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Surfaces in S3 have a rich structure

Let X ⊂ S3 = R3 ∪ {∞} be any smooth surface of genus g > 1.

I X separates S3 into two handlebodies, which are homeomorphic to each
other and homotopy equivalent to a wedge of g circles.

I X inherits an orientation and a metric from S3.

I We can define Jx : TxX → TxX to be a 1
4

turn anticlockwise; this satisfies
J2
x = −1 and so makes TxX a complex vector space of dimension one.

I X can be covered by open sets U for which there is a diffeomorphism
f : U → D = {z ∈ C | |z | < 1} whose derivative is C-linear. This makes X
a one-dimensional complex manifold, or in other words a Riemann surface.

I Any compact Riemann surface is isomorphic to a projective algebraic
curve, or a branched cover of the Riemann sphere.

I Any compact connected Riemann surface can be constructed from a
polygon by identifying edges in pairs.

I Any compact connected Riemann surface of genus g > 1 is the quotient of
the unit disc by the discrete action of a Fuchsian group.

For many of these phenomena, the literature contains no explicit examples.
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An interesting example

I f (x) = (2x2
2 + (x4 − 1−

√
2x3)2)(2x2

1 + (x4 − 1 +
√

2x3)2);
the blue set is {x ∈ S3 | f (−x) = 0}.

I The red set is {x ∈ S3 | f (x) = 0}.
I The surface is X = {x ∈ S3 | f (x) = f (−x)}.
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Cromulent surfaces

We define a group G as follows:

G = 〈λ, µ, ν | λ4 = µ2 = ν2 = (µν)2 = (λµ)2 = (λν)2 = 1〉

= {λiµjνk | 0 ≤ i < 4, 0 ≤ j , k < 2}

We write V ∗ for {0, . . . , 13} with G acting by

λ 7→ (2 3 4 5) (6 7 8 9) (10 11) (12 13)

µ 7→ (0 1) (3 5) (6 9) (7 8) (10 12) (11 13)

ν 7→ (3 5) (6 9) (7 8).
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λ 7→ (2 3 4 5) (6 7 8 9) (10 11) (12 13)

µ 7→ (0 1) (3 5) (6 9) (7 8) (10 12) (11 13)

ν 7→ (3 5) (6 9) (7 8).
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We define a group G as follows:
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Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus
two with an action of G such that

(a) The elements λ and µ act conformally, and the element of ν acts
anticonformally.

(b) The set V = {v ∈ X | stab〈λ,µ〉(v) 6= 1} is isomorphic to V ∗ as a G -set.

A precromulent labelling of X is a specific choice of isomorphism V ∗ ' V , or
equivalently, a listing of the points in V as v0, . . . , v13 such that G permutes
these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that

(c) λ acts on the tangent space Tv0X as multiplication by i .

(d) In the set X ′ = {x ∈ X | stabG (x) = 1}, there is a connected component
F ′ whose closure contains {v0, v3, v6, v11}.

One can show that every precromulent surface has precisely two cromulent
labellings, which are exchanged by the action of λ2. A cromulent surface is a
precromulent surface with a choice of cromulent labelling.
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Cromulent



The embedded family

For a ∈ (0, 1), put

EX (a) = {x ∈ S3 | ((a−2 + 1)x2
3 − 2)x4 + a−1(x2

1 − x2
2 )x3 = 0}.

λ(x1, x2, x3, x4) = (−x2, x1, x3,−x4)

µ(x1, x2, x3, x4) = ( x1,−x2,−x3,−x4)

ν(x1, x2, x3, x4) = ( x1,−x2, x3, x4).

