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Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of π∗(R). Suppose
that the image of u in π∗(MU ∧ R) is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith.
It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

S0 = X (1) −→ X (2) −→ X (3) −→ · · · −→ X (∞) = MU

0 = X (n, 0)→ X (n) = X (n, 1)→ X (n, 2)→ X (n, 3)→ · · · → X (n,∞) = X (n+1)

and prove some facts about their properties. The Nilpotence Theorem will
follow easily from these.

Three preliminary reductions:

(a) If E is a ring spectrum, then u becomes nilpotent in π∗(E ∧ R) iff
E ∧ R[u−1] = 0. (Note: this depends only on the Bousfield class of E .)

(b) For a sequence of ring spectra E(i) with colimit E(∞) we have E(∞) = 0
iff 1 = 0 in lim

−→i
π0(E(i)) iff E(i) = 0 for i � 0.

(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not
hard to recover the integral statement from the p-local ones.
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Properties of the spectra X (n, k)

(a) MU = X (∞) is the colimit over n of X (n) (and these are ring spectra).

(b) X (n + 1) = X (n,∞) is the colimit over k of X (n, k)
(but these are not ring spectra).

(c) When k is large, X (n, pk) has a rapidly convergent X (n + 1)-based Adams
resolution.

(d) The spectrum X (n, pk) has the same Bousfield class as X (n).
(i.e. X (n, pk) ∧ Z = 0 iff X (n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that MU ∧ R[u−1] = 0. Then
X (m) ∧ R[u−1] = 0 for m� 0. Suppose X (n + 1) ∧ R[u−1] = 0, so ut = 0 in
π∗(X (n + 1) ∧ R). Choose k large relative to |ut | and apply (c): ut will shift
filtration in the X (n + 1)-based Adams spectral sequence for π∗(X (n, pk) ∧ R),
and rapid convergence of that spectral sequence imples that
X (n, pk) ∧ R[u−1] = 0. Now (d) tells us that X (n) ∧ R[u−1] = 0. Extending
this inductively, we get X (1)∧ R[u−1] = 0. However, X (1) = S0 so R[u−1] = 0
so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main
work is to prove property (d).
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π∗(X (n + 1) ∧ R). Choose k large relative to |ut | and apply (c): ut will shift
filtration in the X (n + 1)-based Adams spectral sequence for π∗(X (n, pk) ∧ R),
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The Adams resolution property

Let E be a ring spectrum.

I Say f : X → Y has E -filtration at least s if f can be written as a
composite of s maps fi , each with 1E ∧ fi = 0.

I An E -resolution of Y is a tower of spectra

Y = Y0
g1←− Y1

g2←− Y2
g3←− · · ·

such that 1E ∧ gi = 0 for all i , and each fibre Fi = fib(gi ) admits an
E -module structure.

I (Subject to some conditions, this will give a spectral sequence
Ext∗∗E∗E (E∗X ,E∗Y ) =⇒ [X , LEY ]∗. But we do not need that.)

I Suppose we have such a resolution, and a map f : X → Y of E -filtration
at least s; then f lifts to Ys . Thus, if the connectivity of Ys is greater than
dim(X ), then f = 0.

I Consider the case where E = X (n + 1) and Y = X (n, pk). We will give an
explicit construction of a resolution where the connectivity of Ys is 2npks.

I Suppose that u 7→ 0 in π∗(X (n + 1) ∧ R), so multiplication by u has
X (n + 1)-filtration at least 1. Fix k with 2npk > |u|. For any
a ∈ π∗(X (n, k) ∧ R) we find that conn(Ys ∧ R)− deg(usa) > 0 for s � 0,
so a→ 0 in π∗(X (n, k) ∧ R[u−1]). This gives X (n, k) ∧ R[u−1] = 0.
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Construction of X (n)

For ease of comparison with formal group theory, we put P =
∨

n∈Z S
2n and

MP = MU ∧ P and XP(n) = X (n) ∧ P and XP(n, k) = X (n, k) ∧ P.

Consider an even periodic ring spectrum E , with associated formal group
G = spf(E 0(CP∞)) over S = spec(E0).

(a) E0MP = E0[b±1
0 , b1, b2, . . . ], and spec(E0MP) is the scheme Coord(G) of

coordinates on G .

(b) MP is the Thom spectrum of the tautological virtual bundle over Z× BU.
So, E0(Z× BU) is isomorphic to E0MP, but not in a canonical way.

(c) spec(E0(Z× BU)) is the scheme of invertible functions on G .
This acts freely and transitively on Coord(G) by multiplication.

(d) Bott periodicity: Z× BU = ΩU. This gives a virtual bundle over ΩU(n);
define XP(n) to be the Thom spectrum. (Use ΩSU(n) for X (n).)

