Higher representations of symmetric groups

Neil Strickland

March 14, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem of S.; building on work of Hunton, Hopkins, Kuhn, Ravenel, Kashiwabara, Wilson

 $\operatorname{spf}(E^0(B\Sigma_{p^d})/(\operatorname{partition transfers})) = \operatorname{Sub}_d(\mathbb{G})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Sigma_k \text{ is the symmetric group on } k \text{ letters}$ $spf(E^0(B\Sigma_{p^d})/(\text{partition transfers})) = Sub_d(\mathbb{G})$

BG is the classifying space of a finite group G Connected, $\pi_1(BG) = G$, other $\pi_n(BG) = 0$ Central to equivariant homotopy theory One model: $B\Sigma_k = \{A \subset \mathbb{R}^\infty \mid |A| = k\}$

 Σ_k is the symmetric group on k letters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\operatorname{spf}(E^0(B\Sigma_{p^d})/(\operatorname{partition transfers})) = \operatorname{Sub}_d(\mathbb{G})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

$\operatorname{spf}(E^0(B\Sigma_{p^d})/(\operatorname{partition transfers})) = \operatorname{Sub}_d(\mathbb{G})$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

 $E^{0}(\mathbb{C}P^{\infty}) = E^{0}(\mathsf{pt})[\![x]\!] \text{ is naturally a Hopf algebra over } E^{0}(\mathsf{pt})$ $\mathbb{G} = \mathsf{spf}(E^{0}(\mathsf{pt})[\![x]\!]) \text{ is a formal group scheme over } S = \mathsf{spf}(E^{0}(\mathsf{pt}))$

 $\operatorname{spf}(E^0(B\Sigma_{p^d})/(\operatorname{partition transfers})) = \operatorname{Sub}_d(\mathbb{G})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $E^{0}(\mathbb{C}P^{\infty}) = E^{0}(\mathsf{pt})[\![x]\!] \text{ is naturally a Hopf algebra over } E^{0}(\mathsf{pt})$ $\mathbb{G} = \mathsf{spf}(E^{0}(\mathsf{pt})[\![x]\!]) \text{ is a formal group scheme over } S = \mathsf{spf}(E^{0}(\mathsf{pt}))$

 $\operatorname{Sub}_d(\mathbb{G})$ is the moduli scheme of finite subgroup schemes of \mathbb{G} of order p^d .

 $\operatorname{spf}(E^0(B\Sigma_{p^d})/(\operatorname{partition transfers})) = \operatorname{Sub}_d(\mathbb{G})$

The main theorem, restated

• Put
$$R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$$
.

(ロ)、(型)、(E)、(E)、 E) の(の)

The main theorem, restated

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p[[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The main theorem, restated

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p [[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)
- Consider quotient Hopf algebras B = A[[x]]/J = (A ⊗_{E⁰} E⁰(ℂP[∞]))/J such that B is a free module of rank p^d over A.

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p [[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)
- Consider quotient Hopf algebras B = A[[x]]/J = (A ⊗_{E⁰} E⁰(ℂP[∞]))/J such that B is a free module of rank p^d over A.

• The set of such *B* bijects naturally with the set of maps $R_d \rightarrow A$ of E^0 -algebras.

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p [[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)
- Consider quotient Hopf algebras B = A[[x]]/J = (A ⊗_{E⁰} E⁰(ℂP[∞]))/J such that B is a free module of rank p^d over A.

- The set of such *B* bijects naturally with the set of maps $R_d \rightarrow A$ of E^0 -algebras.
- ► Moreover, R_d is itself a free module over E⁰, with rank equal to the number of subgroups of index p^d in the group Z^d_p.

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p[[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)
- Consider quotient Hopf algebras B = A[[x]]/J = (A ⊗_{E⁰} E⁰(ℂP[∞]))/J such that B is a free module of rank p^d over A.
- The set of such *B* bijects naturally with the set of maps $R_d \rightarrow A$ of E^0 -algebras.
- ► Moreover, R_d is itself a free module over E⁰, with rank equal to the number of subgroups of index p^d in the group Z^d_p.
- One can give an explicit basis of monomials in the Chern classes of the natural representation of Σ_{pd}; this involves some combinatorics.