v0 = ( 0, 0, 1, 0) v6 = ( 1, 1, 0, 0)/
√

2

v1 = ( 0, 0,−1, 0) v7 = (−1, 1, 0, 0)/
√

2

v2 = ( 1, 0, 0, 0) v8 = (−1,−1, 0, 0)/
√

2

v3 = ( 0, 1, 0, 0) v9 = ( 1,−1, 0, 0)/
√

2

v4 = (−1, 0, 0, 0) v10 = (0, 0,
√

2a,
√

1− a2)/
√

1 + a2

v5 = ( 0,−1, 0, 0) v11 = (0, 0,
√

2a,−
√

1− a2)/
√

1 + a2

v12 = (0, 0,−
√

2a,−
√

1− a2)/
√

1 + a2

v13 = (0, 0,−
√

2a,
√

1− a2)/
√

1 + a2

Then EX (a) is cromulent for all a, and EX ∗ = EX (1/
√

2).
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Special features for a = 1/
√

2

I The complexification CEX (a) is smooth for a 6= 1/
√

2, but when
a = 1/

√
2 it is isomorphic to Cayley’s singular cubic:

X1X2X3 + X1X2X4 + X1X3X4 + X2X3X4 = 0

I The fixed set EX (a)ν is always a disjoint union of three closed curves. If
a = 1/

√
2, then one of them is a great circle.

I Many formulae become much simpler.
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The projective family

For a ∈ (0, 1) put

PX0(a) = {(w , z) ∈ C2 | w 2 = z5 − (a2 + a−2)z3 + z}.

Normalization adds a point at ∞ to give a smooth projective curve PX (a).
Let G act by

λ(w , z) = (iw , −z) µ(w , z) = (−w/z3, 1/z) ν(w , z) = (w , z).

v0 = (0, 0) v1 =∞

v2 = (−(a−1 − a),−1) v6 =
(

ω(a−1 + a), i
)

v10 = (0,−a)

v3 = (−i(a−1 − a), 1) v7 =
(
−ω(a−1 + a),−i

)
v11 = (0, a)

v4 = ( (a−1 − a),−1) v8 =
(
−ω(a−1 + a), i

)
v12 = (0,−a−1)

v5 = ( i(a−1 − a), 1) v9 =
(

ω(a−1 + a),−i
)

v13 = (0, a−1).

(where ω = e iπ/4). Then PX (a) is cromulent.
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The hyperbolic family

Define a group Π as follows:

Π = 〈βi | i ∈ Z/8〉/〈βiβi+4, β0β1β2β3β4β5β6β7〉

Given a ∈ (0, 1) put a± =
√

1± a2,
and define automorphisms of ∆ = {z ∈ C | |z | < 1} by

λ(z) = iz β0(z) =
a+z + 1

z + a+

µ(z) =
a+z − a2 − i

(a2 − i)z − a+
β1(z) =

a3
+z − (2 + i)a2 − i

((i − 2)a2 + i)z + a3
+

ν(z) = z β2n(z) = inβ0(z/in)

β2n+1(z) = inβ1(z/in).

These give an action of Π on ∆, and an action of G on HX (a) = ∆/Π.
This makes HX (a) a cromulent surface.
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Maple code

I It is strenuous and error-prone to verify the cromulence axioms for HX (a)
by hand.

I Some other verifications, to be discussed later, are even more strenuous.

I We have instead used Maple. The project has 30000 lines of Maple code,
some for numerical calculation and visualization, some for symbolic
verification. There is a systematic framework which checks thousands of
assertions.

I (By comparison, the 165 page memoir describing the project is generated
by 15000 lines of LATEX.)

I This does not quite reach the same level of rigour as proof assistants like
Agda or Isabelle, but it is a major step in that direction.

I All code will be released on GitHub.
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Universality

Theorem: For any cromulent X , there is a unique aP such that there is a
(unique) cromulent isomorphism X → PX (aP).

Proof: An isotropy calculation shows that X/〈λ2〉 has genus 0, and so is
isomorphic to C∞; one can arrange that v0 7→ 0 and v1 7→ ∞ and v3 7→ 1; then
the image of v10 determines aP .

Theorem: For any cromulent X , there is a unique aH such that there is a
(unique) cromulent isomorphism HX (aH)→ X .

(Here the proof is quite intricate, but the ingredients are fairly standard.)

Conjecture: The embedded family is also universal in the same sense.

