Introduction to chromatic homotopy

Neil Strickland

January 8, 2024

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
\Rightarrow How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $\left[X, Y^{\prime}\right] \rightarrow$ Schemes $\left(X_{H}, Y_{H}\right)=$ Rings($\left.H^{*}\left(Y^{\prime}\right), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.

How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.

- But (a) is really part of (b).

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{\prime} c_{2}^{j} \mid i+j<3\right\}$
\Rightarrow We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$,
so $H^{*}(X)$ is the ring of functions on X_{H}.
\triangleright Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
\rightarrow How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
\Rightarrow The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
\Rightarrow How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
- But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
\Rightarrow We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$,
so $H^{*}(X)$ is the ring of functions on X_{H}
\rightarrow Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (denending only on the homotopy class) and $(X \text { II } Y)_{H}=X_{H}$ II Y_{H} and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
\rightarrow How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence
(subject to mild conditions)
\rightarrow The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$
is typically far from being injective or surjective.
\Rightarrow If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$
\rightarrow How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
\rightarrow How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence
(subject to mild conditions)
\rightarrow The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$
is typically far from being injective or surjective.
\Rightarrow If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$
\rightarrow How to find better invariants?
(a) Use Steenrod operations on $\boldsymbol{H}^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
\rightarrow How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence
(subject to mild conditions)
$>$ The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
\rightarrow How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?

If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence
(subject to mild conditions)
\rightarrow The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$
is typically far from being injective or surjective.
\rightarrow How to find better invariants?
(a) Use Steenrod operations on $H\left(X ; \mathbb{F}_{p}\right)$
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- How to find better invariants? (a) Use Steenrod operations on $H^{*}\left(X, \mathbb{F}_{p}\right)$
- But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- How to find better invariants? (a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
\Rightarrow How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
(b) Use generalised cohomology theories.
- But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
\rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
\Rightarrow But (a) is really part of (b)

Ordinary cohomology

- For any space X we have a cohomology ring $H^{*}(X)$
- For many spaces this can be described explicitly: for example, if $X=\left\{\right.$ two-dimensional subspaces of $\left.\mathbb{C}^{4}\right\}$ then
$H^{*}(X)=\mathbb{Z}\left[c_{1}, c_{2}\right] /\left(c_{1}^{3}-2 c_{1} c_{2}, c_{1}^{2} c_{2}-c_{2}^{2}\right)=\mathbb{Z}\left\{c_{1}^{i} c_{2}^{j} \mid i+j<3\right\}$.
- We can also consider the scheme $X_{H}=\operatorname{spec}\left(H^{*}(X)\right)$, so $H^{*}(X)$ is the ring of functions on X_{H}.
- Now $f: X \rightarrow Y$ gives $f_{H}: X_{H} \rightarrow Y_{H}$ (depending only on the homotopy class) and $(X \amalg Y)_{H}=X_{H} \amalg Y_{H}$ and $(X \times Y)_{H} \sim X_{H} \times Y_{H}$.
- How good an invariant is this?
- If $f_{H}: X_{H} \rightarrow Y_{H}$ is an isomorphism then f is a homotopy equivalence (subject to mild conditions).
- The map $[X, Y] \rightarrow \operatorname{Schemes}\left(X_{H}, Y_{H}\right)=\operatorname{Rings}\left(H^{*}(Y), H^{*}(X)\right)$ is typically far from being injective or surjective.
- If $X_{H} \simeq Y_{H}$, that is only weak evidence for $X \simeq Y$.
- How to find better invariants?
(a) Use Steenrod operations on $H^{*}\left(X ; \mathbb{F}_{p}\right)$
(b) Use generalised cohomology theories.
- But (a) is really part of (b).

