Moduli of stable curves of genus zero

Neil Strickland

March 24, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• This talk describes results from the PhD thesis of Daniel Singh.

- This talk describes results from the PhD thesis of Daniel Singh.
- ▶ Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)

- This talk describes results from the PhD thesis of Daniel Singh.
- ▶ Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- ▶ We will write X_S for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension |S| 2. It has been studied extensively, especially for applications in quantum cohomology.

- This talk describes results from the PhD thesis of Daniel Singh.
- ▶ Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_S for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension |S| 2. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of X_s in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.

- This talk describes results from the PhD thesis of Daniel Singh.
- ▶ Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_S for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension |S| 2. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of X₅ in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.
- One way to think about it: instead of Kapranov's carefully constructed sequence of blowups depending on some arbitrary choices, we perform all possible blowups simultaneously. Miraculously, this does not mess things up.

- This talk describes results from the PhD thesis of Daniel Singh.
- ▶ Let S be a finite set. Put S₊ = S II {+}. We will describe a class of objects called stable S₊-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_S for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension |S| 2. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of X₅ in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.
- One way to think about it: instead of Kapranov's carefully constructed sequence of blowups depending on some arbitrary choices, we perform all possible blowups simultaneously. Miraculously, this does not mess things up.
- The cohomology of X_S was described by Sean Keel. We will give an alternative description that fits more neatly with Singh's geometric description of the space.

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

(日)、

э

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

イロト イポト イヨト イヨト

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

A generic S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to CP¹, and x: S₊ → C is an injective map.

ヘロト 人間ト 人団ト 人団ト

3

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

 $V_S = Map(S, \mathbb{C})/\mathbb{C}$

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$V_{S} = \operatorname{Map}(S, \mathbb{C})/\mathbb{C}$$
$$PV_{S} = \{L \leq V_{S} \mid \operatorname{dim}(L) = 1\} \simeq \mathbb{C}P^{|S|-2}$$

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$V_S = \operatorname{Map}(S, \mathbb{C})/\mathbb{C}$$
 $\widetilde{U}_S = \operatorname{Inj}(S, \mathbb{C})/\mathbb{C} \subset V_S$
 $PV_S = \{L \le V_S \mid \operatorname{dim}(L) = 1\} \simeq \mathbb{C}P^{|S|-2}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A generic S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to CP¹, and x: S₊ → C is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$\begin{split} V_S &= \mathsf{Map}(S,\mathbb{C})/\mathbb{C} & \widetilde{U}_S &= \mathsf{Inj}(S,\mathbb{C})/\mathbb{C} \subset V_S \\ PV_S &= \{L \leq V_S \mid \mathsf{dim}(L) = 1\} \simeq \mathbb{C} \mathcal{P}^{|S|-2} & U_S &= \text{ image of } \widetilde{U}_S \text{ in } \mathcal{P}V_S. \end{split}$$

A generic S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to CP¹, and x: S₊ → C is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$\begin{split} V_S &= \mathsf{Map}(S,\mathbb{C})/\mathbb{C} & \widetilde{U}_S &= \mathsf{Inj}(S,\mathbb{C})/\mathbb{C} \subset V_S \\ PV_S &= \{L \leq V_S \mid \mathsf{dim}(L) = 1\} \simeq \mathbb{C} P^{|S|-2} & U_S &= \mathsf{image of } \widetilde{U}_S \mathsf{ in } PV_S. \end{split}$$

▶ Let M(C, x) be the (2-dimensional) space of holomorphic maps $f: C \setminus \{x(+)\} \to \mathbb{C}$ with at worst a simple pole at x(+).

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$\begin{split} V_S &= \mathsf{Map}(S,\mathbb{C})/\mathbb{C} & \widetilde{U}_S &= \mathsf{Inj}(S,\mathbb{C})/\mathbb{C} \subset V_S \\ PV_S &= \{L \leq V_S \mid \mathsf{dim}(L) = 1\} \simeq \mathbb{C} P^{|S|-2} & U_S &= \mathsf{image of } \widetilde{U}_S \mathsf{ in } PV_S. \end{split}$$

Let M(C,x) be the (2-dimensional) space of holomorphic maps f: C \ {x(+)} → C with at worst a simple pole at x(+). Let λ(C,x) be the image of the composite M(C,x)/C ^{x*}→ V_S.

