Moduli of stable curves of genus zero

Neil Strickland

March 24, 2009

Overview

- This talk describes results from the PhD thesis of Daniel Singh.

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_{S} for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension $|S|-2$. It has been studied extensively, especially for applications in quantum cohomology.

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_{S} for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension $|S|-2$. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of \mathcal{X}_{S} in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_{S} for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension $|S|-2$. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of \mathcal{X}_{S} in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.
- One way to think about it: instead of Kapranov's carefully constructed sequence of blowups depending on some arbitrary choices, we perform all possible blowups simultaneously. Miraculously, this does not mess things up.

Overview

- This talk describes results from the PhD thesis of Daniel Singh.
- Let S be a finite set. Put $S_{+}=S \amalg\{+\}$. We will describe a class of objects called stable S_{+}-marked curves of genus zero.
- (Convention: the set S, and many subsets of S that we will mention, are required to have size at least two. We will not say this explicitly.)
- We will write \mathcal{X}_{S} for the space of isomorphism classes of such objects. It is a compact complex manifold of dimension $|S|-2$. It has been studied extensively, especially for applications in quantum cohomology.
- There are various constructions of \mathcal{X}_{S} in the literature, using abstract methods from algebraic geometry (geometric invariant theory, Chow quotients, iterated blowups). We will describe a more elementary model.
- One way to think about it: instead of Kapranov's carefully constructed sequence of blowups depending on some arbitrary choices, we perform all possible blowups simultaneously. Miraculously, this does not mess things up.
- The cohomology of \mathcal{X}_{S} was described by Sean Keel. We will give an alternative description that fits more neatly with Singh's geometric description of the space.

Generic S_{+}-marked curves of genus zero

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
V_{S}=\operatorname{Map}(S, \mathbb{C}) / \mathbb{C}
$$

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{aligned}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2}
\end{aligned}
$$

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{array}{rlr}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S}=\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} &
\end{array}
$$

Generic S_{+}-marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{aligned}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S} & =\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} & U_{S} & =\text { image of } \widetilde{U}_{S} \text { in } P V_{S}
\end{aligned}
$$

Generic S_{+}-marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{array}{rlrl}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S}=\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} & U_{S} & =\text { image of } \widetilde{U}_{S} \text { in } P V_{S}
\end{array}
$$

- Let $M(C, x)$ be the (2-dimensional) space of holomorphic maps $f: C \backslash\{x(+)\} \rightarrow \mathbb{C}$ with at worst a simple pole at $x(+)$.

Generic S_{+}-marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{array}{rlrl}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S}=\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} & U_{S} & =\text { image of } \widetilde{U}_{S} \text { in } P V_{S}
\end{array}
$$

- Let $M(C, x)$ be the (2-dimensional) space of holomorphic maps $f: C \backslash\{x(+)\} \rightarrow \mathbb{C}$ with at worst a simple pole at $x(+)$. Let $\lambda(C, x)$ be the image of the composite $M(C, x) / \mathbb{C} \xrightarrow{x^{*}} V_{S}$.

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{array}{rlrl}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S}=\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} & U_{S} & =\text { image of } \widetilde{U}_{S} \text { in } P V_{S}
\end{array}
$$

- Let $M(C, x)$ be the (2-dimensional) space of holomorphic maps $f: C \backslash\{x(+)\} \rightarrow \mathbb{C}$ with at worst a simple pole at $x(+)$. Let $\lambda(C, x)$ be the image of the composite $M(C, x) / \mathbb{C} \xrightarrow{x^{*}} V_{S}$. This defines a bijection $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$.

Generic S_{+-}marked curves of genus zero

- A generic S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve isomorphic to $\mathbb{C} P^{1}$, and $x: S_{+} \rightarrow C$ is an injective map.

$$
S=\{a, b, c, d, e\}
$$

- We write \mathcal{X}_{S}^{\prime} for the set of isomorphism classes of such objects.

$$
\begin{aligned}
V_{S} & =\operatorname{Map}(S, \mathbb{C}) / \mathbb{C} & \widetilde{U}_{S}=\operatorname{lnj}(S, \mathbb{C}) / \mathbb{C} \subset V_{S} \\
P V_{S} & =\left\{L \leq V_{S} \mid \operatorname{dim}(L)=1\right\} \simeq \mathbb{C} P^{|S|-2} & U_{S}=\text { image of } \widetilde{U}_{S} \text { in } P V_{S}
\end{aligned}
$$

