The Nilpotence Theorem

Neil Strickland

May 18, 2018

Statement of the Theorem

Let *R* be a finite ring spectrum, and let *u* be an element of $\pi_*(R)$. Suppose that the image of *u* in $\pi_*(MU \wedge R)$ is nilpotent. Then *u* itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If E is a ring spectrum, then u becomes nilpotent in $\pi_*(E \wedge R)$ iff $E \wedge R[u^{-1}] = 0$. (Note: this depends only on the Bousfield class of E.
- (b) For a sequence of ring spectra E(i) with colimit E(∞) we have E(∞) = 0 iff 1 = 0 in lim π₀(E(i)) iff E(i) = 0 for i ≫ 0.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

Statement of the Theorem

Let *R* be a finite ring spectrum, and let *u* be an element of $\pi_*(R)$. Suppose that the image of *u* in $\pi_*(MU \wedge R)$ is nilpotent. Then *u* itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

 $S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty) = MU$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If E is a ring spectrum, then u becomes nilpotent in π_{*}(E ∧ R) iff E ∧ R[u⁻¹] = 0. (Note: this depends only on the Bousfield class of E.
- (b) For a sequence of ring spectra E(i) with colimit $E(\infty)$ we have $E(\infty) = 0$ iff 1 = 0 in $\lim_{i \to \infty} \pi_0(E(i))$ iff E(i) = 0 for $i \gg 0$.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) o X(2) o X(3) o \cdots o X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If E is a ring spectrum, then u becomes nilpotent in $\pi_*(E \wedge R)$ iff $E \wedge R[u^{-1}] = 0$. (Note: this depends only on the Bousfield class of E.
- (b) For a sequence of ring spectra E(i) with colimit E(∞) we have E(∞) = 0 iff 1 = 0 in lim π₀(E(i)) iff E(i) = 0 for i ≫ 0.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) o X(2) o X(3) o \cdots o X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If E is a ring spectrum, then u becomes nilpotent in π_{*}(E ∧ R) iff E ∧ R[u⁻¹] = 0. (Note: this depends only on the Bousfield class of E.)
 (b) For a sequence of ring spectra E(i) with colimit E(∞) we have E(∞) = 0 iff 1 = 0 in lim π₀(E(i)) iff E(i) = 0 for i ≫ 0.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If *E* is a ring spectrum, then *u* becomes nilpotent in $\pi_*(E \wedge R)$ iff $E \wedge R[u^{-1}] = 0$. (Note: this depends only on the Bousfield class of *E*.)
- (b) For a sequence of ring spectra E(i) with colimit $E(\infty)$ we have $E(\infty) = 0$ iff 1 = 0 in lim $\pi_0(E(i))$ iff E(i) = 0 for $i \gg 0$.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:

- (a) If E is a ring spectrum, then u becomes nilpotent in $\pi_*(E \wedge R)$ iff $E \wedge R[u^{-1}] = 0$. (Note: this depends only on the Bousfield class of E.)
- (b) For a sequence of ring spectra E(i) with colimit E(∞) we have E(∞) = 0 iff 1 = 0 in lim π₀(E(i)) iff E(i) = 0 for i ≫ 0.

(c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$S^0 = X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty) = MU$$

 $0 = X(n,0) \rightarrow X(n) = X(n,1) \rightarrow X(n,2) \rightarrow X(n,3) \rightarrow \cdots \rightarrow X(n,\infty) = X(n+1)$

and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

- (a) If E is a ring spectrum, then u becomes nilpotent in $\pi_*(E \wedge R)$ iff $E \wedge R[u^{-1}] = 0$. (Note: this depends only on the Bousfield class of E.)
- (b) For a sequence of ring spectra E(i) with colimit $E(\infty)$ we have $E(\infty) = 0$ iff 1 = 0 in $\lim_{n \to \infty} \pi_0(E(i))$ iff E(i) = 0 for $i \gg 0$.
- (c) For the rest of the talk, we will fix a prime *p* and work *p*-locally. It is not hard to recover the integral statement from the *p*-local ones.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n,\infty)$ is the colimit over k of X(n,k) (but these are not ring spectra).
- (c) When k is large, X(n, p^k) has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n,\infty)$ is the colimit over k of X(n,k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n,\infty)$ is the colimit over k of X(n,k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n,\infty)$ is the colimit over k of X(n,k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum X(n, p^k) has the same Bousfield class as X(n).
 (i.e. X(n, p^k) ∧ Z = 0 iff X(n) ∧ Z = 0)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then

 $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum $X(n, p^k)$ has the same Bousfield class as X(n). (i.e. $X(n, p^k) \wedge Z = 0$ iff $X(n) \wedge Z = 0$)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.
- (d) The spectrum $X(n, p^k)$ has the same Bousfield class as X(n). (i.e. $X(n, p^k) \wedge Z = 0$ iff $X(n) \wedge Z = 0$)

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

- (a) $MU = X(\infty)$ is the colimit over *n* of X(n) (and these are ring spectra).
- (b) $X(n+1) = X(n, \infty)$ is the colimit over k of X(n, k) (but these are not ring spectra).
- (c) When k is large, $X(n, p^k)$ has a rapidly convergent X(n+1)-based Adams resolution.

Outline proof of the Theorem: Suppose that $MU \wedge R[u^{-1}] = 0$. Then $X(m) \wedge R[u^{-1}] = 0$ for $m \gg 0$. Suppose $X(n+1) \wedge R[u^{-1}] = 0$, so $u^t = 0$ in $\pi_*(X(n+1) \wedge R)$. Choose k large relative to $|u^t|$ and apply (c): u^t will shift filtration in the X(n+1)-based Adams spectral sequence for $\pi_*(X(n, p^k) \wedge R)$, and rapid convergence of that spectral sequence imples that $X(n, p^k) \wedge R[u^{-1}] = 0$. Now (d) tells us that $X(n) \wedge R[u^{-1}] = 0$. Extending this inductively, we get $X(1) \wedge R[u^{-1}] = 0$. However, $X(1) = S^0$ so $R[u^{-1}] = 0$ so u is nilpotent.

