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Overview

I This talk describes results from the PhD thesis of Daniel Singh.

I Let S be a finite set. Put S+ = S q {+}. We will describe a class of
objects called stable S+-marked curves of genus zero.

I (Convention: the set S , and many subsets of S that we will mention, are
required to have size at least two. We will not say this explicitly.)

I We will write XS for the space of isomorphism classes of such objects. It is
a compact complex manifold of dimension |S | − 2. It has been studied
extensively, especially for applications in quantum cohomology.

I There are various constructions of XS in the literature, using abstract
methods from algebraic geometry (geometric invariant theory, Chow
quotients, iterated blowups). We will describe a more elementary model.

I One way to think about it: instead of Kapranov’s carefully constructed
sequence of blowups depending on some arbitrary choices, we perform all
possible blowups simultaneously. Miraculously, this does not mess things
up.

I The cohomology of XS was described by Sean Keel. We will give an
alternative description that fits more neatly with Singh’s geometric
description of the space.
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Generic S+-marked curves of genus zero

I A generic S+-marked curve of genus zero is a pair (C , x), where C is an
algebraic curve isomorphic to CP1, and x : S+ → C is an injective map.

I We write X ′S for the set of isomorphism classes of such objects.
I

VS = Map(S ,C)/C

ŨS = Inj(S ,C)/C ⊂ VS

PVS = {L ≤ VS | dim(L) = 1} ' CP |S|−2 US = image of ŨS in PVS .

I Let M(C , x) be the (2-dimensional) space of holomorphic maps
f : C \ {x(+)} → C with at worst a simple pole at x(+).

Let λ(C , x) be

the image of the composite M(C , x)/C x∗−→ VS . This defines a bijection
λ : X ′S → US ⊂ PVS .

Note that X ′S ' US is not compact.
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Stable S+-marked curves of genus zero

I A stable S+-marked curve of genus zero is a pair (C , x), where C is an
algebraic curve and x : S+ → C is an injective map, subject to certain
conditions.

I Each irreducible component must isomorphic to CP1.

I Any singularities must be ordinary double points (∼ C[[x , y ]]/(xy)).

I All marked points must be smooth.

I Each CP1 must contain ≥ 3 points that are either singular or marked.

I The graph of components must be a tree.

I We write XS for the set of isomorphism classes of such objects.
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The projective model

I For U ⊆ T ⊆ S we have a restriction map Map(T ,C) � Map(U,C)
inducing a map ρT

U : VT → VU .

I Consider an element M = (MT )T⊆S in the product PS =
∏

T⊆S PVT . We

say that M is coherent if for all U ⊆ T we have MT ≤ (ρT
U )−1(MU) or

equivalently ρT
U (MT ) ∈ {0,MU}.

I We write MS for the subspace of coherent points in PS . This is a kind of
inverse limit of a diagram involving partially defined maps PVT → PVU .

I Theorem: the scheme XS is naturally isomorphic to MS .

I There is a projection map π : MS+ →MS , and each fibre π−1{x} is
naturally an S+-marked stable curve of genus 0. We thus have a map
µ : MS → XS sending x to the isomorphism type of π−1{x}.

I The map λ : X ′S → US ⊂ PVS extends uniquely (via the same definition)
to give a map λ : XS → PVS .

I There is a “stable forgetting” map XS → XT as follows: given (C , x) ∈ XS

take (C , x |T ) and collapse to a point any irreducible component that does
not contain at least thee points that are marked or singular.

I By combining these stable forgetting maps with the maps λT : XT → PVT

we obtain a canonical map ν : XS →MS .

It works out that ν is an
isomorphism of varieties, with inverse µ.
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I Theorem: the scheme XS is naturally isomorphic to MS .

I There is a projection map π : MS+ →MS , and each fibre π−1{x} is
naturally an S+-marked stable curve of genus 0. We thus have a map
µ : MS → XS sending x to the isomorphism type of π−1{x}.

I The map λ : X ′S → US ⊂ PVS extends uniquely (via the same definition)
to give a map λ : XS → PVS .

I There is a “stable forgetting” map XS → XT as follows: given (C , x) ∈ XS

take (C , x |T ) and collapse to a point any irreducible component that does
not contain at least thee points that are marked or singular.

I By combining these stable forgetting maps with the maps λT : XT → PVT

we obtain a canonical map ν : XS →MS .