- Let $M(C, x)$ be the (2-dimensional) space of holomorphic maps $f: C \backslash\{x(+)\} \rightarrow \mathbb{C}$ with at worst a simple pole at $x(+)$. Let $\lambda(C, x)$ be the image of the composite $M(C, x) / \mathbb{C} \xrightarrow{x^{*}} V_{S}$. This defines a bijection $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$. Note that $\mathcal{X}_{S}^{\prime} \simeq U_{S}$ is not compact.

Stable S_{+}-marked curves of genus zero

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.
- Any singularities must be ordinary double points $(\sim \mathbb{C} \llbracket x, y \rrbracket /(x y))$.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.
- Any singularities must be ordinary double points $(\sim \mathbb{C} \llbracket x, y \rrbracket /(x y))$.
- All marked points must be smooth.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.
- Any singularities must be ordinary double points ($\sim \mathbb{C} \llbracket x, y \rrbracket /(x y)$).
- All marked points must be smooth.
- Each $\mathbb{C} P^{1}$ must contain ≥ 3 points that are either singular or marked.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.
- Any singularities must be ordinary double points $(\sim \mathbb{C} \llbracket x, y \rrbracket /(x y))$.
- All marked points must be smooth.
- Each $\mathbb{C} P^{1}$ must contain ≥ 3 points that are either singular or marked.
- The graph of components must be a tree.

Stable S_{+}-marked curves of genus zero

- A stable S_{+}-marked curve of genus zero is a pair (C, x), where C is an algebraic curve and $x: S_{+} \rightarrow C$ is an injective map, subject to certain conditions.

- Each irreducible component must isomorphic to $\mathbb{C} P^{1}$.
- Any singularities must be ordinary double points $(\sim \mathbb{C} \llbracket x, y \rrbracket /(x y))$.
- All marked points must be smooth.
- Each $\mathbb{C} P^{1}$ must contain ≥ 3 points that are either singular or marked.
- The graph of components must be a tree.
- We write \mathcal{X}_{S} for the set of isomorphism classes of such objects.

The projective model

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{s} for the subspace of coherent points in \mathcal{P}_{s}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{s} for the subspace of coherent points in \mathcal{P}_{s}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{s} is naturally isomorphic to \mathcal{M}_{s}.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{s} for the subspace of coherent points in \mathcal{P}_{s}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{s} is naturally isomorphic to \mathcal{M}_{s}.
- There is a projection map $\pi: \mathcal{M}_{S_{+}} \rightarrow \mathcal{M}_{s}$, and each fibre $\pi^{-1}\{x\}$ is naturally an S_{+}-marked stable curve of genus 0 . We thus have a map $\mu: \mathcal{M}_{S} \rightarrow \mathcal{X}_{S}$ sending x to the isomorphism type of $\pi^{-1}\{x\}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{S} for the subspace of coherent points in \mathcal{P}_{S}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{S} is naturally isomorphic to \mathcal{M}_{S}.
- There is a projection map $\pi: \mathcal{M}_{S_{+}} \rightarrow \mathcal{M}_{S}$, and each fibre $\pi^{-1}\{x\}$ is naturally an S_{+}-marked stable curve of genus 0 . We thus have a map $\mu: \mathcal{M}_{S} \rightarrow \mathcal{X}_{S}$ sending x to the isomorphism type of $\pi^{-1}\{x\}$.
- The map $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \rightarrow P V_{S}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{S} for the subspace of coherent points in \mathcal{P}_{S}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{S} is naturally isomorphic to \mathcal{M}_{S}.
- There is a projection map $\pi: \mathcal{M}_{S_{+}} \rightarrow \mathcal{M}_{S}$, and each fibre $\pi^{-1}\{x\}$ is naturally an S_{+}-marked stable curve of genus 0 . We thus have a map $\mu: \mathcal{M}_{S} \rightarrow \mathcal{X}_{S}$ sending x to the isomorphism type of $\pi^{-1}\{x\}$.
- The map $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \rightarrow P V_{S}$.
- There is a "stable forgetting" map $\mathcal{X}_{S} \rightarrow \mathcal{X}_{T}$ as follows: given $(C, x) \in \mathcal{X}_{S}$ take $\left(C,\left.x\right|_{T}\right)$ and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{S} for the subspace of coherent points in \mathcal{P}_{S}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{S} is naturally isomorphic to \mathcal{M}_{S}.
- There is a projection map $\pi: \mathcal{M}_{S_{+}} \rightarrow \mathcal{M}_{S}$, and each fibre $\pi^{-1}\{x\}$ is naturally an S_{+}-marked stable curve of genus 0 . We thus have a map $\mu: \mathcal{M}_{S} \rightarrow \mathcal{X}_{S}$ sending x to the isomorphism type of $\pi^{-1}\{x\}$.
- The map $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \rightarrow P V_{S}$.
- There is a "stable forgetting" map $\mathcal{X}_{S} \rightarrow \mathcal{X}_{T}$ as follows: given $(C, x) \in \mathcal{X}_{S}$ take $\left(C,\left.x\right|_{T}\right)$ and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.
- By combining these stable forgetting maps with the maps $\lambda_{T}: \mathcal{X}_{T} \rightarrow P V_{T}$ we obtain a canonical map $\nu: \mathcal{X}_{S} \rightarrow \mathcal{M}_{s}$.