Theorem: We have EX ∗ ' HX (aH) ' PX (aP), where aH ' 0.8005319 and
aP ' 0.0983562.
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Anticonformal involutions

It is a general fact that if X is a compact Riemann surface, and α : X → X is
an anticonformal involution, then the fixed set Xα is a finite disjoint union of
smoothly embedded circles.
Thus, in a cromulent surface X , these sets are circles:

C0 = the component of v2 in Xµν

C1 = the component of v0 in Xλν

C2 = the component of v0 in Xλ3ν

C3 = the component of v11 in Xλ2ν

C4 = the component of v10 in X ν

C5 = the component of v0 in X ν

C6 = the component of v0 in Xλ2ν

C7 = the component of v1 in X ν

C8 = the component of v1 in Xλ2ν .
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Curve systems

By a curve system on a cromulent surface X , we mean a family of real analytic
embeddings ck : R/2πZ→ X (for 0 ≤ k ≤ 8) with values

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 π
2

π −π
2

π
4

3π
4

− 3π
4

−π
4

1 0 π π
2

−π
2

2 0 π π
2

−π
2

3 π
2

−π
2

0 π

4 −π
2

π
2

0 π

5 0 π

6 0 π

7 0 π

8 0 π

and equivariance

λ(c0(t)) = c0(t + π/2) µ(c0(t)) = c0(−t) ν(c0(t)) = c0(−t)

λ(c1(t)) = c2(t) µ(c1(t)) = c2(t + π) ν(c1(t)) = c2(−t)

λ(c2(t)) = c1(−t) µ(c2(t)) = c1(t + π) ν(c2(t)) = c1(−t)

λ(c3(t)) = c4(t) µ(c3(t)) = c3(t + π) ν(c3(t)) = c3(−t)

λ(c4(t)) = c3(−t) µ(c4(t)) = c4(−t − π) ν(c4(t)) = c4(t)

λ(c5(t)) = c6(t) µ(c5(t)) = c7(t) ν(c5(t)) = c5(t)

λ(c6(t)) = c5(−t) µ(c6(t)) = c8(−t) ν(c6(t)) = c6(−t)

λ(c7(t)) = c8(t) µ(c7(t)) = c5(t) ν(c7(t)) = c7(t)

λ(c8(t)) = c7(−t) µ(c8(t)) = c6(−t) ν(c8(t)) = c8(−t)

Every cromulent surface admits a curve system, and image(ck) = Ck .



A curve system for EX ∗

We can define c0, . . . , c8 : R/2πZ→ EX ∗ as follows:

c0(t) = (cos(t), sin(t), 0, 0) (a great circle)

c1(t) = (sin(t)/
√

2, sin(t)/
√

2, cos(t), 0) (a great circle)

c2(t) = λ(c1(t))

c3(t) =
(

0, sin(t),
√

2/3 cos(t),−
√

1/3 cos(t)
)

(a great circle)

c4(t) = λ(c3(t))

c5(t) =
(
− sin(t), 0, 2

√
2, cos(t)− 1

)
/
√

10− 2 cos(t)

c6(t) = λ(c5(t))

c7(t) = µ(c5(t))

c8(t) = λµ(c5(t))

One can check that this gives a curve system. This can be generalized to cover
EX (a) for all a, but the formulae are significantly more complicated.
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A curve system for PX (a)

Put d(w , x , y) = (w/x3, x/y); define c0, . . . , c8 : R/2πZ→ PX (a) as follows:

c0(t) = d(−
√

a−2 + a2 − 2 cos(4t), e it , e−it)

c1(t) = d

(
1 + i

8
√

2
sin(t)

√
16 cos(t)2 + (a + a−1)2 sin(t)4,

1 + cos(t)

2
,

1− cos(t)

2
i

)
c2(t) = λ(c1(t))

c3(t) = d

(
−i a

−1− a

8
sin(t)

√
(1 + a)4 − (1− a)4 cos(t)2

√
(1 + a)2 − (1− a)2 cos(t)2,

(1 + a) + (1− a) cos(t)

2
,

(1 + a)− (1− a) cos(t)

2

)
c4(t) = λ(c3(t))

c5(t) =

(
sin(t)

8

√
2a(3− cos(t))(4− a4(1− cos(t))2), a

1− cos(t)

2

)
c6(t) = λ(c5(t)), c7(t) = µ(c5(t)), c8(t) = λµ(c5(t)).

