# Higher representations of symmetric groups 

Neil Strickland

March 14, 2009

Theorem of S.; building on work of
Hunton, Hopkins, Kuhn, Ravenel, Kashiwabara, Wilson
$\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem

## $\Sigma_{k}$ is the symmetric group on $k$ letters $\operatorname{spf}\left(E^{0}\left(B \boldsymbol{\Sigma}_{\boldsymbol{p}^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem

$B G$ is the classifying space of a finite group $G$ Connected, $\pi_{1}(B G)=G$, other $\pi_{n}(B G)=0$
Central to equivariant homotopy theory One model: $B \Sigma_{k}=\left\{A \subset \mathbb{R}^{\infty}| | A \mid=k\right\}$
$\Sigma_{k}$ is the symmetric group on $k$ letters
$\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem

$E^{*}(X)$ is the Morava $E$-theory of a space $X$ $E^{0}(B G)$ is a "higher representation ring" of $G$
$B G$ is the classifying space of a finite group $G$ Connected, $\pi_{1}(B G)=G$, other $\pi_{n}(B G)=0$ Central to equivariant homotopy theory One model: $B \Sigma_{k}=\left\{A \subset \mathbb{R}^{\infty}| | A \mid=k\right\}$
$\Sigma_{k}$ is the symmetric group on $k$ letters
$\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem

$E^{*}(X)$ is the Morava $E$-theory of a space $X$ $E^{0}(B G)$ is a "higher representation ring" of $G$
$B G$ is the classifying space of a finite group $G$ Connected, $\pi_{1}(B G)=G$, other $\pi_{n}(B G)=0$
Central to equivariant homotopy theory One model: $B \Sigma_{k}=\left\{A \subset \mathbb{R}^{\infty}| | A \mid=k\right\}$
$\Sigma_{k}$ is the symmetric group on $k$ letters
$\operatorname{spf}(E^{0}\left(B \Sigma_{p^{d}}\right) /(\underbrace{\text { partition transfers }}))=\operatorname{Sub}_{d}(\mathbb{G})$
Quotient out the images of transfer maps $E^{0} B\left(\Sigma_{k} \times \Sigma_{p^{d}-k}\right) \rightarrow E^{0} B \Sigma_{p^{d}}$ for $0<k<p^{d}$.

## The main theorem

$\operatorname{spf}(R)$ is the formal spectrum of a complete local Noetherian ring $R$.
$E^{*}(X)$ is the Morava $E$-theory of a space $X$ $E^{0}(B G)$ is a "higher representation ring" of $G$
$B G$ is the classifying space of a finite group $G$ Connected, $\pi_{1}(B G)=G$, other $\pi_{n}(B G)=0$
Central to equivariant homotopy theory
One model: $B \Sigma_{k}=\left\{A \subset \mathbb{R}^{\infty}| | A \mid=k\right\}$
$\Sigma_{k}$ is the symmetric group on $k$ letters
$\operatorname{spf}(E^{0}\left(B \Sigma_{p^{d}}\right) /(\underbrace{\text { partition transfers })})=\operatorname{Sub}_{d}(\mathbb{G})$

Quotient out the images of transfer maps $E^{0} B\left(\Sigma_{k} \times \Sigma_{p^{d}-k}\right) \rightarrow E^{0} B \Sigma_{p^{d}}$ for $0<k<p^{d}$.

$$
\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\text { partition transfers })\right)=\operatorname{Sub}_{d}(\mathbb{G})
$$

$$
\begin{aligned}
& E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0}(\mathrm{pt}) \llbracket \times \rrbracket \text { is naturally a Hopf algebra over } E^{0}(\mathrm{pt}) \\
& \mathbb{G}=\operatorname{spf}\left(E^{0}(\mathrm{pt}) \llbracket \times \rrbracket\right) \text { is a formal group scheme over } S=\operatorname{spf}\left(E^{0}(\mathrm{pt})\right)
\end{aligned}
$$

$\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem

$E^{0}\left(\mathbb{C} P^{\infty}\right)=E^{0}(\mathrm{pt}) \llbracket x \rrbracket$ is naturally a Hopf algebra over $E^{0}(\mathrm{pt})$
$\mathbb{G}=\operatorname{spf}\left(E^{0}(\mathrm{pt}) \llbracket x \rrbracket\right)$ is a formal group scheme over $S=\operatorname{spf}\left(E^{0}(\mathrm{pt})\right)$
$\mathrm{Sub}_{d}(\mathbb{G})$ is the moduli scheme of finite subgroup schemes of $\mathbb{G}$ of order $p^{d}$.
$\operatorname{spf}\left(E^{0}\left(B \Sigma_{p^{d}}\right) /(\right.$ partition transfers $\left.)\right)=\operatorname{Sub}_{d}(\mathbb{G})$

## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /($ partition transfers $)$.