The projective model

- For $U \subseteq T \subseteq S$ we have a restriction map $\operatorname{Map}(T, \mathbb{C}) \rightarrow \operatorname{Map}(U, \mathbb{C})$ inducing a map $\rho_{U}^{T}: V_{T} \rightarrow V_{U}$.
- Consider an element $M=\left(M_{T}\right)_{T \subseteq S}$ in the product $\mathcal{P}_{S}=\prod_{T \subseteq S} P V_{T}$. We say that M is coherent if for all $U \subseteq T$ we have $M_{T} \leq\left(\rho_{U}^{T}\right)^{-1}\left(M_{U}\right)$ or equivalently $\rho_{U}^{T}\left(M_{T}\right) \in\left\{0, M_{U}\right\}$.
- We write \mathcal{M}_{S} for the subspace of coherent points in \mathcal{P}_{S}. This is a kind of inverse limit of a diagram involving partially defined maps $P V_{T} \rightarrow P V_{U}$.
- Theorem: the scheme \mathcal{X}_{S} is naturally isomorphic to \mathcal{M}_{S}.
- There is a projection map $\pi: \mathcal{M}_{S_{+}} \rightarrow \mathcal{M}_{S}$, and each fibre $\pi^{-1}\{x\}$ is naturally an S_{+}-marked stable curve of genus 0 . We thus have a map $\mu: \mathcal{M}_{S} \rightarrow \mathcal{X}_{S}$ sending x to the isomorphism type of $\pi^{-1}\{x\}$.
- The map $\lambda: \mathcal{X}_{S}^{\prime} \rightarrow U_{S} \subset P V_{S}$ extends uniquely (via the same definition) to give a map $\lambda: \mathcal{X}_{S} \rightarrow P V_{S}$.
- There is a "stable forgetting" map $\mathcal{X}_{S} \rightarrow \mathcal{X}_{T}$ as follows: given $(C, x) \in \mathcal{X}_{S}$ take $\left(C,\left.x\right|_{T}\right)$ and collapse to a point any irreducible component that does not contain at least thee points that are marked or singular.
- By combining these stable forgetting maps with the maps $\lambda_{T}: \mathcal{X}_{T} \rightarrow P V_{T}$ we obtain a canonical map $\nu: \mathcal{X}_{S} \rightarrow \mathcal{M}_{S}$. It works out that ν is an isomorphism of varieties, with inverse μ.