(e) E0XP(n) = E0[b±1
0 , b1, . . . , bn−1], and spec(E0(XP(n))) is the scheme of

n-jets of coordinates on G . (But π∗XP(n) is not fully known.)

(f) E0XP(n,m) will be the free module over E0XP(n) generated by
{bi

n | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible
that 〈X (n)〉 = 〈X (n,m)〉. But there are attaching maps.
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The Bott periodicity map

I Put A = C[z] and K = C[z , z−1].

I By interpreting z as a point in S1 ⊂ C, we get a map
GLn(K)→ Map(S1,GLn(C)) ' Map(S1,U(n));
this can be shown to be a homotopy equivalence.

I Using ht(z) = tz we get GLn(A) ' GLn(C) ' U(n).

I This gives ΩU(n) ' Map(S1,U(n))/U(n) ' GLn(K)/GLn(A).

I A lattice in K n is an A-submodule L ≤ K n with z rAn ≤ L ≤ z−rAn for
r � 0. The set of lattices is the GLn(K)-orbit of An, which has stabiliser
GLn(A); so {lattices} ' ΩU(n).

I For any lattice L we have a virtual vector space (L/z rA)− (A/z rA) for
r � 0. This is the bundle over ΩU(n) whose Thom spectrum is X (n).

I Define ρ : CPn−1 → ΩU(n) by ρ(L)(z) = z .1L ⊕ 1L⊥ .

I We have E0(CPn−1) = E0{b0, . . . , bn−1}, and one can show that
E0(ΩU(n)) = E0[b±1

0 , b1, . . . , bn−1].

I spec(E0(ΩU(n))) is the scheme of n-jets of invertible functions on G , and
spec(E0XP(n)) is the scheme of n-jets of coordinates. The former acts
freely and transitively on the latter, reflecting the Thom isomorphism.
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The James construction

I Define ε : U(n + 1)→ S2n+1 by ε(g) = last column of g .

I This gives a homeomorphism U(n + 1)/U(n) = S2n+1, so
(ΩU(n + 1))/(ΩU(n)) = ΩS2n+1.
So ΩS2n+1 controls the difference between XP(n) and XP(n + 1).

I Let J(n) be the topological monoid freely generated by S2n, mod the
relation that the basepoint is the identity element.

I Let J(n, k) be the subspace of words of length less than k; then
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What is special about the p-power stages?

I We have defined J(n,m) for all m ≥ 0, but the cases m = pk play a
special role.

I H∗J(n) = Z[bn], and the monoid structure on J(n) makes this a Hopf
algebra, with ψ(bn) = bn ⊗ 1 + 1⊗ bn.

I Let x
[k]
n ∈ H2nkJ(n) be dual to bk

n . We find that x
[j]
n x

[k]
n = (j+k)!

j!k!
x

[j+k]
n , so

we have a divided power algebra.

I Put uk = x
[pk ]
n ∈ H2npk (J(n);Fp).

Using standard congruences of binomial coefficients, we find that

H∗(J(n);Fp) = Fp[u0, u1, u2, · · · ]/(up
0 , u

p
1 , u

p
2 , · · · ).

I This is abstractly isomorphic to H∗(J(n, pk);Fp)⊗ H∗(J(npk);Fp).

I However, if m is not a power of p, then H∗(J(n,m);Fp) is not a tensor
factor in H∗(J(n);Fp).

I The above isomorphism reflects a fibration J(n, pk)→ J(n)→ J(npk),
which we will discuss on the next slide.
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James-Hopf maps

I A point w ∈ J(n) is a word w = a1a2 · · · ar , with ai ∈ S2n.

I Fix m > 0, and consider a subword b1 · · · bm of length m
(where bi comes before bi+1 in W , but need not be adjacent to it).
This gives a point b1 ∧ · · · ∧ bm ∈ S2nm.

I This gives N =
(
r
m

)
points in S2nm, say c1, . . . , cN (in lex order).

This in turn gives a point hm(w) = c1c2 · · · cN ∈ J(nm).
This gives a well-defined, continuous map hm : J(n)→ J(nm),
called the James-Hopf map (not a monoid map).

I If r < m we get hm(w) = 1, and if r = m we get hm(w) = a1 ∧ · · · ∧ ar .

Using this we get h∗m(xnm) = x
[m]
n and so h∗m(x

[j]
nm) = (mj)!m!−1j!−mx

[mj]
n .

I When m = pk , we find that the above numerical coefficients are nonzero
mod p, so h∗pk : H∗(J(npk);Fp)→ H∗(J(n);Fp) is just the inclusion

Fp[uk , uk+1, . . . ]/(up
i )→ Fp[u0, u1, . . . ]/(up

i ).