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$\begin{split} V_S &= \mathsf{Map}(S,\mathbb{C})/\mathbb{C} & \widetilde{U}_S &= \mathsf{Inj}(S,\mathbb{C})/\mathbb{C} \subset V_S \\ \mathcal{P}V_S &= \{L \leq V_S \mid \mathsf{dim}(L) = 1\} \simeq \mathbb{C}\mathcal{P}^{|S|-2} & U_S &= \text{ image of } \widetilde{U}_S \text{ in } \mathcal{P}V_S. \end{split}$$

▶ Let M(C, x) be the (2-dimensional) space of holomorphic maps $f: C \setminus \{x(+)\} \to \mathbb{C}$ with at worst a simple pole at x(+). Let $\lambda(C, x)$ be the image of the composite $M(C, x)/\mathbb{C} \xrightarrow{x^*} V_S$. This defines a bijection $\lambda: \mathcal{X}'_S \to U_S \subset PV_S$.

▶ A generic S_+ -marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C}P^1$, and $x: S_+ \to C$ is an injective map.

We write \mathcal{X}'_{S} for the set of isomorphism classes of such objects.

$$\begin{split} V_S &= \mathsf{Map}(S,\mathbb{C})/\mathbb{C} & \widetilde{U}_S &= \mathsf{Inj}(S,\mathbb{C})/\mathbb{C} \subset V_S \\ \mathcal{P}V_S &= \{L \leq V_S \mid \mathsf{dim}(L) = 1\} \simeq \mathbb{C}\mathcal{P}^{|S|-2} & U_S &= \text{ image of } \widetilde{U}_S \text{ in } \mathcal{P}V_S. \end{split}$$

▶ Let M(C, x) be the (2-dimensional) space of holomorphic maps $f: C \setminus \{x(+)\} \to \mathbb{C}$ with at worst a simple pole at x(+). Let $\lambda(C, x)$ be the image of the composite $M(C, x)/\mathbb{C} \xrightarrow{x^*} V_S$. This defines a bijection $\lambda: \mathcal{X}'_S \to U_S \subset PV_S$. Note that $\mathcal{X}'_S \simeq U_S$ is not compact.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

◆□> ◆□> ◆豆> ◆豆> □豆

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Each irreducible component must isomorphic to $\mathbb{C}P^1$.

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C}P^1$.
- Any singularities must be ordinary double points ($\sim \mathbb{C}[x, y]/(xy)$).

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

- ▶ Each irreducible component must isomorphic to CP¹.
- ► Any singularities must be ordinary double points (~ C[[x, y]]/(xy)).
- All marked points must be smooth.

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C}P^1$.
- Any singularities must be ordinary double points ($\sim \mathbb{C}[x, y]/(xy)$).
- All marked points must be smooth.
- Each $\mathbb{C}P^1$ must contain ≥ 3 points that are either singular or marked.

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C}P^1$.
- Any singularities must be ordinary double points ($\sim \mathbb{C}[x, y]/(xy)$).
- All marked points must be smooth.
- Each $\mathbb{C}P^1$ must contain ≥ 3 points that are either singular or marked.
- The graph of components must be a tree.

A stable S₊-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and x: S₊ → C is an injective map, subject to certain conditions.

- ▶ Each irreducible component must isomorphic to CP¹.
- Any singularities must be ordinary double points ($\sim \mathbb{C}[x, y]/(xy)$).
- All marked points must be smooth.
- Each $\mathbb{C}P^1$ must contain ≥ 3 points that are either singular or marked.
- The graph of components must be a tree.
- We write \mathcal{X}_S for the set of isomorphism classes of such objects.

For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ_U^T: V_T → V_U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element $M = (M_T)_{T \subseteq S}$ in the product $\mathcal{P}_S = \prod_{T \subseteq S} PV_T$. We say that M is *coherent* if for all $U \subseteq T$ we have $M_T \leq (\rho_U^T)^{-1}(M_U)$ or equivalently $\rho_U^T(M_T) \in \{0, M_U\}$.