These give a curve system.
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A curve system for HX (a)

When |m| > 1 with d =
√
|m|2 − 1 we have a geodesic ωm : R→ ∆:

ωm(s) =
id − 1

m

(id + 1)e−s − i |m|es

i |m|es + (id − 1)e−s
.

Put
s0 = 2 log

( √
2a

a+ − a−

)
s2 = log

(
1 + a

a−

)
s4 =

1

4
log

(
a2

+ + 2a+ + 2

a2
+ − 2a+ + 2

)
s1 =

1

2
log

(√
2 + a+√
2− a+

)
s3 =

1

2
log

(
a + a+ + 1

a + a+ − 1

)
We then define maps c̃k : R→ ∆ for 0 ≤ k ≤ 8 as follows:

c̃0(t) = ω(1+i)/a+ ((t/π − 1/4)s0) c̃5(t) = tanh(t s3/π)

c̃1(t) = e iπ/4 tanh(t s1/π) c̃6(t) = i tanh(t s3/π)

c̃2(t) = e3iπ/4 tanh(t s1/π) c̃7(t) = ωia+/2+1/a+ (t s3/π − s4)

c̃3(t) = ωa+ (−t s2/π) c̃8(t) = ωa+/2+i/a+ (−t s3/π + s4)

c̃4(t) = ωia+ (−t s2/π)

This gives a curve system on HX (a).
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Pictures for HX (a)
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Pictures for HX (a)
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Fundamental domains and nets
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Any cromulent surface has a net as shown above. Each of the 16 regions is a
fundamental domain for the action of G .



Alternative nets
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Alternative nets
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This gives a “pair of pants” decomposition.



Alternative nets
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This gives a presentation of π1 as

Π = 〈βi | i ∈ Z/8〉/〈βiβi+4, β0β1β2β3β4β5β6β7〉



Homology

Let X be a cromulent surface. Then there is an isomorphism ψ : H1(X )→ Z4,
with the following effect on the homology classes of the curves ck :

ψ(c0) = ( 0, 0, 0, 0)

ψ(c1) = ( 1, 1,−1,−1) ψ(c2) = (−1, 1, 1,−1)

ψ(c3) = ( 0, 1, 0,−1) ψ(c4) = (−1, 0, 1, 0)

ψ(c5) = ( 1, 0, 0, 0) ψ(c6) = ( 0, 1, 0, 0)

ψ(c7) = ( 0, 0, 1, 0) ψ(c8) = ( 0, 0, 0, 1).

This is equivariant with respect to the following action of G on Z4:

λ(n) = (−n2, n1,−n4, n3)

µ(n) = ( n3,−n4, n1,−n2)

ν(n) = ( n1,−n2, n3,−n4).

Moreover, the intersection product on H1(X ) corresponds to the following
bilinear form on Z4:

(n,m) = n1m2 − n2m1 − n3m4 + n4m3.
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Quotients

I If X is cromulent and H ≤ 〈λ, µ〉 then X/H is a compact Riemann surface.

I The study of these quotients is essentially the same as the Galois theory of
the field of rational functions on X .

I If H = 1 then X/H = X ; if H = {1, λiµ} for some i then X/H is an
elliptic curve; in all other cases X/H ' C∞.

I The elliptic cases are the most interesting and important.

I In the case X = PX (a), we can write explicit formulae for everything,
involving elliptic integrals and the Weierstrass ℘-function in appropriate
places.
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Relating the projective and hyperbolic families

The key problem is to understand the map

p = (∆ −→ ∆/Π = HX (b)
'−→ PX (a)→ PX (a)/〈λ2〉 '−→ C∞),

or the related map p1 : ∆→ C∞:
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Relating the projective and hyperbolic families

Equivariance properties of p imply that p1(z) is odd, with real Taylor
coefficients, and that the poles are as follows:

The known behaviour of p at v0, v3 and v11 gives further constraints on the
general form of p1(z). We can then use numerical methods to find coefficients
such that p1 sends the blue and magenta arcs above to the unit circle.



