An example in the geometry of surfaces

Neil Strickland

July 14, 2016

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{X}: T_{X} X \rightarrow T_{X} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}
- We can define $J_{X}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
\Rightarrow We can define $J_{X}: T_{x} X \rightarrow T_{X} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
$-X$ can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.

For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.

For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs
- Any comnact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.

For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.

For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

Surfaces in S^{3} have a rich structure

Let $X \subset S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ be any smooth surface of genus $g>1$.

- X separates S^{3} into two handlebodies, which are homeomorphic to each other and homotopy equivalent to a wedge of g circles.
- X inherits an orientation and a metric from S^{3}.
- We can define $J_{x}: T_{x} X \rightarrow T_{x} X$ to be a $\frac{1}{4}$ turn anticlockwise; this satisfies $J_{x}^{2}=-1$ and so makes $T_{x} X$ a complex vector space of dimension one.
- X can be covered by open sets U for which there is a diffeomorphism $f: U \rightarrow D=\{z \in \mathbb{C}| | z \mid<1\}$ whose derivative is \mathbb{C}-linear. This makes X a one-dimensional complex manifold, or in other words a Riemann surface.
- Any compact Riemann surface is isomorphic to a projective algebraic curve, or a branched cover of the Riemann sphere.
- Any compact connected Riemann surface can be constructed from a polygon by identifying edges in pairs.
- Any compact connected Riemann surface of genus $g>1$ is the quotient of the unit disc by the discrete action of a Fuchsian group.
For many of these phenomena, the literature contains no explicit examples.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$;
the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

12

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

An interesting example

6

- $f(x)=\left(2 x_{2}^{2}+\left(x_{4}-1-\sqrt{2} x_{3}\right)^{2}\right)\left(2 x_{1}^{2}+\left(x_{4}-1+\sqrt{2} x_{3}\right)^{2}\right)$; the blue set is $\left\{x \in S^{3} \mid f(-x)=0\right\}$.
- The red set is $\left\{x \in S^{3} \mid f(x)=0\right\}$.
- The surface is $X=\left\{x \in S^{3} \mid f(x)=f(-x)\right\}$.

Cromulent surfaces

We define a group G as follows:

$$
G=\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle
$$

$$
=\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Action of λ

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Action of ν

Cromulent surfaces

We define a group G as follows:

$$
\begin{aligned}
G & =\left\langle\lambda, \mu, \nu \mid \lambda^{4}=\mu^{2}=\nu^{2}=(\mu \nu)^{2}=(\lambda \mu)^{2}=(\lambda \nu)^{2}=1\right\rangle \\
& =\left\{\lambda^{i} \mu^{j} \nu^{k} \mid 0 \leq i<4,0 \leq j, k<2\right\}
\end{aligned}
$$

We write V^{*} for $\{0, \ldots, 13\}$ with G acting by

$$
\begin{aligned}
& \lambda \mapsto(2345)(6789)(1011)(1213) \\
& \mu \mapsto(01)(35)(69)(78)(1012)(1113) \\
& \nu \mapsto(35)(69)(78)
\end{aligned}
$$

Action of $\mu \nu$

Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus two with an action of G such that
(a) The elements λ and μ act conformally, and the element of ν acts anticonformally.
(b) The set $V=\left\{v \in X \mid \operatorname{stab}_{\langle\lambda, \mu\rangle}(v) \neq 1\right\}$ is isomorphic to V^{*} as a G-set.

A precromulent labelling of X is a specific choice of isomorphism $V^{*} \simeq V$, or

equivalently, a listing of the points in V as v_{0}, \ldots, v_{13} such that G permutes
these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that
(c) $\dot{\lambda}$ acts on the tangent space $T_{v_{0}} X$ as multiplication by i
(d) In the set $X^{\prime}=\left\{x \in X \mid \operatorname{stab}_{G}(x)=1\right\}$, there is a connected component
F^{\prime} whose closure contains $\left\{v_{0}, v_{3}, v_{6}, v_{11}\right\}$.
One can show that every precromulent surface has precisely two cromulent labellings, which are exchanged by the action of λ^{2}. A cromulent surface is a precromulent surface with a choice of cromulent labelling.

Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus two with an action of G such that
(a) The elements λ and μ act conformally, and the element of ν acts anticonformally.
(b) The set $V=\left\{v \in X \mid \operatorname{stab}_{\langle\lambda, \mu\rangle}(v) \neq 1\right\}$ is isomorphic to V^{*} as a G-set. A precromulent labelling of X is a specific choice of isomorphism $V^{*} \simeq V$, or equivalently, a listing of the points in V as v_{0}, \ldots, v_{13} such that G permutes these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that
(c) λ acts on the tangent space $T_{v_{0}} X$ as multiplication by i
(d) In the set $X^{\prime}=\left\{x \in X \mid \operatorname{stab}_{G}(x)=1\right\}$, there is a connected component F^{\prime} whose closure contains $\left\{v_{0}, v_{3}, v_{6}, v_{11}\right\}$

One can show that every precromulent surface has precisely two cromulent labellings, which are exchanged by the action of λ^{2}. A cromulent surface is a precromulent surface with a choice of cromulent labelling.

Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus two with an action of G such that
(a) The elements λ and μ act conformally, and the element of ν acts anticonformally.
(b) The set $V=\left\{v \in X \mid \operatorname{stab}_{\langle\lambda, \mu\rangle}(v) \neq 1\right\}$ is isomorphic to V^{*} as a G-set. A precromulent labelling of X is a specific choice of isomorphism $V^{*} \simeq V$, or equivalently, a listing of the points in V as v_{0}, \ldots, v_{13} such that G permutes these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that
(c) λ acts on the tangent space $T_{v_{0}} X$ as multiplication by i.
(d) In the set $X^{\prime}=\left\{x \in X \mid \operatorname{stab}_{G}(x)=1\right\}$, there is a connected component F^{\prime} whose closure contains $\left\{v_{0}, v_{3}, v_{6}, v_{11}\right\}$.

One can show that every precromulent surface has precisely two cromulent labellings, which are exchanged by the action of λ^{2}. A cromulent surface is a precromulent surface with a choice of cromulent labelling.

Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus two with an action of G such that
(a) The elements λ and μ act conformally, and the element of ν acts anticonformally.
(b) The set $V=\left\{v \in X \mid \operatorname{stab}_{\langle\lambda, \mu\rangle}(v) \neq 1\right\}$ is isomorphic to V^{*} as a G-set. A precromulent labelling of X is a specific choice of isomorphism $V^{*} \simeq V$, or equivalently, a listing of the points in V as v_{0}, \ldots, v_{13} such that G permutes these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that
(c) λ acts on the tangent space $T_{v_{0}} X$ as multiplication by i.
(d) In the set $X^{\prime}=\left\{x \in X \mid \operatorname{stab}_{G}(x)=1\right\}$, there is a connected component F^{\prime} whose closure contains $\left\{v_{0}, v_{3}, v_{6}, v_{11}\right\}$.
One can show that every precromulent surface has precisely two cromulent labellings, which are exchanged by the action of λ^{2}.
precromulent surface with a choice of cromulent labelling.

Cromulent surfaces

Definition: A precromulent surface is a compact Riemann surface X of genus two with an action of G such that
(a) The elements λ and μ act conformally, and the element of ν acts anticonformally.
(b) The set $V=\left\{v \in X \mid \operatorname{stab}_{\langle\lambda, \mu\rangle}(v) \neq 1\right\}$ is isomorphic to V^{*} as a G-set. A precromulent labelling of X is a specific choice of isomorphism $V^{*} \simeq V$, or equivalently, a listing of the points in V as v_{0}, \ldots, v_{13} such that G permutes these points in accordance with the permutations listed on the last slide.
A cromulent labelling is a precromulent labelling such that
(c) λ acts on the tangent space $T_{v_{0}} X$ as multiplication by i.
(d) In the set $X^{\prime}=\left\{x \in X \mid \operatorname{stab}_{G}(x)=1\right\}$, there is a connected component F^{\prime} whose closure contains $\left\{v_{0}, v_{3}, v_{6}, v_{11}\right\}$.
One can show that every precromulent surface has precisely two cromulent labellings, which are exchanged by the action of λ^{2}. A cromulent surface is a precromulent surface with a choice of cromulent labelling.

Cromulent

Adjective

cromulent (not comparable)

1. Fine, acceptable or normal; excellent, realistic, legitimate or authentic. [quotations 4]

- 1996 February 18, Matt Groening et al., "Lisa the Iconoclast", The Simpsons season 7 episode 16:

Mrs. Krabappel: Embiggens? I never heard that word before moving to Springfield.
Ms. Hoover: I don't know why, it's a perfectly cromulent word.
[...]
Principal Skinner: He's embiggened that role with his cromulent performance.

The embedded family

For $a \in(0,1)$, put

$$
E X(a)=\left\{x \in S^{3} \mid\left(\left(a^{-2}+1\right) x_{3}^{2}-2\right) x_{4}+a^{-1}\left(x_{1}^{2}-x_{2}^{2}\right) x_{3}=0\right\} .
$$

The embedded family

For $a \in(0,1)$, put

$$
\begin{gathered}
E X(a)=\left\{x \in S^{3} \mid\left(\left(a^{-2}+1\right) x_{3}^{2}-2\right) x_{4}+a^{-1}\left(x_{1}^{2}-x_{2}^{2}\right) x_{3}=0\right\} . \\
\lambda\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{2}, \quad x_{1}, \quad x_{3},-x_{4}\right) \\
\mu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{c}
\left.x_{1},-x_{2},-x_{3},-x_{4}\right) \\
\nu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}=\left(\begin{array}{cc}
x_{1},-x_{2}, \quad x_{3}, \quad x_{4}
\end{array}\right) .\right.
\end{gathered}
$$

$v_{0}=\left(\begin{array}{llll}0, & 0, & 1, & 0\end{array}\right)$	$v_{6}=\left(\begin{array}{llll}1, & 1, & 0 & 0\end{array}\right) / \sqrt{2}$
$v_{1}=(0,0,-1,0)$	$v_{7}=(-1, \quad 1,0,0) / \sqrt{2}$
$v_{2}=\left(\begin{array}{lll}1, & 0,0\end{array}\right)$	$v_{8}=(-1,-1, \quad 0,0) / \sqrt{2}$
$v_{3}=\left(\begin{array}{llll}0, & 1, & 0, & 0\end{array}\right)$	$v_{9}=\left(\begin{array}{lll}1,-1, & 0, & 0\end{array}\right) / \sqrt{2}$
$v_{4}=\left(\begin{array}{llll}-1, & 0, & 0, & 0\end{array}\right)$	$v_{10}=\left(0,0, \quad \sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}$
$v_{5}=(0,-1,0,0)$	$v_{11}=\left(0,0, \quad \sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}$
	$v_{12}=\left(0,0,-\sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}$
	$v_{13}=\left(0,0,-\sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}$