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
\Rightarrow Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
\checkmark There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2)$ and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
\Rightarrow Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\} \infty$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)={\underset{\longrightarrow}{n}}_{\lim _{n}}\left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$.
This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
\Rightarrow Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as MP.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
\Rightarrow We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$
\Rightarrow There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2)$ and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim _{\rightarrow}\left[\Sigma^{2 n-k} X, M P(n)\right]$ This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
\Rightarrow Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as $M P$.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
\Rightarrow Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2)$ and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X
\Rightarrow Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\} \infty$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim \left[\Sigma^{2 n-k} X, M P(n)\right]$
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as MP.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
\Rightarrow There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2)$ and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim \left[\Sigma^{2 n-k} X, M P(n)\right]$
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$. This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
\Rightarrow Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as MP.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2$) and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
$M P^{k}(X)=\lim \left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even neriodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$. This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as MP.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2$) and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim _{\rightarrow n}\left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$.
This is called periodic complex cobordism.
\rightarrow The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$
then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory
- The $K(p, n)$'s together carry roughly the same information as MP.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2)$ and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim _{\rightarrow n}\left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$.
This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
\rightarrow Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2$) and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim _{\rightarrow n}\left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$.
This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.

Generalised cohomology

- A generalised cohomology theory is a contravariant, homotopy invariant functor E^{*} : Spaces \rightarrow Rings* with properties similar to H^{*}, but $E^{*}(1)$ need not be \mathbb{Z}. It takes work to provide interesting examples.
- We often work with even periodic theories where $E^{1}(1)=0$ and $E^{-2}(1)$ contains a unit. Here it is natural to focus on $E^{0}(X)$.
- Given an even periodic theory E we put $X_{E}=\operatorname{spf}\left(E^{0} X\right)$.
- There is an even periodic theory $K U$ with $K U^{*}(1)=\mathbb{Z}\left[u, u^{-1}\right]$ (where $|u|=-2$) and $K U^{0}(X)$ is the ring of virtual complex vector bundles on X.
- Put $M P(n)=\left\{(v, V) \mid v \in V \leq \mathbb{C}^{2 n}\right\}_{\infty}$ and $\Sigma^{m} X=\left(\mathbb{R}^{m} \times X\right)_{\infty}$ and $M P^{k}(X)=\lim _{\rightarrow n}\left[\Sigma^{2 n-k} X, M P(n)\right]$.
This gives an even periodic theory with $M P^{*}(1)=\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, \ldots\right]$.
This is called periodic complex cobordism.
- The Nilpotence (pre)Theorem of Hopkins-Devinatz-Smith: if $M P^{*}(u)=0$ then $u^{k}=0$ for large k. This is the most powerful known theorem of the type algebra \Rightarrow topology.
- Fix a prime p and an integer $n>0$. There is then an even periodic theory $K(p, n)$ with $K(p, n)^{*}(1)=\mathbb{F}_{p}\left[u, u^{-1}\right]$. This is called Morava K-theory.
- The $K(p, n)$'s together carry roughly the same information as $M P$.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to HP and KU. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
\Rightarrow Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$ - dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
\Rightarrow The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and KU (Here $H P^{i}(X)=\Pi_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
\Rightarrow The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n-\right.$ dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and KU (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
\Rightarrow Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$-dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
\Rightarrow Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$ - dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$ - dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
\rightarrow The Morava K-theories $K(p, n)$ all have different formal groups.
\rightarrow Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
\rightarrow For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$-dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.

Formal groups - what are they good for?

- Every even periodic theory E gives a formal group P_{E}.
- The functor $E \mapsto P_{E}$ is not too far from being an equivalence.
- The most elementary examples of formal groups are the additive and multiplicative formal groups; these correspond to $H P$ and $K U$. (Here $H P^{i}(X)=\prod_{j} H^{i+2 j}(X)$.)
- Steenrod operations in $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and Adams operations in $K U^{0}(X)$ are closely related to endomorphisms of the associated formal groups.
- The ring $M P^{0}(1)$ is naturally isomorphic to the Lazard ring, which plays a central role in formal group theory.
- The Morava K-theories $K(p, n)$ all have different formal groups.
- Together with $H P^{0}\left(X ; \mathbb{F}_{p}\right)$ and $H P^{0}(X ; \mathbb{Q})$ this gives all formal groups over fields up to Galois twisting.
- For many spaces X the scheme X_{E} can be described naturally in terms of P_{E}. For example, if $X=B U(n)=\left\{n\right.$ - dimensional subspaces of $\left.\mathbb{C}^{\infty}\right\}$ then $X_{E}=\left(P_{E}^{n}\right) / \Sigma_{n}$.

Examples of formal groups

- For any ring R we define commutative groups as follows:
$\Rightarrow G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
$\Rightarrow G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
$\Rightarrow G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
$\rightarrow G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
\Rightarrow We can define natural bijections $x_{i}: G(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$.
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k.

Examples of formal groups

- For any ring R we define commutative groups as follows:

$>$	$G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
$>$	$G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
$>$	$G_{r}(R)=\left\{A=[c-s] \in M_{2}(R) \mid c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
$>$	$G_{e}(R)=\left\{(u, v) \in \operatorname{Ni}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)

- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i>0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)

$$
\begin{aligned}
& \quad G_{m}(R)=\{u \in R \mid u-1 \text { is nilpotent }\} \text { (under multiplication) } \\
& G_{r}(R)=\left\{A=[c-s] \in M_{2}(R) \mid c^{2}+s^{2}=1, c-1 \text { nilpotent }\right\} \\
& \quad G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\} \text { (an elliptic curve) }
\end{aligned}
$$

- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)

$$
G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\} \text { (an elliptic curve) }
$$

- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i>0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i>0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
\Rightarrow These are all functorial in R.
\Rightarrow We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
\Rightarrow One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i>0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
\Rightarrow We can define natural bijections $x_{i}: G(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i>0} s^{\prime} t^{\prime}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
(One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
\rightarrow Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k[s, t]$
\rightarrow Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G(R) \rightarrow \operatorname{Nil}(R)$ by $x_{a}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
\rightarrow The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k.

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{3}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{3}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$.
\rightarrow More general version: we have a ground ring k, and $G(R)$ is only
functorial for k-algebras, and $F(s, t) \in k[s, t]$.
\rightarrow Example: for any $a \in k$ we have an $F G L F(s, t)=s+t+$ ast over k

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{3}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$.
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.

Examples of formal groups

- For any ring R we define commutative groups as follows:
- $G_{a}(R)=\{a \in R \mid a$ is nilpotent $\}$ (under addition)
- $G_{m}(R)=\{u \in R \mid u-1$ is nilpotent $\}$ (under multiplication)
- $G_{r}(R)=\left\{\left.A=\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right] \in M_{2}(R) \right\rvert\, c^{2}+s^{2}=1, c-1\right.$ nilpotent $\}$
- $G_{e}(R)=\left\{(u, v) \in \operatorname{Nil}(R)^{2} \mid v-u^{3}+u v^{2}=0\right\}$ (an elliptic curve)
- These are all functorial in R.
- We can define natural bijections $x_{i}: G_{i}(R) \rightarrow \operatorname{Nil}(R)$ by $x_{3}(a)=a$ and $x_{m}(u)=u-1$ and $x_{r}(A)=s / c$ and $x_{e}(u, v)=u\left(v=u^{3}-u^{7}+O\left(u^{10}\right)\right)$.
- One can check that $x_{i}(a * b)=F_{i}\left(x_{i}(a), x_{i}(b)\right)$ where $F_{a}(s, t)=s+t$ and $F_{m}(s, t)=s+t+s t$ and $F_{r}(s, t)=(s+t) /(1-s t)=\sum_{i \geq 0} s^{i} t^{i}(s+t)$. (One cannot be so explicit for F_{e}.)
- The functors G_{i} are formal groups; the power series F_{i} are formal group laws.
- Axioms: $F(s, 0)=s, F(s, t)=F(t, s)$ and $F(F(s, t), u)=F(s, F(t, u))$.
- More general version: we have a ground ring k, and $G(R)$ is only functorial for k-algebras, and $F(s, t) \in k \llbracket s, t \rrbracket$.
- Example: for any $a \in k$ we have an $\operatorname{FGL} F(s, t)=s+t+$ ast over k.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$
- This is a commutative topological monoid (with inverses up to homotopy).
\Rightarrow So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket x \rrbracket$ (but there is no canonical choice of x).
\Rightarrow This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
\Rightarrow For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
\rightarrow For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy)
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists \times with $\left.E^{0}(P)=E^{0}(1) \llbracket \times\right]$ (but there is no canonical choice of x)
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{p}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists \times with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x)
- This gives $E^{0}(P \times P)=E^{0}(1)\left[x_{1}, x_{2}\right]$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p^{\prime} th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket x \rrbracket$ (but there is no canonical choice of x)
\Rightarrow This gives $E^{0}(P \times P)=E^{0}(1)\left[x_{1}, x_{2}\right]$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
\Rightarrow For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
\Rightarrow For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
\Rightarrow This gives $E^{0}(P \times P)=E^{0}(1)\left[x_{1}, x_{2}\right]$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put
\Rightarrow Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket x \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $\Sigma^{0}(1)$; then the rank is always p^{n} for some $\pi>0$, called the height.
\Rightarrow For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket x \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p^{\prime} th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket \times \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal
groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket \times \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
\rightarrow Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.

Formal groups from even periodic theories

- $P=(\mathbb{C}[t] \backslash\{0\}) / \mathbb{C}^{\times}=\{1-\operatorname{dim}$ subspaces of $\mathbb{C}[t]\}=\mathbb{C} P^{\infty}$.
- This is a commutative topological monoid (with inverses up to homotopy).
- So P_{E} is a formal group scheme over $1_{E}=\operatorname{spec}\left(E^{0}(1)\right)$.
- We can calculate $E^{*}\left(\mathbb{C} P^{n}\right)$ by induction on n using Mayer-Vietoris. It follows that there exists x with $E^{0}(P)=E^{0}(1) \llbracket \times \rrbracket$ (but there is no canonical choice of x).
- This gives $E^{0}(P \times P)=E^{0}(1) \llbracket x_{1}, x_{2} \rrbracket$. The multiplication map $\mu: P \times P \rightarrow P$ has $\mu^{*}(x)=F\left(x_{1}, x_{2}\right)$ for some formal group law F.
- Now fix a prime p and let $\pi: P \rightarrow P$ be the p 'th power map and put $B=(\mathbb{C}[t] \backslash\{0\}) / C_{p}$.
- Suppose that $p=0$ in $E^{0}(1)$. Under some conditions that are often satisfied, we have $E^{0}(B)=E^{0}(1) \llbracket x \rrbracket / \pi^{*}(x)$ and this is free of finite rank over $E^{0}(1)$; then the rank is always p^{n} for some $n>0$, called the height.
- For $E=K(p, n)$ we have $\pi^{*}(x)=x^{p^{n}}$ and the height is n.
- For $E=K U$ we have $\pi^{*}(x)=\frac{(1+x)^{p}-1}{x}=x^{p}(\bmod p)$: height 1 .
- For $E=H P / p$ we have $\pi^{*}(x)=0$ and the height is infinite.
- Over an algebraically closed field of characteristic p, any two formal groups of the same height are isomorphic.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
\Rightarrow For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \mathrm{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a^{2}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a^{2}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i j}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
\rightarrow For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$
\rightarrow There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5 .
\rightarrow I azard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the I azard ring $L=\mathbb{Z}\left[a_{1}, a_{2} \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
There are no more relations: any power series of the above form satisfies
the FGL conditions up to errors of order 5 .
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
\rightarrow Lazard's theorem: we can continue to define a_{4}, a_{5},
so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
\rightarrow Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow F G L(k)$ is bijective for all k.

The Lazard ring

- Consider a formal power series $F(s, t)=\sum_{i, j} b_{i j} s^{i} t^{j} \in k \llbracket s, t \rrbracket$. When is this an FGL?
- For $F(s, 0)=s$ we need $b_{i 0}=\delta_{i, 1}$. For $F(s, t)=F(t, s)$ we need $b_{i j}=b_{j i}$.
- Now
$F(s, t)=s+t+b_{11} s t+b_{12}\left(s t^{2}+s^{2} t\right)+b_{22} s^{2} t^{2}+b_{13}\left(s t^{3}+s^{3} t\right)+O(5)$
- Using this we get
$F(F(s, t), u)-F(s, F(t, u))=\left(2 b_{11} b_{12}+3 b_{13}-2 b_{22}\right)(s-u) s t u+O(5)$
- For an FGL we must have $2 b_{11} b_{12}+3 b_{13}-2 b_{22}$. In terms of the parameters $a_{1}=b_{11}$ and $a_{2}=b_{12}$ and $a_{3}=b_{22}-b_{13}$ we get $F(s, t)=s+t+a_{1} s t+a_{2} s t(s+t)+2\left(a_{3}-a_{1} a_{2}\right) s t\left(s^{2}+s t+t^{2}\right)+a_{3} s^{2} t^{2}+O(5)$.
- There are no more relations: any power series of the above form satisfies the FGL conditions up to errors of order 5.
- Lazard's theorem: we can continue to define a_{4}, a_{5}, \ldots so that $F(s, t)$ can be expressed in terms of the a_{i}, and no further relations are required to make the associativity axiom hold.
- Reformulation: over the Lazard ring $L=\mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]$ there is a universal formal group law F_{u} such that the resulting map $\operatorname{Rings}(L, k) \rightarrow \operatorname{FGL}(k)$ is bijective for all k.

Quillen's theorem

- Recall $M P^{0}(X)={\underset{\longrightarrow}{n}}_{\lim _{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring $\operatorname{map} L \rightarrow M P^{0}(1)$.
\Rightarrow Quillen's theorem: this is an isomorphism (and $\left.M P^{1}(1)=0\right)$.
- Outline of proof:
- Assemble the spaces MP(n) into a single "spectrum" called MP. (This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$
H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]
$$

- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$.
- In fact this is $F(s, t)=f^{-1}\left(f(s)^{\prime}+f(t)\right)$, where $f(t)=\sum_{i} b t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
- The remaining steps are harder to summarise, but they involve the action of the group $\operatorname{Aut}\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\longrightarrow \rightarrow}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called MP.
(This is the start of stable homotopy theory.)
* There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that $H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]$
- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$
$>$ In fact this is $F(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b_{i} t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
$>$ The remaining steps are harder to summarise, but they involve the action of the group Aut $\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
\Rightarrow Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called MP.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that $H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]$
- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$
- In fact this is $F(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b_{i} t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
- The remaining steps are harder to summarise, but they involve the action of the group $\operatorname{Aut}\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Outline of proof:
- Assemble the spaces MP(n) into a single "spectrum" called MP.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Assemble the spaces $M P(n)$ into a single "spectrum" called MP.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that
- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P$
\Rightarrow in fact this is $F(s, t)=f^{-1}\left(f^{\prime}(s)+f^{\prime}(t)\right)$, where $f^{\prime}(t)=\sum_{i} b_{i} t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut $\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called $M P$.
(This is the start of stable homotopy theory.)
There are good methods for calcuating the homology of spaces defined
using complex linear algebra, and one can use them to prove that
- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$
- In fact this is $\Gamma(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b, t^{i+1}$. So
- The remaining steps are harder to summarise, but they involve the action of the group $\operatorname{Aut}\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called $M P$.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$
H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]
$$

A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can
push forward the $F G L$ over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$.
In fact this is $F(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b_{i} t^{i+1}$. So f
gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
The remaining steps are harder to summarise, but they involve the action of
the group Aut $\left(F_{a}\right)$, its relationship with Steenrod operations, and the
Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called $M P$.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$
H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]
$$

- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$.
gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
The remaining steps are harder to summarise, but they involve the action of the group $\operatorname{Aut}\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called $M P$.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$
H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]
$$

- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$.
- In fact this is $F(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b_{i} t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
- The remaining steps are harder to summarise, but they involve the action of the group Aut $\left(F_{a}\right)$, its relationship with Steenrod operations, and the
Adams spectral sequence.

Quillen's theorem

- Recall $M P^{0}(X)=\lim _{\rightarrow{ }_{n}}\left[\Sigma^{2 n} X, M P(n)\right]$ (for X a finite complex). Both P and $M P(n)$ are defined using complex linear algebra so it is not hard to give an explicit x with $M P^{0}(P)=M P^{0}(1) \llbracket x \rrbracket$. (We do not need to know $M P^{0}(1)$ for this.)
- Using this we get a formal group law F over $M P^{0}(1)$.
- Recall that $\operatorname{FGL}(k)=\operatorname{Rings}(L, k)$ so we get a ring map $L \rightarrow M P^{0}(1)$.
- Quillen's theorem: this is an isomorphism (and $M P^{1}(1)=0$).
- Outline of proof:
- Assemble the spaces $M P(n)$ into a single "spectrum" called $M P$.
(This is the start of stable homotopy theory.)
- There are good methods for calcuating the homology of spaces defined using complex linear algebra, and one can use them to prove that

$$
H_{*}(M P)=\mathbb{Z}\left[b_{0}, b_{1}, b_{2}, \ldots\right]\left[b_{0}^{-1}\right]
$$

- A simple topological construction gives a map $M P^{0}(1) \rightarrow H_{*}(M P)$. We can push forward the FGL over $M P^{0}(1)$ to get an FGL over $H_{*}(M P)$.
- In fact this is $F(s, t)=f^{-1}(f(s)+f(t))$, where $f(t)=\sum_{i} b_{i} t^{i+1}$. So f gives an isomorphism from F to the additive law $F_{a}(s, t)=s+t$.
- The remaining steps are harder to summarise, but they involve the action of the group $\operatorname{Aut}\left(F_{a}\right)$, its relationship with Steenrod operations, and the Adams spectral sequence.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)$.
- The category \mathcal{F} has formal properties similar to those of $V_{\text {ect * }}$: there are tensor products, duals and adjoints.
- It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
\Rightarrow We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim \left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)$.
- The category \mathcal{F} has formal properties similar to those of Vect $_{*}$: there are tensor products, duals and adjoints.
- It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
\Rightarrow This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)$.
- The category \mathcal{F} has formal properties similar to those of Vect $_{*}$: there are tensor products, duals and adjoints.
\rightarrow It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism
- The category \mathcal{F} has formal properties similar to those of Vect $_{*}$: there are tensor products, duals and adjoints.
- It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism

$$
\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)
$$

\rightarrow The category \mathcal{F} has formal properties similar to those of $V_{\text {ect }}^{*}$: there are tensor products, duals and adjoints.

- It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism

$$
\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)
$$

- The category \mathcal{F} has formal properties similar to those of Vect $_{*}$: there are tensor products, duals and adjoints.

The Spanier-Whitehead category

- A finite spectrum is an expression $\Sigma^{n} X$, where X is a based finite simplicial complex, and $n \in \mathbb{Z}$. (This can be interpreted as a space if $n \geq 0$, but not necessarily if $n<0$.) We write \mathcal{F} for the class of finite spectra.
- We define $\mathcal{F}\left(\Sigma^{n} X, \Sigma^{m} Y\right)=\lim _{\rightarrow k}\left[\Sigma^{n+k} X, \Sigma^{m+k} Y\right]$. This has a natural structure as a (finitely generated) Abelian group. There is a composition rule making \mathcal{F} an additive category.
- This is an approximation to the homotopy category of finite complexes, and has a rich and interesting structure.
- Homology gives an isomorphism $\mathbb{Q} \otimes \mathcal{F}(X, Y) \rightarrow \operatorname{Vect}_{*}\left(H_{*}(X ; \mathbb{Q}), H_{*}(Y ; \mathbb{Q})\right)$.
- The category \mathcal{F} has formal properties similar to those of Vect $_{*}$: there are tensor products, duals and adjoints.
- It is very hard work to calculate $\mathcal{F}(X, Y)$, even in simple cases like $\mathcal{F}\left(S^{d}, S^{0}\right)$. This is known for $d \leq 100$ or so, but not for general d. The calculations use MP or related methods.

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
\Rightarrow Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
\Rightarrow Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k.

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
\Rightarrow Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
\Rightarrow Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique")
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$
- Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$. say λ has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique")
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$
\Rightarrow Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p. then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$
\rightarrow Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique")
\rightarrow Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$
\rightarrow Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$.
\Rightarrow Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique")
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$
- Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X$ (for some $d>0$) giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique").
\quad Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some
\quad natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
\rightarrow Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k.

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X$ (for some $d>0$) giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
layers. The difference between layers n and $n-1$ is in some sense
controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k.

The chromatic filtration

- Fact: if $K(p, n)_{*}(X)=0$, then $K(p, m)_{*}(X)=0$ for all $m<n$ (including $K(p, 0)_{*}(X)=H_{*}(X ; \mathbb{Q})$).
- Also, if $K(p, n)_{*}(X)=0$ for all p and n then $X=0$.
- Say X has type n at p if $K(p, n)_{*}(X) \neq 0$ and $K(p, m)_{*}(X)=0$ for $m<n$. Let $\mathcal{F}(p, n)$ be the category of X of type at least n at p.
- Nilpotence theorem: if $u: \Sigma^{d} X \rightarrow X$ and $K(p, n)_{*}(u)=0$ for all (p, n) then $u^{k}=0: \Sigma^{d k} X \rightarrow X$ for $k \gg 0$.
- Periodicity theorem: if $X \in \mathcal{F}(p, n)$ with $n>0$ then there is a map $v: \Sigma^{d} X \rightarrow X($ for some $d>0)$ giving an isomorphism on $K(p, n)_{*}(X)$ (and having a number of other properties, making it "almost unique").
- Thick subcategory theorem: if \mathcal{C} is a subcategory of \mathcal{F} satisfying some natural conditions, then it must be one of the categories $\mathcal{F}(p, n)$.
- Chromatic convergence theorem: $\pi_{*}^{S}(X)=\mathcal{F}\left(S^{*}, X\right)$ can be built up in layers. The difference between layers n and $n-1$ is in some sense controlled by $K(p, n)$, and consists of families that are periodic of period $2\left(p^{n}-1\right) p^{k}$ for large k.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample.
However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorern and this looked like a good counterexample.
However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith;
this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample.
However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
$>$ The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample.
However, the proof could not be completed
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith
this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample. However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample. However, the proof could not be completed
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false.

A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem
and this looked like a good counterexample.
However, the proof could not be completed.

* The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample.
However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
\rightarrow They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample. However, the proof could not be completed.
\rightarrow The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample. However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
> They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

The Ravenel conjectures

- Many facts on the previous slide were conjectured by Ravenel in 1984.
- The same paper presented the Nilpotence Conjecture and the Telescope Conjecture.
- The Nilpotence Conjecture was proved soon afterwards by Hopkins, Devinatz and Smith: a major breakthrough with many new ideas.
- The remaining conjectures, apart from the Telescope Conjecture, were then deduced by Hopkins and Smith; this created the field of tensor triangular geometry.
- It became the consesus that the Telescope Conjecture might be false. A certain spectrum $T(n)$ appears in the proof of the Nilpotence Theorem and this looked like a good counterexample. However, the proof could not be completed.
- The Telescope Conjecture was disproved in the summer of 2023 by Burklund, Hahn, Levy and Schlank.
- They used a different counterexample related to algebraic K-theory, topological cyclic homology, Galois theory of ring spectra, higher Picard groups, chromatic ambidexterity and many other new ideas.