I It is easy to see that J(n, pk)→ J(n)
h
pk−−→ J(npk) is null so we get a map

from J(n, pk) to the homotopy fibre of hpk . Using the above calculation,
one can show that this is an equivalence.
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mod p, so h∗pk : H∗(J(npk);Fp)→ H∗(J(n);Fp) is just the inclusion
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from J(n, pk) to the homotopy fibre of hpk . Using the above calculation,
one can show that this is an equivalence.
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The Adams resolution

I For any virtual bundle V over X with Thom spectrum XV , there is a
natural “diagonal map” δ : XV → XV ∧ X+.

I We can combine δ : X (n + 1)→ X (n + 1) ∧ (ΩSU(n + 1))+ with
Ωε : ΩU(n + 1)→ ΩS2n+1 ' J(n) and hpk : J(n)→ J(npk) to get maps

X (n + 1)
γ−→ X (n + 1) ∧ J(n)+

1∧h
pk−−−→ X (n + 1) ∧ J(npk)+.

I In E -homology, γ∗ is a ring map with γ∗(bi ) = bi ⊗ 1 for i < n, and
γ∗(bn) = bn ⊗ 1 + 1⊗ bn. Also, (hpk )∗ is essentially the projection of

E0[bn] onto E0[bpk

n ]. We put ζ = (1 ∧ hpk ) ◦ γ.

I The evident map S0 → J(npk)+ gives another map η parallel to ζ with
η∗(bi ) = bi ⊗ 1 for all i ; the equaliser of ζ∗ and η∗ is E0XP(n, pk).

I Now write X = XP(n + 1) and J = J(npk) and Z s = X ∧ Js
+.

This gives a cosimplicial object; the associated chain complex E∗Z
• has

H0 = ker(ζ∗ − η∗) = E∗X (n, pk) and H>0 = 0.
This also works for E = XP(n + 1).

I Standard cosimplicial technology converts this to an Adams tower with
fibres X (n + 1) ∧ J(s), of connectivity 2npks − 1
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Bousfield classes

I We need to prove that 〈XP(n, pk)〉 = 〈XP(n)〉.
I In general, let R be a ring spectrum, and M and R-module.

If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so
M ∧ Z = 0. This gives 〈M〉 ≤ 〈R〉.

I As a special case: 〈XP(n,m)〉 ≤ 〈XP(n)〉.
I It will now suffice to show that 〈XP(n, pk)〉 ≤ 〈XP(n, pk+1〉.
I Here is the general pattern for the proof:

Suppose we have f : U → ΣaU and g : ΣbV → V , with fib(f ) ' cof(g).
Suppose also that V [g−1] = 0.
We claim that 〈V 〉 ≤ 〈U〉, i.e. U ∧ Z = 0⇒ V ∧ Z = 0.

I Indeed, if U ∧ Z = 0, then

fib(f ) ∧ Z = fib(U ∧ Z
f∧1Z−−−→ ΣaU ∧ Z) = 0.

But fib(f ) = cof(g), so cof(g) ∧ Z = 0, so cof(g ∧ 1Z ) = 0, so g ∧ 1Z is
an equivalence. This means that the map V ∧ Z → V [g−1] ∧ Z is an
equivalence, but V [g−1] = 0, so V ∧ Z = 0 as required.

I So it will suffice to define self maps ξ and r of XP(n, pk+1) and XP(n, pk)
with fib(ξ) = cof(r) and XP(n, pk)[r−1] = 0.
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Relating X (n, pk) to X (n, pk+1)

I There is an evaluation map ΣΩS2n+1 → S2n+1 given by t ∧ u 7→ u(t).
Desuspending gives a stable map ω : J(n)→ S2n. Put

ξ = (XP(n + 1)
ζ−→ XP(n + 1) ∧ J(npk)

1∧ω−−→ XP(n + 1) ∧ S2npk ).

I On E0XP(n + 1) we get ξ∗(u) = (pk !)−1∂pku/∂bpk

n .

I One can check that ξ restricts to give a map

ξ : XP(n, pk+1)→ XP(n, pk+1) ∧ S2npk , with fibre F say.

I Here ker(ξ∗) and cok(ξ∗) are the bottom and top copies of E0XP(n, pk) in
E0XP(n, pk+1), so E0F ' E1F ' E0XP(n, pk).

I By yoga of triangulated categories: there is a self map r of XP(n, pk), of
degree 2npk+1 − 2, with cof(r) = F = fib(ξ); and 1E ∧ r = 0.

I This mean that E ∧XP(n, pk)[r−1] = 0 for any complex-oriented E , and it
will suffice to show that XP(n, pk)[r−1] itself is zero.

I Key insight: there is a certain ring spectrum E(npk), closely related to the
definition of r , complex-orientable for a nonobvious reason.