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element $M = (M_T)_{T \subseteq S}$ in the product $\mathcal{P}_S = \prod_{T \subseteq S} PV_T$. We say that M is *coherent* if for all $U \subseteq T$ we have $M_T \leq (\rho_U^T)^{-1}(M_U)$ or equivalently $\rho_U^T(M_T) \in \{0, M_U\}$.
- We write M_S for the subspace of coherent points in P_S. This is a kind of inverse limit of a diagram involving partially defined maps PV_T → PV_U.

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- ▶ We write M_S for the subspace of coherent points in \mathcal{P}_S . This is a kind of inverse limit of a diagram involving partially defined maps $PV_T \rightarrow PV_U$.

• **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- We write *M_S* for the subspace of coherent points in *P_S*. This is a kind of inverse limit of a diagram involving partially defined maps *PV_T* → *PV_U*.
- **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .
- There is a projection map π: M_{S+} → M_S, and each fibre π⁻¹{x} is naturally an S₊-marked stable curve of genus 0. We thus have a map μ: M_S → X_S sending x to the isomorphism type of π⁻¹{x}.

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- We write *M_S* for the subspace of coherent points in *P_S*. This is a kind of inverse limit of a diagram involving partially defined maps *PV_T* → *PV_U*.
- **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .
- There is a projection map π: M_{S+} → M_S, and each fibre π⁻¹{x} is naturally an S₊-marked stable curve of genus 0. We thus have a map μ: M_S → X_S sending x to the isomorphism type of π⁻¹{x}.
- The map $\lambda: \mathcal{X}'_{S} \to U_{S} \subset PV_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \to PV_{S}$.
The projective model

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- We write *M_S* for the subspace of coherent points in *P_S*. This is a kind of inverse limit of a diagram involving partially defined maps *PV_T* → *PV_U*.
- **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .
- There is a projection map π: M_{S+} → M_S, and each fibre π⁻¹{x} is naturally an S₊-marked stable curve of genus 0. We thus have a map μ: M_S → X_S sending x to the isomorphism type of π⁻¹{x}.
- The map λ: X'_S → U_S ⊂ PV_S extends uniquely (via the same definition) to give a map λ: X_S → PV_S.
- There is a "stable forgetting" map X₅ → X_T as follows: given (C, x) ∈ X₅ take (C, x|_T) and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.

The projective model

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- We write *M_S* for the subspace of coherent points in *P_S*. This is a kind of inverse limit of a diagram involving partially defined maps *PV_T* → *PV_U*.
- **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .
- There is a projection map π: M_{S+} → M_S, and each fibre π⁻¹{x} is naturally an S₊-marked stable curve of genus 0. We thus have a map μ: M_S → X_S sending x to the isomorphism type of π⁻¹{x}.
- The map λ: X'_S → U_S ⊂ PV_S extends uniquely (via the same definition) to give a map λ: X_S → PV_S.
- There is a "stable forgetting" map X_S → X_T as follows: given (C, x) ∈ X_S take (C, x|_T) and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.
- ▶ By combining these stable forgetting maps with the maps $\lambda_T : \mathcal{X}_T \to PV_T$ we obtain a canonical map $\nu : \mathcal{X}_S \to \mathcal{M}_S$.