Vector bundles and cohomology

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.
- Now suppose that U_{1}, \ldots, U_{r} are disjoint subsets of T. Put $m=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right)$. There is a short exact sequence

$$
0 \rightarrow \mathbb{C}^{m} \rightarrow V_{T} \rightarrow \bigoplus_{i} V_{U_{i}} \rightarrow 0
$$

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.
- Now suppose that U_{1}, \ldots, U_{r} are disjoint subsets of T. Put $m=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right)$. There is a short exact sequence

$$
0 \rightarrow \mathbb{C}^{m} \rightarrow V_{T} \rightarrow \bigoplus_{i} V_{U_{i}} \rightarrow 0
$$

It follows that $L_{T} \leq \mathbb{C}^{m} \oplus \bigoplus_{i} L_{U_{i}}$

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.
- Now suppose that U_{1}, \ldots, U_{r} are disjoint subsets of T. Put $m=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right)$. There is a short exact sequence

$$
0 \rightarrow \mathbb{C}^{m} \rightarrow V_{T} \rightarrow \bigoplus_{i} V_{U_{i}} \rightarrow 0
$$

It follows that $L_{T} \leq \mathbb{C}^{m} \oplus \bigoplus_{i} L_{U_{i}}$, and thus

$$
x_{T}^{m} \prod_{i}\left(x_{T}-x u_{i}\right)=0
$$

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.
- Now suppose that U_{1}, \ldots, U_{r} are disjoint subsets of T. Put $m=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right)$. There is a short exact sequence

$$
0 \rightarrow \mathbb{C}^{m} \rightarrow V_{T} \rightarrow \bigoplus_{i} V_{U_{i}} \rightarrow 0
$$

It follows that $L_{T} \leq \mathbb{C}^{m} \oplus \bigoplus_{i} L_{U_{i}}$, and thus

$$
x_{T}^{m} \prod_{i}\left(x_{T}-x u_{i}\right)=0
$$

- Theorem: $H^{*}\left(\mathcal{M}_{S}\right)$ is generated by the classes x_{T} subject only to the relations above.

Vector bundles and cohomology

- Let L_{T} be the line bundle over \mathcal{M}_{S} whose fibre at M is M_{T}.
- Let $x_{T} \in H^{2}\left(\mathcal{M}_{S}\right)$ be the Euler class of L_{T}.
- If T and U overlap then the map $V_{T \cup U} \rightarrow V_{T} \oplus V_{U}$ is injective, so $L_{T \cup U} \leq L_{T} \oplus L_{U}$, so $\left(x_{T \cup U}-x_{T}\right)\left(x_{T \cup U}-x_{U}\right)=0$.
- Now suppose that U_{1}, \ldots, U_{r} are disjoint subsets of T. Put $m=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right)$. There is a short exact sequence

$$
0 \rightarrow \mathbb{C}^{m} \rightarrow V_{T} \rightarrow \bigoplus_{i} V_{U_{i}} \rightarrow 0
$$

It follows that $L_{T} \leq \mathbb{C}^{m} \oplus \bigoplus_{i} L_{U_{i}}$, and thus

$$
x_{T}^{m} \prod_{i}\left(x_{T}-x u_{i}\right)=0
$$

- Theorem: $H^{*}\left(\mathcal{M}_{S}\right)$ is generated by the classes x_{T} subject only to the relations above.
- For the proof and also for further details of the structure, we need some combinatorics.

Arbology

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.
- A tree is autumnal if there are leaves on the ground, otherwise vernal.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.
- A tree is autumnal if there are leaves on the ground, otherwise vernal.
- Suppose that $M \in \mathcal{M}_{s}$. Say that $T \subseteq S$ is M-critical if for all strictly larger sets $U \supset T$ we have $\rho_{T}^{U}\left(M_{U}\right)=0$. Let type (M) be the collection of all M-critical sets. Then $\operatorname{type}(M)$ is a vernal tree.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.
- A tree is autumnal if there are leaves on the ground, otherwise vernal.
- Suppose that $M \in \mathcal{M}_{s}$. Say that $T \subseteq S$ is M-critical if for all strictly larger sets $U \supset T$ we have $\rho_{T}^{U}\left(M_{U}\right)=0$. Let type (M) be the collection of all M-critical sets. Then type (M) is a vernal tree. These trees correspond to the component trees of stable curves as drawn previously.

Arbology

- A forest is a collection \mathcal{F} of subsets of S such that for all $U, V \in \mathcal{F}$ we have $U \cap V=\emptyset$ or $U \subseteq V$ or $V \subseteq U$.