The Schwarzian derivative

The Schwarzian derivative operator is S(f ) = f ′′′/f ′ − 3
2
(f ′′/f ′)2.

Proposition: S(p−1
1 ) = s∗0 + ds∗1 , where d is a real constant and

s∗0 (z) =
192a4z2(1 + z2)2 − 9(1 − a4)2(1 − z2)4

2(1 − z2)2((1 + a2)2(1 − z2)2 + 16a2z2)2
s∗1 (z) =

4a2

(1 + a2)2(1 − z2)2 + 16a2z2
.

Proof: We can define d = (S(p−1
1 )− s∗0 )/s∗1 ; then d is a meromorphic

function on C∞, and we need to show that it is constant, or equivalently, that
it is holomorphic. The equivariance properties of p determine the branching
behaviour of p−1

1 , and this in turn determines the poles of S(p−1
1 ). Using this

we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation
S(f ) = s to solutions of the linear equation 2g ′′ + sg = 0. If we knew d , this
would allow us to find p−1

1 ad thus p1. In practice we have to guess d , find p1,
and then repeatedly adjust d to eliminate inconsistencies.

(This method is good if we start by knowing a; the earlier method is better if
we start by knowing b.)
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The graph of a against b

This is the graph of a = aP against b = aH :

0 1
0

1

b

a

It is very flat at b = 1, and even flatter at b = 0. The marked point indicates
the values that are relevant for EX ∗.



Polynomial functions on EX ∗

Let A be the ring of polynomial functions on EX ∗. We put

y1 = x3 y2 = (x2
2 − x2

1 )/
√

2 − 3
2
x3x4

z1 = y2
1 z2 = y2

2

u1 = 1
2

(1 −
√

2y2)(1 − y2
1 (1 − y2/

√
2)) u2 = 1

2
(1 +
√

2y2)(1 − y2
1 (1 + y2/

√
2))

λ
∗(x1) = −x2 µ

∗(x1) = x1 ν
∗(x1) = x1

λ
∗(x2) = x1 µ

∗(x2) = −x2 ν
∗(x2) = −x2

λ
∗(x3) = x3 µ

∗(x3) = −x3 ν
∗(x3) = x3

λ
∗(x4) = −x4 µ

∗(x4) = −x4 ν
∗(x4) = x4

λ
∗(y1) = y1 µ

∗(y1) = −y1 ν
∗(y1) = y1

λ
∗(y2) = −y2 µ

∗(y2) = y2 ν
∗(y2) = y2

λ
∗(z1) = z1 µ

∗(z1) = z1 ν
∗(z1) = z1

λ
∗(z2) = z2 µ

∗(z2) = z2 ν
∗(z2) = z2.

Proposition:

I A〈λ
2,ν〉 = R[y1, y2], and AG = R[z1, z2].

I A = R[y1, y2]{1, x1, x2, x1x2} = R[y1, y2][x1, x2]/(x2
i − ui ).
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Some linear projections

v0, v1, v10, v11, v12, v13
v4

v5

v2

v6

v3

v7

v8 v9

c0

c1
c2

c3

c4 c5

c6

c7

c8

π(x) = (x1, x2)



Some linear projections

v0

v1

v6, v8

v10, v11

v3, v4
v9

v2, v5
v7

v12, v13

c0

c1

c2

c3

c4

c5c6

c7c8

δ(x) = ((x1 − x2)/
√

2, x3)



Some linear projections

v6, v7

v12
v2, v4

v0 v11v1

v8, v9

v5

v13 v10

v3

c0

c1
c2

c3

c4 c5

c6

c7

c8

ζ(x) = ((x3 − x4)/
√

2, x2)



Barycentric coordinates and integration

For x ∈ EX ∗, let Tx be the tangent plane in R4, shifted so that x ∈ Tx .
Let πx : R4 → Tx be the orthogonal projection.