It works out that ν is an
isomorphism of varieties, with inverse µ.
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Vector bundles and cohomology

I Let LT be the line bundle over MS whose fibre at M is MT .

I Let xT ∈ H2(MS) be the Euler class of LT .

I If T and U overlap then the map VT∪U → VT ⊕ VU is injective

, so
LT∪U ≤ LT ⊕ LU , so (xT∪U − xT )(xT∪U − xU) = 0.

I Now suppose that U1, . . . ,Ur are disjoint subsets of T . Put
m = (|T | − 1)−

∑
i (|Ui | − 1). There is a short exact sequence

0→ Cm → VT →
⊕

i

VUi → 0.

It follows that LT ≤ Cm ⊕
⊕

i LUi , and thus

xm
T

∏
i

(xT − xUi ) = 0.

I Theorem: H∗(MS) is generated by the classes xT subject only to the
relations above.

I For the proof and also for further details of the structure, we need some
combinatorics.
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Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree.

These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree. These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Arbology

I A forest is a collection F of subsets of S such that for all U,V ∈ F we
have U ∩ V = ∅ or U ⊆ V or V ⊆ U.

I A tree is a forest with only one maximal element.

I A tree is autumnal if there are leaves on the ground, otherwise vernal.

I Suppose that M ∈MS . Say that T ⊆ S is M-critical if for all strictly
larger sets U ⊃ T we have ρU

T (MU) = 0. Let type(M) be the collection of
all M-critical sets. Then type(M) is a vernal tree. These trees correspond
to the component trees of stable curves as drawn previously.

I The stratification by tree type is an important tool for studying the
geometry of MS . The pure strata are products of copies of the spaces
X ′T ' UT ⊂ PVT .



Shapes and bases

I Given a monomial y =
∏

T xnT
T , the shape of y is {T | nT > 0}.

I Given a forest F and a set T ∈ F , let U1, . . . ,Ur be the maximal sets in
{U ∈ F | U ⊂ T}. Then put

m(F ,T ) = (|T | − 1)−
∑

i

(|Ui | − 1),

so we have a relation x
m(F,T )
T

∏
i (xT − xUi ) = 0 in H∗(MS).

I We say that y is admissible if shape(y) is a forest and
nT < m(shape(y),T ) for all T ∈ shape(y).

I Theorem: the admissible monomials give a basis for H∗(MS) over Z.

In

particular, {x |S|−2
S } is a basis for the top group H2|S|−4(MS).

I We say that y is strongly inadmissible if there exists U ⊆ S such that∑
T⊆U nT > |U| − 2.

I Theorem: if y is strongly inadmissible then it is zero in H∗(MS). If y is

not strongly inadmissible then x i
Sy = x

|S|−2
S for i = |S | − 2− deg(y)/2.
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Thickets

I A thicket is a collection L of subsets of S with the following properties:
we have S ∈ L, and if U,V ∈ L and U ∩ V 6= ∅ then U ∪ V ∈ L.

I Every vernal tree is a thicket, and {T ⊆ S | |T | > 1} is also a thicket.

I Given a thicket L we put P[L] =
∏

T∈L PVT . We say that a point M in
this space is coherent if whenever U,T ∈ L and U ⊆ T we have
ρT

U (MT ) ≤ MU . We let M[L] denote the subspace of coherent points.

I All theorems stated for MS can be adapted to be valid for M[L]. They
are proved inductively in this setting by successively discarding minimal
elements from L.

I The induction step involves a blowup square

M[L]× PVT
// //

����

M[L+]

����
M[L] // // M[L]

where T is minimal in L+ and L = L+ \ {T} and L is an induced thicket
on S/T .
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Trees as thickets

I Let T be a vernal tree, and let T1, . . . ,Tr be the maximal proper subsets
in T . Put Ti = {U ∈ T | U ⊆ Ti}, which is a vernal tree on Ti .

I The space M[T ] is then the projective bundle associated to a certain
vector bundle over

∏
iM[Ti ], and both the geometry and the cohomology

can be analysed easily from this description.

I Let L be a thicket; then we can find many different vernal trees T ⊆ L.

I For each such tree, there is a projection map M[L]→M[T ], which is an
isomorphism over a large open subscheme of M[T ]. Some facts are
established by this route rather than by induction on |L|.
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