Spaces of linear isometries

Neil Strickland
(joint with Harry Ullman)

June 13, 2013

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put $\operatorname{lnj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x}\right.$ is linear and injective $\}$.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{lnj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\}
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{lnj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\} .
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$. (This is on the edge of what can be understood by formal group theory.)

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{Inj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\} .
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$. (This is on the edge of what can be understood by formal group theory.)
Example: When $X=\mathbb{C} P^{\infty}$ and $U=\mathbb{C}^{n}$ and $Z=\mathbb{C}^{n} \otimes$ (tautological bundle) we have $\operatorname{Inj}(U, Z)=P U(n)\left(\right.$ using $\left.S^{1} \rightarrow U(n) \rightarrow P U(n) \rightarrow \mathbb{C} P^{\infty}\right)$.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{Inj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\}
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{lnj}(U, Z)$. (This is on the edge of what can be understood by formal group theory.)
Example: When $X=\mathbb{C} P^{\infty}$ and $U=\mathbb{C}^{n}$ and $Z=\mathbb{C}^{n} \otimes$ (tautological bundle) we have $\operatorname{Inj}(U, Z)=P U(n)$ (using $\left.S^{1} \rightarrow U(n) \rightarrow P U(n) \rightarrow \mathbb{C} P^{\infty}\right)$.
Example: When X is a point, $\operatorname{Inj}(U, Z)$ is homotopy equivalent to a Stiefel manifold. Many things are well-understood in this case.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{Inj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\}
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$. (This is on the edge of what can be understood by formal group theory.)
Example: When $X=\mathbb{C} P^{\infty}$ and $U=\mathbb{C}^{n}$ and $Z=\mathbb{C}^{n} \otimes$ (tautological bundle) we have $\operatorname{Inj}(U, Z)=P U(n)$ (using $\left.S^{1} \rightarrow U(n) \rightarrow P U(n) \rightarrow \mathbb{C} P^{\infty}\right)$.
Example: When X is a point, $\operatorname{Inj}(U, Z)$ is homotopy equivalent to a Stiefel manifold. Many things are well-understood in this case.

If we have a fully functorial understanding of this special case then we can apply it fibrewise to cover the general case.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{Inj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\}
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$.
(This is on the edge of what can be understood by formal group theory.)
Example: When $X=\mathbb{C} P^{\infty}$ and $U=\mathbb{C}^{n}$ and $Z=\mathbb{C}^{n} \otimes$ (tautological bundle) we have $\operatorname{Inj}(U, Z)=P U(n)$ (using $\left.S^{1} \rightarrow U(n) \rightarrow P U(n) \rightarrow \mathbb{C} P^{\infty}\right)$.
Example: When X is a point, $\operatorname{Inj}(U, Z)$ is homotopy equivalent to a Stiefel manifold. Many things are well-understood in this case.

If we have a fully functorial understanding of this special case then we can apply it fibrewise to cover the general case. Unfortunately, the usual methods for analysing the Stiefel manifold $\operatorname{Inj}(U, Z)$ are not equivariant for $\operatorname{Aut}(U) \times \operatorname{Aut}(Z)$ and so not functorial.

The problem

Let X be a space, and let U and Z be complex vector bundles over X. Put

$$
\operatorname{Inj}(U, Z)=\left\{(x, \phi) \mid \phi: U_{x} \rightarrow Z_{x} \text { is linear and injective }\right\}
$$

Problem:
Understand the homotopy type and generalised cohomology of $\operatorname{Inj}(U, Z)$.
(This is on the edge of what can be understood by formal group theory.)
Example: When $X=\mathbb{C} P^{\infty}$ and $U=\mathbb{C}^{n}$ and $Z=\mathbb{C}^{n} \otimes$ (tautological bundle) we have $\operatorname{Inj}(U, Z)=P U(n)$ (using $\left.S^{1} \rightarrow U(n) \rightarrow P U(n) \rightarrow \mathbb{C} P^{\infty}\right)$.
Example: When X is a point, $\operatorname{Inj}(U, Z)$ is homotopy equivalent to a Stiefel manifold. Many things are well-understood in this case.

If we have a fully functorial understanding of this special case then we can apply it fibrewise to cover the general case. Unfortunately, the usual methods for analysing the Stiefel manifold $\operatorname{Inj}(U, Z)$ are not equivariant for $\operatorname{Aut}(U) \times \operatorname{Aut}(Z)$ and so not functorial.

For the rest of the talk, U and Z are just vector spaces, but everything is functorial.

Inner products

We may assume that U and Z have hermitian inner products.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{Inj}(U, Z)$.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.
In more detail: there is an orthonormal basis $\left\{e_{i}\right\}$ for U with $\beta\left(e_{i}\right)=t_{i} e_{i}$ for some $t_{i}>0$.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.
In more detail: there is an orthonormal basis $\left\{e_{i}\right\}$ for U with $\beta\left(e_{i}\right)=t_{i} e_{i}$ for some $t_{i}>0$. We define β^{s} by $\beta^{s}\left(e_{i}\right)=t_{i}^{s} e_{i}$.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.
In more detail: there is an orthonormal basis $\left\{e_{i}\right\}$ for U with $\beta\left(e_{i}\right)=t_{i} e_{i}$ for some $t_{i}>0$. We define β^{s} by $\beta^{s}\left(e_{i}\right)=t_{i}^{s} e_{i}$. We can choose a polynomial $p(x)$ that is close to x^{s} on $[0, K]$; then $p(\beta)$ is close to β^{s}.

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.
In more detail: there is an orthonormal basis $\left\{e_{i}\right\}$ for U with $\beta\left(e_{i}\right)=t_{i} e_{i}$ for some $t_{i}>0$. We define β^{s} by $\beta^{s}\left(e_{i}\right)=t_{i}^{s} e_{i}$. We can choose a polynomial $p(x)$ that is close to x^{s} on $[0, K]$; then $p(\beta)$ is close to β^{s}. Using this we see that β^{s} is well-defined and continuous in (s, β). \square

Inner products

We may assume that U and Z have hermitian inner products. We put

$$
\begin{aligned}
L(U, Z) & =\{\text { linear isometric embeddings } U \rightarrow Z\} \\
& =\left\{\theta: U \rightarrow Z \mid \theta^{\dagger} \theta=1_{U}\right\} \subseteq \operatorname{lnj}(U, Z)
\end{aligned}
$$

Lemma: $L(U, Z)$ is a strong deformation retract of $\operatorname{lnj}(U, Z)$.
Proof: This is often done using Gram-Schmidt, but that is not functorial.
Instead, use the maps $h_{t}(\phi)=\phi \circ\left(\phi^{\dagger} \phi\right)^{-t / 2}$ for $0 \leq t \leq 1$.
Here $\phi \in \operatorname{lnj}(U, Z)$, and the map $\beta=\phi^{\dagger} \phi$ is positive self-adjoint.
We can define β^{s} for $s \in \mathbb{R}$ by functional calculus.
In more detail: there is an orthonormal basis $\left\{e_{i}\right\}$ for U with $\beta\left(e_{i}\right)=t_{i} e_{i}$ for some $t_{i}>0$. We define β^{s} by $\beta^{s}\left(e_{i}\right)=t_{i}^{s} e_{i}$. We can choose a polynomial $p(x)$ that is close to x^{s} on $[0, K]$; then $p(\beta)$ is close to β^{s}. Using this we see that β^{s} is well-defined and continuous in (s, β). \square
From now on we focus on $L(U, Z)$ rather than $\operatorname{Inj}(U, Z)$.