The projective model

- For U ⊆ T ⊆ S we have a restriction map Map(T, C) → Map(U, C) inducing a map ρ^T_U: V_T → V_U.
- Consider an element M = (M_T)_{T⊆S} in the product P_S = ∏_{T⊆S} PV_T. We say that M is *coherent* if for all U ⊆ T we have M_T ≤ (ρ^T_U)⁻¹(M_U) or equivalently ρ^T_U(M_T) ∈ {0, M_U}.
- We write *M_S* for the subspace of coherent points in *P_S*. This is a kind of inverse limit of a diagram involving partially defined maps *PV_T* → *PV_U*.
- **Theorem:** the scheme \mathcal{X}_S is naturally isomorphic to \mathcal{M}_S .
- There is a projection map π: M_{S+} → M_S, and each fibre π⁻¹{x} is naturally an S₊-marked stable curve of genus 0. We thus have a map μ: M_S → X_S sending x to the isomorphism type of π⁻¹{x}.
- The map $\lambda: \mathcal{X}'_{S} \to U_{S} \subset PV_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \to PV_{S}$.
- There is a "stable forgetting" map X_S → X_T as follows: given (C, x) ∈ X_S take (C, x|_T) and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.
- ▶ By combining these stable forgetting maps with the maps $\lambda_T : \mathcal{X}_T \to PV_T$ we obtain a canonical map $\nu : \mathcal{X}_S \to \mathcal{M}_S$. It works out that ν is an isomorphism of varieties, with inverse μ .

(ロ)、(型)、(E)、(E)、(E)、(O)()

• Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .

• Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T \cup U} \rightarrow V_T \oplus V_U$ is injective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T \cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T \cup U} \leq L_T \oplus L_U$

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.
- ▶ Now suppose that U_1, \ldots, U_r are disjoint subsets of T. Put $m = (|T| 1) \sum_i (|U_i| 1)$. There is a short exact sequence

$$0 o \mathbb{C}^m o V_T o igoplus_i V_{U_i} o 0.$$

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.
- ▶ Now suppose that U_1, \ldots, U_r are disjoint subsets of T. Put $m = (|T| 1) \sum_i (|U_i| 1)$. There is a short exact sequence

$$0 \to \mathbb{C}^m \to V_T \to \bigoplus_i V_{U_i} \to 0.$$

It follows that $L_T \leq \mathbb{C}^m \oplus \bigoplus_i L_{U_i}$

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.
- Now suppose that U₁,..., U_r are disjoint subsets of T. Put m = (|T| − 1) − ∑_i(|U_i| − 1). There is a short exact sequence

$$0 \to \mathbb{C}^m \to V_T \to \bigoplus_i V_{U_i} \to 0.$$

It follows that $L_T \leq \mathbb{C}^m \oplus \bigoplus_i L_{U_i}$, and thus

$$x_T^m \prod_i (x_T - x_{U_i}) = 0.$$

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.
- Now suppose that U₁,..., U_r are disjoint subsets of T. Put m = (|T| − 1) − ∑_i(|U_i| − 1). There is a short exact sequence

$$0\to \mathbb{C}^m\to V_T\to \bigoplus_i V_{U_i}\to 0.$$

It follows that $L_T \leq \mathbb{C}^m \oplus \bigoplus_i L_{U_i}$, and thus

$$x_T^m \prod_i (x_T - x_{U_i}) = 0.$$

▶ **Theorem:** $H^*(M_S)$ is generated by the classes x_T subject only to the relations above.

- Let L_T be the line bundle over \mathcal{M}_S whose fibre at M is M_T .
- Let $x_T \in H^2(\mathcal{M}_S)$ be the Euler class of L_T .
- ▶ If T and U overlap then the map $V_{T\cup U} \rightarrow V_T \oplus V_U$ is injective, so $L_{T\cup U} \leq L_T \oplus L_U$, so $(x_{T\cup U} x_T)(x_{T\cup U} x_U) = 0$.
- ▶ Now suppose that U_1, \ldots, U_r are disjoint subsets of T. Put $m = (|T| 1) \sum_i (|U_i| 1)$. There is a short exact sequence

$$0\to \mathbb{C}^m\to V_T\to \bigoplus_i V_{U_i}\to 0.$$

It follows that $L_T \leq \mathbb{C}^m \oplus \bigoplus_i L_{U_i}$, and thus

$$x_T^m \prod_i (x_T - x_{U_i}) = 0.$$

- Theorem: H*(M_S) is generated by the classes x_T subject only to the relations above.
- For the proof and also for further details of the structure, we need some combinatorics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

▶ A *forest* is a collection \mathcal{F} of subsets of *S* such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

• A *forest* is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ A *forest* is a collection \mathcal{F} of subsets of *S* such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A *tree* is a forest with only one maximal element.

