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The problem

Let X be a space, and let U and Z be complex vector bundles over X . Put

Inj(U,Z) = {(x , φ) | φ : Ux → Zx is linear and injective }.

Problem:
Understand the homotopy type and generalised cohomology of Inj(U,Z).
(This is on the edge of what can be understood by formal group theory.)

Example: When X = CP∞ and U = Cn and Z = Cn ⊗ (tautological bundle)
we have Inj(U,Z) = PU(n) (using S1 → U(n)→ PU(n)→ CP∞).

Example: When X is a point, Inj(U,Z) is homotopy equivalent to a Stiefel
manifold. Many things are well-understood in this case.

If we have a fully functorial understanding of this special case then we can
apply it fibrewise to cover the general case. Unfortunately, the usual methods
for analysing the Stiefel manifold Inj(U,Z) are not equivariant for
Aut(U)× Aut(Z) and so not functorial.

For the rest of the talk, U and Z are just vector spaces, but everything is
functorial.
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Inner products

We may assume that U and Z have hermitian inner products.

We put

L(U,Z) = {linear isometric embeddings U → Z}

= {θ : U → Z | θ†θ = 1U} ⊆ Inj(U,Z)

Lemma: L(U,Z) is a strong deformation retract of Inj(U,Z).

Proof: This is often done using Gram-Schmidt, but that is not functorial.

Instead, use the maps ht(φ) = φ ◦ (φ†φ)−t/2 for 0 ≤ t ≤ 1.

Here φ ∈ Inj(U,Z), and the map β = φ†φ is positive self-adjoint.

We can define βs for s ∈ R by functional calculus.

In more detail: there is an orthonormal basis {ei} for U with β(ei ) = tiei for
some ti > 0. We define βs by βs(ei ) = tsi ei . We can choose a polynomial p(x)
that is close to x s on [0,K ]; then p(β) is close to βs . Using this we see that βs

is well-defined and continuous in (s, β).

From now on we focus on L(U,Z) rather than Inj(U,Z).
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2× 2 matrices

Example: For a nonnegative self-adjoint matrix α =

[
a b

b c

]
∈ M2(C) with

trace τ = a + c and determinant δ = ac − |b|2 one can check that

√
α =

√
δ + α√
τ + 2

√
δ
.

Using this, we see that for φ =

[
a b
c d

]
∈ M2(C) with determinant

δ = ad − bc, the matrix ρ(φ) = (φ†φ)1/2 is given by

ρ(φ) =
1√

‖φ‖2
2 + 2|δ|

[
|a|2 + |c|2 + |δ| ab + cd

ab + cd |b|2 + |d |2 + |δ|

]
,

where
‖φ‖2

2 = trace(φ†φ) = |a|2 + |b|2 + |c|2 + |d |2.

The eigenvalues are (√
‖φ‖2

2 + 2|δ| ±
√
‖φ‖2

2 − 2|δ|
)
/2
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The Miller splitting

Suppose that U ≤ Z (and use methods functorial in that context).

Put

Fk(U,Z) = {θ ∈ L(U,Z) | rank(θ − inc) ≤ k}

, so

{inc} = F0(U,Z) ⊆ F1(U,Z) ⊆ · · · ⊆ Fdim(U)(U,Z) = L(U,Z).

Put
Gk(U) = {k − planes in U}

T = tautological bundle over Gk(U)

s(T ) = associated bundle of self-adjoint endomorphisms

Qk(U,Z) = Gk(U)s(T )⊕Hom(T ,Z	U) (Thom space).

Theorem (Miller): There are natural homeomorphisms

Fk(U,Z)+

Fk−1(U,Z)+
' Qk(U,Z)

and stable splittings

Fk(U,Z)+ '
k∨

j=0

Qj(U,Z).
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The tower

Theorem: Even if U 6≤ Z we have a natural tower of finite spectra:

S0 = X0(U,Z)

X1(U,Z)

Xn−2(U,Z)

Xn−1(U,Z)

L(U,Z)+ = Xn(U,Z)

Q1(U,Z)

Qn−2(U,Z)

Qn−1(U,Z)

Qn(U,Z)

Here n = dim(U) and Qk(U,Z) = Gk(U)s(T )+Hom(T ,Z)−Hom(T ,U)

(the Thom spectrum of a virtual bundle), and Xk(U,Z) is yet to be defined.
The triangles are distinguished.