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /$ (partition transfers).
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /$ (partition transfers).
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)
- Consider quotient Hopf algebras $B=A \llbracket x \rrbracket / J=\left(A \widehat{\otimes}_{E^{0}} E^{0}\left(\mathbb{C} P^{\infty}\right)\right) / J$ such that $B$ is a free module of rank $p^{d}$ over $A$.


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /$ (partition transfers).
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)
- Consider quotient Hopf algebras $B=A \llbracket x \rrbracket / J=\left(A \widehat{\otimes}_{E^{0}} E^{0}\left(\mathbb{C} P^{\infty}\right)\right) / J$ such that $B$ is a free module of rank $p^{d}$ over $A$.
- The set of such $B$ bijects naturally with the set of maps $R_{d} \rightarrow A$ of $E^{0}$-algebras.


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /($ partition transfers $)$.
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)
- Consider quotient Hopf algebras $B=A \llbracket x \rrbracket / J=\left(A \widehat{\otimes}_{E^{0}} E^{0}\left(\mathbb{C} P^{\infty}\right)\right) / J$ such that $B$ is a free module of rank $p^{d}$ over $A$.
- The set of such $B$ bijects naturally with the set of maps $R_{d} \rightarrow A$ of $E^{0}$-algebras.
- Moreover, $R_{d}$ is itself a free module over $E^{0}$, with rank equal to the number of subgroups of index $p^{d}$ in the group $\mathbb{Z}_{p}^{d}$.


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /$ (partition transfers).
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)
- Consider quotient Hopf algebras $B=A \llbracket x \rrbracket / J=\left(A \widehat{\otimes}_{E^{0}} E^{0}\left(\mathbb{C} P^{\infty}\right)\right) / J$ such that $B$ is a free module of rank $p^{d}$ over $A$.
- The set of such $B$ bijects naturally with the set of maps $R_{d} \rightarrow A$ of $E^{0}$-algebras.
- Moreover, $R_{d}$ is itself a free module over $E^{0}$, with rank equal to the number of subgroups of index $p^{d}$ in the group $\mathbb{Z}_{p}^{d}$.
- One can give an explicit basis of monomials in the Chern classes of the natural representation of $\Sigma_{p^{d}}$; this involves some combinatorics.


## The main theorem, restated

- Put $R_{d}=E^{0}\left(B \Sigma_{p^{d}}\right) /$ (partition transfers).
- Let $A$ be an algebra over $E^{0}(\mathrm{pt})=E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$. ( $E$ depends on a prime $p$ and integer $n>0$, suppressed from the notation.)
- Consider quotient Hopf algebras $B=A \llbracket x \rrbracket / J=\left(A \widehat{\otimes}_{E^{0}} E^{0}\left(\mathbb{C} P^{\infty}\right)\right) / J$ such that $B$ is a free module of rank $p^{d}$ over $A$.
- The set of such $B$ bijects naturally with the set of maps $R_{d} \rightarrow A$ of $E^{0}$-algebras.
- Moreover, $R_{d}$ is itself a free module over $E^{0}$, with rank equal to the number of subgroups of index $p^{d}$ in the group $\mathbb{Z}_{p}^{d}$.
- One can give an explicit basis of monomials in the Chern classes of the natural representation of $\Sigma_{p^{d}}$; this involves some combinatorics.
- $R_{d}$ is naturally self-dual as an $E^{0}$-module, and so is a Gorenstein ring.


## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.


## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{\text { conjugacy classes of elements }\} .
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{\text { conjugacy classes of elements }\} .
$$

- Character theory:

$$
\mathbb{C} \otimes R(G)=\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C})
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{c o n j u g a c y \text { classes of elements }\} .
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}})
\end{aligned}
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{c o n j u g a c y \text { classes of elements }\} .
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\
\mathbb{Q}^{a b} \otimes R(G) & =\operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{a b}\right)
\end{aligned}
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{c o n j u g a c y \text { classes of elements }\} .
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\
\mathbb{Q}^{\mathrm{ab}} \otimes R(G) & =\operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right) \\
\mathbb{Q} \otimes R(G) & =\operatorname{Fix}\left(\widehat{\mathbb{Z}}^{\times}, \operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right)\right) .
\end{aligned}
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{\text { conjugacy classes of elements }\}
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\
\mathbb{Q}^{\mathrm{ab}} \otimes R(G) & =\operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right) \\
\mathbb{Q} \otimes R(G) & =\operatorname{Fix}\left(\widehat{\mathbb{Z}^{\times}}, \operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right)\right)
\end{aligned}
$$

- Higher character theory (Hopkins, Kuhn, Ravenel):

For a certain extension $L$ of $\mathbb{Q} \otimes E^{0}$ with Galois group Aut $\left(\mathbb{Z}_{p}^{n}\right)$ we have

$$
L \otimes_{E^{0}} E^{0}(B G)=\operatorname{Map}\left(\operatorname{Rep}\left(\mathbb{Z}_{p}^{n}, G\right), L\right)
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{\text { conjugacy classes of elements }\}
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\
\mathbb{Q}^{\mathrm{ab}} \otimes R(G) & =\operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right) \\
\mathbb{Q} \otimes R(G) & =\operatorname{Fix}\left(\widehat{\mathbb{Z}^{\times}}, \operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right)\right)
\end{aligned}
$$

- Higher character theory (Hopkins, Kuhn, Ravenel):

For a certain extension $L$ of $\mathbb{Q} \otimes E^{0}$ with Galois group Aut $\left(\mathbb{Z}_{p}^{n}\right)$ we have

$$
\begin{aligned}
L \otimes_{E^{0}} E^{0}(B G) & =\operatorname{Map}\left(\operatorname{Rep}\left(\mathbb{Z}_{p}^{n}, G\right), L\right) \\
\mathbb{Q} \otimes E^{0}(B G) & =\operatorname{Fix}\left(\operatorname{Aut}\left(\mathbb{Z}_{p}^{n}\right), \operatorname{Map}\left(\operatorname{Rep}\left(\mathbb{Z}_{p}^{n}, G\right), L\right)\right)
\end{aligned}
$$

## (Higher) character theory

- Let $R(G)$ be the complex representation ring of $G$.
- Put $\operatorname{Rep}(H, G)=\operatorname{Hom}(H, G) /$ conjugation by $G$; so

$$
\operatorname{Rep}(\mathbb{Z}, G)=\operatorname{Rep}(\widehat{\mathbb{Z}}, G)=\{\text { conjugacy classes of elements }\}
$$

- Character theory:

$$
\begin{aligned}
\mathbb{C} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\mathbb{Z}, G), \mathbb{C}) \\
\overline{\mathbb{Q}} \otimes R(G) & =\operatorname{Map}(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \overline{\mathbb{Q}}) \\
\mathbb{Q}^{\mathrm{ab}} \otimes R(G) & =\operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right) \\
\mathbb{Q} \otimes R(G) & =\operatorname{Fix}\left(\widehat{\mathbb{Z}^{\times}}, \operatorname{Map}\left(\operatorname{Rep}(\widehat{\mathbb{Z}}, G), \mathbb{Q}^{\mathrm{ab}}\right)\right)
\end{aligned}
$$

- Higher character theory (Hopkins, Kuhn, Ravenel):

For a certain extension $L$ of $\mathbb{Q} \otimes E^{0}$ with Galois group Aut $\left(\mathbb{Z}_{p}^{n}\right)$ we have

$$
\begin{aligned}
L \otimes_{E^{0}} E^{0}(B G) & =\operatorname{Map}\left(\operatorname{Rep}\left(\mathbb{Z}_{p}^{n}, G\right), L\right) \\
\mathbb{Q} \otimes E^{0}(B G) & =\operatorname{Fix}\left(\operatorname{Aut}\left(\mathbb{Z}_{p}^{n}\right), \operatorname{Map}\left(\operatorname{Rep}\left(\mathbb{Z}_{p}^{n}, G\right), L\right)\right) \\
& \sim\{\operatorname{abelian} p \text {-subgroups of rank at most } n\}
\end{aligned}
$$

## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.


## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.


## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.
- Higher character theory describes $u_{0}^{-1} E^{0}(B G)$ precisely; work of Greenlees-S describes $u_{k}^{-1} E^{0}(B G) / I_{k}$ in similar terms, but only up to $F$-isomorphism (discard nilpotents, adjoin $p^{k}$ th roots).


## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.
- Higher character theory describes $u_{0}^{-1} E^{0}(B G)$ precisely; work of Greenlees-S describes $u_{k}^{-1} E^{0}(B G) / I_{k}$ in similar terms, but only up to $F$-isomorphism (discard nilpotents, adjoin $p^{k}$ th roots).
- $E^{0}(B G)$ is finitely generated and often free over $E^{0}$. In that case $E^{0}(B G)$ is canonically self-dual over $E^{0}$ and so is Gorenstein. (Theorem of $S$. via Greenlees-May theory of Tate spectra; compare inner product on $R(G)$.)


## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.
- Higher character theory describes $u_{0}^{-1} E^{0}(B G)$ precisely; work of Greenlees-S describes $u_{k}^{-1} E^{0}(B G) / I_{k}$ in similar terms, but only up to $F$-isomorphism (discard nilpotents, adjoin $p^{k}$ th roots).
- $E^{0}(B G)$ is finitely generated and often free over $E^{0}$. In that case $E^{0}(B G)$ is canonically self-dual over $E^{0}$ and so is Gorenstein. (Theorem of $S$. via Greenlees-May theory of Tate spectra; compare inner product on $R(G)$.)
- Information from ordinary representation theory is encoded by a "Chern approximation" map $\operatorname{spf}\left(E^{0}(B G)\right) \rightarrow \lambda \operatorname{SemiRings}_{*}\left(R^{+}(G), \operatorname{Div}^{+}(\mathbb{G})\right)$.


## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.
- Higher character theory describes $u_{0}^{-1} E^{0}(B G)$ precisely; work of Greenlees-S describes $u_{k}^{-1} E^{0}(B G) / I_{k}$ in similar terms, but only up to $F$-isomorphism (discard nilpotents, adjoin $p^{k}$ th roots).
- $E^{0}(B G)$ is finitely generated and often free over $E^{0}$. In that case $E^{0}(B G)$ is canonically self-dual over $E^{0}$ and so is Gorenstein. (Theorem of $S$. via Greenlees-May theory of Tate spectra; compare inner product on $R(G)$.)
- Information from ordinary representation theory is encoded by a "Chern approximation" map $\operatorname{spf}\left(E^{0}(B G)\right) \rightarrow \lambda \operatorname{SemiRings}_{*}\left(R^{+}(G), \operatorname{Div}^{+}(\mathbb{G})\right)$.
- Let $K$ be a finite field not of characteristic $p$. Tanabe has shown that

$$
\begin{aligned}
\operatorname{spf}\left(E^{0}\left(B G L_{d}(K)\right)\right) & =\operatorname{Div}_{d}^{+}\left(\operatorname{Tor}\left(\bar{K}^{\times}, \mathbb{G}\right)\right)^{\operatorname{Gal}(\bar{K} / K)} \\
E^{0}\left(B G L_{d}(K)\right) & =E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket /\left(c_{1}-c_{1}^{*}, \ldots, c_{d}-c_{d}^{*}\right)
\end{aligned}
$$

Recent work of Sam Marsh gives many more details in special cases.

## Other general theory of $E^{0}(B G)$

- $E^{0}\left(B C_{p}\right)=E^{0} \llbracket x \rrbracket /\left(\right.$ monic poly of degree $\left.p^{n}\right)=E^{0}\left\{x^{i} \mid 0 \leq i<p^{n}\right\}$; one can be equally explicit for other abelian groups.
- Recall that $E^{0}=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket ;$ put $u_{0}=p$ and $I_{k}=\left(u_{i} \mid i<k\right)$.
- Higher character theory describes $u_{0}^{-1} E^{0}(B G)$ precisely; work of Greenlees-S describes $u_{k}^{-1} E^{0}(B G) / I_{k}$ in similar terms, but only up to $F$-isomorphism (discard nilpotents, adjoin $p^{k}$ th roots).
- $E^{0}(B G)$ is finitely generated and often free over $E^{0}$. In that case $E^{0}(B G)$ is canonically self-dual over $E^{0}$ and so is Gorenstein. (Theorem of S. via Greenlees-May theory of Tate spectra; compare inner product on $R(G)$.)
- Information from ordinary representation theory is encoded by a "Chern approximation" map $\operatorname{spf}\left(E^{0}(B G)\right) \rightarrow \lambda \operatorname{SemiRings}_{*}\left(R^{+}(G), \operatorname{Div}^{+}(\mathbb{G})\right)$.
- Let $K$ be a finite field not of characteristic $p$. Tanabe has shown that

