x^{pⁿ}).
- ▶ The Nilpotence Theorem: If $f: X \to Y$ has $K(p, n)_*(f) = 0$ for all (p, n) then the *r*-fold smash power $f^{(r)}: X^{(r)} \to Y^{(r)}$ is null for large *r*.

• Put $\mathcal{I}(p, n) = \{ \text{ finite spectra } X \mid K(p, n)_*(X) = 0 \}.$

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p, ∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- This covers many popular spaces: U(n), BU(n), ΩU(n), Grassmannians, projective spaces, toric varieties,
- Morava K-theory can also be computed effectively for many spaces with torsion: a basic case is that K(p, n)*(BZ/p) = 𝔽_p[v_n^{±1}, x]/(x^{pⁿ}).
- ▶ The Nilpotence Theorem: If $f: X \to Y$ has $K(p, n)_*(f) = 0$ for all (p, n) then the *r*-fold smash power $f^{(r)}: X^{(r)} \to Y^{(r)}$ is null for large *r*.

Put I(p, n) = { finite spectra X | K(p, n)_∗(X) = 0}. These are the "prime ideals" in the category of finite spectra.

- A prime ideal of finite spectra is a subcategory \mathcal{P} such that
 - If two terms of a cofibre sequence lie in P, then so does the third.
 - If $X \lor Y \in \mathcal{P}$, then $X, Y \in \mathcal{P}$.
 - If $X, Y \notin \mathcal{P}$ then $X \wedge Y \notin \mathcal{P}$.
- For each (p, n) there is a generalised homology theory K(p, n)_{*}(X) defined for spectra X ∈ B. These are called Morava K-theories.
 We put K(0)_{*}(X) = H_{*}(X; Q) and K(p, ∞)_{*}(X) = H_{*}(X; F_p).
- We have $K(p, n)_*(S^0) = \mathbb{F}_p[v_n, v_n^{-1}]$ with $|v_n| = 2p^n 2$.
- If $H_*(X)$ is torsion-free then $K(p, n)_*(X) \sim H_*(X; \mathbb{F}_p)[v_n^{\pm 1}]$.
- ► This covers many popular spaces: U(n), BU(n), $\Omega U(n)$, Grassmannians, projective spaces, toric varieties,
- Morava K-theory can also be computed effectively for many spaces with torsion: a basic case is that K(p, n)*(BZ/p) = 𝔽_p[v_n^{±1}, x]/(x^{pⁿ}).
- The Nilpotence Theorem: If f: X → Y has K(p, n)_{*}(f) = 0 for all (p, n) then the r-fold smash power f^(r): X^(r) → Y^(r) is null for large r.
- Put I(p, n) = { finite spectra X | K(p, n)_{*}(X) = 0}. These are the "prime ideals" in the category of finite spectra. They form a partially ordered set antiisomorphic to that of the primes in the formal group moduli stack.

An initial equivariant conjecture

Simply replace each maximal ideal in A(G) by an infinite tower of ideals.

・ロト ・回ト ・ヨト ・ヨト

An initial equivariant conjecture

Simply replace each maximal ideal in A(G) by an infinite tower of ideals. We can define I(H, p, n) and K(H, p, n) and $\mathcal{I}(H, p, n)$ for all H, p and n. The above picture would be correct if these depended only on $\mathcal{O}^{p}(H)$.

An initial equivariant conjecture

Simply replace each maximal ideal in A(G) by an infinite tower of ideals. We can define I(H, p, n) and K(H, p, n) and $\mathcal{I}(H, p, n)$ for all H, p and n. The above picture would be correct if these depended only on $\mathcal{O}^{p}(H)$. There is a strong relationship between I(H, p, n) and $I(\mathcal{O}^{p}(H), p, n)$, but it is not equality.

• We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

- We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.
- In the abelian case, these relate nicely to the classification of equivariant formal groups over algebraically closed fields.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.
- In the abelian case, these relate nicely to the classification of equivariant formal groups over algebraically closed fields.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ We will be sloppy here about the cases $n = 0, \infty$ and the distinction between subgroups and conjugacy classes of subgroups.

- We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.
- In the abelian case, these relate nicely to the classification of equivariant formal groups over algebraically closed fields.