The embedded family

For $a \in(0,1)$, put

$$
\begin{gathered}
E X(a)=\left\{x \in S^{3} \mid\left(\left(a^{-2}+1\right) x_{3}^{2}-2\right) x_{4}+a^{-1}\left(x_{1}^{2}-x_{2}^{2}\right) x_{3}=0\right\} . \\
\lambda\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{c}
\left.-x_{2}, \quad x_{1}, \quad x_{3},-x_{4}\right) \\
\mu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}=\left(\begin{array}{c}
x_{1},-x_{2},-x_{3},-x_{4}
\end{array}\right)\right. \\
\nu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{cc}
x_{1},-x_{2}, \quad x_{3}, \quad x_{4}
\end{array}\right) .
\end{gathered}
$$

$$
\begin{array}{lll}
v_{0}=\left(\begin{array}{llll}
0, & 0, & 1, & 0
\end{array}\right) \\
v_{1}=\left(\begin{array}{llll}
0, & 0,-1, & 0
\end{array}\right) \\
v_{2}=\left(\begin{array}{llll}
1, & 0, & 0, & 0
\end{array}\right) \\
v_{3}=\left(\begin{array}{llll}
0, & 1, & 0, & 0
\end{array}\right) & v_{6}=\left(\begin{array}{llll}
1, & 1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{7}=\left(\begin{array}{llll}
-1, & 1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{8}=\left(\begin{array}{lll}
-1,-1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{9}=\left(\begin{array}{lll}
1,-1, & 0, & 0
\end{array}\right) / \sqrt{2}
\end{array}
$$

$$
v_{4}=\left(\begin{array}{llll}
-1, & 0, & 0, & 0
\end{array}\right) \quad v_{10}=\left(0,0, \quad \sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{5}=(0,-1, \quad 0, \quad 0) \quad v_{11}=\left(0,0, \quad \sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{12}=\left(0,0,-\sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{13}=\left(0,0,-\sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

The embedded family

For $a \in(0,1)$, put

$$
\begin{gathered}
E X(a)=\left\{x \in S^{3} \mid\left(\left(a^{-2}+1\right) x_{3}^{2}-2\right) x_{4}+a^{-1}\left(x_{1}^{2}-x_{2}^{2}\right) x_{3}=0\right\} . \\
\lambda\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{c}
\left.-x_{2}, \quad x_{1}, \quad x_{3},-x_{4}\right) \\
\mu\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\nu\left(x_{1},-x_{2},-x_{3},-x_{4}\right) \\
\nu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}=\left(\begin{array}{cc}
x_{1},-x_{2}, \quad x_{3}, \quad x_{4}
\end{array}\right) .\right.
\end{gathered}
$$

$$
\begin{array}{lll}
v_{0}=\left(\begin{array}{llll}
0, & 0, & 1, & 0
\end{array}\right) \\
v_{1}=\left(\begin{array}{llll}
0, & 0,-1, & 0
\end{array}\right) \\
v_{2}=\left(\begin{array}{llll}
1, & 0, & 0, & 0
\end{array}\right) & v_{6}=\left(\begin{array}{llll}
1, & 1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{7}=\left(\begin{array}{llll}
-1, & 1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{3}=\left(\begin{array}{llll}
0, & 0, & 0
\end{array}\right) & v_{8}=\left(\begin{array}{lll}
-1,-1, & 0, & 0
\end{array}\right) / \sqrt{2} \\
v_{9}=\left(\begin{array}{lll}
1,-1, & 0, & 0
\end{array}\right) / \sqrt{2}
\end{array}
$$

$$
v_{4}=\left(\begin{array}{llll}
-1, & 0, & 0, & 0
\end{array}\right) \quad v_{10}=\left(0,0, \quad \sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{5}=(0,-1, \quad 0, \quad 0) \quad v_{11}=\left(0,0, \quad \sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{12}=\left(0,0,-\sqrt{2} a,-\sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

$$
v_{13}=\left(0,0,-\sqrt{2} a, \quad \sqrt{1-a^{2}}\right) / \sqrt{1+a^{2}}
$$

Then $E X(a)$ is cromulent for all a, and $E X^{*}=E X(1 / \sqrt{2})$.

Special features for $a=1 / \sqrt{2}$

- The complexification $\operatorname{CEX}(a)$ is smooth for $a \neq 1 / \sqrt{2}$, but when $a=1 / \sqrt{2}$ it is isomorphic to Cayley's singular cubic:

$$
X_{1} X_{2} X_{3}+X_{1} X_{2} X_{4}+X_{1} X_{3} X_{4}+X_{2} X_{3} X_{4}=0
$$

- The fixed set $E X(a)^{\nu}$ is always a disjoint union of three closed curves. If $a=1 / \sqrt{2}$, then one of them is a great circle.
- Many formulae become much simpler.

Special features for $a=1 / \sqrt{2}$

- The complexification $\operatorname{CEX}(a)$ is smooth for $a \neq 1 / \sqrt{2}$, but when $a=1 / \sqrt{2}$ it is isomorphic to Cayley's singular cubic:

$$
X_{1} X_{2} X_{3}+X_{1} X_{2} X_{4}+X_{1} X_{3} X_{4}+X_{2} X_{3} X_{4}=0
$$

- The fixed set EX $(a)^{\nu}$ is always a disjoint union of three closed curves. If $a=1 / \sqrt{2}$, then one of them is a great circle.
- Many formulae become much simpler

Special features for $a=1 / \sqrt{2}$

- The complexification $\operatorname{CEX}(a)$ is smooth for $a \neq 1 / \sqrt{2}$, but when $a=1 / \sqrt{2}$ it is isomorphic to Cayley's singular cubic:

$$
X_{1} X_{2} X_{3}+X_{1} X_{2} X_{4}+X_{1} X_{3} X_{4}+X_{2} X_{3} X_{4}=0
$$

- The fixed set $E X(a)^{\nu}$ is always a disjoint union of three closed curves. If $a=1 / \sqrt{2}$, then one of them is a great circle.

Special features for $a=1 / \sqrt{2}$

- The complexification $\operatorname{CEX}(a)$ is smooth for $a \neq 1 / \sqrt{2}$, but when $a=1 / \sqrt{2}$ it is isomorphic to Cayley's singular cubic:

$$
X_{1} X_{2} X_{3}+X_{1} X_{2} X_{4}+X_{1} X_{3} X_{4}+X_{2} X_{3} X_{4}=0
$$

- The fixed set $E X(a)^{\nu}$ is always a disjoint union of three closed curves. If $a=1 / \sqrt{2}$, then one of them is a great circle.
- Many formulae become much simpler.

The projective family

For $a \in(0,1)$ put

$$
P X_{0}(a)=\left\{(w, z) \in \mathbb{C}^{2} \mid w^{2}=z^{5}-\left(a^{2}+a^{-2}\right) z^{3}+z\right\}
$$

Normalization adds a point at ∞ to give a smooth projective curve $P X(a)$. Let G act by

$$
\lambda(w, z)=(i w,-z) \quad \mu(w, z)=\left(-w / z^{3}, 1 / z\right) \quad \nu(w, z)=(w, \bar{z}) .
$$

$$
\begin{array}{lll}
v_{0}=(0,0) & v_{1}=\infty & \\
v_{2}=\left(-\left(a^{-1}-a\right),-1\right) & v_{6}=\left(\omega\left(a^{-1}+a\right), i\right) & v_{10}=(0,-a) \\
v_{3}=\left(-i\left(a^{-1}-a\right), 1\right) & v_{7}=\left(-\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{11}=\left(\begin{array}{ll}
0, & a
\end{array}\right) \\
v_{4}=\left(\left(a^{-1}-a\right),-1\right) & v_{8}=\left(-\omega\left(a^{-1}+a\right), i\right) & v_{12}=\left(0,-a^{-1}\right) \\
v_{5}=\left(i\left(a^{-1}-a\right), 1\right) & v_{9}=\left(\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{13}=\left(\begin{array}{ll}
0, & \left.a^{-1}\right) .
\end{array} .\right.
\end{array}
$$

(where $\omega=e^{i \pi / 4}$). Then $P X(a)$ is cromulent.

For $a \in(0,1)$ put

$$
P X_{0}(a)=\left\{(w, z) \in \mathbb{C}^{2} \mid w^{2}=z^{5}-\left(a^{2}+a^{-2}\right) z^{3}+z\right\} .
$$

Normalization adds a point at ∞ to give a smooth projective curve $P X(a)$.

$$
\lambda(w, z)=(i w,-z) \quad \mu(w, z)=\left(-w / z^{3}, 1 / z\right) \quad \nu(w, z)=(\bar{w}, \bar{z}) .
$$

The projective family

For $a \in(0,1)$ put

$$
P X_{0}(a)=\left\{(w, z) \in \mathbb{C}^{2} \mid w^{2}=z^{5}-\left(a^{2}+a^{-2}\right) z^{3}+z\right\} .
$$

Normalization adds a point at ∞ to give a smooth projective curve $P X(a)$. Let G act by

$$
\lambda(w, z)=(i w,-z) \quad \mu(w, z)=\left(-w / z^{3}, 1 / z\right) \quad \nu(w, z)=(\bar{w}, \bar{z})
$$

(where $\omega=e^{i \pi / 4}$). Then $P X(a)$ is cromulent.

The projective family

For $a \in(0,1)$ put

$$
P X_{0}(a)=\left\{(w, z) \in \mathbb{C}^{2} \mid w^{2}=z^{5}-\left(a^{2}+a^{-2}\right) z^{3}+z\right\}
$$

Normalization adds a point at ∞ to give a smooth projective curve $P X(a)$. Let G act by

$$
\lambda(w, z)=(i w,-z) \quad \mu(w, z)=\left(-w / z^{3}, 1 / z\right) \quad \nu(w, z)=(\bar{w}, \bar{z})
$$

$$
\begin{array}{lll}
v_{0}=(0,0) & v_{1}=\infty & \\
v_{2}=\left(-\left(a^{-1}-a\right),-1\right) & v_{6}=\left(\omega\left(a^{-1}+a\right), i\right) & v_{10}=(0,-a) \\
v_{3}=\left(-i\left(a^{-1}-a\right), 1\right) & v_{7}=\left(-\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{11}=\left(\begin{array}{ll}
0, a
\end{array}\right) \\
v_{4}=\left(\left(a^{-1}-a\right),-1\right) & v_{8}=\left(-\omega\left(a^{-1}+a\right), i\right) & v_{12}=\left(0,-a^{-1}\right) \\
v_{5}=\left(i\left(a^{-1}-a\right), 1\right) & v_{9}=\left(\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{13}=\left(0, a^{-1}\right) .
\end{array}
$$

(where $\omega=e^{i \pi / 4}$).

The projective family

For $a \in(0,1)$ put

$$
P X_{0}(a)=\left\{(w, z) \in \mathbb{C}^{2} \mid w^{2}=z^{5}-\left(a^{2}+a^{-2}\right) z^{3}+z\right\}
$$

Normalization adds a point at ∞ to give a smooth projective curve $P X(a)$. Let G act by

$$
\lambda(w, z)=(i w,-z) \quad \mu(w, z)=\left(-w / z^{3}, 1 / z\right) \quad \nu(w, z)=(\bar{w}, \bar{z})
$$

$$
\begin{array}{lll}
v_{0}=(0,0) & v_{1}=\infty \\
v_{2}=\left(-\left(a^{-1}-a\right),-1\right) & v_{6}=\left(\omega\left(a^{-1}+a\right), i\right) & v_{10}=(0,-a) \\
v_{3}=\left(-i\left(a^{-1}-a\right), 1\right) & v_{7}=\left(-\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{11}=\left(\begin{array}{ll}
0, a
\end{array}\right) \\
v_{4}=\left(\left(a^{-1}-a\right),-1\right) & v_{8}=\left(-\omega\left(a^{-1}+a\right), i\right) & v_{12}=\left(0,-a^{-1}\right) \\
v_{5}=\left(i\left(a^{-1}-a\right), 1\right) & v_{9}=\left(\bar{\omega}\left(a^{-1}+a\right),-i\right) & v_{13}=\left(0, a^{-1}\right) .
\end{array}
$$

(where $\omega=e^{i \pi / 4}$). Then $P X(a)$ is cromulent.