- A tree is a forest with only one maximal element.
- A tree is autumnal if there are leaves on the ground, otherwise vernal.
- Suppose that $M \in \mathcal{M}_{s}$. Say that $T \subseteq S$ is M-critical if for all strictly larger sets $U \supset T$ we have $\rho_{T}^{U}\left(M_{U}\right)=0$. Let type (M) be the collection of all M-critical sets. Then type (M) is a vernal tree. These trees correspond to the component trees of stable curves as drawn previously.
- The stratification by tree type is an important tool for studying the geometry of \mathcal{M}_{S}. The pure strata are products of copies of the spaces $\mathcal{X}_{T}^{\prime} \simeq U_{T} \subset P V_{T}$.

Shapes and bases

Shapes and bases

- Given a monomial $y=\prod_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.

Shapes and bases

- Given a monomial $y=\prod_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

Shapes and bases

- Given a monomial $y=\Pi_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

- We say that y is admissible if shape (y) is a forest and $n_{T}<m(\operatorname{shape}(y), T)$ for all $T \in \operatorname{shape}(y)$.

Shapes and bases

- Given a monomial $y=\prod_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

- We say that y is admissible if shape (y) is a forest and $n_{T}<m(\operatorname{shape}(y), T)$ for all $T \in \operatorname{shape}(y)$.
- Theorem: the admissible monomials give a basis for $H^{*}\left(\mathcal{M}_{s}\right)$ over \mathbb{Z}.

Shapes and bases

- Given a monomial $y=\prod_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

- We say that y is admissible if shape (y) is a forest and $n_{T}<m(\operatorname{shape}(y), T)$ for all $T \in \operatorname{shape}(y)$.
- Theorem: the admissible monomials give a basis for $H^{*}\left(\mathcal{M}_{s}\right)$ over \mathbb{Z}. In particular, $\left\{x_{S}^{|S|-2}\right\}$ is a basis for the top group $H^{2|S|-4}\left(\mathcal{M}_{S}\right)$.

Shapes and bases

- Given a monomial $y=\Pi_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

- We say that y is admissible if shape (y) is a forest and $n_{T}<m(\operatorname{shape}(y), T)$ for all $T \in \operatorname{shape}(y)$.
- Theorem: the admissible monomials give a basis for $H^{*}\left(\mathcal{M}_{s}\right)$ over \mathbb{Z}. In particular, $\left\{x_{S}^{|S|-2}\right\}$ is a basis for the top group $H^{||S|-4}\left(\mathcal{M}_{S}\right)$.
- We say that y is strongly inadmissible if there exists $U \subseteq S$ such that $\sum_{T \subseteq U} n_{T}>|U|-2$.

Shapes and bases

- Given a monomial $y=\Pi_{T} x_{T}^{n_{T}}$, the shape of y is $\left\{T \mid n_{T}>0\right\}$.
- Given a forest \mathcal{F} and a set $T \in \mathcal{F}$, let U_{1}, \ldots, U_{r} be the maximal sets in $\{U \in \mathcal{F} \mid U \subset T\}$. Then put

$$
m(\mathcal{F}, T)=(|T|-1)-\sum_{i}\left(\left|U_{i}\right|-1\right),
$$

so we have a relation $x_{T}^{m(\mathcal{F}, T)} \prod_{i}\left(x_{T}-x_{U_{i}}\right)=0$ in $H^{*}\left(\mathcal{M}_{S}\right)$.

- We say that y is admissible if shape (y) is a forest and $n_{T}<m(\operatorname{shape}(y), T)$ for all $T \in \operatorname{shape}(y)$.
- Theorem: the admissible monomials give a basis for $H^{*}\left(\mathcal{M}_{s}\right)$ over \mathbb{Z}. In particular, $\left\{x_{S}^{|S|-2}\right\}$ is a basis for the top group $H^{||S|-4}\left(\mathcal{M}_{S}\right)$.
- We say that y is strongly inadmissible if there exists $U \subseteq S$ such that $\sum_{T \subseteq U} n_{T}>|U|-2$.
- Theorem: if y is strongly inadmissible then it is zero in $H^{*}\left(\mathcal{M}_{s}\right)$. If y is not strongly inadmissible then $x_{S}^{i} y=x_{S}^{|S|-2}$ for $i=|S|-2-\operatorname{deg}(y) / 2$.

Thickets

Thickets

- A thicket is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.

Thickets

- A thicket is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S||T|>1\}$ is also a thicket.

Thickets

- A thicket is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S||T|>1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}]=\prod_{T \in \mathcal{L}} P V_{T}$. We say that a point M in this space is coherent if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_{U}^{T}\left(M_{T}\right) \leq M_{U}$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.

