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Central to equivariant homotopy theory
One model: BΣk = {A ⊂ R∞ | |A| = k}

E∗(X ) is the Morava E -theory of a space X
E 0(BG) is a “higher representation ring” of G

Quotient out the images of transfer maps
E 0B(Σk × Σpd−k)→ E 0BΣpd for 0 < k < pd .

spf(R) is the formal spectrum of a complete local
Noetherian ring R.
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E 0(CP∞) = E 0(pt)[[x ]] is naturally a Hopf algebra over E 0(pt)

G = spf(E 0(pt)[[x ]]) is a formal group scheme over S = spf(E 0(pt))

spf(E 0(BΣpd )/(partition transfers)) = Subd(G)

Subd(G) is the moduli scheme of finite
subgroup schemes of G of order pd .



The main theorem, restated

I Put Rd = E 0(BΣpd )/(partition transfers).

I Let A be an algebra over E 0(pt) = E 0 = Zp[[u1, . . . , un−1]].
(E depends on a prime p and integer n > 0, suppressed from the
notation.)

I Consider quotient Hopf algebras B = A[[x ]]/J = (A⊗̂E0E 0(CP∞))/J such
that B is a free module of rank pd over A.

I The set of such B bijects naturally with the set of maps Rd → A of
E 0-algebras.

I Moreover, Rd is itself a free module over E 0, with rank equal to the
number of subgroups of index pd in the group Zd

p .

I One can give an explicit basis of monomials in the Chern classes of the
natural representation of Σpd ; this involves some combinatorics.

I Rd is naturally self-dual as an E 0-module, and so is a Gorenstein ring.
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(Higher) character theory

I Let R(G) be the complex representation ring of G .

I Put Rep(H,G) = Hom(H,G)/conjugation by G ; so

Rep(Z,G) = Rep(Ẑ,G) = {conjugacy classes of elements}.

I Character theory:

C⊗ R(G) = Map(Rep(Z,G),C)

Q⊗ R(G) = Map(Rep(Ẑ,G),Q)

Qab ⊗ R(G) = Map(Rep(Ẑ,G),Qab)

Q⊗ R(G) = Fix(Ẑ×,Map(Rep(Ẑ,G),Qab)).

I Higher character theory (Hopkins, Kuhn, Ravenel):
For a certain extension L of Q⊗ E 0 with Galois group Aut(Zn

p) we have

L⊗E0 E 0(BG) = Map(Rep(Zn
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∼ {abelian p-subgroups of rank at most n}
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Qab ⊗ R(G) = Map(Rep(Ẑ,G),Qab)
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I Higher character theory (Hopkins, Kuhn, Ravenel):
For a certain extension L of Q⊗ E 0 with Galois group Aut(Zn

p) we have

L⊗E0 E 0(BG) = Map(Rep(Zn
p,G), L)

Q⊗ E 0(BG) = Fix(Aut(Zn
p),Map(Rep(Zn

p,G), L))

∼ {abelian p-subgroups of rank at most n}



(Higher) character theory

I Let R(G) be the complex representation ring of G .
I Put Rep(H,G) = Hom(H,G)/conjugation by G ; so
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Other general theory of E 0(BG )

I E 0(BCp) = E 0[[x ]]/(monic poly of degree pn) = E 0{x i | 0 ≤ i < pn}; one
can be equally explicit for other abelian groups.

I Recall that E 0 = Zp[[u1, . . . , un−1]]; put u0 = p and Ik = (ui | i < k).

I Higher character theory describes u−1
0 E 0(BG) precisely; work of

Greenlees-S describes u−1
k E 0(BG)/Ik in similar terms, but only up to

F -isomorphism (discard nilpotents, adjoin pk ’th roots).

I E 0(BG) is finitely generated and often free over E 0. In that case E 0(BG)
is canonically self-dual over E 0 and so is Gorenstein. (Theorem of S. via
Greenlees-May theory of Tate spectra; compare inner product on R(G).)

I Information from ordinary representation theory is encoded by a “Chern
approximation” map spf(E 0(BG))→ λSemiRings∗(R

+(G),Div+(G)).

I Let K be a finite field not of characteristic p. Tanabe has shown that

spf(E 0(BGLd(K))) = Div+
d (Tor(K

×
,G))Gal(K/K)

E 0(BGLd(K)) = E 0[[c1, . . . , cd ]]/(c1 − c∗1 , . . . , cd − c∗d ).

Recent work of Sam Marsh gives many more details in special cases.

I Calculations for particular groups by Kriz, Lee, Tezuka, Yagita, Schuster,
Bakuradze, Priddy.
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I Higher character theory describes u−1
0 E 0(BG) precisely; work of

Greenlees-S describes u−1
k E 0(BG)/Ik in similar terms, but only up to

F -isomorphism (discard nilpotents, adjoin pk ’th roots).

I E 0(BG) is finitely generated and often free over E 0. In that case E 0(BG)
is canonically self-dual over E 0 and so is Gorenstein. (Theorem of S. via
Greenlees-May theory of Tate spectra; compare inner product on R(G).)

I Information from ordinary representation theory is encoded by a “Chern
approximation” map spf(E 0(BG))→ λSemiRings∗(R

+(G),Div+(G)).

I Let K be a finite field not of characteristic p. Tanabe has shown that

spf(E 0(BGLd(K))) = Div+
d (Tor(K

×
,G))Gal(K/K)

E 0(BGLd(K)) = E 0[[c1, . . . , cd ]]/(c1 − c∗1 , . . . , cd − c∗d ).

Recent work of Sam Marsh gives many more details in special cases.

I Calculations for particular groups by Kriz, Lee, Tezuka, Yagita, Schuster,
Bakuradze, Priddy.



Methods for the main theorem

I Use Σpd → U(pd) to construct a map spf(Rd)→ Subd(G).

I Investigate Subd(G) by pure algebra: level structures on formal groups,
Galois theory for regular local rings, commutative algebra, Gorenstein
property.

I Combinatorial analysis of blocks of monomials and numbers of lattices in
Zn

p.

I Higher character theory of E 0(BΣk) and comparison with algebraic results
about Q⊗OSubd (G).

I The Sylow p-subgroup in Σpd is an iterated wreath product so its Morava
E -theory can be approached using Serre-type spectral sequences. Use this
to show that the socle generator in OSubd (G) has nontrivial image in Rd , so
the map is injective.

I Consider the space
∐

k BΣk , which has a very rich algebraic structure; the
theory of Hopf rings is useful here.

I Compare with QS0 and QS2 by the Snaith splitting and the Thom
isomorphism. Compare QS0 with Ω∞BP using work of Kashiwabara and
Wilson.
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