▶ A *forest* is a collection \mathcal{F} of subsets of *S* such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A *tree* is a forest with only one maximal element.
- A tree is *autumnal* if there are leaves on the ground, otherwise *vernal*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▶ A *forest* is a collection \mathcal{F} of subsets of *S* such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.
- A tree is *autumnal* if there are leaves on the ground, otherwise *vernal*.
- ▶ Suppose that $M \in M_S$. Say that $T \subseteq S$ is *M*-critical if for all strictly larger sets $U \supset T$ we have $\rho_T^U(M_U) = 0$. Let type(*M*) be the collection of all *M*-critical sets. Then type(*M*) is a vernal tree.

• A *forest* is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A *tree* is a forest with only one maximal element.
- A tree is *autumnal* if there are leaves on the ground, otherwise *vernal*.
- ▶ Suppose that $M \in M_S$. Say that $T \subseteq S$ is *M*-critical if for all strictly larger sets $U \supset T$ we have $\rho_T^U(M_U) = 0$. Let type(*M*) be the collection of all *M*-critical sets. Then type(*M*) is a vernal tree. These trees correspond to the component trees of stable curves as drawn previously.

• A *forest* is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V = \emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A *tree* is a forest with only one maximal element.
- A tree is *autumnal* if there are leaves on the ground, otherwise *vernal*.
- ▶ Suppose that $M \in M_S$. Say that $T \subseteq S$ is *M*-critical if for all strictly larger sets $U \supset T$ we have $\rho_T^U(M_U) = 0$. Let type(*M*) be the collection of all *M*-critical sets. Then type(*M*) is a vernal tree. These trees correspond to the component trees of stable curves as drawn previously.
- The stratification by tree type is an important tool for studying the geometry of \mathcal{M}_S . The pure strata are products of copies of the spaces $\mathcal{X}'_T \simeq U_T \subset PV_T$.

• Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i (x_T - x_{U_i}) = 0$ in $H^*(\mathcal{M}_S)$.

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i(x_T-x_{U_i})=0$ in $H^*(\mathcal{M}_S)$.

• We say that y is admissible if shape(y) is a forest and $n_T < m(shape(y), T)$ for all $T \in shape(y)$.

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i(x_T-x_{U_i})=0$ in $H^*(\mathcal{M}_S)$.

- We say that y is admissible if shape(y) is a forest and $n_T < m(\text{shape}(y), T)$ for all $T \in \text{shape}(y)$.
- **Theorem:** the admissible monomials give a basis for $H^*(\mathcal{M}_S)$ over \mathbb{Z} .

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i(x_T-x_{U_i})=0$ in $H^*(\mathcal{M}_S)$.

- We say that y is *admissible* if shape(y) is a forest and $n_T < m(shape(y), T)$ for all $T \in shape(y)$.
- ► Theorem: the admissible monomials give a basis for H^{*}(M_S) over Z. In particular, {x_S^{|S|-2}} is a basis for the top group H^{2|S|-4}(M_S).

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i(x_T-x_{U_i})=0$ in $H^*(\mathcal{M}_S)$.

- We say that y is admissible if shape(y) is a forest and $n_T < m(shape(y), T)$ for all $T \in shape(y)$.
- ► Theorem: the admissible monomials give a basis for H^{*}(M_S) over Z. In particular, {x_S^{|S|-2}} is a basis for the top group H^{2|S|-4}(M_S).

• We say that y is strongly inadmissible if there exists $U \subseteq S$ such that $\sum_{T \subseteq U} n_T > |U| - 2$.

- Given a monomial $y = \prod_T x_T^{n_T}$, the shape of y is $\{T \mid n_T > 0\}$.
- ▶ Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_1, \ldots, U_r be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$m(\mathcal{F}, T) = (|T| - 1) - \sum_{i} (|U_i| - 1),$$

so we have a relation $x_T^{m(\mathcal{F},T)}\prod_i(x_T-x_{U_i})=0$ in $H^*(\mathcal{M}_S)$.