The Adams resolution property

Let E be a ring spectrum.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map f: X → Y of E-filtration at least s; then f lifts to Y_s. Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ▶ Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- ▶ (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map f: X → Y of E-filtration at least s; then f lifts to Y_s. Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ▶ Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- ▶ (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map f: X → Y of E-filtration at least s; then f lifts to Y_s. Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- ► (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map f: X → Y of E-filtration at least s; then f lifts to Y_s. Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- ► (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \to Y$ of *E*-filtration at least *s*; then *f* lifts to Y_s . Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

such that $1_E \wedge g_i = 0$ for all *i*, and each fibre $F_i = fib(g_i)$ admits an *E*-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \to Y$ of *E*-filtration at least *s*; then *f* lifts to Y_s . Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.

▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) - \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{*}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map f: X → Y of E-filtration at least s; then f lifts to Y_s. Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \to Y$ of *E*-filtration at least *s*; then *f* lifts to Y_s . Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \to Y$ of *E*-filtration at least *s*; then *f* lifts to Y_s . Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

- Say f: X → Y has E-filtration at least s if f can be written as a composite of s maps f_i, each with 1_E ∧ f_i = 0.
- An E-resolution of Y is a tower of spectra

$$Y = Y_0 \xleftarrow{g_1} Y_1 \xleftarrow{g_2} Y_2 \xleftarrow{g_3} \cdots$$

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_*E}^{**}(E_*X, E_*Y) \Longrightarrow [X, L_EY]_*$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \to Y$ of *E*-filtration at least *s*; then *f* lifts to Y_s . Thus, if the connectivity of Y_s is greater than dim(X), then f = 0.
- ► Consider the case where E = X(n+1) and Y = X(n, p^k). We will give an explicit construction of a resolution where the connectivity of Y_s is 2np^ks.
- ▶ Suppose that $u \mapsto 0$ in $\pi_*(X(n+1) \land R)$, so multiplication by u has X(n+1)-filtration at least 1. Fix k with $2np^k > |u|$. For any $a \in \pi_*(X(n,k) \land R)$ we find that $\operatorname{conn}(Y_s \land R) \deg(u^s a) > 0$ for $s \gg 0$, so $a \to 0$ in $\pi_*(X(n,k) \land R[u^{-1}])$. This gives $X(n,k) \land R[u^{-1}] = 0$.

Construction of X(n)

For ease of comparison with formal group theory, we put $P = \bigvee_{n \in \mathbb{Z}} S^{2n}$ and $MP = MU \land P$ and $XP(n) = X(n) \land P$ and $XP(n,k) = X(n,k) \land P$.

Consider an even periodic ring spectrum E, with associated formal group $G = \operatorname{spf}(E^0(\mathbb{C}P^\infty))$ over $S = \operatorname{spec}(E_0)$.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) MP is the Thom spectrum of the tautological virtual bundle over Z × BU. So, E₀(Z × BU) is isomorphic to E₀MP, but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

For ease of comparison with formal group theory, we put $P = \bigvee_{n \in \mathbb{Z}} S^{2n}$ and $MP = MU \land P$ and $XP(n) = X(n) \land P$ and $XP(n,k) = X(n,k) \land P$.

Consider an even periodic ring spectrum E, with associated formal group $G = spf(E^0(\mathbb{C}P^\infty))$ over $S = spec(E_0)$.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) MP is the Thom spectrum of the tautological virtual bundle over Z × BU. So, E₀(Z × BU) is isomorphic to E₀MP, but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

For ease of comparison with formal group theory, we put $P = \bigvee_{n \in \mathbb{Z}} S^{2n}$ and $MP = MU \land P$ and $XP(n) = X(n) \land P$ and $XP(n,k) = X(n,k) \land P$.

Consider an even periodic ring spectrum E, with associated formal group $G = spf(E^0(\mathbb{C}P^\infty))$ over $S = spec(E_0)$.

(a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.

- (b) MP is the Thom spectrum of the tautological virtual bundle over Z × BU. So, E₀(Z × BU) is isomorphic to E₀MP, but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0 XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_* XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

For ease of comparison with formal group theory, we put $P = \bigvee_{n \in \mathbb{Z}} S^{2n}$ and $MP = MU \land P$ and $XP(n) = X(n) \land P$ and $XP(n,k) = X(n,k) \land P$.

Consider an even periodic ring spectrum E, with associated formal group $G = spf(E^0(\mathbb{C}P^\infty))$ over $S = spec(E_0)$.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) MP is the Thom spectrum of the tautological virtual bundle over ℤ × BU. So, E₀(ℤ × BU) is isomorphic to E₀MP, but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on G. This acts freely and transitively on Coord(G) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of n-jets of coordinates on G. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.
- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on G. This acts freely and transitively on Coord(G) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of n-jets of coordinates on G. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on G. This acts freely and transitively on Coord(G) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of n-jets of coordinates on G. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on G. This acts freely and transitively on Coord(G) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of n-jets of coordinates on G. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of n-jets of coordinates on G. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

Consider an even periodic ring spectrum E, with associated formal group $G = spf(E^0(\mathbb{C}P^\infty))$ over $S = spec(E_0)$.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)

(f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {bⁱ_n | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n, m)⟩. But there are attaching maps.

Consider an even periodic ring spectrum E, with associated formal group $G = spf(E^0(\mathbb{C}P^\infty))$ over $S = spec(E_0)$.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)

(f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n, m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {bⁱ_n | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on G. This acts freely and transitively on Coord(G) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) $E_0XP(n, m)$ will be the free module over $E_0XP(n)$ generated by $\{b_n^i \mid 0 \le i < m\}$. This looks like *m* copies of XP(n), making it plausible that $\langle X(n) \rangle = \langle X(n,m) \rangle$. But there are attaching maps.

- (a) $E_0MP = E_0[b_0^{\pm 1}, b_1, b_2, ...]$, and spec (E_0MP) is the scheme Coord(G) of coordinates on G.
- (b) *MP* is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times BU$. So, $E_0(\mathbb{Z} \times BU)$ is isomorphic to E_0MP , but not in a canonical way.
- (c) spec($E_0(\mathbb{Z} \times BU)$) is the scheme of invertible functions on *G*. This acts freely and transitively on Coord(*G*) by multiplication.
- (d) Bott periodicity: $\mathbb{Z} \times BU = \Omega U$. This gives a virtual bundle over $\Omega U(n)$; define XP(n) to be the Thom spectrum. (Use $\Omega SU(n)$ for X(n).)
- (e) $E_0XP(n) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}]$, and spec $(E_0(XP(n)))$ is the scheme of *n*-jets of coordinates on *G*. (But $\pi_*XP(n)$ is not fully known.)
- (f) E₀XP(n, m) will be the free module over E₀XP(n) generated by {b_nⁱ | 0 ≤ i < m}. This looks like m copies of XP(n), making it plausible that ⟨X(n)⟩ = ⟨X(n,m)⟩. But there are attaching maps.

- By interpreting z as a point in S¹ ⊂ C, we get a map GL_n(K) → Map(S¹, GL_n(C)) ≃ Map(S¹, U(n)); this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- ▶ A lattice in K^n is an A-submodule $L \leq K^n$ with $z^r A^n \leq L \leq z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- Put $A = \mathbb{C}[z]$ and $K = \mathbb{C}[z, z^{-1}]$.
- By interpreting z as a point in S¹ ⊂ C, we get a map GL_n(K) → Map(S¹, GL_n(C)) ≃ Map(S¹, U(n)); this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- ▶ A lattice in K^n is an A-submodule $L \leq K^n$ with $z^r A^n \leq L \leq z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- Put $A = \mathbb{C}[z]$ and $K = \mathbb{C}[z, z^{-1}]$.
- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- ▶ A lattice in K^n is an A-submodule $L \le K^n$ with $z^r A^n \le L \le z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- ▶ A lattice in K^n is an A-submodule $L \leq K^n$ with $z^r A^n \leq L \leq z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- A lattice in K^n is an A-submodule $L \le K^n$ with $z^r A^n \le L \le z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ▶ We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- A lattice in K^n is an A-submodule $L \le K^n$ with $z^r A^n \le L \le z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ▶ We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- A lattice in K^n is an A-submodule $L \le K^n$ with $z^r A^n \le L \le z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ▶ We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- A lattice in K^n is an A-submodule $L \le K^n$ with $z^r A^n \le L \le z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- ▶ By interpreting z as a point in $S^1 \subset \mathbb{C}$, we get a map $GL_n(K) \to Map(S^1, GL_n(\mathbb{C})) \simeq Map(S^1, U(n))$; this can be shown to be a homotopy equivalence.
- Using $h_t(z) = tz$ we get $GL_n(A) \simeq GL_n(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}(S^1, U(n))/U(n) \simeq GL_n(K)/GL_n(A)$.
- A lattice in K^n is an A-submodule $L \leq K^n$ with $z^r A^n \leq L \leq z^{-r} A^n$ for $r \gg 0$. The set of lattices is the $GL_n(K)$ -orbit of A^n , which has stabiliser $GL_n(A)$; so {lattices} $\simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $(L/z^rA) (A/z^rA)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is X(n).
- Define $\rho \colon \mathbb{C}P^{n-1} \to \Omega U(n)$ by $\rho(L)(z) = z.1_L \oplus 1_{L^{\perp}}$.
- ► We have $E_0(\mathbb{C}P^{n-1}) = E_0\{b_0, \dots, b_{n-1}\}$, and one can show that $E_0(\Omega U(n)) = E_0[b_0^{\pm 1}, b_1, \dots, b_{n-1}].$
- spec(E₀(ΩU(n))) is the scheme of *n*-jets of invertible functions on *G*, and spec(E₀XP(n)) is the scheme of *n*-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

- Define $\epsilon: U(n+1) \rightarrow S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- ► This gives a homeomorphism $U(n + 1)/U(n) = S^{2n+1}$, so $(\Omega U(n + 1))/(\Omega U(n)) = \Omega S^{2n+1}$. So ΩS^{2n+1} controls the difference between XP(n) and XP(n + 1)
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- ► This gives a homeomorphism $U(n + 1)/U(n) = S^{2n+1}$, so $(\Omega U(n + 1))/(\Omega U(n)) = \Omega S^{2n+1}$. So ΩS^{2n+1} controls the difference between XP(n) and XP(n)
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).

• We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- Define $\epsilon: U(n+1) \to S^{2n+1}$ by $\epsilon(g) = \text{last column of } g$.
- This gives a homeomorphism U(n + 1)/U(n) = S²ⁿ⁺¹, so (ΩU(n + 1))/(ΩU(n)) = ΩS²ⁿ⁺¹.
 So ΩS²ⁿ⁺¹ controls the difference between XP(n) and XP(n + 1).
- ▶ Let *J*(*n*) be the topological monoid freely generated by *S*^{2*n*}, mod the relation that the basepoint is the identity element.
- Let J(n, k) be the subspace of words of length less than k; then $J(n, k+1)/J(n, k) \simeq S^{2nk}$. We will relate J(n, k) to X(n, k).
- We have $S^{2n+1} = S^{2n} \wedge S^1$ and so can define $\eta: S^{2n} \to \Omega S^{2n+1}$ by $\eta(u)(t) = u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2n+1}$, which is a homotopy equivalence.
- $E_0 J(n) = E_0[b_n]$, and $E_0 J(n, m) = E_0 \{ b_n^i \mid i < m \}$.
- Spec(E₀J(n)) is the scheme of n-jets of invertible functions on G, for which the corresponding (n − 1)-jet is trivial. This is a group scheme which acts freely on Coord_n(G) = spec(E₀XP(n)), with orbit space Coord_{n−1}(G) = spec(E₀XP(n − 1)).
- We define XP(n, m) to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1).$

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.
- ▶ Put $u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$. Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔼_p).
- ▶ The above isomorphism reflects a fibration $J(n, p^k) \rightarrow J(n) \rightarrow J(np^k)$, which we will discuss on the next slide.

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.
- ▶ Put $u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$. Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔽_p).
- ▶ The above isomorphism reflects a fibration $J(n, p^k) \rightarrow J(n) \rightarrow J(np^k)$, which we will discuss on the next slide.

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.
- ▶ Put $u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$. Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔽_p).
- ▶ The above isomorphism reflects a fibration $J(n, p^k) \rightarrow J(n) \rightarrow J(np^k)$, which we will discuss on the next slide.

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.

▶ Put
$$u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$$
.
Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- ▶ This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔼_p).
- ► The above isomorphism reflects a fibration J(n, p^k) → J(n) → J(np^k), which we will discuss on the next slide.

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.

▶ Put
$$u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$$
.
Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔼_p).
- ► The above isomorphism reflects a fibration J(n, p^k) → J(n) → J(np^k), which we will discuss on the next slide.
What is special about the *p*-power stages?

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- H_{*} J(n) = ℤ[b_n], and the monoid structure on J(n) makes this a Hopf algebra, with ψ(b_n) = b_n ⊗ 1 + 1 ⊗ b_n.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.

▶ Put
$$u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$$
.
Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔽_p).
- ▶ The above isomorphism reflects a fibration $J(n, p^k) \rightarrow J(n) \rightarrow J(np^k)$, which we will discuss on the next slide.

What is special about the *p*-power stages?

- ▶ We have defined J(n, m) for all $m \ge 0$, but the cases $m = p^k$ play a special role.
- ▶ $H_*J(n) = \mathbb{Z}[b_n]$, and the monoid structure on J(n) makes this a Hopf algebra, with $\psi(b_n) = b_n \otimes 1 + 1 \otimes b_n$.
- ▶ Let $x_n^{[k]} \in H^{2nk} J(n)$ be dual to b_n^k . We find that $x_n^{[j]} x_n^{[k]} = \frac{(j+k)!}{j!k!} x_n^{[j+k]}$, so we have a divided power algebra.

▶ Put
$$u_k = x_n^{[p^k]} \in H^{2np^k}(J(n); \mathbb{F}_p)$$
.
Using standard congruences of binomial coefficients, we find that

$$H^*(J(n); \mathbb{F}_p) = \mathbb{F}_p[u_0, u_1, u_2, \cdots]/(u_0^p, u_1^p, u_2^p, \cdots).$$

- ▶ This is abstractly isomorphic to $H^*(J(n, p^k); \mathbb{F}_p) \otimes H^*(J(np^k); \mathbb{F}_p)$.
- However, if m is not a power of p, then H^{*}(J(n, m); 𝔽_p) is not a tensor factor in H^{*}(J(n); 𝔽_p).
- ▶ The above isomorphism reflects a fibration $J(n, p^k) \rightarrow J(n) \rightarrow J(np^k)$, which we will discuss on the next slide.

• A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.

- Fix m > 0, and consider a subword $b_1 \cdots b_m$ of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_1 \wedge \cdots \wedge b_m \in S^{2nm}$.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔽_p) is just the inclusion

$$\mathbb{F}_{\rho}[u_k, u_{k+1}, \ldots]/(u_i^{\rho}) \to \mathbb{F}_{\rho}[u_0, u_1, \ldots]/(u_i^{\rho}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{p}[u_{k}, u_{k+1}, \ldots]/(u_{i}^{p}) \rightarrow \mathbb{F}_{p}[u_{0}, u_{1}, \ldots]/(u_{i}^{p}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ► This gives N = (^r_m) points in S^{2nm}, say c₁,..., c_N (in lex order). This in turn gives a point h_m(w) = c₁c₂ ··· c_N ∈ J(nm). This gives a well-defined, continuous map h_m: J(n) → J(nm), called the James-Hopf map (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{\rho}[u_k, u_{k+1}, \ldots]/(u_i^{\rho}) \to \mathbb{F}_{\rho}[u_0, u_1, \ldots]/(u_i^{\rho}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- This gives N = (^r_m) points in S^{2nm}, say c₁,..., c_N (in lex order). This in turn gives a point h_m(w) = c₁c₂ ··· c_N ∈ J(nm). This gives a well-defined, continuous map h_m: J(n) → J(nm), called the James-Hopf map (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{p}[u_{k}, u_{k+1}, \ldots]/(u_{i}^{p}) \rightarrow \mathbb{F}_{p}[u_{0}, u_{1}, \ldots]/(u_{i}^{p}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{p}[u_{k}, u_{k+1}, \ldots]/(u_{i}^{p}) \rightarrow \mathbb{F}_{p}[u_{0}, u_{1}, \ldots]/(u_{i}^{p}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}^{[j]}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{p}[u_{k}, u_{k+1}, \ldots]/(u_{i}^{p}) \rightarrow \mathbb{F}_{p}[u_{0}, u_{1}, \ldots]/(u_{i}^{p}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_p: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔼_p) is just the inclusion

$$\mathbb{F}_{\rho}[u_k, u_{k+1}, \ldots]/(u_i^{\rho}) \to \mathbb{F}_{\rho}[u_0, u_1, \ldots]/(u_i^{\rho}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword b₁ · · · b_m of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point b₁ ∧ · · · ∧ b_m ∈ S^{2nm}.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_{p^k}: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔽_p) is just the inclusion

$$\mathbb{F}_{\rho}[u_k, u_{k+1}, \ldots]/(u_i^{\rho}) \to \mathbb{F}_{\rho}[u_0, u_1, \ldots]/(u_i^{\rho}).$$

- A point $w \in J(n)$ is a word $w = a_1 a_2 \cdots a_r$, with $a_i \in S^{2n}$.
- Fix m > 0, and consider a subword $b_1 \cdots b_m$ of length m (where b_i comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_1 \wedge \cdots \wedge b_m \in S^{2nm}$.
- ▶ This gives $N = \binom{r}{m}$ points in S^{2nm} , say c_1, \ldots, c_N (in lex order). This in turn gives a point $h_m(w) = c_1 c_2 \cdots c_N \in J(nm)$. This gives a well-defined, continuous map $h_m : J(n) \to J(nm)$, called the *James-Hopf map* (not a monoid map).
- ▶ If r < m we get $h_m(w) = 1$, and if r = m we get $h_m(w) = a_1 \land \dots \land a_r$. Using this we get $h_m^*(x_{nm}) = x_n^{[m]}$ and so $h_m^*(x_{nm}) = (mj)!m!^{-1}j!^{-m}x_n^{[mj]}$.
- When m = p^k, we find that the above numerical coefficients are nonzero mod p, so h^{*}_{p^k}: H^{*}(J(np^k); 𝔽_p) → H^{*}(J(n); 𝔽_p) is just the inclusion

$$\mathbb{F}_{\rho}[u_k, u_{k+1}, \ldots]/(u_i^{\rho}) \to \mathbb{F}_{\rho}[u_0, u_1, \ldots]/(u_i^{\rho}).$$

It is easy to see that J(n, p^k) → J(n) → J(n) → J(np^k) is null so we get a map from J(n, p^k) to the homotopy fibre of h_{p^k}. Using the above calculation, one can show that this is an equivalence.

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_+ \xrightarrow{1 \wedge h_{p^k}} X(n+1) \wedge J(np^k)_+.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and $J = J(np^k)$ and $Z^s = X \wedge J_+^s$. This gives a cosimplicial object; the associated chain complex E_*Z^\bullet has $H_0 = \ker(\zeta_* - \eta_*) = E_*X(n, p^k)$ and $H_{>0} = 0$. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^ks 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_+ \xrightarrow{1 \wedge h_{p^k}} X(n+1) \wedge J(np^k)_+.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[●] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n^{p^k}]$. We put $\zeta = (1 \land h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and $J = J(np^k)$ and $Z^s = X \wedge J_+^s$. This gives a cosimplicial object; the associated chain complex E_*Z^\bullet has $H_0 = \ker(\zeta_* - \eta_*) = E_*X(n, p^k)$ and $H_{>0} = 0$. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and $J = J(np^k)$ and $Z^s = X \wedge J_+^s$. This gives a cosimplicial object; the associated chain complex E_*Z^\bullet has $H_0 = \ker(\zeta_* - \eta_*) = E_*X(n, p^k)$ and $H_{>0} = 0$. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n+1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- ▶ The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0 XP(n, p^k)$.
- Now write X = XP(n+1) and $J = J(np^k)$ and $Z^s = X \wedge J_+^s$. This gives a cosimplicial object; the associated chain complex E_*Z^\bullet has $H_0 = \ker(\zeta_* - \eta_*) = E_*X(n, p^k)$ and $H_{>0} = 0$. This also works for E = XP(n+1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^ks 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^ks 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).

Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2np^k s - 1$

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).

Standard cosimplicial technology converts this to an Adams tower with fibres X(n+1) ∧ J^(s), of connectivity 2np^ks − 1

- For any virtual bundle V over X with Thom spectrum X^V, there is a natural "diagonal map" δ: X^V → X^V ∧ X₊.
- ▶ We can combine $\delta: X(n+1) \to X(n+1) \land (\Omega SU(n+1))_+$ with $\Omega \epsilon: \Omega U(n+1) \to \Omega S^{2n+1} \simeq J(n)$ and $h_{p^k}: J(n) \to J(np^k)$ to get maps

$$X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J(np^{k})_{+}.$$

- ▶ In *E*-homology, γ_* is a ring map with $\gamma_*(b_i) = b_i \otimes 1$ for i < n, and $\gamma_*(b_n) = b_n \otimes 1 + 1 \otimes b_n$. Also, $(h_{p^k})_*$ is essentially the projection of $E_0[b_n]$ onto $E_0[b_n^{p^k}]$. We put $\zeta = (1 \wedge h_{p^k}) \circ \gamma$.
- The evident map $S^0 \to J(np^k)_+$ gives another map η parallel to ζ with $\eta_*(b_i) = b_i \otimes 1$ for all *i*; the equaliser of ζ_* and η_* is $E_0XP(n, p^k)$.
- Now write X = XP(n + 1) and J = J(np^k) and Z^s = X ∧ J^s₊. This gives a cosimplicial object; the associated chain complex E_{*}Z[•] has H₀ = ker(ζ_{*} − η_{*}) = E_{*}X(n, p^k) and H_{>0} = 0. This also works for E = XP(n + 1).
- ▶ Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \land J^{(s)}$, of connectivity $2np^ks 1$

• We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.

- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- ▶ It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- ▶ Indeed, if $U \land Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

But fib(f) = cof(g), so cof(g) $\land Z = 0$, so cof($g \land 1_Z$) = 0, so $g \land 1_Z$ is an equivalence. This means that the map $V \land Z \to V[g^{-1}] \land Z$ is an equivalence, but $V[g^{-1}] = 0$, so $V \land Z = 0$ as required.

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module. If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- ▶ It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- ▶ Indeed, if $U \land Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

Bousfield classes

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

But fib(f) = cof(g), so cof(g) $\land Z = 0$, so cof($g \land 1_Z$) = 0, so $g \land 1_Z$ is an equivalence. This means that the map $V \land Z \to V[g^{-1}] \land Z$ is an equivalence, but $V[g^{-1}] = 0$, so $V \land Z = 0$ as required.

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module.
 If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- Here is the general pattern for the proof: Suppose we have f: U → ∑^aU and g: ∑^bV → V, with fib(f) ≃ cof(g). Suppose also that V[g⁻¹] = 0. We claim that ⟨V⟩ ≤ ⟨U⟩, i.e. U ∧ Z = 0 ⇒ V ∧ Z = 0.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- ▶ It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$.

We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \wedge Z = 0 \Rightarrow V \wedge Z = 0$.

▶ Indeed, if $U \land Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

But fib(f) = cof(g), so cof(g) $\land Z = 0$, so cof($g \land 1_Z$) = 0, so $g \land 1_Z$ is an equivalence. This means that the map $V \land Z \to V[g^{-1}] \land Z$ is an equivalence, but $V[g^{-1}] = 0$, so $V \land Z = 0$ as required.

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- ▶ In general, let *R* be a ring spectrum, and *M* and *R*-module. If $R \land Z = 0$ then $M \land R \land Z = 0$, but *M* is a retract of $M \land R$, so $M \land Z = 0$. This gives $\langle M \rangle \leq \langle R \rangle$.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- ▶ It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.

• Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

But fib(f) = cof(g), so cof(g) $\land Z = 0$, so cof($g \land 1_Z$) = 0, so $g \land 1_Z$ is an equivalence. This means that the map $V \land Z \to V[g^{-1}] \land Z$ is an equivalence, but $V[g^{-1}] = 0$, so $V \land Z = 0$ as required.

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module.
 If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- ▶ It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module.
 If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module.
 If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

- We need to prove that $\langle XP(n, p^k) \rangle = \langle XP(n) \rangle$.
- In general, let R be a ring spectrum, and M and R-module.
 If R ∧ Z = 0 then M ∧ R ∧ Z = 0, but M is a retract of M ∧ R, so M ∧ Z = 0. This gives ⟨M⟩ ≤ ⟨R⟩.
- As a special case: $\langle XP(n,m) \rangle \leq \langle XP(n) \rangle$.
- It will now suffice to show that $\langle XP(n, p^k) \rangle \leq \langle XP(n, p^{k+1}) \rangle$.
- ▶ Here is the general pattern for the proof: Suppose we have $f: U \to \Sigma^a U$ and $g: \Sigma^b V \to V$, with $fib(f) \simeq cof(g)$. Suppose also that $V[g^{-1}] = 0$. We claim that $\langle V \rangle \leq \langle U \rangle$, i.e. $U \land Z = 0 \Rightarrow V \land Z = 0$.
- Indeed, if $U \wedge Z = 0$, then

$$\operatorname{fib}(f) \wedge Z = \operatorname{fib}(U \wedge Z \xrightarrow{f \wedge 1_Z} \Sigma^a U \wedge Z) = 0.$$

Relating $X(n, p^k)$ to $X(n, p^{k+1})$

► There is an evaluation map $\Sigma \Omega S^{2n+1} \to S^{2n+1}$ given by $t \land u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \to S^{2n}$. Put

 $\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$

- On $E_0XP(n+1)$ we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.
- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

Relating $X(n, p^k)$ to $X(n, p^{k+1})$

► There is an evaluation map $\Sigma \Omega S^{2n+1} \to S^{2n+1}$ given by $t \land u \mapsto u(t)$. Desuspending gives a stable map $\omega : J(n) \to S^{2n}$. Put

 $\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$

- On $E_0XP(n+1)$ we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.
- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.
$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

- On $E_0XP(n+1)$ we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.
- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

- On $E_0XP(n+1)$ we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.
- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0 XP(n, p^k)$ in $E_0 XP(n, p^{k+1})$, so $E_0 F \simeq E_1 F \simeq E_0 XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi: XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_{*}) and cok(ξ_{*}) are the bottom and top copies of E₀XP(n, p^k) in E₀XP(n, p^{k+1}), so E₀F ≃ E₁F ≃ E₀XP(n, p^k).
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \land J(np^k) \xrightarrow{1 \land \omega} XP(n+1) \land S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- ► Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- ▶ Key insight: there is a certain ring spectrum *E*(*np^k*), closely related to the definition of *r*, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = u⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- ► Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}(np^k)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact 𝔅(m) = u⁻¹Σ[∞]₊ΩJ(m) for a certain u, and this is complex-orientable because it is an algebra over the mod p Eilenberg-Maclane spectrum H.

$$\xi = (XP(n+1) \xrightarrow{\zeta} XP(n+1) \wedge J(np^k) \xrightarrow{1 \wedge \omega} XP(n+1) \wedge S^{2np^k}).$$

• On
$$E_0XP(n+1)$$
 we get $\xi_*(u) = (p^k!)^{-1}\partial^{p^k}u/\partial b_n^{p^k}$.

- One can check that ξ restricts to give a map $\xi \colon XP(n, p^{k+1}) \to XP(n, p^{k+1}) \land S^{2np^k}$, with fibre F say.
- ► Here ker(ξ_*) and cok(ξ_*) are the bottom and top copies of $E_0XP(n, p^k)$ in $E_0XP(n, p^{k+1})$, so $E_0F \simeq E_1F \simeq E_0XP(n, p^k)$.
- By yoga of triangulated categories: there is a self map r of XP(n, p^k), of degree 2np^{k+1} − 2, with cof(r) = F = fib(ξ); and 1_E ∧ r = 0.
- This mean that E ∧ XP(n, p^k)[r⁻¹] = 0 for any complex-oriented E, and it will suffice to show that XP(n, p^k)[r⁻¹] itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}(np^k)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact *E*(*m*) = *u*⁻¹Σ[∞]₊Ω*J*(*m*) for a certain *u*, and this is complex-orientable because it is an algebra over the mod *p* Eilenberg-Maclane spectrum *H*.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- ► If Z is an H-module, then the coaction is cofree. The converse holds under mild additional conditions
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \rightarrow H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree. The converse holds under mild additional conditions
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional condition
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by $f_{\bullet}(g)(t) = g(f^{-1}(t))$, and this action is nearly free. It becomes free after inverting $b_1 = u$.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by $f_{\bullet}(g)(t) = g(f^{-1}(t))$, and this action is nearly free. It becomes free after inverting $b_1 = u$.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}C(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ▶ Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element *u* maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by $f_{\bullet}(g)(t) = g(f^{-1}(t))$, and this action is nearly free. It becomes free after inverting $b_1 = u$.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ► Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element u maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ► Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element u maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ► Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element u maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by $f_{\bullet}(g)(t) = g(f^{-1}(t))$, and this action is nearly free. It becomes free after inverting $b_1 = u$.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ► Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element u maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

- The dual Steenrod algebra is H_*H ; this is a Hopf algebra.
- ▶ For any spectrum Z, there is a coaction map $H_*Z \to H_*H \otimes H_*Z$.
- If Z is an H-module, then the coaction is cofree.
 The converse holds under mild additional conditions.
- We will show that H_{*}ΩJ(m) is nearly cofree, and H_{*}E(m) = u⁻¹H_{*}ΩJ(m) is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, H_∗H corresponds to the scheme Aut₁(G_a) of series f(t) = ∑_i a_it^{pⁱ} with a₀ = 1.
- ► Ignoring the exterior part, $H_*\Omega J(1)$ corresponds to the scheme $\operatorname{End}_0(G_a)$ of series $g(t) = \sum_i b_i t^{p^i}$ with $b_0 = 0$. The element u maps to b_1 .
- Aut₁(G_a) acts on End₀(G_a) by f_●(g)(t) = g(f⁻¹(t)), and this action is nearly free. It becomes free after inverting b₁ = u.
- ► $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2mq} \wedge D(q)$, with D(q) independent of m and $u \in \pi_{-2}D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

► Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.

- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ▶ We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- ▶ It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_q S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- ▶ Let C(q) be the space of lists $f = (f_1, ..., f_q)$, where $f_i : \Delta \to \Delta$ has the form $f_i(z) = a_i + \epsilon_i z$ ($\epsilon_i > 0$), and the images of the f_i are disjoint.
- Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ▶ We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- ▶ It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_a S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- ▶ Let C(q) be the space of lists $f = (f_1, ..., f_q)$, where $f_i : \Delta \to \Delta$ has the form $f_i(z) = a_i + \epsilon_i z$ ($\epsilon_i > 0$), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ▶ We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- ▶ It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_q S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ▶ We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y) / F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- ▶ It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_q S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ► We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- ▶ It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_a S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ► We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_a S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ▶ We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_a S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ► We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_a S^{2mq} \wedge D(q)$ (Snaith splitting).
- ▶ This circle of ideas gives a map $C(p) \times_{\Sigma_p} (\Omega J(m))^p \to \Omega J(m)$, which gives an operation $\xi : H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m))$.

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ► We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_q S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_p} (ΩJ(m))^p → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- ▶ Put $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, so $\Delta_{\infty} \simeq S^2$, so $\Omega^2 \Sigma^2 Y = F(\Delta_{\infty}, \Delta_{\infty} \land Y)$.
- Let C(q) be the space of lists f = (f₁,..., f_q), where f_i: Δ → Δ has the form f_i(z) = a_i + ε_iz (ε_i > 0), and the images of the f_i are disjoint.
- ► Say $g \in \Omega^2 \Sigma^2 Y$ is simple if there is $f \in C(q)$, and $y \in Y^q$, such that
 - $g(f_i(z)) = z \land y_i$ for all i and all $z \in \Delta$
 - Outside the images of the maps f_i , we have f(w) = basepoint.

- ► We can add an extra f_i with $y_i = *$; so $F(q 1; Y) \subseteq F(q; Y)$. Put $\overline{F}(q; Y) = F(q; Y)/F(q - 1; Y) = C(q)_+ \wedge_{\Sigma_q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^2 \Sigma^2 Y$. (Similar to $JY \simeq \Omega \Sigma Y$.) Taking $Y = S^{2m-1}$, we get $\Omega^2 S^{2m+1} = \Omega J(m)$.
- Note that if Q ⊂ C with |Q| = q then C[t]<q is independent of Q and maps isomorphically to Map(Q,C). This untwists some Σq-actions.
- ▶ Put $D(q) = C(q)_+ \wedge_{\Sigma_q} S^{-q}$. We find that $\overline{F}(q; S^{2m-1}) = S^{2mq} \wedge D(q)$ and $\Omega J(m) = \bigvee_q S^{2mq} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map C(p) ×_{Σ_ρ} (ΩJ(m))^ρ → ΩJ(m), which gives an operation ξ: H_{2i-1}(ΩJ(m)) → H_{2pi-1}(ΩJ(m)).

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m))$.
- ▶ There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \ldots] \otimes P[v_1, v_2, \ldots]$$

► There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j}u_j$ hits v_{j+1} .

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \ldots] \otimes P[v_1, v_2, \ldots]$$

• There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j} u_j$ hits v_{j+1} .

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \dots] \otimes P[v_1, v_2, \dots]$$

► There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j} u_j$ hits v_{j+1} .

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \dots] \otimes P[v_1, v_2, \dots]$$

There is a fibration ΩJ(m) → PJ(m) → J(m) with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j} u_j$ hits v_{j+1} .

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \dots] \otimes P[v_1, v_2, \dots]$$

• There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j}u_j$ hits v_{j+1} .

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \dots] \otimes P[v_1, v_2, \dots]$$

• There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j}u_j$ hits v_{j+1} .
Doubly looped spheres

- There is an operation $\xi \colon H_{2i-1}(\Omega J(m)) \to H_{2pi-1}(\Omega J(m)).$
- ► There is an easy element $u_0 \in H_{2m-1}(\Omega J(m))$, and we put $u_j = \xi^j(u_0) \in H_{2mp^j-1}(\Omega J(m))$ and $v_j = \beta(u_j) \in H_{2mp^j-2}(\Omega J(m))$.
- This gives a map to $H_*(\Omega J(m))$ from the ring

$$A = E[u_0, u_1, u_2, \dots] \otimes P[v_1, v_2, \dots]$$

• There is a fibration $\Omega J(m) \rightarrow PJ(m) \rightarrow J(m)$ with PJ(m) contractible. This gives a Serre spectral sequence

$$H_*J(m)\otimes H_*\Omega J(m)=P[b_m]\otimes H_*(\Omega J(m))\Longrightarrow \mathbb{F}_p.$$

This can only work out if the map $A \to H_*\Omega J(m)$ is an isomorphism, and $b_m^{p^j}$ hits u_j , and $b_m^{(p-1)p^j}u_j$ hits v_{j+1} .

The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for ΩJ(m) is as on the previous slide, so the coaction on E(m) is cofree, so E(m) is an H-module.

• Consider a base space Z.

Any fibration $W \to Z$ gives a system of fibres $\{W_z\}_{z \in Z}$. A path from $z \to z'$ gives a map $W_z \to W_{z'}$. This can be improved to a map $\Pi(z, z') \to \operatorname{Map}(W_z, W_{z'})$, where $\Pi(z, z')$ is the space of paths. From the fibres and the path action we can reconstruct W.

If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ₊[∞] W_{*} into a module over Σ₊[∞] ΩZ.

- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ΩJ(np^k).
- ▶ We have discussed the element $u \in \pi_* \Sigma^{\infty}_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

► Consider a base space Z. Any fibration $W \rightarrow Z$ gives a system of fibres $\{W_z\}_{z \in Z}$.

A path from $z \to z'$ gives a map $W_z \to W_{z'}$. This can be improved to a map $\Pi(z, z') \to \operatorname{Map}(W_z, W_{z'})$, where $\Pi(z, z')$ is the space of paths. From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ₊[∞] W_{*} into a module over Σ₊[∞] ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- As $J(n, p^k) = \operatorname{fib}(h_{p^k} : J(n) \to J(np^k))$, we see that $XP(n, p^k)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \to J(np^k)$, and so is a module over $\Sigma^{\infty}_{+} \Omega J(np^k)$.
- We have discussed the element u ∈ π_{*}Σ[∞]₊ΩJ(np^k) whose inversion gives *E*(np^k). Multiplication by u now gives a self-map of XP(n, p^k). One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

Consider a base space Z. Any fibration W → Z gives a system of fibres {W_z}_{z∈Z}. A path from z → z' gives a map W_z → W_{z'}. This can be improved to a map Π(z, z') → Map(W_z, W_{z'}), where Π(z, z') is the space of paths. From the fibres and the path action we can reconstruct W.

 If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.

- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- ▶ There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ΩJ(np^k).
- We have discussed the element $u \in \pi_* \Sigma^{\infty}_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

Consider a base space Z.
Any fibration W → Z gives a system of fibres {W_z}_{z∈Z}.
A path from z → z' gives a map W_z → W_{z'}. This can be improved to a map Π(z, z') → Map(W_z, W_{z'}), where Π(z, z') is the space of paths.
From the fibres and the path action we can reconstruct W.

 If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ₊[∞] W_{*} into a module over Σ₊[∞] ΩZ.

- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- As $J(n, p^k) = \operatorname{fib}(h_{p^k} : J(n) \to J(np^k))$, we see that $XP(n, p^k)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \to J(np^k)$, and so is a module over $\Sigma^{\infty}_{+} \Omega J(np^k)$.
- We have discussed the element $u \in \pi_* \Sigma^{\infty}_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*, *) = ΩZ. This makes Σ₂[∞] W_{*} into a module over Σ₂[∞]ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- ▶ As $J(n, p^k) = \operatorname{fib}(h_{p^k} : J(n) \to J(np^k))$, we see that $XP(n, p^k)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \to J(np^k)$, and so is a module over $\Sigma^{\infty}_{+} \Omega J(np^k)$.
- ▶ We have discussed the element $u \in \pi_* \Sigma^+_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- ▶ As $J(n, p^k) = \operatorname{fib}(h_{p^k} : J(n) \to J(np^k))$, we see that $XP(n, p^k)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \to J(np^k)$, and so is a module over $\Sigma^{\infty}_{+} \Omega J(np^k)$.
- ▶ We have discussed the element $u \in \pi_* \Sigma^+_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

Consider a base space Z.
Any fibration W → Z gives a system of fibres {W_z}_{z∈Z}.
A path from z → z' gives a map W_z → W_{z'}. This can be improved to a map Π(z, z') → Map(W_z, W_{z'}), where Π(z, z') is the space of paths.
From the fibres and the path action we can reconstruct W.

 If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.

• The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.

- There is a twisted version with Thom spectra as well as suspension spectra.
- ▶ As $J(n, p^k) = \operatorname{fib}(h_{p^k} : J(n) \to J(np^k))$, we see that $XP(n, p^k)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \to J(np^k)$, and so is a module over $\Sigma^{\infty}_{+} \Omega J(np^k)$.
- We have discussed the element $u \in \pi_* \Sigma^{\infty}_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- ▶ There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ΩJ(np^k).
- We have discussed the element $u \in \pi_* \Sigma^{\infty}_+ \Omega J(np^k)$ whose inversion gives $\mathcal{E}(np^k)$. Multiplication by u now gives a self-map of $XP(n, p^k)$. One can check that this is the same as the map r discussed earlier.
- ▶ Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- > There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ΩJ(np^k).
- We have discussed the element u ∈ π_{*}Σ[∞]₊ΩJ(np^k) whose inversion gives E(np^k). Multiplication by u now gives a self-map of XP(n, p^k). One can check that this is the same as the map r discussed earlier.
- ▶ Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- ▶ There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ΩJ(np^k).
- We have discussed the element u ∈ π_{*}Σ[∞]₊ΩJ(np^k) whose inversion gives E(np^k). Multiplication by u now gives a self-map of XP(n, p^k). One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of Π(*,*) = ΩZ. This makes Σ[∞]₊ W_{*} into a module over Σ[∞]₊ ΩZ.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As J(n, p^k) = fib(h_{p^k}: J(n) → J(np^k)), we see that XP(n, p^k) is a Thom spectrum over the fibre of a map ΩU(n+1) → J(np^k), and so is a module over Σ[∞]₊ ΩJ(np^k).
- We have discussed the element u ∈ π_{*}Σ[∞]₊ΩJ(np^k) whose inversion gives E(np^k). Multiplication by u now gives a self-map of XP(n, p^k). One can check that this is the same as the map r discussed earlier.
- Now $XP(n, p^k)[r^{-1}]$ is a module over $\mathcal{E}(np^k)$ and thus over H, but $1_H \wedge r = 0$, and it follows that $XP(n, p^k)[r^{-1}] = 0$.