2×2 matrices

Example: For a nonnegative self-adjoint matrix $\alpha=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \in M_{2}(\mathbb{C})$ with trace $\tau=a+c$ and determinant $\delta=a c-|b|^{2}$ one can check that

$$
\sqrt{\alpha}=\frac{\sqrt{\delta}+\alpha}{\sqrt{\tau+2 \sqrt{\delta}}}
$$

2×2 matrices

Example: For a nonnegative self-adjoint matrix $\alpha=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \in M_{2}(\mathbb{C})$ with trace $\tau=a+c$ and determinant $\delta=a c-|b|^{2}$ one can check that

$$
\sqrt{\alpha}=\frac{\sqrt{\delta}+\alpha}{\sqrt{\tau+2 \sqrt{\delta}}}
$$

Using this, we see that for $\phi=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{C})$ with determinant $\delta=a d-b c$, the matrix $\rho(\phi)=\left(\phi^{\dagger} \phi\right)^{1 / 2}$ is given by

$$
\rho(\phi)=\frac{1}{\sqrt{\|\phi\|_{2}^{2}+2|\delta|}}\left[\begin{array}{cc}
|a|^{2}+|c|^{2}+|\delta| & \bar{a} b+\bar{c} d \\
a \bar{b}+c \bar{d} & |b|^{2}+|d|^{2}+|\delta|
\end{array}\right]
$$

where

$$
\|\phi\|_{2}^{2}=\operatorname{trace}\left(\phi^{\dagger} \phi\right)=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}
$$

2×2 matrices

Example: For a nonnegative self-adjoint matrix $\alpha=\left[\begin{array}{ll}a & b \\ \bar{b} & c\end{array}\right] \in M_{2}(\mathbb{C})$ with trace $\tau=a+c$ and determinant $\delta=a c-|b|^{2}$ one can check that

$$
\sqrt{\alpha}=\frac{\sqrt{\delta}+\alpha}{\sqrt{\tau+2 \sqrt{\delta}}}
$$

Using this, we see that for $\phi=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{C})$ with determinant $\delta=a d-b c$, the matrix $\rho(\phi)=\left(\phi^{\dagger} \phi\right)^{1 / 2}$ is given by

$$
\rho(\phi)=\frac{1}{\sqrt{\|\phi\|_{2}^{2}+2|\delta|}}\left[\begin{array}{cc}
|a|^{2}+|c|^{2}+|\delta| & \bar{a} b+\bar{c} d \\
a \bar{b}+c \bar{d} & |b|^{2}+|d|^{2}+|\delta|
\end{array}\right]
$$

where

$$
\|\phi\|_{2}^{2}=\operatorname{trace}\left(\phi^{\dagger} \phi\right)=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}
$$

The eigenvalues are

$$
\left(\sqrt{\|\phi\|_{2}^{2}+2|\delta|} \pm \sqrt{\|\phi\|_{2}^{2}-2|\delta|}\right) / 2
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context).

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\text { inc }) \leq k\}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z)
\end{gathered}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{\text { inc }\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z)
\end{gathered}
$$

Put

$$
G_{k}(U)=\{k-\text { planes in } U\}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z)
\end{gathered}
$$

Put

$$
\begin{aligned}
G_{k}(U) & =\{k-\text { planes in } U\} \\
T & =\text { tautological bundle over } G_{k}(U)
\end{aligned}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z) .
\end{gathered}
$$

Put

$$
\begin{aligned}
G_{k}(U) & =\{k-\text { planes in } U\} \\
T & =\text { tautological bundle over } G_{k}(U) \\
s(T) & =\text { associated bundle of self-adjoint endomorphisms }
\end{aligned}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z) .
\end{gathered}
$$

Put

$$
\begin{aligned}
G_{k}(U) & =\{k-\text { planes in } U\} \\
T & =\text { tautological bundle over } G_{k}(U) \\
s(T) & =\text { associated bundle of self-adjoint endomorphisms } \\
Q_{k}(U, Z) & =G_{k}(U)^{s(T) \oplus \operatorname{Hom}(T, Z \ominus U)} \quad \text { (Thom space). }
\end{aligned}
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z)
\end{gathered}
$$

Put

$$
\begin{aligned}
G_{k}(U) & =\{k-\text { planes in } U\} \\
T & =\text { tautological bundle over } G_{k}(U) \\
s(T) & =\text { associated bundle of self-adjoint endomorphisms } \\
Q_{k}(U, Z) & =G_{k}(U)^{s(T) \oplus \operatorname{Hom}(T, Z \ominus U)} \quad \text { (Thom space). }
\end{aligned}
$$

Theorem (Miller): There are natural homeomorphisms

$$
\frac{F_{k}(U, Z)_{+}}{F_{k-1}(U, Z)_{+}} \simeq Q_{k}(U, Z)
$$

The Miller splitting

Suppose that $U \leq Z$ (and use methods functorial in that context). Put

$$
\begin{gathered}
F_{k}(U, Z)=\{\theta \in L(U, Z) \mid \operatorname{rank}(\theta-\mathrm{inc}) \leq k\}, \\
\{i n c\}=F_{0}(U, Z) \subseteq F_{1}(U, Z) \subseteq \cdots \subseteq F_{\operatorname{dim}(U)}(U, Z)=L(U, Z)
\end{gathered}
$$

Put

$$
\begin{aligned}
G_{k}(U) & =\{k-\text { planes in } U\} \\
T & =\text { tautological bundle over } G_{k}(U) \\
s(T) & =\text { associated bundle of self-adjoint endomorphisms } \\
Q_{k}(U, Z) & =G_{k}(U)^{s(T) \oplus \operatorname{Hom}(T, Z \ominus U)} \quad \text { (Thom space). }
\end{aligned}
$$

Theorem (Miller): There are natural homeomorphisms

$$
\frac{F_{k}(U, Z)_{+}}{F_{k-1}(U, Z)_{+}} \simeq Q_{k}(U, Z)
$$

and stable splittings

$$
F_{k}(U, Z)_{+} \simeq \bigvee_{j=0}^{k} Q_{j}(U, Z)
$$

The tower

Theorem: Even if $U \not 又 Z$ we have a natural tower of finite spectra:

Here $n=\operatorname{dim}(U)$ and $Q_{k}(U, Z)=G_{k}(U)^{s(T)+\operatorname{Hom}(T, Z)-\operatorname{Hom}(T, U)}$ (the Thom spectrum of a virtual bundle), and $X_{k}(U, Z)$ is yet to be defined. The triangles are distinguished.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-H o m(T, U)}
$$

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}
$$

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z) .
$$

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is
$\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G. If U is a complex bundle over X then

$$
E^{0}(P U)=E^{0}(X) \llbracket x \rrbracket / f_{U}(x)
$$

for some monic polynomial f_{U} of degree equal to $\operatorname{dim}(U)$.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is $\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G.
If U is a complex bundle over X then

$$
E^{0}(P U)=E^{0}(X) \llbracket x \rrbracket / f_{U}(x)
$$

for some monic polynomial f_{U} of degree equal to $\operatorname{dim}(U)$. The $E^{0}(X)$-module $M=E^{0}\left(\Sigma Q_{1}(U, Z)\right)$ is generated by terms like $x^{i} f_{Z}(x) / f_{U}(x) d x$ and the Gysin map induces the residue map res: $M \rightarrow E^{0}(X)$ (Quillen).

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is $\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G.
If U is a complex bundle over X then

$$
E^{0}(P U)=E^{0}(X) \llbracket x \rrbracket / f_{U}(x)
$$

for some monic polynomial f_{U} of degree equal to $\operatorname{dim}(U)$. The $E^{0}(X)$-module $M=E^{0}\left(\Sigma Q_{1}(U, Z)\right)$ is generated by terms like $x^{i} f_{Z}(x) / f_{U}(x) d x$ and the Gysin map induces the residue map res: $M \rightarrow E^{0}(X)$ (Quillen).

If $U \leq Z$ then $f_{U} \mid f_{Z}$ and res $=0$ consistent with the Miller splitting.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is $\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G.
If U is a complex bundle over X then

$$
E^{0}(P U)=E^{0}(X) \llbracket x \rrbracket / f_{U}(x)
$$

for some monic polynomial f_{U} of degree equal to $\operatorname{dim}(U)$. The $E^{0}(X)$-module $M=E^{0}\left(\Sigma Q_{1}(U, Z)\right)$ is generated by terms like $x^{i} f_{Z}(x) / f_{U}(x) d x$ and the Gysin map induces the residue map res: $M \rightarrow E^{0}(X)$ (Quillen).

If $U \leq Z$ then $f_{U} \mid f_{Z}$ and res $=0$ consistent with the Miller splitting.
Conjecture: in general, the chain complex of the tower is $\Lambda^{*}(M)$ with differential determined by res and the Liebniz rule.

The bottom connecting map

The tangent bundle to $P U=G_{1}(U)$ is $\operatorname{Hom}(T, U)-\operatorname{Hom}(T, T)=\operatorname{Hom}(T, U)-\mathbb{C}$, so we have a Gysin map

$$
X_{0}(U, Z)=S^{0} \rightarrow \Sigma^{2} G_{1}(U)^{-\operatorname{Hom}(T, U)} \subseteq \Sigma^{2} G_{1}(U)^{\operatorname{Hom}(T, Z-U)}=\Sigma Q_{1}(U, Z)
$$

Proposition: This is the bottom connecting map in the tower \square.
Let E be an even periodic cohomology theory with formal group G.
If U is a complex bundle over X then

$$
E^{0}(P U)=E^{0}(X) \llbracket x \rrbracket / f_{U}(x)
$$

for some monic polynomial f_{U} of degree equal to $\operatorname{dim}(U)$. The $E^{0}(X)$-module $M=E^{0}\left(\Sigma Q_{1}(U, Z)\right)$ is generated by terms like $x^{i} f_{Z}(x) / f_{U}(x) d x$ and the Gysin map induces the residue map res: $M \rightarrow E^{0}(X)$ (Quillen).

If $U \leq Z$ then $f_{U} \mid f_{Z}$ and res $=0$ consistent with the Miller splitting.
Conjecture: in general, the chain complex of the tower is $\Lambda^{*}(M)$ with differential determined by res and the Liebniz rule.

This is bold, as we have not constructed any multiplicative structure in the non-split case.

Relationship with the Miller splitting

Conjecture:
Any choice of inclusion $U \rightarrow Z$ gives a canonical nullhomotopy of the connecting maps in the tower, and also canonical data proving that the composites

$$
F_{k}(U, Z)_{+} \rightarrow L(U, Z)_{+}=X_{n}(U, Z) \rightarrow X_{k}(U, Z)
$$

are stable homotopy equivalences.

Relationship with the Miller splitting

Conjecture:
Any choice of inclusion $U \rightarrow Z$ gives a canonical nullhomotopy of the connecting maps in the tower, and also canonical data proving that the composites

$$
F_{k}(U, Z)_{+} \rightarrow L(U, Z)_{+}=X_{n}(U, Z) \rightarrow X_{k}(U, Z)
$$

are stable homotopy equivalences.
The resulting splittings

$$
F_{k}(U, Z)_{+} \simeq \bigvee_{j=0}^{k} Q_{k}(U, Z)
$$

should be the same as those obtained by Miller.

Relationship with the Miller splitting

Conjecture:
Any choice of inclusion $U \rightarrow Z$ gives a canonical nullhomotopy of the connecting maps in the tower, and also canonical data proving that the composites

$$
F_{k}(U, Z)_{+} \rightarrow L(U, Z)_{+}=X_{n}(U, Z) \rightarrow X_{k}(U, Z)
$$

are stable homotopy equivalences.
The resulting splittings

$$
F_{k}(U, Z)_{+} \simeq \bigvee_{j=0}^{k} Q_{k}(U, Z)
$$

should be the same as those obtained by Miller.
Using abstract methods of equivariant stable homotopy theory, we can prove a slightly weaker statement. However, we have not yet succeeded in giving an explicit construction of the required maps and homotopies.

Change of notation

The notation used so far is inconvenient for actual constructions and proofs. Instead:

- The target space Z is fixed throughout and is not displayed.
- We will define spaces $X_{k}^{*}(U) \subseteq X_{k}(U)$ and put $\widehat{X}_{k}(U)=X_{k}(U) / X_{k}^{*}(U)$; the spectrum $X_{k}(U, Z)$ discussed earlier is $S^{-s(U)} \wedge \widehat{X}_{k}(U)$.
- We will define spaces $Q_{k}^{*}(U) \subseteq Q_{k}(U)$ and put $\widehat{Q}_{k}(U)=Q_{k}(U) / Q_{k}^{*}(U)$; the spectrum $Q_{k}(U, Z)$ discussed earlier is $S^{-s(U)} \wedge \widehat{Q}_{k}(U)$.
- Parallel notation with stars and hats will be used for various other spaces.