The hyperbolic family

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a \pm=\sqrt{ } 1 \pm a^{2}$,
and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{aligned}
& \lambda(z)=i z \\
& \mu(z)=\frac{a_{+} z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}}
\end{aligned}
$$

$$
\nu(z)=\bar{z} \quad \beta_{2 n}(z)=i^{n} \beta_{0}\left(z / i^{n}\right)
$$

$$
\beta_{2 n+1}(z)=i^{n} \beta_{1}\left(z / i^{n}\right) .
$$

These give an action of Π on Δ, and an action of G on $H X(a)=\Delta / \Pi$. This makes $H X(a)$ a cromulent surface.

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a_{ \pm}=\sqrt{1 \pm a^{2}}$
and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{array}{rlrl}
\lambda(z) & =i z & \beta_{0}(z) & =\frac{a_{+} z+1}{z+a_{+}} \\
\mu(z) & =\frac{a_{+} z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}} & \beta_{1}(z) & =\frac{a_{+}^{3} z-(2 .}{\left((i-2) a^{2}\right.} \\
\nu(z) & =\bar{z} & \beta_{2 n}(z) & =i^{n} \beta_{0}\left(z / i^{n}\right) \\
\beta_{2 n+1}(z) & =i^{n} \beta_{1}\left(z / i^{n}\right) .
\end{array}
$$

These give an action of Π on Δ, and an action of G on $H X(a)=\Delta / \Pi$. This makes $H X(a)$ a cromulent surface.

The hyperbolic family

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a_{ \pm}=\sqrt{1 \pm a^{2}}$, and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{array}{rlrl}
\lambda(z) & =i z & \beta_{0}(z) & =\frac{a_{+} z+1}{z+a_{+}} \\
\mu(z) & =\frac{a_{+} z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}} & \beta_{1}(z) & =\frac{a_{+}^{3} z-(2+i) a^{2}-i}{\left((i-2) a^{2}+i\right) z+a_{+}^{3}} \\
\nu(z) & =\bar{z} & \beta_{2 n}(z) & =i^{n} \beta_{0}\left(z / i^{n}\right) \\
\beta_{2 n+1}(z) & =i^{n} \beta_{1}\left(z / i^{n}\right) .
\end{array}
$$

The hyperbolic family

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a_{ \pm}=\sqrt{1 \pm a^{2}}$, and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{array}{rlrl}
\lambda(z) & =i z & \beta_{0}(z) & =\frac{a_{+} z+1}{z+a_{+}} \\
\mu(z) & =\frac{a_{+} z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}} & \beta_{1}(z) & =\frac{a_{+}^{3} z-(2+i) a^{2}-i}{\left((i-2) a^{2}+i\right) z+a_{+}^{3}} \\
\nu(z) & =\bar{z} & \beta_{2 n}(z) & =i^{n} \beta_{0}\left(z / i^{n}\right) \\
\beta_{2 n+1}(z) & =i^{n} \beta_{1}\left(z / i^{n}\right) .
\end{array}
$$

These give an action of Π on Δ

The hyperbolic family

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a_{ \pm}=\sqrt{1 \pm a^{2}}$, and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{array}{rlrl}
\lambda(z) & =i z & \beta_{0}(z) & =\frac{a_{+} z+1}{z+a_{+}} \\
\mu(z) & =\frac{a_{+} z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}} & \beta_{1}(z) & =\frac{a_{+}^{3} z-(2+i) a^{2}-i}{\left((i-2) a^{2}+i\right) z+a_{+}^{3}} \\
\nu(z) & =\bar{z} & \beta_{2 n}(z) & =i^{n} \beta_{0}\left(z / i^{n}\right) \\
\beta_{2 n+1}(z) & =i^{n} \beta_{1}\left(z / i^{n}\right) .
\end{array}
$$

These give an action of Π on Δ, and an action of G on $H X(a)=\Delta / \Pi$.

The hyperbolic family

Define a group Π as follows:

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Given $a \in(0,1)$ put $a_{ \pm}=\sqrt{1 \pm a^{2}}$, and define automorphisms of $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$ by

$$
\begin{array}{rlrl}
\lambda(z) & =i z & \beta_{0}(z) & =\frac{a_{+} z+1}{z+a_{+}} \\
\mu(z) & =\frac{a+z-a^{2}-i}{\left(a^{2}-i\right) z-a_{+}} & \beta_{1}(z) & =\frac{a_{+}^{3} z-(2+i) a^{2}-i}{\left((i-2) a^{2}+i\right) z+a_{+}^{3}} \\
\nu(z) & =\bar{z} & \beta_{2 n}(z) & =i^{n} \beta_{0}\left(z / i^{n}\right) \\
& \beta_{2 n+1}(z) & =i^{n} \beta_{1}\left(z / i^{n}\right) .
\end{array}
$$

These give an action of Π on Δ, and an action of G on $H X(a)=\Delta / \Pi$. This makes $H X(a)$ a cromulent surface.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $H X(a)$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of $\operatorname{AT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $\mathrm{HX}(\mathrm{a})$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of $\operatorname{AT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $\mathrm{HX}(\mathrm{a})$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of $\mathrm{AT}_{\mathrm{E}} \mathrm{EX}$.)
* This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $H X(a)$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
* (By comparison, the 165 page memoir describing the project is generated by 15000 lines of $\mathrm{AT}_{\mathrm{E}} \mathrm{EX}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $H X(a)$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of ${ }^{4} T_{E X}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $H X(a)$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of ${ }^{4} T_{E X}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Maple code

- It is strenuous and error-prone to verify the cromulence axioms for $H X(a)$ by hand.
- Some other verifications, to be discussed later, are even more strenuous.
- We have instead used Maple. The project has 30000 lines of Maple code, some for numerical calculation and visualization, some for symbolic verification. There is a systematic framework which checks thousands of assertions.
- (By comparison, the 165 page memoir describing the project is generated by 15000 lines of ${ }^{4} T_{E X}$.)
- This does not quite reach the same level of rigour as proof assistants like Agda or Isabelle, but it is a major step in that direction.
- All code will be released on GitHub.

Universality

Theorem: For any cromulent X, there is a unique a_{p} such that there is a (unique) cromulent isomorphism $X \rightarrow P X\left(a_{P}\right)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines a_{p}.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.)
Conjecture: The embedded family is also universal in the same sense.
Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a_{p} \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique ap such that there is a (unique) cromulent isomorphism $X \rightarrow P X(a p)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines a_{p}.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.) Conjecture: The embedded family is also universal in the same sense.

Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a_{P} \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique ap such that there is a (unique) cromulent isomorphism $X \rightarrow P X(a p)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines ap.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.) Conjecture: The embedded family is also universal in the same sense. Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a_{P} \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique ap such that there is a (unique) cromulent isomorphism $X \rightarrow P X(a p)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines ap.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.) Conjecture: The embedded family is also universal in the same sense. Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X(a p)$, where $a_{H} \simeq 0.8005319$ and $a p \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique ap such that there is a (unique) cromulent isomorphism $X \rightarrow P X(a p)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines a_{p}.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.)
Conjecture: The embedded family is also universal in the same sense.
Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a p \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique ap such that there is a (unique) cromulent isomorphism $X \rightarrow P X(a p)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines a_{p}.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.)
Conjecture: The embedded family is also universal in the same sense.
Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a p \simeq 0.0983562$.

Universality

Theorem: For any cromulent X, there is a unique a_{P} such that there is a (unique) cromulent isomorphism $X \rightarrow P X\left(a_{P}\right)$.

Proof: An isotropy calculation shows that $X /\left\langle\lambda^{2}\right\rangle$ has genus 0 , and so is isomorphic to \mathbb{C}_{∞}; one can arrange that $v_{0} \mapsto 0$ and $v_{1} \mapsto \infty$ and $v_{3} \mapsto 1$; then the image of v_{10} determines a_{p}.

Theorem: For any cromulent X, there is a unique a_{H} such that there is a (unique) cromulent isomorphism $H X\left(a_{H}\right) \rightarrow X$.
(Here the proof is quite intricate, but the ingredients are fairly standard.)
Conjecture: The embedded family is also universal in the same sense.
Theorem: We have $E X^{*} \simeq H X\left(a_{H}\right) \simeq P X\left(a_{P}\right)$, where $a_{H} \simeq 0.8005319$ and $a_{P} \simeq 0.0983562$.

Anticonformal involutions

It is a general fact that if X is a compact Riemann surface, and $\alpha: X \rightarrow X$ is an anticonformal involution, then the fixed set X^{α} is a finite disjoint union of smoothly embedded circles.
Thus, in a cromulent surface X, these sets are circles:

$$
\begin{aligned}
& C_{0}=\text { the component of } v_{2} \text { in } X^{\mu \nu} \\
& C_{1}=\text { the component of } v_{0} \text { in } X^{\lambda \nu} \\
& C_{2}=\text { the component of } v_{0} \text { in } X^{\lambda^{3} \nu} \\
& C_{3}=\text { the component of } v_{11} \text { in } X^{\lambda^{2} \nu} \\
& C_{4}=\text { the component of } v_{10} \text { in } X^{\nu} \\
& C_{5}=\text { the component of } v_{0} \text { in } X^{\nu} \\
& C_{6}=\text { the component of } v_{0} \text { in } X^{\lambda^{2} \nu} \\
& C_{7}=\text { the component of } v_{1} \text { in } X^{\nu} \\
& C_{8}=\text { the component of } v_{1} \text { in } X^{\lambda^{2} \nu} .
\end{aligned}
$$

Anticonformal involutions

It is a general fact that if X is a compact Riemann surface, and $\alpha: X \rightarrow X$ is an anticonformal involution, then the fixed set X^{α} is a finite disjoint union of smoothly embedded circles.
Thus, in a cromulent surface X, these sets are circles:
$C_{0}=$ the component of v_{2} in $X^{\mu \nu}$
$C_{1}=$ the component of $v / 0$ in $X^{\lambda \nu}$
$C_{2}=$ the component of v_{0} in $X^{\lambda^{3}}$
$C_{3}=$ the component of v_{11} in $X^{\lambda^{2}}$
$C_{4}=$ the component of v_{10} in X^{ν}
$C_{5}=$ the component of v_{0} in X^{ν}
$C_{6}=$ the component of v_{0} in X
$C_{7}=$ the component of v_{1} in X^{ν}
$C_{8}=$ the component of v_{1} in $X^{\lambda^{2} \nu}$

Anticonformal involutions

It is a general fact that if X is a compact Riemann surface, and $\alpha: X \rightarrow X$ is an anticonformal involution, then the fixed set X^{α} is a finite disjoint union of smoothly embedded circles.
Thus, in a cromulent surface X, these sets are circles:
$C_{0}=$ the component of v_{2} in $X^{\mu \nu}$
$C_{1}=$ the component of v_{0} in $X^{\lambda \nu}$
$C_{2}=$ the component of v_{0} in $X^{\lambda^{3} \nu}$
$C_{3}=$ the component of v_{11} in $X^{\lambda^{2} \nu}$
$C_{4}=$ the component of v_{10} in X^{ν}
$C_{5}=$ the component of v_{0} in X^{ν}
$C_{6}=$ the component of v_{0} in $X^{\lambda^{2} \nu}$
$C_{7}=$ the component of v_{1} in X^{ν}
$C_{8}=$ the component of v_{1} in $X^{\lambda^{2} \nu}$.