I In fact E(m) = u−1Σ∞+ ΩJ(m) for a certain u, and this is
complex-orientable because it is an algebra over the mod p
Eilenberg-Maclane spectrum H.
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Why is E(m) an H-algebra?

I The dual Steenrod algebra is H∗H; this is a Hopf algebra.

I For any spectrum Z , there is a coaction map H∗Z → H∗H ⊗ H∗Z .

I If Z is an H-module, then the coaction is cofree.
The converse holds under mild additional conditions.

I We will show that H∗ΩJ(m) is nearly cofree, and H∗E(m) = u−1H∗ΩJ(m)
is actually cofree.

I All the relevant rings have a polynomial part tensored with an exterior part.

I Ignoring the exterior part, H∗H corresponds to the scheme Aut1(Ga) of

series f (t) =
∑

i ai t
pi with a0 = 1.

I Ignoring the exterior part, H∗ΩJ(1) corresponds to the scheme End0(Ga)

of series g(t) =
∑

i bi t
pi with b0 = 0. The element u maps to b1.

I Aut1(Ga) acts on End0(Ga) by f•(g)(t) = g(f −1(t)), and this action is
nearly free. It becomes free after inverting b1 = u.

I ΩJ(m) splits stably as
∨∞

q=0 S
2mq ∧ D(q), with D(q) independent of m

and u ∈ π−2D(p). So E(m) is actually independent of m.
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Doubly looped spheres

I Put ∆ = {z ∈ C : |z | < 1}, so ∆∞ ' S2, so Ω2Σ2Y = F (∆∞,∆∞ ∧ Y ).

I Let C(q) be the space of lists f = (f1, . . . , fq), where fi : ∆→ ∆ has the
form fi (z) = ai + εiz (εi > 0), and the images of the fi are disjoint.

I Say g ∈ Ω2Σ2Y is simple if there is f ∈ C(q), and y ∈ Y q, such that
I g(fi (z)) = z ∧ yi for all i and all z ∈ ∆
I Outside the images of the maps fi , we have f (w) = basepoint.

Let F (q;Y ) be the set of such g .
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Doubly looped spheres

I There is an operation ξ : H2i−1(ΩJ(m))→ H2pi−1(ΩJ(m)).

I There is an easy element u0 ∈ H2m−1(ΩJ(m)), and we put
uj = ξj(u0) ∈ H2mpj−1(ΩJ(m)) and vj = β(uj) ∈ H2mpj−2(ΩJ(m)).

I This gives a map to H∗(ΩJ(m)) from the ring

A = E [u0, u1, u2, . . . ]⊗ P[v1, v2, . . . ]

I There is a fibration ΩJ(m)→ PJ(m)→ J(m) with PJ(m) contractible.
This gives a Serre spectral sequence

H∗J(m)⊗ H∗ΩJ(m) = P[bm]⊗ H∗(ΩJ(m)) =⇒ Fp.

This can only work out if the map A→ H∗ΩJ(m) is an isomorphism, and

bpj

m hits uj , and b
(p−1)pj

m uj hits vj+1.

I The operation ξ interacts with the Steenrod coaction in a known way, so
we can check that the coaction for ΩJ(m) is as on the previous slide, so
the coaction on E(m) is cofree, so E(m) is an H-module.
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we can check that the coaction for ΩJ(m) is as on the previous slide, so
the coaction on E(m) is cofree, so E(m) is an H-module.



Why is E(n) relevant?

I Consider a base space Z .
Any fibration W → Z gives a system of fibres {Wz}z∈Z .
A path from z → z ′ gives a map Wz →Wz′ . This can be improved to a
map Π(z , z ′)→ Map(Wz ,Wz′), where Π(z , z ′) is the space of paths.
From the fibres and the path action we can reconstruct W .

I If Z is based and connected we only really need the basepoint fibre W∗
and the action of Π(∗, ∗) = ΩZ .
This makes Σ∞+ W∗ into a module over Σ∞+ ΩZ .

I The same works with arbitrary maps W → Z , and homotopy fibres.

I There is a twisted version with Thom spectra as well as suspension spectra.

I As J(n, pk) = fib(hpk : J(n)→ J(npk)), we see that XP(n, pk) is a Thom

spectrum over the fibre of a map ΩU(n + 1)→ J(npk), and so is a
module over Σ∞+ ΩJ(npk).

I We have discussed the element u ∈ π∗Σ∞+ ΩJ(npk) whose inversion gives
E(npk). Multiplication by u now gives a self-map of XP(n, pk). One can
check that this is the same as the map r discussed earlier.

I Now XP(n, pk)[r−1] is a module over E(npk) and thus over H, but
1H ∧ r = 0, and it follows that XP(n, pk)[r−1] = 0.
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