Simplices

Define

$$
\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\} .
$$

Conventions: $t_{0}=0, t_{n+1}=1, \Delta_{0}=\{\emptyset\},\|t\|=t_{n}$.

Simplices

Define

$$
\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\} .
$$

Conventions: $t_{0}=0, t_{n+1}=1, \Delta_{0}=\{\emptyset\},\|t\|=t_{n}$.
Truncation: $\tau_{k}: \Delta_{n} \rightarrow \Delta_{n}$ by $\tau_{k}(t)_{i}=\max \left(t_{i}-t_{k}, 0\right)$.

Simplices

Define

$$
\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\}
$$

Conventions: $t_{0}=0, t_{n+1}=1, \Delta_{0}=\{\emptyset\},\|t\|=t_{n}$.
Truncation: $\tau_{k}: \Delta_{n} \rightarrow \Delta_{n}$ by $\tau_{k}(t)_{i}=\max \left(t_{i}-t_{k}, 0\right)$.

A commutative and associative operation on $I=[0,1]$:

$$
\begin{aligned}
s \# t=s+t-s t & =1-(1-s)(1-t)=s+(1-s) t \geq \max (s, t) \\
s \#\left(t_{1}, \ldots, t_{n}\right) & =\left(s \# t_{1}, \ldots, s \# t_{n}\right) .
\end{aligned}
$$

Simplices

Define

$$
\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\} .
$$

Conventions: $t_{0}=0, t_{n+1}=1, \Delta_{0}=\{\emptyset\},\|t\|=t_{n}$.
Truncation: $\tau_{k}: \Delta_{n} \rightarrow \Delta_{n}$ by $\tau_{k}(t)_{i}=\max \left(t_{i}-t_{k}, 0\right)$.

A commutative and associative operation on $I=[0,1]$:

$$
\begin{aligned}
s \# t=s+t-s t & =1-(1-s)(1-t)=s+(1-s) t \geq \max (s, t) \\
s \#\left(t_{1}, \ldots, t_{n}\right) & =\left(s \# t_{1}, \ldots, s \# t_{n}\right)
\end{aligned}
$$

For $t \in \Delta_{n}$ and $u \in \Delta_{m}$ put

$$
t * u=(t,\|t\| \# u)=\left(t_{1}, \ldots, t_{n}, t_{n} \# u_{1}, \ldots, t_{n} \# u_{m}\right) \in \Delta_{n+m}
$$

Simplices

Define

$$
\Delta_{n}=\left\{t \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\} .
$$

Conventions: $t_{0}=0, t_{n+1}=1, \Delta_{0}=\{\emptyset\},\|t\|=t_{n}$.
Truncation: $\tau_{k}: \Delta_{n} \rightarrow \Delta_{n}$ by $\tau_{k}(t)_{i}=\max \left(t_{i}-t_{k}, 0\right)$.

A commutative and associative operation on $I=[0,1]$:

$$
\begin{aligned}
s \# t=s+t-s t & =1-(1-s)(1-t)=s+(1-s) t \geq \max (s, t) \\
s \#\left(t_{1}, \ldots, t_{n}\right) & =\left(s \# t_{1}, \ldots, s \# t_{n}\right)
\end{aligned}
$$

For $t \in \Delta_{n}$ and $u \in \Delta_{m}$ put

$$
t * u=(t,\|t\| \# u)=\left(t_{1}, \ldots, t_{n}, t_{n} \# u_{1}, \ldots, t_{n} \# u_{m}\right) \in \Delta_{n+m}
$$

This is associative with $\emptyset * t=t=t * \emptyset$ and $\|t * u\|=\|t\| \#\|u\|$ and $\tau_{n+i}(t * u)=0 *\left((1-\|t\|) \tau_{i}(u)\right)$.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

$$
D(U)=\left\{\alpha \in \operatorname{End}(U) \mid \alpha^{\dagger}=\alpha, \text { eigenvalues in }[0,1]\right\} \simeq B(s(U))
$$

If $\operatorname{dim}(U)=n$, define $e: D(U) \rightarrow \Delta_{n}$ by $e(\alpha)=$ ordered list of eigenvalues.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

$$
D(U)=\left\{\alpha \in \operatorname{End}(U) \mid \alpha^{\dagger}=\alpha, \text { eigenvalues in }[0,1]\right\} \simeq B(s(U))
$$

If $\operatorname{dim}(U)=n$, define $e: D(U) \rightarrow \Delta_{n}$ by $e(\alpha)=$ ordered list of eigenvalues .
By functional calculus, define $\tau_{k}: D(U) \rightarrow D(U)$ with $\tau_{k} \circ e=e \circ \tau_{k}$.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

$$
D(U)=\left\{\alpha \in \operatorname{End}(U) \mid \alpha^{\dagger}=\alpha, \text { eigenvalues in }[0,1]\right\} \simeq B(s(U))
$$

If $\operatorname{dim}(U)=n$, define $e: D(U) \rightarrow \Delta_{n}$ by $e(\alpha)=$ ordered list of eigenvalues.
By functional calculus, define $\tau_{k}: D(U) \rightarrow D(U)$ with $\tau_{k} \circ e=e \circ \tau_{k}$.
For $s \in I$ and $\alpha \in D(U)$ put $s \# \alpha=s .1_{U}+(1-s) \alpha$ so $e(s \# \alpha)=s \# e(\alpha)$.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

$$
D(U)=\left\{\alpha \in \operatorname{End}(U) \mid \alpha^{\dagger}=\alpha, \text { eigenvalues in }[0,1]\right\} \simeq B(s(U))
$$

If $\operatorname{dim}(U)=n$, define $e: D(U) \rightarrow \Delta_{n}$ by $e(\alpha)=$ ordered list of eigenvalues .
By functional calculus, define $\tau_{k}: D(U) \rightarrow D(U)$ with $\tau_{k} \circ e=e \circ \tau_{k}$.
For $s \in I$ and $\alpha \in D(U)$ put $s \# \alpha=s .1_{U}+(1-s) \alpha$ so $e(s \# \alpha)=s \# e(\alpha)$.
For $\alpha \in D(U)$ and $\beta \in D(V)$ put

$$
\alpha * \beta=\alpha \oplus(\|\alpha\| \# \beta) \in D(U \oplus V)
$$

so $e(\alpha * \beta)=e(\alpha) * e(\beta)$.