- Put $R_d = E^0(B\Sigma_{p^d})/(\text{partition transfers})$.
- Let A be an algebra over E⁰(pt) = E⁰ = Z_p[[u₁,..., u_{n-1}]]. (E depends on a prime p and integer n > 0, suppressed from the notation.)
- Consider quotient Hopf algebras B = A[[x]]/J = (A ⊗_{E⁰} E⁰(ℂP[∞]))/J such that B is a free module of rank p^d over A.
- The set of such *B* bijects naturally with the set of maps $R_d \rightarrow A$ of E^0 -algebras.
- ► Moreover, R_d is itself a free module over E⁰, with rank equal to the number of subgroups of index p^d in the group Z^d_p.
- One can give an explicit basis of monomials in the Chern classes of the natural representation of Σ_{pd}; this involves some combinatorics.
- R_d is naturally self-dual as an E^0 -module, and so is a Gorenstein ring.

• Let R(G) be the complex representation ring of G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let R(G) be the complex representation ring of G.
- Put $\operatorname{Rep}(H, G) = \operatorname{Hom}(H, G)/\operatorname{conjugation}$ by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let R(G) be the complex representation ring of G.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Character theory:

 $\mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C})$

- Let R(G) be the complex representation ring of G.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Character theory:

$$\mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C})$$
$$\overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}})$$

- Let R(G) be the complex representation ring of G.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Character theory:

$$\mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C})$$
$$\overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}})$$
$$\mathbb{Q}^{\mathsf{ab}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})$$

- Let R(G) be the complex representation ring of G.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

Character theory:

$$\mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C})$$
$$\overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}})$$
$$\mathbb{Q}^{\mathsf{ab}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})$$
$$\mathbb{Q} \otimes R(G) = \mathsf{Fix}(\widehat{\mathbb{Z}}^{\times}, \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Let *R*(*G*) be the complex representation ring of *G*.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

Character theory:

$$\begin{split} & \mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C}) \\ & \overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\ & \mathbb{Q}^{\mathsf{ab}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}}) \\ & \mathbb{Q} \otimes R(G) = \mathsf{Fix}(\widehat{\mathbb{Z}}^{\times}, \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})). \end{split}$$

▶ Higher character theory (Hopkins, Kuhn, Ravenel): For a certain extension *L* of $\mathbb{Q} \otimes E^0$ with Galois group Aut(\mathbb{Z}_p^n) we have $L \otimes_{E^0} E^0(BG) = Map(Rep(\mathbb{Z}_p^n, G), L)$

- ▶ Let *R*(*G*) be the complex representation ring of *G*.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

Character theory:

$$\begin{split} & \mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C}) \\ & \overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\ & \mathbb{Q}^{\mathsf{ab}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}}) \\ & \mathbb{Q} \otimes R(G) = \mathsf{Fix}(\widehat{\mathbb{Z}}^{\times}, \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})). \end{split}$$

▶ Higher character theory (Hopkins, Kuhn, Ravenel): For a certain extension L of $\mathbb{Q} \otimes E^0$ with Galois group Aut (\mathbb{Z}_p^n) we have

$$L \otimes_{E^0} E^0(BG) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}_p^n, G), L)$$
$$\mathbb{Q} \otimes E^0(BG) = \mathsf{Fix}(\mathsf{Aut}(\mathbb{Z}_p^n), \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}_p^n, G), L))$$

- ▶ Let *R*(*G*) be the complex representation ring of *G*.
- ▶ Put Rep(H, G) = Hom(H, G)/conjugation by G; so

 $\operatorname{Rep}(\mathbb{Z}, G) = \operatorname{Rep}(\widehat{\mathbb{Z}}, G) = \{ \operatorname{conjugacy classes of elements} \}.$

Character theory:

$$\begin{split} & \mathbb{C} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}, G), \mathbb{C}) \\ & \overline{\mathbb{Q}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\ & \mathbb{Q}^{\mathsf{ab}} \otimes R(G) = \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}}) \\ & \mathbb{Q} \otimes R(G) = \mathsf{Fix}(\widehat{\mathbb{Z}}^{\times}, \mathsf{Map}(\mathsf{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathsf{ab}})). \end{split}$$