Suppose a0, a1, a2, x ∈ EX ∗ are close together. Then there will be a unique
t ∈ R3 with

∑
i ti = 1 and x =

∑
i tiπx(ai ). These are barycentric coordinates

for x relative to a. We write T (a) for the set where all ti are nonnegative; this
is a triangle.

It works out that barycentric coordinates relative to (a0, a1, a2) and (a0, a1, a3)
agree on the edge joining a0 and a1. Because of this, we can use barycentric
coordinates to triangulate EX ∗.

There is a nice formula for the barycentric coordinate map and its Jacobian.
Because of this, we can use a barycentric triangulation to calculate integrals
over EX ∗.

This method of integration is slow. However, we can use it to integrate
polynomials, then find more efficient quadrature rules that do the right thing
for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.
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Suppose a0, a1, a2, x ∈ EX ∗ are close together. Then there will be a unique
t ∈ R3 with

∑
i ti = 1 and x =

∑
i tiπx(ai ). These are barycentric coordinates

for x relative to a. We write T (a) for the set where all ti are nonnegative; this
is a triangle.

It works out that barycentric coordinates relative to (a0, a1, a2) and (a0, a1, a3)
agree on the edge joining a0 and a1. Because of this, we can use barycentric
coordinates to triangulate EX ∗.

There is a nice formula for the barycentric coordinate map and its Jacobian.
Because of this, we can use a barycentric triangulation to calculate integrals
over EX ∗.

This method of integration is slow. However, we can use it to integrate
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Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on EX ∗ is

K(m) = K0 = 1 + 8
2z2 − 1

(2− z1)2(1 + z2)2
.

For any f : EX ∗ → R, we also have

K(e2fm) = (K0 −∆(f ))/e2f

Proposition: The Laplacian is given by

∆(f ) =
∑
i

∂2 f

∂x2
i

−
∑
i,j

xi xj

∂2 f

∂xi∂xj

−
1

r2

∑
i,j

ni nj

∂2 f

∂xi∂xj

− 2
∑
i

xi

∂f

∂xi

+

(
r′′

r4
−

r′

r2

)∑
i

ni

∂f

∂xi

(where n, r , r ′ and r ′′ are given by simple formulae in terms of xi ).
If f is G -invariant, then the formula can be rewritten in terms of z1 and z2.

Proposition: There is a unique smooth f such that the metric mhyp = e2fm
has K(mhyp) = −1. For this metric, the holomorphic covering map ∆→ EX ∗

is isometric.
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Uniformizing EX ∗

We first want to find f such that K(e2fm) = −1. We let F be the space of
rational functions p/q, where p and q are polynomial of degree at most 8 in
(z1, z2). We search numerically for f ∈ F minimizing

∫
EX∗(K(e2fm) + 1)2.

Now if EX ∗ ' HX (b), then the length of the curve Ck ⊂ EX ∗ with respect to
e2fm should be given by a known formula in terms of b. Each k gives an
estimate for b; these differ by about 10−7.4.

At any point in EX ∗, we can use power series methods to find an approximate
conformal chart, then modify it to make it approximately isometric for the
hyperbolic metrics on ∆ and EX ∗. Any two such charts should be related by
an isometry of ∆, which must be z 7→ λ(z − α)/(1− αz) with |λ| = 1 > |α|.

We use numerical methods to line up a large number of such charts as
accurately as possible. This enables us to compute the canonical covering map
q : ∆→ EX ∗ ⊂ R4 at many points.
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Uniformizing EX ∗

Using the group action we see that there are functions ak,m(r) such that

q1(re iθ) =
∑
m

a1,m(r) cos((2m + 1)θ) q2(re iθ) =
∑
m

(−1)ma1,m(r) sin((2m + 1)θ)

q3(re iθ) =
∑
m

a3,m(r) cos(4mθ) q4(re iθ) =
∑
m

a4,m(r) cos((4m + 2)θ).

a1,3

a1,5

a1,8

a1,10

0.2

The functions ak,m(r) can be represented accurately by splines, but not by
polynomials or rational functions. We do not yet know a more theoretically
illuminating approach.
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