Operators

For $\phi: U \rightarrow V$ put $\|\phi\|=\max \{\|\phi(u)\| \mid u \in B(U)\}$ (the operator norm).
As before $\rho(\phi)=\sqrt{\phi^{\dagger} \phi}$; then $\|\phi\|=\|\rho(\phi)\|=$ largest eigenvalue of $\rho(\phi)$.

$$
D(U)=\left\{\alpha \in \operatorname{End}(U) \mid \alpha^{\dagger}=\alpha, \text { eigenvalues in }[0,1]\right\} \simeq B(s(U))
$$

If $\operatorname{dim}(U)=n$, define $e: D(U) \rightarrow \Delta_{n}$ by $e(\alpha)=$ ordered list of eigenvalues.
By functional calculus, define $\tau_{k}: D(U) \rightarrow D(U)$ with $\tau_{k} \circ e=e \circ \tau_{k}$.
For $s \in I$ and $\alpha \in D(U)$ put $s \# \alpha=s .1_{U}+(1-s) \alpha$ so $e(s \# \alpha)=s \# e(\alpha)$.
For $\alpha \in D(U)$ and $\beta \in D(V)$ put

$$
\alpha * \beta=\alpha \oplus(\|\alpha\| \# \beta) \in D(U \oplus V)
$$

so $e(\alpha * \beta)=e(\alpha) * e(\beta)$. We sometimes write $\alpha * v \beta$.

More operators

$$
\begin{aligned}
H(U) & =\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U) & =\{\phi: U \rightarrow Z \mid \rho(\phi)=1 U\}=L(U, Z) \subseteq H(U) .
\end{aligned}
$$

More operators

$$
\begin{aligned}
& H(U)=\{\phi: U\rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
& L(U)=\{\phi: U\rightarrow Z \mid \rho(\phi)=1 U\}=L(U, Z) \subseteq H(U) . \\
& L(U) \times D(U) \xrightarrow{\mu} H(U) \xrightarrow{\rho} D(U) \xrightarrow{e} \Delta_{n}
\end{aligned}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$.

More operators

$$
\begin{gathered}
H(U)=\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U)=\{\phi: U \rightarrow Z \mid \rho(\phi)=1 U\}=L(U, Z) \subseteq H(U) . \\
L(U) \times D(U) \xrightarrow{\mu} H(U) \xrightarrow{\rho} D(U) \xrightarrow{e} \Delta_{n} \\
L(U) \times D(U) \xrightarrow{\mu} H(U) \xrightarrow{\rho} D(U) \xrightarrow{e} \Delta_{V_{n}}
\end{gathered}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$. If $m: I \rightarrow l$ is continuous, and nondecreasing, it gives a self-map of Δ_{n}

More operators

$$
\begin{aligned}
H(U) & =\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U) & =\left\{\phi: U \rightarrow Z \mid \rho(\phi)=1_{U}\right\}=L(U, Z) \subseteq H(U)
\end{aligned}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$. If $m: I \rightarrow I$ is continuous, and nondecreasing, it gives a self-map of Δ_{n} and (by functional calculus) of $D(U)$.

More operators

$$
\begin{aligned}
H(U) & =\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U) & =\left\{\phi: U \rightarrow Z \mid \rho(\phi)=1_{U}\right\}=L(U, Z) \subseteq H(U)
\end{aligned}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$. If $m: I \rightarrow I$ is continuous, and nondecreasing, it gives a self-map of Δ_{n} and (by functional calculus) of $D(U)$. This depends continuously on m.

More operators

$$
\begin{aligned}
H(U) & =\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U) & =\left\{\phi: U \rightarrow Z \mid \rho(\phi)=1_{U}\right\}=L(U, Z) \subseteq H(U)
\end{aligned}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$. If $m: I \rightarrow I$ is continuous, and nondecreasing, it gives a self-map of Δ_{n} and (by functional calculus) of $D(U)$. This depends continuously on m. If $m(0)=0$, then there is a unique m_{\bullet} making the diagram commute.

More operators

$$
\begin{aligned}
H(U) & =\{\phi: U \rightarrow Z \mid\|\phi\| \leq 1\}=B(\operatorname{Hom}(U, Z)) \\
L(U) & =\left\{\phi: U \rightarrow Z \mid \rho(\phi)=1_{U}\right\}=L(U, Z) \subseteq H(U)
\end{aligned}
$$

Define $\mu(\theta, \alpha)=\theta \alpha$. Then μ, ρ and e are quotient maps with $\rho \mu(\theta, \alpha)=\theta \alpha$. If $m: I \rightarrow I$ is continuous, and nondecreasing, it gives a self-map of Δ_{n} and (by functional calculus) of $D(U)$. This depends continuously on m. If $m(0)=0$, then there is a unique m_{0}. making the diagram commute. Thus:

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\}
\end{aligned}
$$

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\} .
\end{aligned}
$$

$\left(\operatorname{NB} X_{0}(U) \simeq Q_{0}(U) \simeq D(U)\right.$ and $\left.X_{n}(U) \simeq Q_{n}(U) \simeq H(U).\right)$

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\} .
\end{aligned}
$$

$\left(\right.$ NB $X_{0}(U) \simeq Q_{0}(U) \simeq D(U)$ and $X_{n}(U) \simeq Q_{n}(U) \simeq H(U)$.)
Suppose that $(\alpha, \phi) \in X_{k}(U)$, where $0 \leq k \leq n=\operatorname{dim}(U) \leq m=\operatorname{dim}(Z)$.

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\} .
\end{aligned}
$$

$\left(\right.$ NB $X_{0}(U) \simeq Q_{0}(U) \simeq D(U)$ and $X_{n}(U) \simeq Q_{n}(U) \simeq H(U)$.)
Suppose that $(\alpha, \phi) \in X_{k}(U)$, where $0 \leq k \leq n=\operatorname{dim}(U) \leq m=\operatorname{dim}(Z)$. Put $t=e(\alpha) \in \Delta_{n}$.

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\}
\end{aligned}
$$

$\left(\mathrm{NB} X_{0}(U) \simeq Q_{0}(U) \simeq D(U)\right.$ and $X_{n}(U) \simeq Q_{n}(U) \simeq H(U)$.)
Suppose that $(\alpha, \phi) \in X_{k}(U)$, where $0 \leq k \leq n=\operatorname{dim}(U) \leq m=\operatorname{dim}(Z)$. Put $t=e(\alpha) \in \Delta_{n}$. Then there is an orthonormal basis u_{1}, \ldots, u_{n} for U, and an orthonormal basis z_{1}, \ldots, z_{m} for Z, such that $\alpha\left(u_{i}\right)=t_{i} u_{i}$ and $\phi\left(u_{i}\right)=0$ for $1 \leq i \leq n-k$ and $\phi\left(u_{i}\right)=\left(t_{i}-t_{n-k}\right) z_{i}$ for $n-k \leq i \leq n$.