$$
\begin{aligned}
\operatorname{spf}\left(E^{0}\left(B G L_{d}(K)\right)\right) & =\operatorname{Div}_{d}^{+}\left(\operatorname{Tor}\left(\bar{K}^{\times}, \mathbb{G}\right)\right)^{\operatorname{Gal}(\bar{K} / K)} \\
E^{0}\left(B G L_{d}(K)\right) & =E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket /\left(c_{1}-c_{1}^{*}, \ldots, c_{d}-c_{d}^{*}\right)
\end{aligned}
$$

Recent work of Sam Marsh gives many more details in special cases.

- Calculations for particular groups by Kriz, Lee, Tezuka, Yagita, Schuster, Bakuradze, Priddy.


## Methods for the main theorem

## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\mathrm{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\mathrm{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in $\mathbb{Z}_{p}^{n}$.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\mathrm{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in $\mathbb{Z}_{p}^{n}$.
- Higher character theory of $E^{0}\left(B \Sigma_{k}\right)$ and comparison with algebraic results about $\mathbb{Q} \otimes \mathcal{O}_{\text {Sub }_{d}(G)}$.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\mathrm{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in $\mathbb{Z}_{p}^{n}$.
- Higher character theory of $E^{0}\left(B \Sigma_{k}\right)$ and comparison with algebraic results about $\mathbb{Q} \otimes \mathcal{O}_{\mathrm{Sub}_{d}(G)}$.
- The Sylow p-subgroup in $\Sigma_{p^{d}}$ is an iterated wreath product so its Morava $E$-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in $\mathcal{O}_{\mathrm{Sub}_{d}(\mathbb{G})}$ has nontrivial image in $R_{d}$, so the map is injective.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\mathrm{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in $\mathbb{Z}_{p}^{n}$.
- Higher character theory of $E^{0}\left(B \Sigma_{k}\right)$ and comparison with algebraic results about $\mathbb{Q} \otimes \mathcal{O}_{\mathrm{Sub}_{d}(G)}$.
- The Sylow p-subgroup in $\Sigma_{p^{d}}$ is an iterated wreath product so its Morava $E$-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in $\mathcal{O}_{\text {Sub }_{d}(\mathbb{G})}$ has nontrivial image in $R_{d}$, so the map is injective.
- Consider the space $\coprod_{k} B \Sigma_{k}$, which has a very rich algebraic structure; the theory of Hopf rings is useful here.


## Methods for the main theorem

- Use $\Sigma_{p^{d}} \rightarrow U\left(p^{d}\right)$ to construct a map $\operatorname{spf}\left(R_{d}\right) \rightarrow \operatorname{Sub}_{d}(\mathbb{G})$.
- Investigate $\operatorname{Sub}_{d}(\mathbb{G})$ by pure algebra: level structures on formal groups, Galois theory for regular local rings, commutative algebra, Gorenstein property.
- Combinatorial analysis of blocks of monomials and numbers of lattices in $\mathbb{Z}_{p}^{n}$.
- Higher character theory of $E^{0}\left(B \Sigma_{k}\right)$ and comparison with algebraic results about $\mathbb{Q} \otimes \mathcal{O}_{\mathrm{Sub}_{d}(G)}$.
- The Sylow p-subgroup in $\Sigma_{p^{d}}$ is an iterated wreath product so its Morava $E$-theory can be approached using Serre-type spectral sequences. Use this to show that the socle generator in $\mathcal{O}_{\text {Sub }_{d}(\mathbb{G})}$ has nontrivial image in $R_{d}$, so the map is injective.
- Consider the space $\coprod_{k} B \Sigma_{k}$, which has a very rich algebraic structure; the theory of Hopf rings is useful here.
- Compare with $Q S^{0}$ and $Q S^{2}$ by the Snaith splitting and the Thom isomorphism. Compare $Q S^{0}$ with $\Omega^{\infty} B P$ using work of Kashiwabara and Wilson.