- ▶ We will be sloppy here about the cases n = 0, ∞ and the distinction between subgroups and conjugacy classes of subgroups.
- Each Morava K-theory defines a prime ideal of finite G-spectra, $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_* X = 0\}.$

- We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.
- In the abelian case, these relate nicely to the classification of equivariant formal groups over algebraically closed fields.
- We will be sloppy here about the cases $n = 0, \infty$ and the distinction between subgroups and conjugacy classes of subgroups.
- Each Morava K-theory defines a prime ideal of finite G-spectra, $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_* X = 0\}.$
- If C is a thick ideal of equivariant spectra then C is determined by the set $V(C) = \{(H, p, n) \mid C \subseteq \mathcal{I}(H, p, n)\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can define equivariant spectra K(H, p, n) representing the theories $X \mapsto K(p, n)^*(\phi^H X)$.
- In the abelian case, these relate nicely to the classification of equivariant formal groups over algebraically closed fields.
- ▶ We will be sloppy here about the cases n = 0, ∞ and the distinction between subgroups and conjugacy classes of subgroups.
- Each Morava K-theory defines a prime ideal of finite G-spectra, $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_* X = 0\}.$
- ▶ If C is a thick ideal of equivariant spectra then C is determined by the set $V(C) = \{(H, p, n) | C \subseteq I(H, p, n)\}.$
- To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n)$.

• To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$.

- To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

$$\mathcal{I}(H,p,n+r) \rightarrowtail \mathcal{I}(H,p,n+1) \rightarrowtail \mathcal{I}(H,p,n) \rightarrow \mathcal{I}(H,p,n-1)$$

$\mathcal{I}(H',p,n)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We can show that $\mathcal{I}(H, p, n + r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology.

- ► To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We can show that $\mathcal{I}(H, p, n + r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$.

- ► To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

We can show that $\mathcal{I}(H, p, n + r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$. There is some reason to hope that $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$

- ► To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

We can show that $\mathcal{I}(H, p, n+r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$. There is some reason to hope that $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$ or even $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$.

- ► To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

We can show that $\mathcal{I}(H, p, n+r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$. There is some reason to hope that $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$ or even $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$.

• It may well be enough to settle this when |G| = p.

- To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

We can show that $\mathcal{I}(H, p, n+r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$. There is some reason to hope that $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$ or even $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$.

- It may well be enough to settle this when |G| = p.
- In that case we have a complete description of MU^G_{*}, and an almost-complete comparison with the theory of equivariant formal groups.

- To go further we must understand all inclusions between the categories $\mathcal{I}(H, p, n) = \{X \mid K(H, p, n)_*(X) = 0\}.$
- ▶ We can only have $\mathcal{I}(H, p, n) \leq \mathcal{I}(H', p', n')$ if p = p' and $H \leq H'$ and $\mathcal{O}^{p}(H) = \mathcal{O}^{p}(H')$. In this case |H'/H| = p' say and

We can show that $\mathcal{I}(H, p, n+r)$ is contained in $\mathcal{I}(H', p, n)$ using generalised Tate cohomology. It is easy to see that $\mathcal{I}(H, p, n-1) \neq \mathcal{I}(H', p, n)$. There is some reason to hope that $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$ or even $\mathcal{I}(H, p, n+1) \leq \mathcal{I}(H', p, n)$.

- It may well be enough to settle this when |G| = p.
- In that case we have a complete description of MU^G_{*}, and an almost-complete comparison with the theory of equivariant formal groups.
- Recently we have considered a new method in equivariant formal group theory that may close the gap.

We have focussed on prime ideals of finite G-spectra but there are a number of related problems that are also important.

- We have focussed on prime ideals of finite *G*-spectra but there are a number of related problems that are also important.
- For example, one can hope to classify localising ideals of (possibly infinite)
 G-spectra, smashing localisations, Bousfield classes and so on.

- We have focussed on prime ideals of finite *G*-spectra but there are a number of related problems that are also important.
- ► For example, one can hope to classify localising ideals of (possibly infinite) *G*-spectra, smashing localisations, Bousfield classes and so on.

Our methods also give results in these directions.

- We have focussed on prime ideals of finite *G*-spectra but there are a number of related problems that are also important.
- ▶ For example, one can hope to classify localising ideals of (possibly infinite) *G*-spectra, smashing localisations, Bousfield classes and so on.
- Our methods also give results in these directions.
- ▶ The Segal Conjecture (proved by Carlsson) identifies the completions of finite *G*-spectra with respect to different ideals of finite *G*-spectra.

- We have focussed on prime ideals of finite *G*-spectra but there are a number of related problems that are also important.
- ▶ For example, one can hope to classify localising ideals of (possibly infinite) *G*-spectra, smashing localisations, Bousfield classes and so on.
- Our methods also give results in these directions.
- The Segal Conjecture (proved by Carlsson) identifies the completions of finite G-spectra with respect to different ideals of finite G-spectra. We hope to classify all such completions: they should depend only on the Burnside ring.

- We have focussed on prime ideals of finite *G*-spectra but there are a number of related problems that are also important.
- ▶ For example, one can hope to classify localising ideals of (possibly infinite) *G*-spectra, smashing localisations, Bousfield classes and so on.
- Our methods also give results in these directions.
- The Segal Conjecture (proved by Carlsson) identifies the completions of finite G-spectra with respect to different ideals of finite G-spectra. We hope to classify all such completions: they should depend only on the Burnside ring. We also hope to illuminate the proof.