- We say that y is admissible if shape(y) is a forest and $n_T < m(shape(y), T)$ for all $T \in shape(y)$.
- ► Theorem: the admissible monomials give a basis for H^{*}(M_S) over Z. In particular, {x_S^{|S|-2}} is a basis for the top group H^{2|S|-4}(M_S).
- We say that y is strongly inadmissible if there exists $U \subseteq S$ such that $\sum_{T \subseteq U} n_T > |U| 2$.
- ► Theorem: if y is strongly inadmissible then it is zero in H^{*}(M_S). If y is not strongly inadmissible then xⁱ_Sy = x^{|S|-2}_S for i = |S| 2 deg(y)/2.

◆□ → < @ → < Ξ → < Ξ → ○ < ○ </p>

• A *thicket* is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A *thicket* is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S \mid |T| > 1\}$ is also a thicket.

- A *thicket* is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S \mid |T| > 1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}] = \prod_{T \in \mathcal{L}} PV_T$. We say that a point M in this space is *coherent* if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_U^T(M_T) \leq M_U$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.

- A *thicket* is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S \mid |T| > 1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}] = \prod_{T \in \mathcal{L}} PV_T$. We say that a point M in this space is *coherent* if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_U^T(M_T) \leq M_U$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.
- All theorems stated for \mathcal{M}_S can be adapted to be valid for $\mathcal{M}[\mathcal{L}]$. They are proved inductively in this setting by successively discarding minimal elements from \mathcal{L} .

- A *thicket* is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S \mid |T| > 1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}] = \prod_{T \in \mathcal{L}} PV_T$. We say that a point M in this space is *coherent* if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_U^T(M_T) \leq M_U$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.
- All theorems stated for M_S can be adapted to be valid for $\mathcal{M}[\mathcal{L}]$. They are proved inductively in this setting by successively discarding minimal elements from \mathcal{L} .
- The induction step involves a blowup square

where T is minimal in \mathcal{L}_+ and $\mathcal{L} = \mathcal{L}_+ \setminus \{T\}$ and $\overline{\mathcal{L}}$ is an induced thicket on S/T.
▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

• Let \mathcal{T} be a vernal tree, and let T_1, \ldots, T_r be the maximal proper subsets in \mathcal{T} . Put $\mathcal{T}_i = \{U \in \mathcal{T} \mid U \subseteq T_i\}$, which is a vernal tree on T_i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_1, \ldots, T_r be the maximal proper subsets in \mathcal{T} . Put $\mathcal{T}_i = \{U \in \mathcal{T} \mid U \subseteq T_i\}$, which is a vernal tree on T_i .
- ► The space *M*[*T*] is then the projective bundle associated to a certain vector bundle over ∏_i *M*[*T_i*], and both the geometry and the cohomology can be analysed easily from this description.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_1, \ldots, T_r be the maximal proper subsets in \mathcal{T} . Put $\mathcal{T}_i = \{U \in \mathcal{T} \mid U \subseteq T_i\}$, which is a vernal tree on T_i .
- ► The space *M*[*T*] is then the projective bundle associated to a certain vector bundle over ∏_i *M*[*T_i*], and both the geometry and the cohomology can be analysed easily from this description.
- Let \mathcal{L} be a thicket; then we can find many different vernal trees $\mathcal{T} \subseteq \mathcal{L}$.

- ▶ Let \mathcal{T} be a vernal tree, and let T_1, \ldots, T_r be the maximal proper subsets in \mathcal{T} . Put $\mathcal{T}_i = \{U \in \mathcal{T} \mid U \subseteq T_i\}$, which is a vernal tree on T_i .
- ► The space *M*[*T*] is then the projective bundle associated to a certain vector bundle over ∏_i *M*[*T_i*], and both the geometry and the cohomology can be analysed easily from this description.
- Let \mathcal{L} be a thicket; then we can find many different vernal trees $\mathcal{T} \subseteq \mathcal{L}$.
- For each such tree, there is a projection map M[L] → M[T], which is an isomorphism over a large open subscheme of M[T]. Some facts are established by this route rather than by induction on |L|.