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(a) If E is a ring spectrum, then u becomes nilpotent in . (E A R) iff
E A R[u™'] = 0. (Note: this depends only on the Bousfield class of E.)

(b) For a sequence of ring spectra E(i) with colimit E(co) we have E(co) =0
iff 1= 0'in lim mo(E(7)) iff E(i) = 0 for i > 0.

(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not
hard to recover the integral statement from the p-local ones.
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Properties (a) and (b) are easy. Property (c) is moderately hard. The main
work is to prove property (d).
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(b) MP is the Thom spectrum of the tautological virtual bundle over Z x BU.
So, Eo(Z x BU) is isomorphic to EgMP, but not in a canonical way.

(c) spec(Eo(Z x BU)) is the scheme of invertible functions on G.
This acts freely and transitively on Coord(G) by multiplication.
(d) Bott periodicity: Z x BU = QU.
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» By interpreting z as a point in S! C C, we get a map
GL,(K) — Map(S*, GL,(C)) ~ Map(S*, U(n));
this can be shown to be a homotopy equivalence.
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> Define p: CP"™' — QU(n) by p(L)(2) = z.1. & 1,..

» We have Eo(CP™™!) = Eo{bo,...,bo_1}, and one can show that
Eo(QU(n)) = Eolbi?, by, ..., bo1].

> spec(Eo(Q2U(n))) is the scheme of n-jets of invertible functions on G, and
spec(EgXP(n)) is the scheme of n-jets of coordinates. The former acts
freely and transitively on the latter, reflecting the Thom isomorphism.
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» Define e: U(n+ 1) — S by ¢(g) = last column of g.

» This gives a homeomorphism U(n+ 1)/U(n) = $*™**, so
(QU(n+1))/(QU(n)) = Q5>
So Q52" controls the difference between XP(n) and XP(n + 1).

> Let J(n) be the topological monoid freely generated by S, mod the
relation that the basepoint is the identity element.

> Let J(n, k) be the subspace of words of length less than k; then
J(n, k +1)/J(n, k) ~ S?* We will relate J(n, k) to X(n, k).

> We have §?"! = 52" A S and so can define n: §?" — Q5% by
n(u)(t) =uAt.

» This extends to give J(n) — Q5™ which is a homotopy equivalence.

> EoJ(n) = Ey[bn], and EoJ(n,m) = Eo{b}, | i < m}.

> spec(EoJ(n)) is the scheme of n-jets of invertible functions on G, for
which the corresponding (n — 1)-jet is trivial. This is a group scheme
which acts freely on Coord,(G) = spec(EqXP(n)), with orbit space
Coord,—1(G) = spec(EoXP(n — 1)).

» We define XP(n, m) to be the Thom spectrum for
(Qe)"J(n, m) C QU(n +1).
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» We have defined J(n, m) for all m > 0, but the cases m = p* play a
special role.

» H.J(n) = Z[b,], and the monoid structure on J(n) makes this a Hopf
algebra, with ¥(bs) = by ® 1+ 1 ® b,.

> Let x)) € H2™ J(n) be dual to bf. We find that x}'xid = CHOL, s
we have a divided power algebra.

> Put u = x,[,pk] € H2””k(J(n);IF‘,,).
Using standard congruences of binomial coefficients, we find that

H*(J(n)vFP) = IE‘13[1-107 uy, uz, - ]/(Ug7 uf’ U§7 te )

» This is abstractly isomorphic to H*(J(n, p*); Fp) @ H*(J(np*); F,).

» However, if m is not a power of p, then H*(J(n, m);F,) is not a tensor
factor in H*(J(n);F,).

> The above isomorphism reflects a fibration J(n, p¥) — J(n) — J(np*),
which we will discuss on the next slide.
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James-Hopf maps

>

>

A point w € J(n) is a word w = a1a, - - - a,, with a; € S*".
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This gives a point by A - - A by, € 5™,
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This in turn gives a point hy(w) = cico -+ - cn € J(nm).