▶ Higher character theory (Hopkins, Kuhn, Ravenel): For a certain extension L of $\mathbb{Q} \otimes E^0$ with Galois group Aut (\mathbb{Z}_p^n) we have

$$\begin{split} L\otimes_{E^0} E^0(BG) &= \mathsf{Map}(\mathsf{Rep}(\mathbb{Z}_p^n,G),L)\\ \mathbb{Q}\otimes E^0(BG) &= \mathsf{Fix}(\mathsf{Aut}(\mathbb{Z}_p^n),\mathsf{Map}(\mathsf{Rep}(\mathbb{Z}_p^n,G),L))\\ &\sim \{ \text{abelian } p\text{-subgroups of rank at most } n \} \end{split}$$

E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.

▶ Recall that $E^0 = \mathbb{Z}_p\llbracket u_1, \ldots, u_{n-1} \rrbracket$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.

- ► E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.
- Recall that $E^0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.
- ► Higher character theory describes u₀⁻¹E⁰(BG) precisely; work of Greenlees-S describes u_k⁻¹E⁰(BG)/I_k in similar terms, but only up to *F*-isomorphism (discard nilpotents, adjoin p^k'th roots).

- ► E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.
- Recall that $E^0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.
- ► Higher character theory describes u₀⁻¹E⁰(BG) precisely; work of Greenlees-S describes u_k⁻¹E⁰(BG)/I_k in similar terms, but only up to *F*-isomorphism (discard nilpotents, adjoin p^k'th roots).
- ► E⁰(BG) is finitely generated and often free over E⁰. In that case E⁰(BG) is canonically self-dual over E⁰ and so is Gorenstein. (Theorem of S. via Greenlees-May theory of Tate spectra; compare inner product on R(G).)

- ► E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.
- Recall that $E^0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.
- ▶ Higher character theory describes u₀⁻¹E⁰(BG) precisely; work of Greenlees-S describes u_k⁻¹E⁰(BG)/I_k in similar terms, but only up to *F*-isomorphism (discard nilpotents, adjoin p^k'th roots).
- ► E⁰(BG) is finitely generated and often free over E⁰. In that case E⁰(BG) is canonically self-dual over E⁰ and so is Gorenstein. (Theorem of S. via Greenlees-May theory of Tate spectra; compare inner product on R(G).)
- ▶ Information from ordinary representation theory is encoded by a "Chern approximation" map $spf(E^0(BG)) \rightarrow \lambda SemiRings_*(R^+(G), Div^+(\mathbb{G})).$

- ► E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.
- Recall that $E^0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.
- ► Higher character theory describes u₀⁻¹E⁰(BG) precisely; work of Greenlees-S describes u_k⁻¹E⁰(BG)/I_k in similar terms, but only up to *F*-isomorphism (discard nilpotents, adjoin p^k'th roots).
- ► E⁰(BG) is finitely generated and often free over E⁰. In that case E⁰(BG) is canonically self-dual over E⁰ and so is Gorenstein. (Theorem of S. via Greenlees-May theory of Tate spectra; compare inner product on R(G).)
- ▶ Information from ordinary representation theory is encoded by a "Chern approximation" map $spf(E^0(BG)) \rightarrow \lambda SemiRings_*(R^+(G), Div^+(\mathbb{G})).$
- Let K be a finite field not of characteristic p. Tanabe has shown that

$$spf(E^{0}(BGL_{d}(K))) = Div_{d}^{+}(Tor(\overline{K}^{\times}, \mathbb{G}))^{Gal(K/K)}$$
$$E^{0}(BGL_{d}(K)) = E^{0}\llbracket c_{1}, \dots, c_{d} \rrbracket/(c_{1} - c_{1}^{*}, \dots, c_{d} - c_{d}^{*})$$

Recent work of Sam Marsh gives many more details in special cases.