The bottom connecting map

The tangent bundle to PU = G1(U) is
Hom(T ,U)− Hom(T ,T ) = Hom(T ,U)− C, so we have a Gysin map

X0(U,Z) = S0 → Σ2G1(U)−Hom(T ,U)

⊆ Σ2G1(U)Hom(T ,Z−U) = ΣQ1(U,Z).

Proposition: This is the bottom connecting map in the tower .

Let E be an even periodic cohomology theory with formal group G .
If U is a complex bundle over X then

E 0(PU) = E 0(X )[[x ]]/fU(x)

for some monic polynomial fU of degree equal to dim(U).The E 0(X )-module
M = E 0(ΣQ1(U,Z)) is generated by terms like x i fZ (x)/fU(x) dx and the Gysin
map induces the residue map res : M → E 0(X ) (Quillen).

If U ≤ Z then fU | fZ and res = 0 consistent with the Miller splitting.

Conjecture: in general, the chain complex of the tower is Λ∗(M) with
differential determined by res and the Liebniz rule.

This is bold, as we have not constructed any multiplicative structure in the
non-split case.
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Relationship with the Miller splitting

Conjecture:
Any choice of inclusion U → Z gives a canonical nullhomotopy of the
connecting maps in the tower, and also canonical data proving that the
composites

Fk(U,Z)+ → L(U,Z)+ = Xn(U,Z)→ Xk(U,Z)

are stable homotopy equivalences.

The resulting splittings

Fk(U,Z)+ '
k∨

j=0

Qk(U,Z)

should be the same as those obtained by Miller.

Using abstract methods of equivariant stable homotopy theory, we can prove a
slightly weaker statement. However, we have not yet succeeded in giving an
explicit construction of the required maps and homotopies.
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Change of notation

The notation used so far is inconvenient for actual constructions and proofs.
Instead:

I The target space Z is fixed throughout and is not displayed.

I We will define spaces X ∗k (U) ⊆ Xk(U) and put X̂k(U) = Xk(U)/X ∗k (U);

the spectrum Xk(U,Z) discussed earlier is S−s(U) ∧ X̂k(U).

I We will define spaces Q∗k (U) ⊆ Qk(U) and put Q̂k(U) = Qk(U)/Q∗k (U);

the spectrum Qk(U,Z) discussed earlier is S−s(U) ∧ Q̂k(U).

I Parallel notation with stars and hats will be used for various other spaces.



Simplices

Define ∆n = {t ∈ Rn | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.
Conventions: t0 = 0, tn+1 = 1, ∆0 = {∅}, ‖t‖ = tn.

Truncation: τk : ∆n → ∆n by τk(t)i = max(ti − tk , 0).

τ3

A commutative and associative operation on I = [0, 1]:

s#t = s + t − st = 1− (1− s)(1− t) = s + (1− s)t ≥ max(s, t)

s#(t1, . . . , tn) = (s#t1, . . . , s#tn).

For t ∈ ∆n and u ∈ ∆m put

t ∗ u = (t, ‖t‖#u) = (t1, . . . , tn, tn#u1, . . . , tn#um) ∈ ∆n+m

# =

This is associative with ∅ ∗ t = t = t ∗ ∅ and ‖t ∗ u‖ = ‖t‖#‖u‖ and
τn+i (t ∗ u) = 0 ∗ ((1− ‖t‖)τi (u)).
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Operators

For φ : U → V put ‖φ‖ = max{‖φ(u)‖ | u ∈ B(U)} (the operator norm).

As before ρ(φ) =
√
φ†φ; then ‖φ‖ = ‖ρ(φ)‖ = largest eigenvalue of ρ(φ).

D(U) = {α ∈ End(U) | α† = α, eigenvalues in [0, 1]} ' B(s(U)).

If dim(U) = n, define e : D(U)→ ∆n by e(α) = ordered list of eigenvalues .

By functional calculus, define τk : D(U)→ D(U) with τk ◦ e = e ◦ τk .

For s ∈ I and α ∈ D(U) put s#α = s.1U + (1− s)α so e(s#α) = s#e(α).