This gives a well-defined, continuous map hy,: J(n) — J(nm),

called the James-Hopf map (not a monoid map).

If r < mwe get hm(w) =1, and if r = m we get hm(w) = a1 A--- A ar.
Using this we get hj(xom) = xI™ and so h;‘n(x,y,],,) = (mj)!m!flj!*mx,[,"'j].

When m = p*, we find that the above numerical coefficients are nonzero
mod p, so h: H*(J(np*); Fp) — H*(J(n);TF,) is just the inclusion

Fopluk, tkta, - 1/(uf) = Fpluo, ur, ... ]/(uf).
hy .
It is easy to see that J(n, p¥) — J(n) <= J(np*) is null so we get a map

from J(n, p¥) to the homotopy fibre of hpe. Using the above calculation,
one can show that this is an equivalence.
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Yx(bn) = bn ® 1 + 1 ® by. Also, (hy«)« is essentially the projection of
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> Now write X = XP(n+1) and J = J(np*) and Z° = X A J5.
This gives a cosimplicial object; the associated chain complex E.Z* has
Ho = ker(Ce — 14) = E.X(n, p*) and Hso = 0.
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» Standard cosimplicial technology converts this to an Adams tower with
fibres X(n+ 1) A J©, of connectivity 2np*s — 1
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» Here is the general pattern for the proof:
Suppose we have f: U — XU and g: £V — V, with fib(f) ~ cof(g).
Suppose also that V[g™!] = 0.
We claim that (V) < (U),i.e. UNZ=0=VAZ=0.

» Indeed, if UA Z =0, then

fib(f) A Z = fib(U A Z 222, T2U A Z) = 0.
But fib(f) = cof(g), so cof(g) A Z =0, so cof(g Alz) =0,s0 g A1z is
an equivalence. This means that the map VA Z — V[g™']A Z is an
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» So it will suffice to define self maps £ and r of XP(n, p**!) and XP(n, p¥)
with fib(&) = cof (r) and XP(n, p)[r~!] = 0.
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> There is an operation &: Hai—1(Q2J(m)) — Hapi—1(2J(m)).

> There is an easy element uy € Hapn—1(22J(m)), and we put
uj = & (o) € Hampi—1(RJ(m)) and vj = B(1;) € Hampi—o(2J(m)).
> This gives a map to H.(QJ(m)) from the ring

A= E[U(),Ul,UQ,...]®P[V1,V2,...]

» There is a fibration QJ(m) — PJ(m) — J(m) with PJ(m) contractible.
This gives a Serre spectral sequence

H, J(m) ® H.QJ(m) = Plby] ® H.(QJ(m)) = F,.

ThIS can only work out if the map A — H.QJ(m) is an isomorphism, and
bE hits uj, and b~ )p,u hits vjt1.

» The operation £ interacts with the Steenrod coaction in a known way, so
we can check that the coaction for QJ(m) is as on the previous slide, so
the coaction on £(m) is cofree, so £(m) is an H-module.
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From the fibres and the path action we can reconstruct W.

» If Z is based and connected we only really need the basepoint fibre W.
and the action of M(x,*) = QZ.
This makes X5° W, into a module over X°QZ.

» The same works with arbitrary maps W — Z, and homotopy fibres.

> There is a twisted version with Thom spectra as well as suspension spectra.

> As J(n, p*) = fib(hy: J(n) = J(np¥)), we see that XP(n, p*) is a Thom
spectrum over the fibre of a map QU(n+ 1) — J(np¥), and so is a
module over X°QJ(np).
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module over X°QJ(np).

> We have discussed the element u € 7. Z°QJ(np*) whose inversion gives

E(np*). Multiplication by u now gives a self-map of XP(n, p¥). One can
check that this is the same as the map r discussed earlier.
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» Now XP(n, p*)[r~!] is a module over £(np*) and thus over H, but
1y A r =0, and it follows that XP(n, p*)[r~'] = 0.