- ► E⁰(BC_p) = E⁰[[x]]/(monic poly of degree pⁿ) = E⁰{xⁱ | 0 ≤ i < pⁿ}; one can be equally explicit for other abelian groups.
- Recall that $E^0 = \mathbb{Z}_p[\![u_1, \ldots, u_{n-1}]\!]$; put $u_0 = p$ and $I_k = (u_i \mid i < k)$.
- ► Higher character theory describes u₀⁻¹E⁰(BG) precisely; work of Greenlees-S describes u_k⁻¹E⁰(BG)/I_k in similar terms, but only up to *F*-isomorphism (discard nilpotents, adjoin p^k'th roots).
- ► E⁰(BG) is finitely generated and often free over E⁰. In that case E⁰(BG) is canonically self-dual over E⁰ and so is Gorenstein. (Theorem of S. via Greenlees-May theory of Tate spectra; compare inner product on R(G).)
- ▶ Information from ordinary representation theory is encoded by a "Chern approximation" map $spf(E^0(BG)) \rightarrow \lambda SemiRings_*(R^+(G), Div^+(\mathbb{G})).$
- Let K be a finite field not of characteristic p. Tanabe has shown that

$$spf(E^{0}(BGL_{d}(K))) = \mathsf{Div}_{d}^{+}(\mathsf{Tor}(\overline{K}^{\times}, \mathbb{G}))^{\mathsf{Gal}(K/K)}$$
$$E^{0}(BGL_{d}(K)) = E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket/(c_{1} - c_{1}^{*}, \ldots, c_{d} - c_{d}^{*}).$$

Recent work of Sam Marsh gives many more details in special cases.

 Calculations for particular groups by Kriz, Lee, Tezuka, Yagita, Schuster, Bakuradze, Priddy.

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

• Use
$$\Sigma_{p^d} \to U(p^d)$$
 to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- ► Investigate Sub_d(G) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.

・ロト・日本・モート モー うへぐ

- ▶ Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- ► Investigate Sub_d(ℂ) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in \mathbb{Z}_p^n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- ► Investigate Sub_d(G) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in \mathbb{Z}_p^n .
- Higher character theory of E⁰(BΣ_k) and comparison with algebraic results about Q ⊗ O_{Sub_d(G)}.

- Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- Investigate Sub_d(G) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in \mathbb{Z}_p^n .
- ► Higher character theory of E⁰(BΣ_k) and comparison with algebraic results about Q ⊗ O_{Sub_d(G)}.
- The Sylow *p*-subgroup in Σ_{p^d} is an iterated wreath product so its Morava *E*-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in $\mathcal{O}_{Sub_d(\mathbb{G})}$ has nontrivial image in R_d , so the map is injective.

- ▶ Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- Investigate Sub_d(G) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in \mathbb{Z}_p^n .
- Higher character theory of E⁰(BΣ_k) and comparison with algebraic results about Q ⊗ O_{Sub_d(G)}.
- The Sylow *p*-subgroup in Σ_{p^d} is an iterated wreath product so its Morava *E*-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in O_{Sub_d(G)} has nontrivial image in R_d, so the map is injective.
- Consider the space $\coprod_k B\Sigma_k$, which has a very rich algebraic structure; the theory of Hopf rings is useful here.

- Use $\Sigma_{p^d} \to U(p^d)$ to construct a map $\operatorname{spf}(R_d) \to \operatorname{Sub}_d(\mathbb{G})$.
- Investigate Sub_d(G) by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in \mathbb{Z}_p^n .
- Higher character theory of E⁰(BΣ_k) and comparison with algebraic results about Q ⊗ O_{Sub_d(G)}.
- The Sylow *p*-subgroup in Σ_{p^d} is an iterated wreath product so its Morava *E*-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in O_{Sub_d(G)} has nontrivial image in R_d, so the map is injective.
- Consider the space $\coprod_k B\Sigma_k$, which has a very rich algebraic structure; the theory of Hopf rings is useful here.
- ► Compare with QS^0 and QS^2 by the Snaith splitting and the Thom isomorphism. Compare QS^0 with $\Omega^{\infty}BP$ using work of Kashiwabara and Wilson.