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\} .
\end{aligned}
$$

$\left(N B X_{0}(U) \simeq Q_{0}(U) \simeq D(U)\right.$ and $X_{n}(U) \simeq Q_{n}(U) \simeq H(U)$.)
Suppose that $(\alpha, \phi) \in X_{k}(U)$, where $0 \leq k \leq n=\operatorname{dim}(U) \leq m=\operatorname{dim}(Z)$.
Put $t=e(\alpha) \in \Delta_{n}$. Then there is an orthonormal basis u_{1}, \ldots, u_{n} for U, and an orthonormal basis z_{1}, \ldots, z_{m} for Z, such that $\alpha\left(u_{i}\right)=t_{i} u_{i}$ and $\phi\left(u_{i}\right)=0$ for $1 \leq i \leq n-k$ and $\phi\left(u_{i}\right)=\left(t_{i}-t_{n-k}\right) z_{i}$ for $n-k \leq i \leq n$.
Also $Q_{k}(U) \simeq B\left(s\left(T^{\perp}\right) \oplus \operatorname{Hom}(T, Z)\right)$; using $\operatorname{Hom}(T, T) \simeq s(T)+s(T)$ and $s(U) \simeq s\left(T^{\perp}\right)+s(T)+\operatorname{Hom}(T, U-T)$ we get

$$
s\left(T^{\perp}\right)+\operatorname{Hom}(T, Z) \simeq(s(T)+\operatorname{Hom}(T, U-Z))+s(U)
$$

Definition of the tower

For $0 \leq k \leq n=\operatorname{dim}(U)$ we put

$$
\begin{aligned}
& X_{k}(U)=\left\{(\alpha, \phi) \in D(U) \times H(U) \mid \tau_{n-k}(\alpha)=\rho(\phi)\right\} \\
& Q_{k}(U)=\left\{(W, \beta, \psi) \mid W \in G_{k}(U), \beta \in D\left(W^{\perp}\right), \psi \in H(W)\right\} .
\end{aligned}
$$

$\left(N B X_{0}(U) \simeq Q_{0}(U) \simeq D(U)\right.$ and $X_{n}(U) \simeq Q_{n}(U) \simeq H(U)$.)
Suppose that $(\alpha, \phi) \in X_{k}(U)$, where $0 \leq k \leq n=\operatorname{dim}(U) \leq m=\operatorname{dim}(Z)$.
Put $t=e(\alpha) \in \Delta_{n}$. Then there is an orthonormal basis u_{1}, \ldots, u_{n} for U, and an orthonormal basis z_{1}, \ldots, z_{m} for Z, such that $\alpha\left(u_{i}\right)=t_{i} u_{i}$ and $\phi\left(u_{i}\right)=0$ for $1 \leq i \leq n-k$ and $\phi\left(u_{i}\right)=\left(t_{i}-t_{n-k}\right) z_{i}$ for $n-k \leq i \leq n$.
Also $Q_{k}(U) \simeq B\left(s\left(T^{\perp}\right) \oplus \operatorname{Hom}(T, Z)\right)$; using $\operatorname{Hom}(T, T) \simeq s(T)+s(T)$ and $s(U) \simeq s\left(T^{\perp}\right)+s(T)+\operatorname{Hom}(T, U-T)$ we get

$$
s\left(T^{\perp}\right)+\operatorname{Hom}(T, Z) \simeq(s(T)+\operatorname{Hom}(T, U-Z))+s(U)
$$

We define maps

$$
\begin{aligned}
Q_{k}(U) & \stackrel{f_{k}}{\longrightarrow} X_{k}(U) \stackrel{p_{k}}{\longrightarrow} X_{k-1}(U) \\
f_{k}(W, \beta, \psi) & =\left(\beta * w \rho(\psi),(1-\|\beta\|) \psi \pi_{w}\right) \\
p_{k}(\alpha, \phi) & =\left(\alpha, \tau_{n-k+1}(\phi)\right) .
\end{aligned}
$$

by

Collapsing the boundary

We put

$$
\begin{aligned}
& \Delta_{n}^{*}=\left\{t \in \Delta_{n} \mid t_{1}=0 \text { or }\|t\|=1\right\} \\
& D^{*}(U)=\left\{\alpha \in D(U) \mid e_{1}(\alpha)=0 \text { or }\|\alpha\|=1\right\} \\
& H^{*}(U)=\left\{\phi \in H(U) \mid e_{1}(\rho(\phi))=0 \text { or }\|\phi\|=1\right\} \\
& X_{k}^{*}(U)=\left\{(\alpha, \phi) \in X_{k}(U) \mid \alpha \in D^{*}(U)\right\} \\
& Q_{k}^{*}(U)=\left\{(W, \beta, \psi) \in Q_{k}(U) \mid \beta \in D^{*}\left(W^{\perp}\right) \text { or }\|\psi\|=1\right\} \\
& \widehat{\Delta}_{n}=\Delta_{n} / \Delta_{n}^{*} \\
& \widehat{D}(U)=D(U) / D^{*}(U) \\
& \widehat{H}(U)=H(U) / H^{*}(U) \\
& \widehat{X}_{k}(U)=X_{k}(U) / X_{k}^{*}(U) \\
& \widehat{Q}_{k}(U)=Q_{k}(U) / Q_{k}^{*}(U) .
\end{aligned}
$$

Collapsing the boundary

We put

$$
\begin{aligned}
& \Delta_{n}^{*}=\left\{t \in \Delta_{n} \mid t_{1}=0 \text { or }\|t\|=1\right\} \\
& D^{*}(U)=\left\{\alpha \in D(U) \mid e_{1}(\alpha)=0 \text { or }\|\alpha\|=1\right\} \\
& H^{*}(U)=\left\{\phi \in H(U) \mid e_{1}(\rho(\phi))=0 \text { or }\|\phi\|=1\right\} \\
& X_{k}^{*}(U)=\left\{(\alpha, \phi) \in X_{k}(U) \mid \alpha \in D^{*}(U)\right\} \\
& Q_{k}^{*}(U)=\left\{(W, \beta, \psi) \in Q_{k}(U) \mid \beta \in D^{*}\left(W^{\perp}\right) \text { or }\|\psi\|=1\right\} \quad \widehat{Q}_{k}(U)=Q_{k}(U) / Q_{k}^{*}(U) .
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \widehat{X}_{0}(U) \simeq \widehat{Q}_{0}(U) \simeq \widehat{D}(U) \simeq S^{s(U)} \\
& X_{n}(U) \simeq Q_{n}(U) \simeq H(U) \\
& Q_{n}^{*}(U)=\{\phi \in H(U) \mid\|\phi\|=1\} \\
& X_{n}^{*}(U)=\{\phi \in H(U) \mid\|\phi\|=1 \text { or } \phi \text { is not injective }\} .
\end{aligned}
$$