For α ∈ D(U) and β ∈ D(V ) put

α ∗ β = α⊕ (‖α‖#β) ∈ D(U ⊕ V )

so e(α ∗ β) = e(α) ∗ e(β). We sometimes write α ∗V β.
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More operators

H(U) = {φ : U → Z | ‖φ‖ ≤ 1} = B(Hom(U,Z))

L(U) = {φ : U → Z | ρ(φ) = 1U} = L(U,Z) ⊆ H(U).

Define µ(θ, α) = θα. Then µ, ρ and e are quotient maps with ρµ(θ, α) = θα.
If m : I → I is continuous, and nondecreasing, it gives a self-map of ∆n

and (by functional calculus) of D(U). This depends continuously on m.
If m(0) = 0, then there is a unique m• making the diagram commute.Thus:

L(U)× D(U)
µ //

1×τk
��

H(U)
ρ //

τk

��

D(U)

τk

��
L(U)× D(U)

µ
// H(U)

ρ
// D(U).
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Definition of the tower

For 0 ≤ k ≤ n = dim(U) we put

Xk(U) = {(α, φ) ∈ D(U)× H(U) | τn−k(α) = ρ(φ)}

Qk(U) = {(W , β, ψ) |W ∈ Gk(U), β ∈ D(W⊥), ψ ∈ H(W )}.

(NB X0(U) ' Q0(U) ' D(U) and Xn(U) ' Qn(U) ' H(U).)

Suppose that (α, φ) ∈ Xk(U), where 0 ≤ k ≤ n = dim(U) ≤ m = dim(Z).
Put t = e(α) ∈ ∆n. Then there is an orthonormal basis u1, . . . , un for U, and
an orthonormal basis z1, . . . , zm for Z , such that α(ui ) = tiui and φ(ui ) = 0 for
1 ≤ i ≤ n − k and φ(ui ) = (ti − tn−k)zi for n − k ≤ i ≤ n.

Also Qk(U) ' B(s(T⊥)⊕ Hom(T ,Z)); using Hom(T ,T ) ' s(T ) + s(T ) and
s(U) ' s(T⊥) + s(T ) + Hom(T ,U − T ) we get

s(T⊥) + Hom(T ,Z) ' (s(T ) + Hom(T ,U − Z)) + s(U).

We define maps Qk(U)
fk−→ Xk(U)

pk−→ Xk−1(U)

by
fk(W , β, ψ) = (β ∗W ρ(ψ), (1− ‖β‖)ψπW )

pk(α, φ) = (α, τn−k+1(φ)).
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Collapsing the boundary

We put

∆∗n = {t ∈ ∆n | t1 = 0 or ‖t‖ = 1} ∆̂n = ∆n/∆∗n

D∗(U) = {α ∈ D(U) | e1(α) = 0 or ‖α‖ = 1} D̂(U) = D(U)/D∗(U)

H∗(U) = {φ ∈ H(U) | e1(ρ(φ)) = 0 or ‖φ‖ = 1} Ĥ(U) = H(U)/H∗(U)

X ∗k (U) = {(α, φ) ∈ Xk(U) | α ∈ D∗(U)} X̂k(U) = Xk(U)/X ∗k (U)

Q∗k (U) = {(W , β, ψ) ∈ Qk(U) | β ∈ D∗(W⊥) or ‖ψ‖ = 1} Q̂k(U) = Qk(U)/Q∗k (U).

Note:
X̂0(U) ' Q̂0(U) ' D̂(U) ' S s(U)

Xn(U) ' Qn(U) ' H(U)

Q∗n (U) = {φ ∈ H(U) | ‖φ‖ = 1}
X ∗n (U) = {φ ∈ H(U) | ‖φ‖ = 1 or φ is not injective }.

Fact: The maps fk and pk preserve starred subspaces and so induce

Q̂k(U)
fk−→ X̂k(U)

pk−→ X̂k−1(U).
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The connecting maps gk : X̂k−1(U)→ ΣQ̂k(U)

We will construct a commutative diagram

EGk(U)

g̃k

��

ω // // Xk−1(U)
c // // X̂k−1(U)

gk

��
I × Qk(U)

c
// // ΣQ̂k(U).

where

I c and c are collapse maps, and ω is a quotient map.

I g̃k is visibly continuous.

I gk is visibly well-defined but not obviously continuous.

Commutativity proves that gk is in fact continuous.

EGk(U) = {(t,W , β, ψ) ∈ I × Qk(U) | ψ is not injective }
= {(t,W , β, ψ) ∈ I × Qk(U) | e1(ρ(ψ)) = 0}
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One can check that this makes the diagram commute.

One can use similar methods to define nullhomotopies of composites in the
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Σfk−−→ ΣX̂k(U).



Connecting maps

EGk(U)

g̃k

��

ω // // Xk−1(U)
c // // X̂k−1(U)

gk

��
I × Qk(U)

c
// // ΣQ̂k(U).

For generic (α, φ) ∈ X̂k−1(U): put p = en−k(α) and q = en−k+1(α). Let W be
the sum of all eigenspaces with eigenvalues ≥ q. Put t = (q − p)/(1− p) and
β = α|W⊥ and ψ = (1− q)−1φ|W . Define gk(α, φ) = (t,W , β, ψ).

In any cases where something goes wrong, put gk(α, φ) = ∗.

One can check that this makes the diagram commute.

One can use similar methods to define nullhomotopies of composites in the
chain

Q̂k(U)
fk−→ X̂k(U)

pk−→ X̂k−1(U)
gk−→ ΣQ̂k(U)

Σfk−−→ ΣX̂k(U).



Connecting maps

EGk(U)

g̃k

��

ω // // Xk−1(U)
c // // X̂k−1(U)

gk

��
I × Qk(U)

c
// // ΣQ̂k(U).

For generic (α, φ) ∈ X̂k−1(U): put p = en−k(α) and q = en−k+1(α). Let W be
the sum of all eigenspaces with eigenvalues ≥ q. Put t = (q − p)/(1− p) and
β = α|W⊥ and ψ = (1− q)−1φ|W . Define gk(α, φ) = (t,W , β, ψ).

In any cases where something goes wrong, put gk(α, φ) = ∗.

One can check that this makes the diagram commute.

One can use similar methods to define nullhomotopies of composites in the
chain

Q̂k(U)
fk−→ X̂k(U)

pk−→ X̂k−1(U)
gk−→ ΣQ̂k(U)

Σfk−−→ ΣX̂k(U).



Connecting maps

EGk(U)

g̃k

��

ω // // Xk−1(U)
c // // X̂k−1(U)

gk

��
I × Qk(U)

c
// // ΣQ̂k(U).

For generic (α, φ) ∈ X̂k−1(U): put p = en−k(α) and q = en−k+1(α). Let W be
the sum of all eigenspaces with eigenvalues ≥ q. Put t = (q − p)/(1− p) and
β = α|W⊥ and ψ = (1− q)−1φ|W . Define gk(α, φ) = (t,W , β, ψ).

In any cases where something goes wrong, put gk(α, φ) = ∗.

One can check that this makes the diagram commute.

One can use similar methods to define nullhomotopies of composites in the
chain

Q̂k(U)
fk−→ X̂k(U)

pk−→ X̂k−1(U)
gk−→ ΣQ̂k(U)

Σfk−−→ ΣX̂k(U).



The cofibration property

Suppose we have a diagram Q
f−→ X

p−→ Y
g−→ ΣQ

Σf−→ ΣX .
We will say that this is a cofibre sequence if there exist maps

X
p // Y

j // Cp

r

��

d // ΣX

X
p
// Y

g
// ΣQ

s

OO

Σf
// ΣX

such that rj ' g and ds ' Σf and rs ' 1ΣQ and sr ' 1Cp.

(Stably, this is equivalent to all other definitions; unstably, perhaps not.)

From nullhomotopies of gp and pf there is a functorial construction of maps r
and s with rj = g and ds ' Σf (but not necessarily rs ' 1 or sr ' 1).
The composite rs is essentially the Toda bracket 〈g , p, f 〉.

In the case

Q̂k(U)
fk−→ X̂k(U)

pk−→ X̂k−1(U)
gk−→ ΣQ̂k(U)

Σfk−−→ ΣX̂k(U).

we can define explicit homotopies giving rs ' 1 and sr ' 1.
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