Thickets

- A thicket is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S||T|>1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}]=\prod_{T \in \mathcal{L}} P V_{T}$. We say that a point M in this space is coherent if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_{U}^{T}\left(M_{T}\right) \leq M_{U}$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.
- All theorems stated for \mathcal{M}_{S} can be adapted to be valid for $\mathcal{M}[\mathcal{L}]$. They are proved inductively in this setting by successively discarding minimal elements from \mathcal{L}.

Thickets

- A thicket is a collection \mathcal{L} of subsets of S with the following properties: we have $S \in \mathcal{L}$, and if $U, V \in \mathcal{L}$ and $U \cap V \neq \emptyset$ then $U \cup V \in \mathcal{L}$.
- Every vernal tree is a thicket, and $\{T \subseteq S||T|>1\}$ is also a thicket.
- Given a thicket \mathcal{L} we put $\mathcal{P}[\mathcal{L}]=\prod_{T \in \mathcal{L}} P V_{T}$. We say that a point M in this space is coherent if whenever $U, T \in \mathcal{L}$ and $U \subseteq T$ we have $\rho_{U}^{T}\left(M_{T}\right) \leq M_{U}$. We let $\mathcal{M}[\mathcal{L}]$ denote the subspace of coherent points.
- All theorems stated for \mathcal{M}_{S} can be adapted to be valid for $\mathcal{M}[\mathcal{L}]$. They are proved inductively in this setting by successively discarding minimal elements from \mathcal{L}.
- The induction step involves a blowup square

where T is minimal in \mathcal{L}_{+}and $\mathcal{L}=\mathcal{L}_{+} \backslash\{T\}$ and $\overline{\mathcal{L}}$ is an induced thicket on S / T.

Trees as thickets

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_{1}, \ldots, T_{r} be the maximal proper subsets in \mathcal{T}. Put $\mathcal{T}_{i}=\left\{U \in \mathcal{T} \mid U \subseteq T_{i}\right\}$, which is a vernal tree on T_{i}.

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_{1}, \ldots, T_{r} be the maximal proper subsets in \mathcal{T}. Put $\mathcal{T}_{i}=\left\{U \in \mathcal{T} \mid U \subseteq T_{i}\right\}$, which is a vernal tree on T_{i}.
- The space $\mathcal{M}[\mathcal{T}]$ is then the projective bundle associated to a certain vector bundle over $\prod_{i} \mathcal{M}\left[\mathcal{T}_{i}\right]$, and both the geometry and the cohomology can be analysed easily from this description.

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_{1}, \ldots, T_{r} be the maximal proper subsets in \mathcal{T}. Put $\mathcal{T}_{i}=\left\{U \in \mathcal{T} \mid U \subseteq T_{i}\right\}$, which is a vernal tree on T_{i}.
- The space $\mathcal{M}[\mathcal{T}]$ is then the projective bundle associated to a certain vector bundle over $\prod_{i} \mathcal{M}\left[\mathcal{T}_{i}\right]$, and both the geometry and the cohomology can be analysed easily from this description.
- Let \mathcal{L} be a thicket; then we can find many different vernal trees $\mathcal{T} \subseteq \mathcal{L}$.

Trees as thickets

- Let \mathcal{T} be a vernal tree, and let T_{1}, \ldots, T_{r} be the maximal proper subsets in \mathcal{T}. Put $\mathcal{T}_{i}=\left\{U \in \mathcal{T} \mid U \subseteq T_{i}\right\}$, which is a vernal tree on T_{i}.
- The space $\mathcal{M}[\mathcal{T}]$ is then the projective bundle associated to a certain vector bundle over $\prod_{i} \mathcal{M}\left[\mathcal{T}_{i}\right]$, and both the geometry and the cohomology can be analysed easily from this description.
- Let \mathcal{L} be a thicket; then we can find many different vernal trees $\mathcal{T} \subseteq \mathcal{L}$.
- For each such tree, there is a projection map $\mathcal{M}[\mathcal{L}] \rightarrow \mathcal{M}[\mathcal{T}]$, which is an isomorphism over a large open subscheme of $\mathcal{M}[\mathcal{T}]$. Some facts are established by this route rather than by induction on $|\mathcal{L}|$.