Collapsing the boundary

We put

$$
\begin{aligned}
& \Delta_{n}^{*}=\left\{t \in \Delta_{n} \mid t_{1}=0 \text { or }\|t\|=1\right\} \\
& D^{*}(U)=\left\{\alpha \in D(U) \mid e_{1}(\alpha)=0 \text { or }\|\alpha\|=1\right\} \\
& H^{*}(U)=\left\{\phi \in H(U) \mid e_{1}(\rho(\phi))=0 \text { or }\|\phi\|=1\right\} \\
& X_{k}^{*}(U)=\left\{(\alpha, \phi) \in X_{k}(U) \mid \alpha \in D^{*}(U)\right\} \\
& Q_{k}^{*}(U)=\left\{(W, \beta, \psi) \in Q_{k}(U) \mid \beta \in D^{*}\left(W^{\perp}\right) \text { or }\|\psi\|=1\right\} \quad \widehat{Q}_{k}(U)=Q_{k}(U) / Q_{k}^{*}(U) .
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \widehat{X}_{0}(U) \simeq \widehat{Q}_{0}(U) \simeq \widehat{D}(U) \simeq S^{s(U)} \\
& X_{n}(U) \simeq Q_{n}(U) \simeq H(U) \\
& Q_{n}^{*}(U)=\{\phi \in H(U) \mid\|\phi\|=1\} \\
& X_{n}^{*}(U)=\{\phi \in H(U) \mid\|\phi\|=1 \text { or } \phi \text { is not injective }\} .
\end{aligned}
$$

Fact: The maps f_{k} and p_{k} preserve starred subspaces and so induce

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) .
$$

$p_{k} f_{k}: \widehat{Q}_{k}(U) \rightarrow \widehat{X}_{k-1}(U)$ has a natural nullhomotopy

For $0 \leq s \leq 1$ we define $F_{s}: Q_{k}(U) \rightarrow X_{k-1}(U)$ (with $F_{1}=p_{k} f_{k}$) by
$F_{s}(W, \beta, \psi)=\left(\beta \oplus \gamma, s(1-\|\beta\|) \tau_{1}(\psi) \pi_{w}\right) \quad$ where $\quad \gamma=(1-s) \#\|\beta\| \# \rho(\psi)$.
(Recall: $\beta \in D\left(W^{\perp}\right) \subseteq s\left(W^{\perp}\right)$ and $\psi \in H(W) \subseteq \operatorname{Hom}(W, Z)$.)

$p_{k} f_{k}: \widehat{Q}_{k}(U) \rightarrow \widehat{X}_{k-1}(U)$ has a natural nullhomotopy

For $0 \leq s \leq 1$ we define $F_{s}: Q_{k}(U) \rightarrow X_{k-1}(U)$ (with $F_{1}=p_{k} f_{k}$) by
$F_{s}(W, \beta, \psi)=\left(\beta \oplus \gamma, s(1-\|\beta\|) \tau_{1}(\psi) \pi_{w}\right) \quad$ where $\quad \gamma=(1-s) \#\|\beta\| \# \rho(\psi)$.
(Recall: $\beta \in D\left(W^{\perp}\right) \subseteq s\left(W^{\perp}\right)$ and $\psi \in H(W) \subseteq \operatorname{Hom}(W, Z)$.)
One can check that that

$$
\begin{aligned}
\tau_{n-k+1}(\beta \oplus \gamma) & =0 \oplus\left(\gamma-e_{1}(\gamma)\right)=0 \oplus s(1-\|\beta\|) \tau_{1}(\rho(\psi)) \\
\tau_{n-k}(\beta \oplus \gamma) & =0 \oplus(\gamma-\|\beta\|)=0 \oplus((1-s)(1-\|\beta\|)+s(1-\|\beta\|) \rho(\psi)) .
\end{aligned}
$$

$p_{k} f_{k}: \widehat{Q}_{k}(U) \rightarrow \widehat{X}_{k-1}(U)$ has a natural nullhomotopy

For $0 \leq s \leq 1$ we define $F_{s}: Q_{k}(U) \rightarrow X_{k-1}(U)$ (with $F_{1}=p_{k} f_{k}$) by
$F_{s}(W, \beta, \psi)=\left(\beta \oplus \gamma, s(1-\|\beta\|) \tau_{1}(\psi) \pi_{w}\right) \quad$ where $\quad \gamma=(1-s) \#\|\beta\| \# \rho(\psi)$.
(Recall: $\beta \in D\left(W^{\perp}\right) \subseteq s\left(W^{\perp}\right)$ and $\psi \in H(W) \subseteq \operatorname{Hom}(W, Z)$.)
One can check that that

$$
\begin{aligned}
\tau_{n-k+1}(\beta \oplus \gamma) & =0 \oplus\left(\gamma-e_{1}(\gamma)\right)=0 \oplus s(1-\|\beta\|) \tau_{1}(\rho(\psi)) \\
\tau_{n-k}(\beta \oplus \gamma) & =0 \oplus(\gamma-\|\beta\|)=0 \oplus((1-s)(1-\|\beta\|)+s(1-\|\beta\|) \rho(\psi)) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& F_{s}\left(Q_{k}^{*}(U)\right) \subseteq X_{k-1}^{*}(U) \\
& F_{0}\left(Q_{k}(U)\right) \subseteq X_{k-1}^{*}(U) .
\end{aligned}
$$

It follows that F gives a nullhomotopy of the composite

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) .
$$

The connecting maps $g_{k}: \widehat{X}_{k-1}(U) \rightarrow \Sigma \widehat{Q}_{k}(U)$

The connecting maps $g_{k}: \widehat{X}_{k-1}(U) \rightarrow \Sigma \widehat{Q}_{k}(U)$

We will construct a commutative diagram

where

- c and c are collapse maps, and ω is a quotient map.
- \tilde{g}_{k} is visibly continuous.
- g_{k} is visibly well-defined but not obviously continuous.

The connecting maps $g_{k}: \widehat{X}_{k-1}(U) \rightarrow \Sigma \widehat{Q}_{k}(U)$

We will construct a commutative diagram

where

- c and c are collapse maps, and ω is a quotient map.
- \tilde{g}_{k} is visibly continuous.
- g_{k} is visibly well-defined but not obviously continuous.

Commutativity proves that g_{k} is in fact continuous.

The connecting maps $g_{k}: \widehat{X}_{k-1}(U) \rightarrow \Sigma \widehat{Q}_{k}(U)$

We will construct a commutative diagram

where

- c and c are collapse maps, and ω is a quotient map.
- \tilde{g}_{k} is visibly continuous.
- g_{k} is visibly well-defined but not obviously continuous.