Curve systems

By a curve system on a cromulent surface X, we mean a family of real analytic embeddings $c_{k}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow X$ (for $0 \leq k \leq 8$) with values

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0			0	$\frac{\pi}{2}$	π	$-\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{3 \pi}{4}$	$-\frac{3 \pi}{4}$	$-\frac{\pi}{4}$				
1	0	π					$\frac{\pi}{2}$		$-\frac{\pi}{2}$					
2	0	π						$\frac{\pi}{2}$		$-\frac{\pi}{2}$				
3				$\frac{\pi}{2}$		$-\frac{\pi}{2}$						0		π
4			$-\frac{\pi}{2}$		$\frac{\pi}{2}$						0		π	
5	0											π		
6	0										π			
7		0												π
8		0											π	

and equivariance

$$
\begin{aligned}
& \lambda\left(c_{0}(t)\right)=c_{0}(t+\pi / 2) \\
& \lambda\left(c_{1}(t)\right)=c_{2}(t) \\
& \lambda\left(c_{2}(t)\right)=c_{1}(-t) \\
& \lambda\left(c_{3}(t)\right)=c_{4}(t) \\
& \lambda\left(c_{4}(t)\right)=c_{3}(-t) \\
& \lambda\left(c_{5}(t)\right)=c_{6}(t) \\
& \lambda\left(c_{6}(t)\right)=c_{5}(-t) \\
& \lambda\left(c_{7}(t)\right)=c_{8}(t) \\
& \lambda\left(c_{8}(t)\right)=c_{7}(-t)
\end{aligned}
$$

$$
\begin{aligned}
\mu\left(c_{0}(t)\right) & =c_{0}(-t) \\
\mu\left(c_{1}(t)\right) & =c_{2}(t+\pi) \\
\mu\left(c_{2}(t)\right) & =c_{1}(t+\pi) \\
\mu\left(c_{3}(t)\right) & =c_{3}(t+\pi) \\
\mu\left(c_{4}(t)\right) & =c_{4}(-t-\pi) \\
\mu\left(c_{5}(t)\right) & =c_{7}(t) \\
\mu\left(c_{6}(t)\right) & =c_{8}(-t) \\
\mu\left(c_{7}(t)\right) & =c_{5}(t) \\
\mu\left(c_{8}(t)\right) & =c_{6}(-t)
\end{aligned}
$$

$$
\nu\left(c_{0}(t)\right)=c_{0}(-t)
$$

$$
\nu\left(c_{1}(t)\right)=c_{2}(-t)
$$

$$
\nu\left(c_{2}(t)\right)=c_{1}(-t)
$$

$$
\nu\left(c_{3}(t)\right)=c_{3}(-t)
$$

$$
\nu\left(c_{4}(t)\right)=c_{4}(t)
$$

$$
\nu\left(c_{5}(t)\right)=c_{5}(t)
$$

$$
\nu\left(c_{6}(t)\right)=c_{6}(-t)
$$

$$
\nu\left(c_{7}(t)\right)=c_{7}(t)
$$

$$
\nu\left(c_{8}(t)\right)=c_{8}(-t)
$$

Every cromulent surface admits a curve system, and image $\left(c_{k}\right)=C_{k}$.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system. This can be generalized to cover $E X(a)$ for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad(\text { a great circle }) \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& \left.c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) }\right) \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system. This can be generalized to cover $E X(a)$ for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right)
\end{aligned}
$$

$c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad$ (a great circle)
$c_{4}(t)=\lambda\left(c_{3}(t)\right)$
$c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)}$
$c_{6}(t)=\lambda\left(c_{5}(t)\right)$
$c_{7}(t)=\mu\left(c_{5}(t)\right)$
$c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)$
One can check that this gives a curve system. This can be generalized to cover EX(a) for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)}
\end{aligned}
$$

$c_{6}(t)=\lambda\left(c_{5}(t)\right)$
$c_{7}(t)=\mu\left(c_{5}(t)\right)$
$c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)$

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right)
\end{aligned}
$$

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system. This can be generalized to cover $E X(a)$ for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system. This can be generalized to cover EX(a) for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system.

A curve system for $E X^{*}$

We can define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow E X^{*}$ as follows:

$$
\begin{aligned}
& c_{0}(t)=(\cos (t), \sin (t), 0,0) \quad \text { (a great circle) } \\
& c_{1}(t)=(\sin (t) / \sqrt{2}, \sin (t) / \sqrt{2}, \cos (t), 0) \quad \text { (a great circle) } \\
& c_{2}(t)=\lambda\left(c_{1}(t)\right) \\
& c_{3}(t)=(0, \sin (t), \sqrt{2 / 3} \cos (t),-\sqrt{1 / 3} \cos (t)) \quad \text { (a great circle) } \\
& c_{4}(t)=\lambda\left(c_{3}(t)\right) \\
& c_{5}(t)=(-\sin (t), 0,2 \sqrt{2}, \cos (t)-1) / \sqrt{10-2 \cos (t)} \\
& c_{6}(t)=\lambda\left(c_{5}(t)\right) \\
& c_{7}(t)=\mu\left(c_{5}(t)\right) \\
& c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)
\end{aligned}
$$

One can check that this gives a curve system. This can be generalized to cover $E X(a)$ for all a, but the formulae are significantly more complicated.

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, c_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, c_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, c_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $E X^{*}$

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}$

A curve system for $P X(a)$

Put $d(w, x, y)=\left(w / x^{3}, x / y\right)$; define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow P X(a)$ as follows:
$c_{0}(t)=d\left(-\sqrt{a^{-2}+a^{2}-2 \cos (4 t)}, e^{i t}, e^{-i t}\right)$
$c_{1}(t)=d\left(\frac{1+i}{8 \sqrt{2}} \sin (t) \sqrt{16 \cos (t)^{2}+\left(a+a^{-1}\right)^{2} \sin (t)^{4}}, \frac{1+\cos (t)}{2}, \frac{1-\cos (t)}{2} i\right)$
$c_{2}(t)=\lambda\left(c_{1}(t)\right)$
$c_{3}(t)=d\left(-i \frac{a^{-1}-a}{8} \sin (t) \sqrt{(1+a)^{4}-(1-a)^{4} \cos (t)^{2}} \sqrt{(1+a)^{2}-(1-a)^{2} \cos (t)^{2}}\right.$,

$$
\left.\frac{(1+a)+(1-a) \cos (t)}{2}, \frac{(1+a)-(1-a) \cos (t)}{2}\right)
$$

$c_{4}(t)=\lambda\left(c_{3}(t)\right)$
$c_{5}(t)=\left(\frac{\sin (t)}{8} \sqrt{2 a(3-\cos (t))\left(4-a^{4}(1-\cos (t))^{2}\right)}, a \frac{1-\cos (t)}{2}\right)$
$c_{6}(t)=\lambda\left(c_{5}(t)\right), \quad c_{7}(t)=\mu\left(c_{5}(t)\right), \quad c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)$.
These give a curve system.

A curve system for $P X(a)$

Put $d(w, x, y)=\left(w / x^{3}, x / y\right)$; define $c_{0}, \ldots, c_{8}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow P X(a)$ as follows:
$c_{0}(t)=d\left(-\sqrt{a^{-2}+a^{2}-2 \cos (4 t)}, e^{i t}, e^{-i t}\right)$
$c_{1}(t)=d\left(\frac{1+i}{8 \sqrt{2}} \sin (t) \sqrt{16 \cos (t)^{2}+\left(a+a^{-1}\right)^{2} \sin (t)^{4}}, \frac{1+\cos (t)}{2}, \frac{1-\cos (t)}{2} i\right)$
$c_{2}(t)=\lambda\left(c_{1}(t)\right)$
$c_{3}(t)=d\left(-i \frac{a^{-1}-a}{8} \sin (t) \sqrt{(1+a)^{4}-(1-a)^{4} \cos (t)^{2}} \sqrt{(1+a)^{2}-(1-a)^{2} \cos (t)^{2}}\right.$,

$$
\left.\frac{(1+a)+(1-a) \cos (t)}{2}, \frac{(1+a)-(1-a) \cos (t)}{2}\right)
$$

$c_{4}(t)=\lambda\left(c_{3}(t)\right)$
$c_{5}(t)=\left(\frac{\sin (t)}{8} \sqrt{2 a(3-\cos (t))\left(4-a^{4}(1-\cos (t))^{2}\right)}, a \frac{1-\cos (t)}{2}\right)$
$c_{6}(t)=\lambda\left(c_{5}(t)\right), \quad c_{7}(t)=\mu\left(c_{5}(t)\right), \quad c_{8}(t)=\lambda \mu\left(c_{5}(t)\right)$.
These give a curve system.

A curve system for $H X(a)$

When $|m|>1$ with $d=\sqrt{|m|^{2}-1}$ we have a geodesic $\omega_{m}: \mathbb{R} \rightarrow \Delta$:

$$
\omega_{m}(s)=\frac{i d-1}{\bar{m}} \frac{(i d+1) e^{-s}-i|m| e^{s}}{i|m| e^{s}+(i d-1) e^{-s}} .
$$

Put
$s_{0}=2 \log \left(\frac{\sqrt{2} a}{a_{+}-a_{-}}\right)$ $s_{2}=\log \left(\frac{1+a}{a_{-}}\right)$ $s_{4}=\frac{1}{4} \log \left(\frac{a_{+}^{2}+2 a_{+}+2}{a_{+}^{2}-2 a_{+}+2}\right)$

We then define maps $\widetilde{c}_{k}: \mathbb{R} \rightarrow \Delta$ for $0 \leq k \leq 8$ as follows:

$$
\tilde{c}_{0}(t)=\omega_{(1+i) / a+}\left((t / \pi-1 / 4) s_{0}\right) \quad \widetilde{c}_{5}(t)=\tanh ^{\prime}\left(t s_{3} / \pi\right)
$$

$$
\widetilde{c}_{1}(t)=e^{i \pi / 4} \tanh \left(t s_{1} / \pi\right) \quad \widetilde{c}_{6}(t)=i \tanh \left(t s_{3} / \pi\right)
$$

$$
\widetilde{c}_{2}(t)=e^{3 i \pi / 4} \tanh \left(t s_{1} / \pi\right)
$$

$$
\widetilde{c}_{7}(t)=\omega_{i a+/ 2+1 / a+}\left(t s_{3} / \pi-s_{4}\right)
$$

$$
\begin{equation*}
\widetilde{c}_{3}(t)=\omega_{a_{+}}\left(-t s_{2} / \pi\right) \tag{c}
\end{equation*}
$$

$$
\widetilde{c}_{4}(t)=\omega_{i a_{+}}\left(-t s_{2} / \pi\right)
$$

A curve system for $H X(a)$

When $|m|>1$ with $d=\sqrt{|m|^{2}-1}$ we have a geodesic $\omega_{m}: \mathbb{R} \rightarrow \Delta$:

$$
\omega_{m}(s)=\frac{i d-1}{\bar{m}} \frac{(i d+1) e^{-s}-i|m| e^{s}}{i|m| e^{s}+(i d-1) e^{-s}} .
$$

$$
\begin{array}{ll}
\text { Put } \\
s_{0}=2 \log \left(\frac{\sqrt{2} a}{a_{+}-a_{-}}\right) & s_{2}=\log \left(\frac{1+a}{a_{-}}\right) \\
s_{4}=\frac{1}{4} \log \left(\frac{a_{+}^{2}+2 a_{+}+2}{a_{+}^{2}-2 a_{+}+2}\right) \\
s_{1}=\frac{1}{2} \log \left(\frac{\sqrt{2}+a_{+}}{\sqrt{2}-a_{+}}\right) & s_{3}=\frac{1}{2} \log \left(\frac{a+a_{+}+1}{a+a_{+}-1}\right)
\end{array}
$$

We then define maps $\widetilde{c}_{k}: \mathbb{R} \rightarrow \Delta$ for $0 \leq k \leq 8$ as follows:

$\widetilde{c}_{1}(t)=e^{i \pi / 4} \tanh \left(t s_{1} / \pi\right)$

A curve system for $H X(a)$

When $|m|>1$ with $d=\sqrt{|m|^{2}-1}$ we have a geodesic $\omega_{m}: \mathbb{R} \rightarrow \Delta$:

$$
\omega_{m}(s)=\frac{i d-1}{\bar{m}} \frac{(i d+1) e^{-s}-i|m| e^{s}}{i|m| e^{s}+(i d-1) e^{-s}} .
$$

$$
\begin{array}{ll}
\text { Put } \\
s_{0}=2 \log \left(\frac{\sqrt{2} a}{a_{+}-a_{-}}\right) & s_{2}=\log \left(\frac{1+a}{a_{-}}\right) \\
s_{4}=\frac{1}{4} \log \left(\frac{a_{+}^{2}+2 a_{+}+2}{a_{+}^{2}-2 a_{+}+2}\right) \\
s_{1}=\frac{1}{2} \log \left(\frac{\sqrt{2}+a_{+}}{\sqrt{2}-a_{+}}\right) & s_{3}=\frac{1}{2} \log \left(\frac{a+a_{+}+1}{a+a_{+}-1}\right)
\end{array}
$$

We then define maps $\widetilde{c}_{k}: \mathbb{R} \rightarrow \Delta$ for $0 \leq k \leq 8$ as follows:

$$
\begin{array}{ll}
\widetilde{c}_{0}(t)=\omega_{(1+i) / a_{+}}\left((t / \pi-1 / 4) s_{0}\right) & \widetilde{c}_{5}(t)=\tanh \left(t s_{3} / \pi\right) \\
\widetilde{c}_{1}(t)=e^{i \pi / 4} \tanh \left(t s_{1} / \pi\right) & \widetilde{c}_{6}(t)=i \tanh \left(t s_{3} / \pi\right) \\
\widetilde{c}_{2}(t)=e^{3 i \pi / 4} \tanh \left(t s_{1} / \pi\right) & \widetilde{c}_{7}(t)=\omega_{i a_{+} / 2+1 / a_{+}}\left(t s_{3} / \pi-s_{4}\right) \\
\widetilde{c}_{3}(t)=\omega_{a_{+}}\left(-t s_{2} / \pi\right) & \widetilde{c}_{8}(t)=\omega_{a_{+} / 2+i / a_{+}}\left(-t s_{3} / \pi+s_{4}\right) \\
\widetilde{c}_{4}(t)=\omega_{i a_{+}}\left(-t s_{2} / \pi\right) &
\end{array}
$$

A curve system for $H X(a)$

When $|m|>1$ with $d=\sqrt{|m|^{2}-1}$ we have a geodesic $\omega_{m}: \mathbb{R} \rightarrow \Delta$:

$$
\omega_{m}(s)=\frac{i d-1}{\bar{m}} \frac{(i d+1) e^{-s}-i|m| e^{s}}{i|m| e^{s}+(i d-1) e^{-s}} .
$$

$$
\begin{array}{ll}
\text { Put } \\
s_{0}=2 \log \left(\frac{\sqrt{2} a}{a_{+}-a_{-}}\right) & s_{2}=\log \left(\frac{1+a}{a_{-}}\right) \\
s_{4}=\frac{1}{4} \log \left(\frac{a_{+}^{2}+2 a_{+}+2}{a_{+}^{2}-2 a_{+}+2}\right) \\
s_{1}=\frac{1}{2} \log \left(\frac{\sqrt{2}+a_{+}}{\sqrt{2}-a_{+}}\right) & s_{3}=\frac{1}{2} \log \left(\frac{a+a_{+}+1}{a+a_{+}-1}\right)
\end{array}
$$

We then define maps $\widetilde{c}_{k}: \mathbb{R} \rightarrow \Delta$ for $0 \leq k \leq 8$ as follows:

$$
\begin{array}{ll}
\widetilde{c}_{0}(t)=\omega_{(1+i) / a_{+}}\left((t / \pi-1 / 4) s_{0}\right) & \widetilde{c}_{5}(t)=\tanh \left(t s_{3} / \pi\right) \\
\widetilde{c}_{1}(t)=e^{i \pi / 4} \tanh \left(t s_{1} / \pi\right) & \widetilde{c}_{6}(t)=i \tanh \left(t s_{3} / \pi\right) \\
\widetilde{c}_{2}(t)=e^{3 i \pi / 4} \tanh \left(t s_{1} / \pi\right) & \widetilde{c}_{7}(t)=\omega_{i a_{+} / 2+1 / a_{+}}\left(t s_{3} / \pi-s_{4}\right) \\
\widetilde{c}_{3}(t)=\omega_{a_{+}}\left(-t s_{2} / \pi\right) & \widetilde{c}_{8}(t)=\omega_{a_{+} / 2+i / a_{+}}\left(-t s_{3} / \pi+s_{4}\right) \\
\widetilde{c}_{4}(t)=\omega_{i a_{+}}\left(-t s_{2} / \pi\right) &
\end{array}
$$

This gives a curve system on $H X(a)$.

Pictures for $H X(a)$

Pictures for $H X(a)$

Fundamental domains and nets

Any cromulent surface has a net as shown above. Each of the 16 regions is a fundamental domain for the action of G.

Alternative nets

Alternative nets

Alternative nets

Alternative nets

Alternative nets

This gives a "pair of pants" decomposition.

Alternative nets

This gives a presentation of π_{1} as

$$
\Pi=\left\langle\beta_{i} \mid i \in \mathbb{Z} / 8\right\rangle /\left\langle\beta_{i} \beta_{i+4}, \beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7}\right\rangle
$$

Homology

Let X be a cromulent surface. Then there is an isomorphism $\psi: H_{1}(X) \rightarrow \mathbb{Z}^{4}$,
with the following effect on the homology classes of the curves c_{k} :

$$
\begin{aligned}
& \psi\left(c_{0}\right)=\left(\begin{array}{llll}
0, & 0, & 0
\end{array}\right) \\
& \psi\left(c_{1}\right)=(1,1,-1,-1) \quad \psi\left(c_{2}\right)=(-1,1,1,-1) \\
& \psi\left(c_{3}\right)=(0,1,0,-1) \quad \psi\left(c_{4}\right)=\left(\begin{array}{lll}
-1, & 0, & 1,
\end{array}\right) \\
& \psi\left(c_{5}\right)=(1,0,0,0) \quad \psi\left(c_{6}\right)=\left(\begin{array}{lll}
0, & 1, & 0,
\end{array}\right) \\
& \psi\left(c_{7}\right)=(0,0,1,0) \quad \psi\left(c_{0}\right)=(0,0,0,1),
\end{aligned}
$$

This is equivariant with respect to the following action of G on \mathbb{Z}^{4} :

$$
\begin{aligned}
& \lambda(n)=\left(-n_{2}, \quad n_{1},-n_{4}, n_{3}\right) \\
& \mu(n)=\left(n_{3},-n_{4}, \quad n_{1},-n_{2}\right) \\
& \nu(n)=\left(n_{1},-n_{2}, \quad n_{3},-n_{4}\right)
\end{aligned}
$$

Moreover, the intersection product on $H_{1}(X)$ corresponds to the following bilinear form on \mathbb{Z}^{4} :

$$
(n, m)=n_{1} m_{2}-n_{2} m_{1}-n_{3} m_{4}+n_{4} m_{3}
$$

Homology

Let X be a cromulent surface. Then there is an isomorphism $\psi: H_{1}(X) \rightarrow \mathbb{Z}^{4}$, with the following effect on the homology classes of the curves c_{k} :

$$
\left.\begin{array}{ll}
\psi\left(c_{0}\right)=\left(\begin{array}{llll}
0, & 0 & 0, & 0
\end{array}\right) & \\
\psi\left(c_{1}\right)=\left(\begin{array}{llll}
1, & 1, & -1,-1
\end{array}\right) & \psi\left(c_{2}\right)=\left(\begin{array}{llll}
-1, & 1, & 1,-1
\end{array}\right) \\
\psi\left(c_{3}\right) & =\left(\begin{array}{llll}
0, & 1, & 0,-1
\end{array}\right) \\
\psi\left(c_{5}\right) & =\left(\begin{array}{llll}
1, & 0 & 0, & 0
\end{array}\right) \\
\psi\left(c_{4}\right) & =\left(\begin{array}{llll}
-1, & 0, & 1, & 0
\end{array}\right) \\
\psi\left(c_{6}\right) & =\left(\begin{array}{lllll}
0, & 0, & 1, & 0
\end{array}\right)
\end{array} \begin{array}{lllll}
0, & 1, & 0, & 0
\end{array}\right) .
$$

This is equivariant with respect to the following action of G on \mathbb{Z}^{4} :

Moreover, the intersection product on $H_{1}(X)$ corresponds to the following bilinear form on \mathbb{Z}^{4} :

Homology

Let X be a cromulent surface. Then there is an isomorphism $\psi: H_{1}(X) \rightarrow \mathbb{Z}^{4}$, with the following effect on the homology classes of the curves c_{k} :

$$
\begin{array}{ll}
\psi\left(c_{0}\right)=\left(\begin{array}{llll}
0, & 0, & 0, & 0
\end{array}\right) \\
\psi\left(c_{1}\right)=\left(\begin{array}{llll}
1, & 1, & -1, & -1
\end{array}\right) & \psi\left(c_{2}\right)=\left(\begin{array}{llll}
-1, & 1, & 1, & -1
\end{array}\right) \\
\psi\left(c_{3}\right)=\left(\begin{array}{llll}
0, & 1, & 0,-1
\end{array}\right) & \psi\left(c_{4}\right)=\left(\begin{array}{llll}
-1, & 0, & 1, & 0
\end{array}\right) \\
\psi\left(c_{5}\right)=\left(\begin{array}{lllll}
1, & 0, & 0, & 0
\end{array}\right) & \psi\left(c_{6}\right)=\left(\begin{array}{llll}
0, & 1, & 0, & 0
\end{array}\right) \\
\psi\left(c_{7}\right)=\left(\begin{array}{lllll}
0, & 0, & 1, & 0
\end{array}\right) & \psi\left(c_{8}\right)=\left(\begin{array}{llll}
0, & 0, & 0, & 1
\end{array}\right)
\end{array}
$$

This is equivariant with respect to the following action of G on \mathbb{Z}^{4} :

$$
\begin{aligned}
\lambda(n) & =\left(\begin{array}{ll}
-n_{2}, & n_{1},-n_{4}, \\
n_{3}
\end{array}\right) \\
\mu(n) & =\left(\begin{array}{ll}
n_{3},-n_{4}, & n_{1},-n_{2}
\end{array}\right) \\
\nu(n) & =\left(\begin{array}{ll}
n_{1},-n_{2}, & n_{3},-n_{4}
\end{array}\right) .
\end{aligned}
$$

Moreover, the intersection product on $H_{1}(X)$ corresponds to the following bilinear form on \mathbb{Z}^{4} :

Homology

Let X be a cromulent surface. Then there is an isomorphism $\psi: H_{1}(X) \rightarrow \mathbb{Z}^{4}$, with the following effect on the homology classes of the curves c_{k} :

$$
\left.\begin{array}{l}
\psi\left(c_{0}\right)=\left(\begin{array}{llll}
0, & 0, & 0, & 0
\end{array}\right) \\
\psi\left(c_{1}\right)=\left(\begin{array}{llll}
1, & 1, & -1,-1
\end{array}\right) \\
\psi\left(c_{3}\right)=\left(\begin{array}{llll}
0, & 1, & 0,-1
\end{array}\right) \\
\psi\left(c_{5}\right)=\left(\begin{array}{lllll}
1, & 0, & 0, & 0
\end{array}\right) \\
\psi\left(c_{7}\right)=\left(\begin{array}{lllll}
0, & 0, & 1, & 0
\end{array}\right)
\end{array} \begin{array}{lll}
\hline
\end{array} \begin{array}{llll}
\left(c_{2}\right)=\left(\begin{array}{lll}
-1, & 1, & 1,
\end{array}\right) & \psi\left(c_{6}\right)=\left(\begin{array}{llll}
-1, & 0, & 1, & 0
\end{array}\right) \\
\psi\left(c_{8}\right)=\left(\begin{array}{llll}
0, & 1, & 0, & 0
\end{array}\right) \\
0, & 0, & 0, & 1
\end{array}\right) .
$$

This is equivariant with respect to the following action of G on \mathbb{Z}^{4} :

$$
\begin{aligned}
\lambda(n) & =\left(\begin{array}{ll}
-n_{2}, & n_{1},-n_{4}, \\
n_{3}
\end{array}\right) \\
\mu(n) & =\left(\begin{array}{ll}
n_{3},-n_{4}, & n_{1},-n_{2}
\end{array}\right) \\
\nu(n) & =\left(\begin{array}{ll}
n_{1},-n_{2}, & n_{3},-n_{4}
\end{array}\right)
\end{aligned}
$$

Moreover, the intersection product on $H_{1}(X)$ corresponds to the following bilinear form on \mathbb{Z}^{4} :

$$
(n, m)=n_{1} m_{2}-n_{2} m_{1}-n_{3} m_{4}+n_{4} m_{3} .
$$

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
* The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
\Rightarrow In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Quotients

- If X is cromulent and $H \leq\langle\lambda, \mu\rangle$ then X / H is a compact Riemann surface.
- The study of these quotients is essentially the same as the Galois theory of the field of rational functions on X.
- If $H=1$ then $X / H=X$; if $H=\left\{1, \lambda^{i} \mu\right\}$ for some i then X / H is an elliptic curve; in all other cases $X / H \simeq \mathbb{C}_{\infty}$.
- The elliptic cases are the most interesting and important.
- In the case $X=P X(a)$, we can write explicit formulae for everything, involving elliptic integrals and the Weierstrass \wp-function in appropriate places.

Relating the projective and hyperbolic families

The key problem is to understand the map

$$
p=\left(\Delta \rightarrow \Delta / \Pi=H X(b) \xrightarrow{\simeq} P X(a) \rightarrow P X(a) /\left\langle\lambda^{2}\right\rangle \xrightarrow{\simeq} \mathbb{C}_{\infty}\right)
$$

or the related map $p_{1}: \Delta \rightarrow \mathbb{C}_{\infty}$:

Relating the projective and hyperbolic families

The key problem is to understand the map

$$
p=\left(\Delta \rightarrow \Delta / \Pi=H X(b) \xrightarrow{\simeq} P X(a) \rightarrow P X(a) /\left\langle\lambda^{2}\right\rangle \xrightarrow{\simeq} \mathbb{C}_{\infty}\right),
$$

or the related map $p_{1}: \Delta \rightarrow \mathbb{C}_{\infty}$:

Relating the projective and hyperbolic families

Equivariance properties of p imply that $p_{1}(z)$ is odd, with real Taylor coefficients, and that the poles are as follows:

The known behaviour of p at v_{0}, v_{3} and v_{11} gives further constraints on the general form of $p_{1}(z)$. We can then use numerical methods to find coefficients such that p_{1} sends the blue and magenta arcs above to the unit circle.

The Schwarzian derivative

The Schwarzian derivative operator is $S(f)=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$.
Proposition: $S\left(p_{1}^{-1}\right)=s_{0}^{*}+d s_{1}^{*}$, where d is a real constant and

Proof: We can define $d=\left(S\left(p_{1}^{-1}\right)-s_{0}^{*}\right) / s_{1}^{*}$; then d is a meromorphic function on \mathbb{C}_{∞}, and we need to show that it is constant, or equivalently, that it is holomorphic. The equivariance properties of p determine the branching behaviour of p_{1}^{-1}, and this in turn determines the poles of $S\left(p_{1}^{-1}\right)$. Using this we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation $S(f)=s$ to solutions of the linear equation $2 g^{\prime \prime}+s g=0$. If we knew d, this would allow us to find p_{1}^{-1} ad thus p_{1}. In practice we have to guess d, find p_{1}, and then repeatedly adjust d to eliminate inconsistencies.
(This method is good if we start by knowing a; the earlier method is better if we start by knowing b.)

The Schwarzian derivative

The Schwarzian derivative operator is $S(f)=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$.
Proposition: $S\left(p_{1}^{-1}\right)=s_{0}^{*}+d s_{1}^{*}$, where d is a real constant and

$$
s_{0}^{*}(z)=\frac{192 a^{4} z^{2}\left(1+z^{2}\right)^{2}-9\left(1-a^{4}\right)^{2}\left(1-z^{2}\right)^{4}}{2\left(1-z^{2}\right)^{2}\left(\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}\right)^{2}}
$$

$$
s_{1}^{*}(z)=\frac{4 a^{2}}{\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}} .
$$

Proof: We can define $d=\left(S\left(p_{1}^{-1}\right)-s_{0}^{*}\right) / s_{1}^{*}$; then d is a meromorphic function on \mathbb{C}_{∞}, and we need to show that it is constant, or equivalently, that it is holomorphic. The equivariance properties of p determine the branching behaviour of p_{1}^{-1}, and this in turn determines the poles of $S\left(p_{1}^{-1}\right)$. Using this we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation $S(f)=s$ to solutions of the linear equation $2 g^{\prime \prime}+s g=0$. If we knew d, this would allow us to find p_{1}^{-1} ad thus p_{1}. In practice we have to guess d, find p_{1}, and then repeatedly adjust d to eliminate inconsistencies.
(This method is good if we start by knowing a; the earlier method is better if we start by knowing b.)

The Schwarzian derivative

The Schwarzian derivative operator is $S(f)=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$.
Proposition: $S\left(p_{1}^{-1}\right)=s_{0}^{*}+d s_{1}^{*}$, where d is a real constant and

$$
s_{0}^{*}(z)=\frac{192 a^{4} z^{2}\left(1+z^{2}\right)^{2}-9\left(1-a^{4}\right)^{2}\left(1-z^{2}\right)^{4}}{2\left(1-z^{2}\right)^{2}\left(\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}\right)^{2}} \quad s_{1}^{*}(z)=\frac{4 a^{2}}{\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}} .
$$

Proof: We can define $d=\left(S\left(p_{1}^{-1}\right)-s_{0}^{*}\right) / s_{1}^{*}$; then d is a meromorphic function on \mathbb{C}_{∞}, and we need to show that it is constant, or equivalently, that it is holomorphic. The equivariance properties of p determine the branching behaviour of p_{1}^{-1}, and this in turn determines the poles of $S\left(p_{1}^{-1}\right)$. Using this we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation $S(f)=s$ to solutions of the linear equation $2 g^{\prime \prime}+s g=0$. If we knew d, this would allow us to find p_{1}^{-1} ad thus p_{1}. In practice we have to guess d, find p_{1} and then repeatedly adjust d to eliminate inconsistencies.

The Schwarzian derivative

The Schwarzian derivative operator is $S(f)=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$.
Proposition: $S\left(p_{1}^{-1}\right)=s_{0}^{*}+d s_{1}^{*}$, where d is a real constant and

$$
s_{0}^{*}(z)=\frac{192 a^{4} z^{2}\left(1+z^{2}\right)^{2}-9\left(1-a^{4}\right)^{2}\left(1-z^{2}\right)^{4}}{2\left(1-z^{2}\right)^{2}\left(\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}\right)^{2}} \quad s_{1}^{*}(z)=\frac{4 a^{2}}{\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}} .
$$

Proof: We can define $d=\left(S\left(p_{1}^{-1}\right)-s_{0}^{*}\right) / s_{1}^{*}$; then d is a meromorphic function on \mathbb{C}_{∞}, and we need to show that it is constant, or equivalently, that it is holomorphic. The equivariance properties of p determine the branching behaviour of p_{1}^{-1}, and this in turn determines the poles of $S\left(p_{1}^{-1}\right)$. Using this we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation $S(f)=s$ to solutions of the linear equation $2 g^{\prime \prime}+s g=0$. If we knew d, this would allow us to find p_{1}^{-1} ad thus p_{1}. In practice we have to guess d, find p_{1}, and then repeatedly adjust d to eliminate inconsistencies.
(This method is good if we start by knowing a; the earlier method is better if we start by knowing b.)

The Schwarzian derivative

The Schwarzian derivative operator is $S(f)=f^{\prime \prime \prime} / f^{\prime}-\frac{3}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}$.
Proposition: $S\left(p_{1}^{-1}\right)=s_{0}^{*}+d s_{1}^{*}$, where d is a real constant and

$$
s_{0}^{*}(z)=\frac{192 a^{4} z^{2}\left(1+z^{2}\right)^{2}-9\left(1-a^{4}\right)^{2}\left(1-z^{2}\right)^{4}}{2\left(1-z^{2}\right)^{2}\left(\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}\right)^{2}} \quad s_{1}^{*}(z)=\frac{4 a^{2}}{\left(1+a^{2}\right)^{2}\left(1-z^{2}\right)^{2}+16 a^{2} z^{2}} .
$$

Proof: We can define $d=\left(S\left(p_{1}^{-1}\right)-s_{0}^{*}\right) / s_{1}^{*}$; then d is a meromorphic function on \mathbb{C}_{∞}, and we need to show that it is constant, or equivalently, that it is holomorphic. The equivariance properties of p determine the branching behaviour of p_{1}^{-1}, and this in turn determines the poles of $S\left(p_{1}^{-1}\right)$. Using this we can see that d has no poles.

There is a classical theory which relates solutions of the nonlinear equation $S(f)=s$ to solutions of the linear equation $2 g^{\prime \prime}+s g=0$. If we knew d, this would allow us to find p_{1}^{-1} ad thus p_{1}. In practice we have to guess d, find p_{1}, and then repeatedly adjust d to eliminate inconsistencies.
(This method is good if we start by knowing a; the earlier method is better if we start by knowing b.)

The graph of a against b

This is the graph of $a=a_{P}$ against $b=a_{H}$:

It is very flat at $b=1$, and even flatter at $b=0$. The marked point indicates the values that are relevant for $E X^{*}$.

Polynomial functions on $E X^{*}$

Let A be the ring of polynomial functions on $E X^{*}$. We put

$$
\begin{aligned}
& y_{1}=x_{3} \\
& z_{1}=y_{1}^{2} \\
& u_{1}=\frac{1}{2}\left(1-\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1-y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=\left(x_{2}^{2}-x_{1}^{2}\right) / \sqrt{2}-\frac{3}{2} x_{3} x_{4} \\
& z_{2}=y_{2}^{2} \\
& u_{2}=\frac{1}{2}\left(1+\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1+y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

Proposition:

$$
\begin{aligned}
& \Rightarrow \Delta^{\left\langle\lambda^{2}, \nu\right\rangle}=\mathbb{R}\left[y_{1}, y_{2}\right], \text { and } A^{G}=\mathbb{R}\left[z_{1}, z_{2}\right] . \\
& \nabla A=\mathbb{R}\left[y_{1}, y_{2}\right]\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}=\mathbb{R}\left[y_{1}, y_{2}\right]\left[x_{1}, x_{2}\right] /\left(x_{i}^{2}-u_{i}\right) .
\end{aligned}
$$

Polynomial functions on $E X^{*}$

Let A be the ring of polynomial functions on $E X^{*}$. We put

$$
\begin{aligned}
& y_{1}=x_{3} \\
& z_{1}=y_{1}^{2} \\
& u_{1}=\frac{1}{2}\left(1-\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1-y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=\left(x_{2}^{2}-x_{1}^{2}\right) / \sqrt{2}-\frac{3}{2} x_{3} x_{4} \\
& z_{2}=y_{2}^{2} \\
& u_{2}=\frac{1}{2}\left(1+\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1+y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{*}\left(x_{1}\right)=-x_{2} \\
& \lambda^{*}\left(x_{2}\right)=x_{1} \\
& \lambda^{*}\left(x_{3}\right)=x_{3} \\
& \lambda^{*}\left(x_{4}\right)=-x_{4} \\
& \lambda^{*}\left(y_{1}\right)=y_{1} \\
& \lambda^{*}\left(y_{2}\right)=-y_{2} \\
& \lambda^{*}\left(z_{1}\right)=z_{1} \\
& \lambda^{*}\left(z_{2}\right)=z_{2}
\end{aligned}
$$

$$
\mu^{*}\left(x_{1}\right)=x_{1}
$$

$$
\nu^{*}\left(x_{1}\right)=x_{1}
$$

$$
\mu^{*}\left(x_{2}\right)=-x_{2}
$$

$$
\nu^{*}\left(x_{2}\right)=-x_{2}
$$

$$
\mu^{*}\left(x_{3}\right)=-x_{3}
$$

$$
\nu^{*}\left(x_{3}\right)=x_{3}
$$

$$
\mu^{*}\left(x_{4}\right)=-x_{4}
$$

$$
\nu^{*}\left(x_{4}\right)=x_{4}
$$

$$
\mu^{*}\left(y_{1}\right)=-y_{1}
$$

$$
\nu^{*}\left(y_{1}\right)=y_{1}
$$

$$
\mu^{*}\left(y_{2}\right)=y_{2}
$$

$$
\nu^{*}\left(y_{2}\right)=y_{2}
$$

$$
\mu^{*}\left(z_{1}\right)=z_{1}
$$

$$
\nu^{*}\left(z_{1}\right)=z_{1}
$$

$$
\mu^{*}\left(z_{2}\right)=z_{2}
$$

$$
\nu^{*}\left(z_{2}\right)=z_{2}
$$

Proposition:

$$
\begin{aligned}
> & A^{\left\langle\lambda^{2}, \nu\right\rangle}=\mathbb{R}\left[y_{1}, y_{2}\right], \text { and } A^{G}=\mathbb{R}\left[z_{1}, z_{2}\right] \\
\nabla & A=\mathbb{R}\left[y_{1}, y_{2}\right]\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}=\mathbb{R}\left[y_{1}, y_{2}\right]\left[x_{1}, x_{2}\right] /\left(x_{i}^{2}-u_{i}\right)
\end{aligned}
$$

Polynomial functions on EX*

Let A be the ring of polynomial functions on $E X^{*}$. We put

$$
\begin{aligned}
& y_{1}=x_{3} \\
& z_{1}=y_{1}^{2} \\
& u_{1}=\frac{1}{2}\left(1-\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1-y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=\left(x_{2}^{2}-x_{1}^{2}\right) / \sqrt{2}-\frac{3}{2} x_{3} x_{4} \\
& z_{2}=y_{2}^{2} \\
& u_{2}=\frac{1}{2}\left(1+\sqrt{2} y_{2}\right)\left(1-y_{1}^{2}\left(1+y_{2} / \sqrt{2}\right)\right)
\end{aligned}
$$

$$
\lambda^{*}\left(x_{1}\right)=-x_{2}
$$

$$
\mu^{*}\left(x_{1}\right)=x_{1}
$$

$$
\nu^{*}\left(x_{1}\right)=x_{1}
$$

$$
\lambda^{*}\left(x_{2}\right)=x_{1}
$$

$$
\mu^{*}\left(x_{2}\right)=-x_{2}
$$

$$
\nu^{*}\left(x_{2}\right)=-x_{2}
$$

$$
\lambda^{*}\left(x_{3}\right)=x_{3}
$$

$$
\mu^{*}\left(x_{3}\right)=-x_{3}
$$

$$
\nu^{*}\left(x_{3}\right)=x_{3}
$$

$$
\lambda^{*}\left(x_{4}\right)=-x_{4}
$$

$$
\mu^{*}\left(x_{4}\right)=-x_{4}
$$

$$
\nu^{*}\left(x_{4}\right)=x_{4}
$$

$$
\lambda^{*}\left(y_{1}\right)=y_{1}
$$

$$
\mu^{*}\left(y_{1}\right)=-y_{1}
$$

$$
\nu^{*}\left(y_{1}\right)=y_{1}
$$

$$
\lambda^{*}\left(y_{2}\right)=-y_{2}
$$

$$
\mu^{*}\left(y_{2}\right)=y_{2}
$$

$$
\nu^{*}\left(y_{2}\right)=y_{2}
$$

$$
\lambda^{*}\left(z_{1}\right)=z_{1}
$$

$$
\mu^{*}\left(z_{1}\right)=z_{1}
$$

$$
\nu^{*}\left(z_{1}\right)=z_{1}
$$

$$
\lambda^{*}\left(z_{2}\right)=z_{2}
$$

$$
\mu^{*}\left(z_{2}\right)=z_{2}
$$

$$
\nu^{*}\left(z_{2}\right)=z_{2}
$$

Proposition:

- $A^{\left\langle\lambda^{2}, \nu\right\rangle}=\mathbb{R}\left[y_{1}, y_{2}\right]$, and $A^{G}=\mathbb{R}\left[z_{1}, z_{2}\right]$.
- $A=\mathbb{R}\left[y_{1}, y_{2}\right]\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}=\mathbb{R}\left[y_{1}, y_{2}\right]\left[x_{1}, x_{2}\right] /\left(x_{i}^{2}-u_{i}\right)$.

The y-plane and the z-plane

$E X^{*} /\left\langle\lambda^{2}, \nu\right\rangle$, with coordinates $\left(y_{1}, y_{2}\right)$

$E X^{*} / G$, with coordinates $\left(z_{1}, z_{2}\right)$

The y-plane and the z-plane

$E X^{*} /\left\langle\lambda^{2}, \nu\right\rangle$, with coordinates $\left(y_{1}, y_{2}\right)$

$E X^{*} / G$, with coordinates $\left(z_{1}, z_{2}\right)$

Some linear projections

Some linear projections

Some linear projections

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to a. We write $T\left(a^{\prime}\right)$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to $\left(a_{0}, a_{1}, a_{2}\right)$ and $\left(a_{0}, a_{1}, a_{3}\right)$ agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate EX*

There is a nice formula for the barycentric coordinate map and its Jacobian. Because of this, we can use a barycentric triangulation to calculate integrals over EX

This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to $\left(a_{0}, a_{1}, a_{2}\right)$ and $\left(a_{0}, a_{1}, a_{3}\right)$ agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate EX*

There is a nice formula for the barycentric coordinate map and its Jacobian. Because of this, we can use a barycentric triangulation to calculate integrals over EX

This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to $\left(a_{0}, a_{1}, a_{2}\right)$ and $\left(a_{0}, a_{1}, a_{3}\right)$ agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate $E X^{*}$

There is a nice formula for the barycentric coordinate map and its Jacobian Because of this, we can use a barycentric triangulation to calculate integrals over EX

This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to $\left(a_{0}, a_{1}, a_{2}\right)$ and (a_{0}, a_{1}, a_{3}) agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate $E X^{*}$.

> There is a nice formula for the barycentric coordinate map and its Jacobian Because of this, we can use a barycentric triangulation to calculate integrals over EX

> This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to (a_{0}, a_{1}, a_{2}) and (a_{0}, a_{1}, a_{3}) agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate $E X^{*}$.

There is a nice formula for the barycentric coordinate map and its Jacobian. Because of this, we can use a barycentric triangulation to calculate integrals over $E X^{*}$.

> This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to (a_{0}, a_{1}, a_{2}) and (a_{0}, a_{1}, a_{3}) agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate $E X^{*}$.

There is a nice formula for the barycentric coordinate map and its Jacobian. Because of this, we can use a barycentric triangulation to calculate integrals over $E X^{*}$.

This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Barycentric coordinates and integration

For $x \in E X^{*}$, let T_{x} be the tangent plane in \mathbb{R}^{4}, shifted so that $x \in T_{x}$. Let $\pi_{x}: \mathbb{R}^{4} \rightarrow T_{x}$ be the orthogonal projection.

Suppose $a_{0}, a_{1}, a_{2}, x \in E X^{*}$ are close together. Then there will be a unique $t \in \mathbb{R}^{3}$ with $\sum_{i} t_{i}=1$ and $x=\sum_{i} t_{i} \pi_{x}\left(a_{i}\right)$. These are barycentric coordinates for x relative to \underline{a}. We write $T(\underline{a})$ for the set where all t_{i} are nonnegative; this is a triangle.

It works out that barycentric coordinates relative to (a_{0}, a_{1}, a_{2}) and (a_{0}, a_{1}, a_{3}) agree on the edge joining a_{0} and a_{1}. Because of this, we can use barycentric coordinates to triangulate $E X^{*}$.

There is a nice formula for the barycentric coordinate map and its Jacobian. Because of this, we can use a barycentric triangulation to calculate integrals over $E X^{*}$.

This method of integration is slow. However, we can use it to integrate polynomials, then find more efficient quadrature rules that do the right thing for polynomials.

Accuracy can be tested using Gauss-Bonet and Stokes.

Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on $E X^{*}$ is

$$
K(m)=K_{0}=1+8 \frac{2 z_{2}-1}{\left(2-z_{1}\right)^{2}\left(1+z_{2}\right)^{2}} .
$$

For any $f: E X^{*} \rightarrow \mathbb{R}$, we also have

$$
K\left(e^{2 f} m\right)=\left(K_{0}-\Delta(f)\right) / e^{2 f}
$$

Proposition: The Laplacian is given by

(where n, r, r^{\prime} and $r^{\prime \prime}$ are given by simple formulae in terms of x_{i}).
If f is G-invariant, then the formula can be rewritten in terms of z_{1} and z_{2}
Proposition: There is a unique smooth f such that the metric $m_{\text {hyp }}=e^{2 f} m$
has $K\left(m_{\text {hyp }}\right)=-1$. For this metric, the holomorphic covering map $\Delta \rightarrow E X^{*}$
is isometric.

Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on $E X^{*}$ is

$$
K(m)=K_{0}=1+8 \frac{2 z_{2}-1}{\left(2-z_{1}\right)^{2}\left(1+z_{2}\right)^{2}} .
$$

For any $f: E X^{*} \rightarrow \mathbb{R}$, we also have

$$
K\left(e^{2 f} m\right)=\left(K_{0}-\Delta(f)\right) / e^{2 f}
$$

Proposition: The Laplacian is given by

(where n, r, r^{\prime} and $r^{\prime \prime}$ are given by simple formulae in terms of x_{i}).
If f is G-invariant, then the formula can be rewritten in terms of z_{1} and z_{2}
Proposition: There is a unique smooth f such that the metric $m_{\text {hyp }}=e^{2 f} m$
has $K\left(m_{\text {hyp }}\right)=-1$. For this metric, the holomorphic covering map $\Delta \rightarrow E X^{*}$
is isometric.

Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on $E X^{*}$ is

$$
K(m)=K_{0}=1+8 \frac{2 z_{2}-1}{\left(2-z_{1}\right)^{2}\left(1+z_{2}\right)^{2}} .
$$

For any $f: E X^{*} \rightarrow \mathbb{R}$, we also have

$$
K\left(e^{2 f} m\right)=\left(K_{0}-\Delta(f)\right) / e^{2 f}
$$

Proposition: The Laplacian is given by

$$
\Delta(f)=\sum_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}-\sum_{i, j} x_{i} x_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\frac{1}{r^{2}} \sum_{i, j} n_{i} n_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-2 \sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}+\left(\frac{r^{\prime \prime}}{r^{4}}-\frac{r^{\prime}}{r^{2}}\right) \sum_{i} n_{i} \frac{\partial f}{\partial x_{i}}
$$

(where n, r, r^{\prime} and $r^{\prime \prime}$ are given by simple formulae in terms of x_{i}).
If f is G-invariant, then the formula can be rewritten in terms of z_{1} and z_{2}.
Proposition: There is a unique smooth f such that the metric $m_{\text {hyp }}=e^{2 f} m$
has $K\left(m_{\text {hyp }}\right)=-1$. For this metric, the holomorphic covering map $\Delta \rightarrow E X^{*}$
is isometric

Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on $E X^{*}$ is

$$
K(m)=K_{0}=1+8 \frac{2 z_{2}-1}{\left(2-z_{1}\right)^{2}\left(1+z_{2}\right)^{2}} .
$$

For any $f: E X^{*} \rightarrow \mathbb{R}$, we also have

$$
K\left(e^{2 f} m\right)=\left(K_{0}-\Delta(f)\right) / e^{2 f}
$$

Proposition: The Laplacian is given by

$$
\Delta(f)=\sum_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}-\sum_{i, j} x_{i} x_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\frac{1}{r^{2}} \sum_{i, j} n_{i} n_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-2 \sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}+\left(\frac{r^{\prime \prime}}{r^{4}}-\frac{r^{\prime}}{r^{2}}\right) \sum_{i} n_{i} \frac{\partial f}{\partial x_{i}}
$$

(where n, r, r^{\prime} and $r^{\prime \prime}$ are given by simple formulae in terms of x_{i}). If f is G-invariant, then the formula can be rewritten in terms of z_{1} and z_{2}.

Proposition: There is a unique smooth f such that the metric $m_{\text {hyp }}=e^{2 f} m$ has $K\left(m_{\text {hyp }}\right)=-1$. For this metric, the holomorphic covering map $\Delta \rightarrow E X^{*}$
is isometric.

Curvature and the Laplacian

Proposition: The Gaussian curvature the standard metric m on $E X^{*}$ is

$$
K(m)=K_{0}=1+8 \frac{2 z_{2}-1}{\left(2-z_{1}\right)^{2}\left(1+z_{2}\right)^{2}} .
$$

For any $f: E X^{*} \rightarrow \mathbb{R}$, we also have

$$
K\left(e^{2 f} m\right)=\left(K_{0}-\Delta(f)\right) / e^{2 f}
$$

Proposition: The Laplacian is given by

$$
\Delta(f)=\sum_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}-\sum_{i, j} x_{i} x_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-\frac{1}{r^{2}} \sum_{i, j} n_{i} n_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}-2 \sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}+\left(\frac{r^{\prime \prime}}{r^{4}}-\frac{r^{\prime}}{r^{2}}\right) \sum_{i} n_{i} \frac{\partial f}{\partial x_{i}}
$$

(where n, r, r^{\prime} and $r^{\prime \prime}$ are given by simple formulae in terms of x_{i}). If f is G-invariant, then the formula can be rewritten in terms of z_{1} and z_{2}.

Proposition: There is a unique smooth f such that the metric $m_{\text {hyp }}=e^{2 f} m$ has $K\left(m_{\text {hyp }}\right)=-1$. For this metric, the holomorphic covering map $\Delta \rightarrow E X^{*}$ is isometric.

Uniformizing $E X^{*}$

We first want to find f such that $K\left(e^{2 f} m\right)=-1$. We let F be the space of rational functions p / q, where p and q are polynomial of degree at most 8 in $\left(z_{1}, z_{2}\right)$. We search numerically for $f \in F$ minimizing $\int_{E X^{*}}\left(K\left(e^{2 f} m\right)+1\right)^{2}$.

Now if EX* $\simeq H X(b)$, then the length of the curve $C_{k} \subset E X^{*}$ with respect to $e^{2 f} m$ should be given by a known formula in terms of b. Each k gives an estimate for b; these differ by about $10^{-7.4}$

At any point in EX*, we can use power series methods to find an approximate conformal chart, then modify it to make it approximately isometric for the hyperbolic metrics on Δ and $E X^{*}$. Any two such charts should be related by an isometry of Δ, which must be $z \mapsto \lambda(z-\alpha) /(1-\bar{\alpha} z)$ with $|\lambda|=1>|\alpha|$.

We use numerical methods to line up a large number of such charts as accurately as possible. This enables us to compute the canonical covering map $q: \Delta \rightarrow E X^{*} \subset \mathbb{R}^{4}$ at many points.

Uniformizing $E X^{*}$

We first want to find f such that $K\left(e^{2 f} m\right)=-1$. We let F be the space of rational functions p / q, where p and q are polynomial of degree at most 8 in $\left(z_{1}, z_{2}\right)$. We search numerically for $f \in F$ minimizing $\int_{E X^{*}}\left(K\left(e^{2 f} m\right)+1\right)^{2}$.

Now if $E X^{*} \simeq H X(b)$, then the length of the curve $C_{k} \subset E X^{*}$ with respect to $e^{2 f} m$ should be given by a known formula in terms of b. Each k gives an estimate for b; these differ by about 10^{-7}

At any point in EX, we can use power series methods to find an approximate conformal chart, then modify it to make it approximately isometric for the hyperbolic metrics on Δ and $E X^{*}$. Any two such charts should be related by an isometry of Δ, which must be $z \mapsto \lambda(z-\alpha) /(1-\bar{\alpha} z)$ with $|\lambda|=1>|\alpha|$

We use numerical methods to line up a large number of such charts as accurately as possible. This enables us to compute the canonical covering map $q: \Delta \rightarrow E X^{*} \subset \mathbb{R}^{4}$ at many points.

Uniformizing EX*

We first want to find f such that $K\left(e^{2 f} m\right)=-1$. We let F be the space of rational functions p / q, where p and q are polynomial of degree at most 8 in $\left(z_{1}, z_{2}\right)$. We search numerically for $f \in F$ minimizing $\int_{E X^{*}}\left(K\left(e^{2 f} m\right)+1\right)^{2}$.
Now if $E X^{*} \simeq H X(b)$, then the length of the curve $C_{k} \subset E X^{*}$ with respect to $e^{2 f} m$ should be given by a known formula in terms of b. Each k gives an estimate for b; these differ by about $10^{-7.4}$.

[^0]
Uniformizing $E X^{*}$

We first want to find f such that $K\left(e^{2 f} m\right)=-1$. We let F be the space of rational functions p / q, where p and q are polynomial of degree at most 8 in $\left(z_{1}, z_{2}\right)$. We search numerically for $f \in F$ minimizing $\int_{E X^{*}}\left(K\left(e^{2 f} m\right)+1\right)^{2}$.
Now if $E X^{*} \simeq H X(b)$, then the length of the curve $C_{k} \subset E X^{*}$ with respect to $e^{2 f} m$ should be given by a known formula in terms of b. Each k gives an estimate for b; these differ by about $10^{-7.4}$.

At any point in $E X^{*}$, we can use power series methods to find an approximate conformal chart, then modify it to make it approximately isometric for the hyperbolic metrics on Δ and $E X^{*}$. Any two such charts should be related by an isometry of Δ, which must be $z \mapsto \lambda(z-\alpha) /(1-\bar{\alpha} z)$ with $|\lambda|=1>|\alpha|$.

We use numerical methods to line up a large number of such charts as accurately as possible. This enables us to compute the canonical covering map $q: \Delta \rightarrow E X^{*} \subset \mathbb{R}^{4}$ at many points.

Uniformizing EX*

We first want to find f such that $K\left(e^{2 f} m\right)=-1$. We let F be the space of rational functions p / q, where p and q are polynomial of degree at most 8 in $\left(z_{1}, z_{2}\right)$. We search numerically for $f \in F$ minimizing $\int_{E X^{*}}\left(K\left(e^{2 f} m\right)+1\right)^{2}$.
Now if $E X^{*} \simeq H X(b)$, then the length of the curve $C_{k} \subset E X^{*}$ with respect to $e^{2 f} m$ should be given by a known formula in terms of b. Each k gives an estimate for b; these differ by about $10^{-7.4}$.

At any point in $E X^{*}$, we can use power series methods to find an approximate conformal chart, then modify it to make it approximately isometric for the hyperbolic metrics on Δ and $E X^{*}$. Any two such charts should be related by an isometry of Δ, which must be $z \mapsto \lambda(z-\alpha) /(1-\bar{\alpha} z)$ with $|\lambda|=1>|\alpha|$.

We use numerical methods to line up a large number of such charts as accurately as possible. This enables us to compute the canonical covering map $q: \Delta \rightarrow E X^{*} \subset \mathbb{R}^{4}$ at many points.

Uniformizing EX*

Using the group action we see that there are functions $a_{k, m}(r)$ such that

$$
\begin{array}{ll}
q_{1}\left(r e^{i \theta}\right)=\sum_{m} a_{1, m}(r) \cos ((2 m+1) \theta) & q_{2}\left(r e^{i \theta}\right)=\sum_{m}(-1)^{m} a_{1, m}(r) \sin ((2 m+1) \theta) \\
q_{3}\left(r e^{i \theta}\right)=\sum_{m} a_{3, m}(r) \cos (4 m \theta) & q_{4}\left(r e^{i \theta}\right)=\sum_{m} a_{4, m}(r) \cos ((4 m+2) \theta) .
\end{array}
$$

Uniformizing $E X^{*}$

Using the group action we see that there are functions $a_{k, m}(r)$ such that

$$
\begin{array}{ll}
q_{1}\left(r e^{i \theta}\right)=\sum_{m} a_{1, m}(r) \cos ((2 m+1) \theta) & q_{2}\left(r e^{i \theta}\right)=\sum_{m}(-1)^{m} a_{1, m}(r) \sin ((2 m+1) \theta) \\
q_{3}\left(r e^{i \theta}\right)=\sum_{m} a_{3, m}(r) \cos (4 m \theta) & q_{4}\left(r e^{i \theta}\right)=\sum_{m} a_{4, m}(r) \cos ((4 m+2) \theta) .
\end{array}
$$

The functions $a_{k, m}(r)$ can be represented accurately by splines, but not by polynomials or rational functions. We do not yet know a more theoretically illuminating approach.

Uniformizing EX*

Using the group action we see that there are functions $a_{k, m}(r)$ such that
$q_{1}\left(r e^{i \theta}\right)=\sum_{m} a_{1, m}(r) \cos ((2 m+1) \theta) \quad q_{2}\left(r e^{i \theta}\right)=\sum_{m}(-1)^{m} a_{1, m}(r) \sin ((2 m+1) \theta)$
$q_{3}\left(r e^{i \theta}\right)=\sum_{m} a_{3, m}(r) \cos (4 m \theta) \quad q_{4}\left(r e^{i \theta}\right)=\sum_{m} a_{4, m}(r) \cos ((4 m+2) \theta)$.

The functions $a_{k, m}(r)$ can be represented accurately by splines, but not by polynomials or rational functions. We do not yet know a more theoretically illuminating approach.

[^0]: At any point in EX*, we can use power series methods to find an approximate conformal chart, then modify it to make it approximately isometric for the hyperbolic metrics on Δ and $E X^{*}$. Any two such charts should be related by an isometry of Δ, which must be $z \mapsto \lambda(z-\alpha) /(1-\bar{\alpha} z)$ with $|\lambda|=1>|\alpha|$

 We use numerical methods to line up a large number of such charts as accurately as possible. This enables us to compute the canonical covering map $q: \Delta \rightarrow E X^{*} \subset \mathbb{R}^{4}$ at many points.