Commutativity proves that g_{k} is in fact continuous.

$$
\begin{aligned}
E G_{k}(U) & =\left\{(t, W, \beta, \psi) \in I \times Q_{k}(U) \mid \psi \text { is not injective }\right\} \\
& =\left\{(t, W, \beta, \psi) \in I \times Q_{k}(U) \mid e_{1}(\rho(\psi))=0\right\} \\
\widetilde{g}_{k} & =\text { the inclusion : } E G_{k}(U) \rightarrow I \times Q_{k}(U) \\
\omega_{k}(t, W, \beta, \psi) & =\left(\beta *_{W}(t \# \rho(\psi)),(1-t)(1-\|\beta\|) \psi \pi_{W}\right) .
\end{aligned}
$$

Connecting maps

For generic $(\alpha, \phi) \in \widehat{X}_{k-1}(U)$: put $p=e_{n-k}(\alpha)$ and $q=e_{n-k+1}(\alpha)$. Let W be the sum of all eigenspaces with eigenvalues $\geq q$. Put $t=(q-p) /(1-p)$ and $\beta=\left.\alpha\right|_{w \perp}$ and $\psi=(1-q)^{-1} \phi \mid w$. Define $g_{k}(\alpha, \phi)=(t, W, \beta, \psi)$.

Connecting maps

For generic $(\alpha, \phi) \in \widehat{X}_{k-1}(U)$: put $p=e_{n-k}(\alpha)$ and $q=e_{n-k+1}(\alpha)$. Let W be the sum of all eigenspaces with eigenvalues $\geq q$. Put $t=(q-p) /(1-p)$ and $\beta=\left.\alpha\right|_{W \perp}$ and $\psi=\left.(1-q)^{-1} \phi\right|_{w}$. Define $g_{k}(\alpha, \phi)=(t, W, \beta, \psi)$.

In any cases where something goes wrong, put $g_{k}(\alpha, \phi)=*$.

Connecting maps

For generic $(\alpha, \phi) \in \widehat{X}_{k-1}(U)$: put $p=e_{n-k}(\alpha)$ and $q=e_{n-k+1}(\alpha)$. Let W be the sum of all eigenspaces with eigenvalues $\geq q$. Put $t=(q-p) /(1-p)$ and $\beta=\left.\alpha\right|_{W \perp}$ and $\psi=\left.(1-q)^{-1} \phi\right|_{w}$. Define $g_{k}(\alpha, \phi)=(t, W, \beta, \psi)$.

In any cases where something goes wrong, put $g_{k}(\alpha, \phi)=*$.
One can check that this makes the diagram commute.

Connecting maps

For generic $(\alpha, \phi) \in \widehat{X}_{k-1}(U)$: put $p=e_{n-k}(\alpha)$ and $q=e_{n-k+1}(\alpha)$. Let W be the sum of all eigenspaces with eigenvalues $\geq q$. Put $t=(q-p) /(1-p)$ and $\beta=\left.\alpha\right|_{W \perp}$ and $\psi=\left.(1-q)^{-1} \phi\right|_{w}$. Define $g_{k}(\alpha, \phi)=(t, W, \beta, \psi)$.

In any cases where something goes wrong, put $g_{k}(\alpha, \phi)=*$.
One can check that this makes the diagram commute.
One can use similar methods to define nullhomotopies of composites in the chain

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

The cofibration property

Suppose we have a diagram $Q \xrightarrow{f} X \xrightarrow{p} Y \xrightarrow{g} \Sigma Q \xrightarrow{\Sigma f} \Sigma X$.
We will say that this is a cofibre sequence if there exist maps

such that $r j \simeq g$ and $d s \simeq \Sigma f$ and $r s \simeq 1_{\Sigma Q}$ and $s r \simeq 1_{C p}$.

The cofibration property

Suppose we have a diagram $Q \xrightarrow{f} X \xrightarrow{p} Y \xrightarrow{g} \Sigma Q \xrightarrow{\Sigma f} \Sigma X$.
We will say that this is a cofibre sequence if there exist maps

such that $r j \simeq g$ and $d s \simeq \Sigma f$ and $r s \simeq 1_{\Sigma Q}$ and $s r \simeq 1_{C p}$.
(Stably, this is equivalent to all other definitions; unstably, perhaps not.)

The cofibration property

Suppose we have a diagram $Q \xrightarrow{f} X \xrightarrow{p} Y \xrightarrow{g} \Sigma Q \xrightarrow{\Sigma f} \Sigma X$.
We will say that this is a cofibre sequence if there exist maps

such that $r j \simeq g$ and $d s \simeq \Sigma f$ and $r s \simeq 1_{\Sigma Q}$ and $s r \simeq 1_{C p}$. (Stably, this is equivalent to all other definitions; unstably, perhaps not.)

From nullhomotopies of $g p$ and $p f$ there is a functorial construction of maps r and s with $r j=g$ and $d s \simeq \Sigma f$ (but not necessarily $r s \simeq 1$ or $s r \simeq 1$).

The cofibration property

Suppose we have a diagram $Q \xrightarrow{f} X \xrightarrow{p} Y \xrightarrow{g} \Sigma Q \xrightarrow{\Sigma f} \Sigma X$.
We will say that this is a cofibre sequence if there exist maps

such that $r j \simeq g$ and $d s \simeq \Sigma f$ and $r s \simeq 1_{\Sigma Q}$ and $s r \simeq 1_{C p}$. (Stably, this is equivalent to all other definitions; unstably, perhaps not.)

From nullhomotopies of $g p$ and $p f$ there is a functorial construction of maps r and s with $r j=g$ and $d s \simeq \Sigma f$ (but not necessarily $r s \simeq 1$ or $s r \simeq 1$).
The composite $r s$ is essentially the Toda bracket $\langle g, p, f\rangle$.

The cofibration property

Suppose we have a diagram $Q \xrightarrow{f} X \xrightarrow{p} Y \xrightarrow{g} \Sigma Q \xrightarrow{\Sigma f} \Sigma X$.
We will say that this is a cofibre sequence if there exist maps

such that $r j \simeq g$ and $d s \simeq \Sigma f$ and $r s \simeq 1_{\Sigma Q}$ and $s r \simeq 1_{C_{p}}$.
(Stably, this is equivalent to all other definitions; unstably, perhaps not.)
From nullhomotopies of $g p$ and $p f$ there is a functorial construction of maps r and s with $r j=g$ and $d s \simeq \Sigma f$ (but not necessarily $r s \simeq 1$ or $s r \simeq 1$).
The composite $r s$ is essentially the Toda bracket $\langle g, p, f\rangle$.
In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

The cofibration property

In the case

$$
\widehat{Q}_{k}(U) \xrightarrow{f_{k}} \widehat{X}_{k}(U) \xrightarrow{p_{k}} \widehat{X}_{k-1}(U) \xrightarrow{g_{k}} \Sigma \widehat{Q}_{k}(U) \xrightarrow{\Sigma f_{k}} \Sigma \widehat{X}_{k}(U) .
$$

we can define explicit homotopies giving $r s \simeq 1$ and $s r \simeq 1$.
Many ingredients are similar to earlier constructions. However, we also need a family of maps $w_{p}: I^{2} \rightarrow I^{2}$ (for $0 \leq p \leq 1$) with specific properties:

