The Nilpotence Theorem

Neil Strickland

May 18, 2018

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
\begin{aligned}
& \qquad S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U \\
& 0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1) \\
& \text { and prove some facts about their properties. The Nilpotence Theorem will } \\
& \text { follow easily from these. } \\
& \text { Three preliminary reductions: } \\
& \text { (a) If } E \text { is a ring spectrum, then } u \text { becomes nilpotent in } \pi_{*}(E \wedge R) \text { iff } \\
& E \wedge R\left[u^{-1}\right]=0 \text {. (Note: this depends only on the Bousfield class of } E \text {.) } \\
& \text { (b) For a sequence of ring spectra } E(i) \text { with colimit } E(\infty) \text { we have } E(\infty)=0 \\
& \text { iff } 1=0 \text { in lim } \pi_{0}(E(i)) \text { iff } E(i)=0 \text { for } i \gg 0 \text {. } \\
& \text { (c) For the rest of the talk, we will fix a prime } p \text { and work } p \text {-locally. It is not } \\
& \text { hard to recover the integral statement from the } p \text {-local ones. }
\end{aligned}
$$

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$. (Note: this depends only on the Bousfield class of E.)
(b) For a sequence of ring spectra $E(i)$ with colimit $E(\infty)$ we have $E(\infty)=0$ iff $1=0$ in $\lim \pi_{0}(E(i))$ iff $E(i)=0$ for $i \gg 0$.
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not hard to recover the integral statement from the p-local ones.

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$. (Note: this depends only on the Bousfield class of E.)
(b) For a sequence of ring spectra $E(i)$ with colimit $E(\infty)$ we have $E(\infty)=0$ iff $1=0$ in $\lim \pi_{0}(E(i))$ iff $E(i)=0$ for $i \gg 0$.
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not hard to recover the integral statement from the p-local ones.

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not
hard to recover the integral statement from the p-local ones.

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$. (Note: this depends only on the Bousfield class of E.)
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not hard to recover the integral statement from the p-local ones.

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$. (Note: this depends only on the Bousfield class of E.)
(b) For a sequence of ring spectra $E(i)$ with colimit $E(\infty)$ we have $E(\infty)=0$ iff $1=0$ in $\lim _{\longrightarrow i} \pi_{0}(E(i))$ iff $E(i)=0$ for $i \gg 0$.
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not hard to recover the integral statement from the p-local ones.

Statement of the Theorem

Let R be a finite ring spectrum, and let u be an element of $\pi_{*}(R)$. Suppose that the image of u in $\pi_{*}(M U \wedge R)$ is nilpotent. Then u itself is nilpotent.

This was conjectured by Ravenel, and proved by Hopkins, Devinatz and Smith. It is the key foundational result of chromatic homotopy theory.

We will introduce some spectra

$$
S^{0}=X(1) \rightarrow X(2) \rightarrow X(3) \rightarrow \cdots \rightarrow X(\infty)=M U
$$

$0=X(n, 0) \rightarrow X(n)=X(n, 1) \rightarrow X(n, 2) \rightarrow X(n, 3) \rightarrow \cdots \rightarrow X(n, \infty)=X(n+1)$
and prove some facts about their properties. The Nilpotence Theorem will follow easily from these.

Three preliminary reductions:
(a) If E is a ring spectrum, then u becomes nilpotent in $\pi_{*}(E \wedge R)$ iff $E \wedge R\left[u^{-1}\right]=0$. (Note: this depends only on the Bousfield class of E.)
(b) For a sequence of ring spectra $E(i)$ with colimit $E(\infty)$ we have $E(\infty)=0$ iff $1=0$ in $\lim _{\rightarrow} \pi_{0}(E(i))$ iff $E(i)=0$ for $i \gg 0$.
(c) For the rest of the talk, we will fix a prime p and work p-locally. It is not hard to recover the integral statement from the p-local ones.

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra)
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$.
(i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that
$X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d).

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$, (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that
$X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$ (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M \cup \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem:

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$.

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$.
filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$,
and rapid convergence of that spectral sequence imples that
$X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$
so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$.

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c):

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$.
so u is nilpotent

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to nrove nronerty (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$.
so u is nilpotent

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d)

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$.
so u is nilpotent

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d).

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $X(n) \wedge Z=0$)

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to nrove nronerty (d).

Properties of the spectra $X(n, k)$

(a) $M U=X(\infty)$ is the colimit over n of $X(n)$ (and these are ring spectra).
(b) $X(n+1)=X(n, \infty)$ is the colimit over k of $X(n, k)$ (but these are not ring spectra).
(c) When k is large, $X\left(n, p^{k}\right)$ has a rapidly convergent $X(n+1)$-based Adams resolution.
(d) The spectrum $X\left(n, p^{k}\right)$ has the same Bousfield class as $X(n)$. (i.e. $X\left(n, p^{k}\right) \wedge Z=0$ iff $\left.X(n) \wedge Z=0\right)$

Outline proof of the Theorem: Suppose that $M U \wedge R\left[u^{-1}\right]=0$. Then $X(m) \wedge R\left[u^{-1}\right]=0$ for $m \gg 0$. Suppose $X(n+1) \wedge R\left[u^{-1}\right]=0$, so $u^{t}=0$ in $\pi_{*}(X(n+1) \wedge R)$. Choose k large relative to $\left|u^{t}\right|$ and apply (c): u^{t} will shift filtration in the $X(n+1)$-based Adams spectral sequence for $\pi_{*}\left(X\left(n, p^{k}\right) \wedge R\right)$, and rapid convergence of that spectral sequence imples that $X\left(n, p^{k}\right) \wedge R\left[u^{-1}\right]=0$. Now (d) tells us that $X(n) \wedge R\left[u^{-1}\right]=0$. Extending this inductively, we get $X(1) \wedge R\left[u^{-1}\right]=0$. However, $X(1)=S^{0}$ so $R\left[u^{-1}\right]=0$ so u is nilpotent.

Properties (a) and (b) are easy. Property (c) is moderately hard. The main work is to prove property (d).

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftrightarrows} Y_{1} \stackrel{g_{2}}{\stackrel{1}{2}} Y_{2} \stackrel{g_{3}}{\leftrightarrows}
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that conn $\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftarrow} Y_{2} \stackrel{g_{3}}{\leftrightarrows}
$$

such that $I_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=$ fib $\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Supnose we have such a resolution, and a man $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that conn $\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\rightleftarrows} Y_{1} \stackrel{g_{2}}{\rightleftarrows} Y_{2} \stackrel{g_{3}}{\rightleftarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that conn $\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftarrow} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that $\operatorname{conn}\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftrightarrows} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1. Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that $\operatorname{conn}\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 .

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that $\operatorname{conn}\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$.

The Adams resolution property

Let E be a ring spectrum.

- Say $f: X \rightarrow Y$ has E-filtration at least s if f can be written as a composite of s maps f_{i}, each with $1_{E} \wedge f_{i}=0$.
- An E-resolution of Y is a tower of spectra

$$
Y=Y_{0} \stackrel{g_{1}}{\leftarrow} Y_{1} \stackrel{g_{2}}{\leftrightarrows} Y_{2} \stackrel{g_{3}}{\leftrightarrows} \cdots
$$

such that $1_{E} \wedge g_{i}=0$ for all i, and each fibre $F_{i}=\mathrm{fib}\left(g_{i}\right)$ admits an E-module structure.

- (Subject to some conditions, this will give a spectral sequence $\operatorname{Ext}_{E_{*} E}^{* *}\left(E_{*} X, E_{*} Y\right) \Longrightarrow\left[X, L_{E} Y\right]_{*}$. But we do not need that.)
- Suppose we have such a resolution, and a map $f: X \rightarrow Y$ of E-filtration at least s; then f lifts to Y_{s}. Thus, if the connectivity of Y_{s} is greater than $\operatorname{dim}(X)$, then $f=0$.
- Consider the case where $E=X(n+1)$ and $Y=X\left(n, p^{k}\right)$. We will give an explicit construction of a resolution where the connectivity of Y_{s} is $2 n p^{k} s$.
- Suppose that $u \mapsto 0$ in $\pi_{*}(X(n+1) \wedge R)$, so multiplication by u has $X(n+1)$-filtration at least 1 . Fix k with $2 n p^{k}>|u|$. For any $a \in \pi_{*}(X(n, k) \wedge R)$ we find that $\operatorname{conn}\left(Y_{s} \wedge R\right)-\operatorname{deg}\left(u^{s} a\right)>0$ for $s \gg 0$, so $a \rightarrow 0$ in $\pi_{*}\left(X(n, k) \wedge R\left[u^{-1}\right]\right)$. This gives $X(n, k) \wedge R\left[u^{-1}\right]=0$.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group
$G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$ So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by $\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.
Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of
coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$

So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right.$ is the scheme of invertible functions on G.
This acts freely and transitively on Coord($G)$ by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$;
define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and spec $\left(E_{0}(X P(n))\right)$ is the scheme of

n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by
$\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$. This looks like m copies of $X P(n)$, making it plausible

that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
MP is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$
So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
$\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G
This acts freely and transitively on $\operatorname{Coord}(G)$ by multiplication
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
$E_{0} X P(n)=E_{0}\left[b_{0}^{+1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by $\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.
Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$.
$\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G.
This acts freely and transitively on $\operatorname{Coord}(G)$ by multiplication
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$ define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by
$m\}$. This looks like m copies of $X P(n)$, making it plausible
that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.
Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G.

This acts freely and transitively on Coord(G) by multiplication
Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by
$m\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme Coord (G) of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} \times P(n, m)$ will be the free module over $E_{0} \times P(n)$ generated by
$m\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by $\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$.

But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by $\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$.

But there are attaching maps.

Construction of $X(n)$

For ease of comparison with formal group theory, we put $P=\bigvee_{n \in \mathbb{Z}} S^{2 n}$ and $M P=M U \wedge P$ and $X P(n)=X(n) \wedge P$ and $X P(n, k)=X(n, k) \wedge P$.

Consider an even periodic ring spectrum E, with associated formal group $G=\operatorname{spf}\left(E^{0}\left(\mathbb{C} P^{\infty}\right)\right)$ over $S=\operatorname{spec}\left(E_{0}\right)$.
(a) $E_{0} M P=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, b_{2}, \ldots\right]$, and $\operatorname{spec}\left(E_{0} M P\right)$ is the scheme $\operatorname{Coord}(G)$ of coordinates on G.
(b) $M P$ is the Thom spectrum of the tautological virtual bundle over $\mathbb{Z} \times B U$. So, $E_{0}(\mathbb{Z} \times B U)$ is isomorphic to $E_{0} M P$, but not in a canonical way.
(c) $\operatorname{spec}\left(E_{0}(\mathbb{Z} \times B U)\right)$ is the scheme of invertible functions on G. This acts freely and transitively on Coord (G) by multiplication.
(d) Bott periodicity: $\mathbb{Z} \times B U=\Omega U$. This gives a virtual bundle over $\Omega U(n)$; define $X P(n)$ to be the Thom spectrum. (Use $\Omega S U(n)$ for $X(n)$.)
(e) $E_{0} X P(n)=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$, and $\operatorname{spec}\left(E_{0}(X P(n))\right)$ is the scheme of n-jets of coordinates on G. (But $\pi_{*} X P(n)$ is not fully known.)
(f) $E_{0} X P(n, m)$ will be the free module over $E_{0} X P(n)$ generated by $\left\{b_{n}^{i} \mid 0 \leq i<m\right\}$. This looks like m copies of $X P(n)$, making it plausible that $\langle X(n)\rangle=\langle X(n, m)\rangle$. But there are attaching maps.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map
$G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$;
this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L<K^{n}$ with $z^{r} A^{n}<L<z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{\prime} A\right)-\left(A / z^{\prime} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L \perp}$.
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that $E_{0}(\Omega \cup(n))=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$
- $\operatorname{spec}\left(E_{0}(\Omega U(n))\right)$ is the scheme of n-jets of invertible functions on G, and $\operatorname{spec}\left(E_{0} X P(n)\right)$ is the scheme of n-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L<K^{n}$ with $z^{r} A^{n}<L<z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$
- For any lattice L we have a virtual vector space $\left(L / z^{\prime} A\right)-\left(A / z^{\prime} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L \perp}$
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that $E_{0}(\Omega \cup(n))=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$
$\operatorname{spec}\left(E_{0}(\Omega U(n))\right)$ is the scheme of n-jets of invertible functions on G, and $\operatorname{spec}\left(E_{0} X P(n)\right)$ is the scheme of n-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L}$
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that
$\operatorname{spec}\left(E_{0}(\Omega U(n))\right)$ is the scheme of n-jets of invertible functions on G, and $\operatorname{spec}\left(E_{0} X P(n)\right)$ is the scheme of n-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
$r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$
\square
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that
$\operatorname{spec}\left(E_{0}(\Omega U(n))\right)$ is the scheme of n-jets of invertible functions on G, and $\operatorname{spec}\left(E_{0} X P(n)\right)$ is the scheme of n-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L^{\perp}}$.
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}\right.$

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$; this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L \perp}$.
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that $E_{0}(\Omega \cup(n))=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$.

The Bott periodicity map

- Put $A=\mathbb{C}[z]$ and $K=\mathbb{C}\left[z, z^{-1}\right]$.
- By interpreting z as a point in $S^{1} \subset \mathbb{C}$, we get a map $G L_{n}(K) \rightarrow \operatorname{Map}\left(S^{1}, G L_{n}(\mathbb{C})\right) \simeq \operatorname{Map}\left(S^{1}, U(n)\right)$;
this can be shown to be a homotopy equivalence.
- Using $h_{t}(z)=t z$ we get $G L_{n}(A) \simeq G L_{n}(\mathbb{C}) \simeq U(n)$.
- This gives $\Omega U(n) \simeq \operatorname{Map}\left(S^{1}, U(n)\right) / U(n) \simeq G L_{n}(K) / G L_{n}(A)$.
- A lattice in K^{n} is an A-submodule $L \leq K^{n}$ with $z^{r} A^{n} \leq L \leq z^{-r} A^{n}$ for $r \gg 0$. The set of lattices is the $G L_{n}(K)$-orbit of A^{n}, which has stabiliser $G L_{n}(A)$; so $\{$ lattices $\} \simeq \Omega U(n)$.
- For any lattice L we have a virtual vector space $\left(L / z^{r} A\right)-\left(A / z^{r} A\right)$ for $r \gg 0$. This is the bundle over $\Omega U(n)$ whose Thom spectrum is $X(n)$.
- Define $\rho: \mathbb{C} P^{n-1} \rightarrow \Omega U(n)$ by $\rho(L)(z)=z .1_{L} \oplus 1_{L^{\perp}}$.
- We have $E_{0}\left(\mathbb{C} P^{n-1}\right)=E_{0}\left\{b_{0}, \ldots, b_{n-1}\right\}$, and one can show that $E_{0}(\Omega U(n))=E_{0}\left[b_{0}^{ \pm 1}, b_{1}, \ldots, b_{n-1}\right]$.
- $\operatorname{spec}\left(E_{0}(\Omega U(n))\right)$ is the scheme of n-jets of invertible functions on G, and $\operatorname{spec}\left(E_{0} X P(n)\right)$ is the scheme of n-jets of coordinates. The former acts freely and transitively on the latter, reflecting the Thom isomorphism.

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
$\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}, \bmod$ the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding ($n-1$)-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space Coord ${ }_{n-1}(G)=\operatorname{spec}\left(E_{0} \times P(n-1)\right)$
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding ($n-1$)-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space Coord ${ }_{n-1}(G)=\operatorname{spec}\left(E_{0} \times P(n-1)\right)$
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding ($n-1$)-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space Coord $_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding ($n-1$)-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} \times P(n)\right.$), with orbit space Coord $_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$.

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$.
$\Rightarrow \operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} \times P(n-1)\right)$
- We define $X P(n, m)$ to be the Thom spectrum for
$(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$.

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$.
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.

The James construction

- Define $\epsilon: U(n+1) \rightarrow S^{2 n+1}$ by $\epsilon(g)=$ last column of g.
- This gives a homeomorphism $U(n+1) / U(n)=S^{2 n+1}$, so $(\Omega U(n+1)) /(\Omega U(n))=\Omega S^{2 n+1}$.
So $\Omega S^{2 n+1}$ controls the difference between $X P(n)$ and $X P(n+1)$.
- Let $J(n)$ be the topological monoid freely generated by $S^{2 n}$, mod the relation that the basepoint is the identity element.
- Let $J(n, k)$ be the subspace of words of length less than k; then $J(n, k+1) / J(n, k) \simeq S^{2 n k}$. We will relate $J(n, k)$ to $X(n, k)$.
- We have $S^{2 n+1}=S^{2 n} \wedge S^{1}$ and so can define $\eta: S^{2 n} \rightarrow \Omega S^{2 n+1}$ by $\eta(u)(t)=u \wedge t$.
- This extends to give $J(n) \rightarrow \Omega S^{2 n+1}$, which is a homotopy equivalence.
- $E_{0} J(n)=E_{0}\left[b_{n}\right]$, and $E_{0} J(n, m)=E_{0}\left\{b_{n}^{i} \mid i<m\right\}$.
- $\operatorname{spec}\left(E_{0} J(n)\right)$ is the scheme of n-jets of invertible functions on G, for which the corresponding $(n-1)$-jet is trivial. This is a group scheme which acts freely on $\operatorname{Coord}_{n}(G)=\operatorname{spec}\left(E_{0} X P(n)\right)$, with orbit space $\operatorname{Coord}_{n-1}(G)=\operatorname{spec}\left(E_{0} X P(n-1)\right)$.
- We define $X P(n, m)$ to be the Thom spectrum for $(\Omega \epsilon)^{-1} J(n, m) \subset \Omega U(n+1)$.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j \mid k]} x_{n}^{[j+k]}$, so we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) ; \mathbb{F}_{p}\right)$.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2}, \cdots\right] /\left(u_{0}^{p}, u_{1}^{p}, u_{2}^{p}, \cdots\right)
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tenso factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) \cdot \mathbb{F}_{p}\right)$

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2},\right.
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j!k!} x_{n}^{[j+k]}$, so we have a divided power algebra.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(\pi) ; \mathbb{T}_{p}\right)=\mathbb{T}_{p}{ }^{\mathrm{r}} u_{0}, u_{1}, u_{2},
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j!k!} x_{n}^{[j+k]}$, so we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) ; \mathbb{F}_{p}\right)$.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2}, \cdots\right] /\left(u_{0}^{p}, u_{1}^{p}, u_{2}^{p}, \cdots\right)
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j!k!} x_{n}^{[j+k]}$, so we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) ; \mathbb{F}_{p}\right)$.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2}, \cdots\right] /\left(u_{0}^{p}, u_{1}^{p}, u_{2}^{p}, \cdots\right)
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j!k!} x_{n}^{[j+k]}$, so we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) ; \mathbb{F}_{p}\right)$.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2}, \cdots\right] /\left(u_{0}^{p}, u_{1}^{p}, u_{2}^{p}, \cdots\right)
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

What is special about the p-power stages?

- We have defined $J(n, m)$ for all $m \geq 0$, but the cases $m=p^{k}$ play a special role.
- $H_{*} J(n)=\mathbb{Z}\left[b_{n}\right]$, and the monoid structure on $J(n)$ makes this a Hopf algebra, with $\psi\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
- Let $x_{n}^{[k]} \in H^{2 n k} J(n)$ be dual to b_{n}^{k}. We find that $x_{n}^{[j]} x_{n}^{[k]}=\frac{(j+k)!}{j!k!} x_{n}^{[j+k]}$, so we have a divided power algebra.
- Put $u_{k}=x_{n}^{\left[p^{k}\right]} \in H^{2 n p^{k}}\left(J(n) ; \mathbb{F}_{p}\right)$.

Using standard congruences of binomial coefficients, we find that

$$
H^{*}\left(J(n) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[u_{0}, u_{1}, u_{2}, \cdots\right] /\left(u_{0}^{p}, u_{1}^{p}, u_{2}^{p}, \cdots\right)
$$

- This is abstractly isomorphic to $H^{*}\left(J\left(n, p^{k}\right) ; \mathbb{F}_{p}\right) \otimes H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right)$.
- However, if m is not a power of p, then $H^{*}\left(J(n, m) ; \mathbb{F}_{p}\right)$ is not a tensor factor in $H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$.
- The above isomorphism reflects a fibration $J\left(n, p^{k}\right) \rightarrow J(n) \rightarrow J\left(n p^{k}\right)$, which we will discuss on the next slide.

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order)

This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$,
called the James-Hopf map (not a monoid map).

- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$ Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{T}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{T}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right)
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{h_{p^{k}}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence.

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order)

This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map)

- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$ Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\left.\mathbb{T}_{p} r u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{T}_{p} r\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right) .
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{p^{k}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence.

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order).

This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$ called the James-Hopf map (not a monoid map)

- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \ldots \wedge a_{r}$ Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{F}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{F}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right) .
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{p^{k}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence.

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order). This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map)
- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$. Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{T}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{T}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right) .
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{p^{k}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence.

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order). This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map).
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{F}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{F}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right) .
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{p^{k}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation,

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order). This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map).
- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$.
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{F}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{F}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right) .
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{{ }^{p^{k}}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation,

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order).

This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map).

- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$. Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$.
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{{ }^{p^{k}}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it). This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order).

This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map).

- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$. Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$.
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{F}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{F}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right)
$$

James-Hopf maps

- A point $w \in J(n)$ is a word $w=a_{1} a_{2} \cdots a_{r}$, with $a_{i} \in S^{2 n}$.
- Fix $m>0$, and consider a subword $b_{1} \cdots b_{m}$ of length m (where b_{i} comes before b_{i+1} in W, but need not be adjacent to it).
This gives a point $b_{1} \wedge \cdots \wedge b_{m} \in S^{2 n m}$.
- This gives $N=\binom{r}{m}$ points in $S^{2 n m}$, say c_{1}, \ldots, c_{N} (in lex order). This in turn gives a point $h_{m}(w)=c_{1} c_{2} \cdots c_{N} \in J(n m)$.
This gives a well-defined, continuous map $h_{m}: J(n) \rightarrow J(n m)$, called the James-Hopf map (not a monoid map).
- If $r<m$ we get $h_{m}(w)=1$, and if $r=m$ we get $h_{m}(w)=a_{1} \wedge \cdots \wedge a_{r}$. Using this we get $h_{m}^{*}\left(x_{n m}\right)=x_{n}^{[m]}$ and so $h_{m}^{*}\left(x_{n m}^{[j]}\right)=(m j)!m!^{-1} j!^{-m} x_{n}^{[m j]}$.
- When $m=p^{k}$, we find that the above numerical coefficients are nonzero $\bmod p$, so $h_{p^{k}}^{*}: H^{*}\left(J\left(n p^{k}\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(J(n) ; \mathbb{F}_{p}\right)$ is just the inclusion

$$
\mathbb{F}_{p}\left[u_{k}, u_{k+1}, \ldots\right] /\left(u_{i}^{p}\right) \rightarrow \mathbb{F}_{p}\left[u_{0}, u_{1}, \ldots\right] /\left(u_{i}^{p}\right)
$$

- It is easy to see that $J\left(n, p^{k}\right) \rightarrow J(n) \xrightarrow{h_{p^{k}}} J\left(n p^{k}\right)$ is null so we get a map from $J\left(n, p^{k}\right)$ to the homotopy fibre of $h_{p^{k}}$. Using the above calculation, one can show that this is an equivalence.

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))+$ with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\imath} X(n+1) \wedge J(n)+\xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)+
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$ This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$ This also works for $E=X P(n+1)$.
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)+$ gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$

This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$ This also works for $E=X P(n+1)$.

- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$.
Also,
s essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
\Rightarrow The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i;

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.

- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$.

This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$ This also works for $E=X P(n+1)$.

- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$. This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$.
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$. This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$.
This also works for $E=X P(n+1)$.
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

The Adams resolution

- For any virtual bundle V over X with Thom spectrum X^{V}, there is a natural "diagonal map" $\delta: X^{V} \rightarrow X^{V} \wedge X_{+}$.
- We can combine $\delta: X(n+1) \rightarrow X(n+1) \wedge(\Omega S U(n+1))_{+}$with $\Omega \epsilon: \Omega U(n+1) \rightarrow \Omega S^{2 n+1} \simeq J(n)$ and $h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)$ to get maps

$$
X(n+1) \xrightarrow{\gamma} X(n+1) \wedge J(n)_{+} \xrightarrow{1 \wedge h_{p^{k}}} X(n+1) \wedge J\left(n p^{k}\right)_{+} .
$$

- In E-homology, γ_{*} is a ring map with $\gamma_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for $i<n$, and $\gamma_{*}\left(b_{n}\right)=b_{n} \otimes 1+1 \otimes b_{n}$. Also, $\left(h_{p^{k}}\right)_{*}$ is essentially the projection of $E_{0}\left[b_{n}\right]$ onto $E_{0}\left[b_{n}^{p^{k}}\right]$. We put $\zeta=\left(1 \wedge h_{p^{k}}\right) \circ \gamma$.
- The evident map $S^{0} \rightarrow J\left(n p^{k}\right)_{+}$gives another map η parallel to ζ with $\eta_{*}\left(b_{i}\right)=b_{i} \otimes 1$ for all i; the equaliser of ζ_{*} and η_{*} is $E_{0} X P\left(n, p^{k}\right)$.
- Now write $X=X P(n+1)$ and $J=J\left(n p^{k}\right)$ and $Z^{s}=X \wedge J_{+}^{s}$. This gives a cosimplicial object; the associated chain complex $E_{*} Z^{\bullet}$ has $H_{0}=\operatorname{ker}\left(\zeta_{*}-\eta_{*}\right)=E_{*} X\left(n, p^{k}\right)$ and $H_{>0}=0$.
This also works for $E=X P(n+1)$.
- Standard cosimplicial technology converts this to an Adams tower with fibres $X(n+1) \wedge J^{(s)}$, of connectivity $2 n p^{k} s-1$

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$.
Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{z}} \Sigma^{a} U \wedge Z\right)=0
$$

But $\operatorname{fib}(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$.
Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$.
Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$. We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$
Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But $\operatorname{fib}(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$
Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.
So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with $\operatorname{fib}(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with $\operatorname{fib}(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with $\operatorname{fib}(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{z}\right)=0$, so $g \wedge 1_{z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with $\operatorname{fib}(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with fib $(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

Bousfield classes

- We need to prove that $\left\langle X P\left(n, p^{k}\right)\right\rangle=\langle X P(n)\rangle$.
- In general, let R be a ring spectrum, and M and R-module.

If $R \wedge Z=0$ then $M \wedge R \wedge Z=0$, but M is a retract of $M \wedge R$, so $M \wedge Z=0$. This gives $\langle M\rangle \leq\langle R\rangle$.

- As a special case: $\langle X P(n, m)\rangle \leq\langle X P(n)\rangle$.
- It will now suffice to show that $\left\langle X P\left(n, p^{k}\right)\right\rangle \leq\left\langle X P\left(n, p^{k+1}\right\rangle\right.$.
- Here is the general pattern for the proof:

Suppose we have $f: U \rightarrow \Sigma^{a} U$ and $g: \Sigma^{b} V \rightarrow V$, with $\operatorname{fib}(f) \simeq \operatorname{cof}(g)$. Suppose also that $V\left[g^{-1}\right]=0$.
We claim that $\langle V\rangle \leq\langle U\rangle$, i.e. $U \wedge Z=0 \Rightarrow V \wedge Z=0$.

- Indeed, if $U \wedge Z=0$, then

$$
\operatorname{fib}(f) \wedge Z=\operatorname{fib}\left(U \wedge Z \xrightarrow{f \wedge 1_{Z}} \Sigma^{a} U \wedge Z\right)=0
$$

But fib $(f)=\operatorname{cof}(g)$, so $\operatorname{cof}(g) \wedge Z=0$, so $\operatorname{cof}\left(g \wedge 1_{Z}\right)=0$, so $g \wedge 1_{Z}$ is an equivalence. This means that the map $V \wedge Z \rightarrow V\left[g^{-1}\right] \wedge Z$ is an equivalence, but $V\left[g^{-1}\right]=0$, so $V \wedge Z=0$ as required.

- So it will suffice to define self maps ξ and r of $X P\left(n, p^{k+1}\right)$ and $X P\left(n, p^{k}\right)$ with $\operatorname{fib}(\xi)=\operatorname{cof}(r)$ and $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u, and this is complex-orientable because it is an algebra over the $\bmod p$ Eilenberg-Maclane spectrum H .

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$.

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$
- One can check that ξ restricts to give a map
$\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u, and this is complex-orientable because it is an algebra over the $\bmod p$ Eilenberg-Maclane spectrum H.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$
- One can check that ξ restricts to give a map
$\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\operatorname{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma+\Omega J(m)$ for a certain u, and this is
complex-orientable because it is an algebra over the mod p
Eilenberg-Maclane spectrum H.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map
$\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} \times P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} \times P\left(n, p^{k}\right)$
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u, and this is
complex-orientable because it is an algebra over the $\bmod p$
Eilenberg-Maclane spectrum H.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u, and this is
complex-orientable because it is an algebra over the $\bmod p$
Eilenberg-Maclane spectrum H

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason. - In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u. and this is complex-orientable because it is an algebra over the mod p Eilenberg-Maclane spectrum H

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
complex-orientable because it is an algebra over the mod p Eilenberg-Maclane spectrum H.

Relating $X\left(n, p^{k}\right)$ to $X\left(n, p^{k+1}\right)$

- There is an evaluation map $\Sigma \Omega S^{2 n+1} \rightarrow S^{2 n+1}$ given by $t \wedge u \mapsto u(t)$. Desuspending gives a stable map $\omega: J(n) \rightarrow S^{2 n}$. Put

$$
\xi=\left(X P(n+1) \xrightarrow{\zeta} X P(n+1) \wedge J\left(n p^{k}\right) \xrightarrow{1 \wedge \omega} X P(n+1) \wedge S^{2 n p^{k}}\right) .
$$

- On $E_{0} X P(n+1)$ we get $\xi_{*}(u)=\left(p^{k}!\right)^{-1} \partial^{p^{k}} u / \partial b_{n}^{p^{k}}$.
- One can check that ξ restricts to give a map $\xi: X P\left(n, p^{k+1}\right) \rightarrow X P\left(n, p^{k+1}\right) \wedge S^{2 n p^{k}}$, with fibre F say.
- Here $\operatorname{ker}\left(\xi_{*}\right)$ and $\operatorname{cok}\left(\xi_{*}\right)$ are the bottom and top copies of $E_{0} X P\left(n, p^{k}\right)$ in $E_{0} X P\left(n, p^{k+1}\right)$, so $E_{0} F \simeq E_{1} F \simeq E_{0} X P\left(n, p^{k}\right)$.
- By yoga of triangulated categories: there is a self map r of $X P\left(n, p^{k}\right)$, of degree $2 n p^{k+1}-2$, with $\operatorname{cof}(r)=F=\mathrm{fib}(\xi)$; and $1_{E} \wedge r=0$.
- This mean that $E \wedge X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$ for any complex-oriented E, and it will suffice to show that $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ itself is zero.
- Key insight: there is a certain ring spectrum $\mathcal{E}\left(n p^{k}\right)$, closely related to the definition of r, complex-orientable for a nonobvious reason.
- In fact $\mathcal{E}(m)=u^{-1} \Sigma_{+}^{\infty} \Omega J(m)$ for a certain u, and this is complex-orientable because it is an algebra over the $\bmod p$ Eilenberg-Maclane spectrum H.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{\prime}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme Endo $\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{\prime}}$ with $b_{0}=0$. The element u maps to b_{1}.
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H * \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme $\operatorname{End}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{\prime}}$ with $b_{0}=0$. The element u maps to b_{1}.
- $\operatorname{Aut}_{1}\left(G_{a}\right)$ acts on $\operatorname{Endo}\left(G_{a}\right)$ by $f_{0}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{a=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme Aut ${ }_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{\prime}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme Endo $\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}.
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree. The converse holds under mild additional conditions.
- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{p}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme Endo(G_{a}) of series $g(t)=\sum_{i} b_{i} t^{p^{\prime}}$ with $b_{0}=0$. The element u maps to b_{1}
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{\prime}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme $\operatorname{End}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p}$ with $b_{0}=0$. The element u maps to b_{1}
- $\operatorname{Aut}_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{0}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{t^{\prime}}$ with $a_{0}=1$.
- Ignoring the exterior part. $H_{*} \Omega J(1)$ corresponds to the scheme Endo $\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{\prime}}$ with $b_{0}=0$. The element u maps to b_{1}
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree. The converse holds under mild additional conditions.
- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme Endo $\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}
- Aut. $\left(G_{a}\right)$ acts on Fndo $\left(G_{a}\right)$ by $f_{0}(g)(t)=g\left(f^{-1}(t)\right)$ and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the $\operatorname{scheme} \operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme End ${ }_{0}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$.
$\Rightarrow \operatorname{Aut}_{1}\left(G_{a}\right)$ acts on Endo $\left(G_{a}\right)$ by $f_{0}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega I(m)$ splits stably as $V_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the $\operatorname{scheme} \operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme End ${ }_{0}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}.
$\Rightarrow \operatorname{Aut}_{1}\left(G_{a}\right)$ acts on Endo $\left(G_{a}\right)$ by $f_{0}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$. and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme Aut ${ }_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme End ${ }_{0}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}.
- $\operatorname{Aut}_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably a and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme $\operatorname{End}_{0}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}.
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$.

Why is $\mathcal{E}(m)$ an H-algebra?

- The dual Steenrod algebra is $H_{*} H$; this is a Hopf algebra.
- For any spectrum Z, there is a coaction map $H_{*} Z \rightarrow H_{*} H \otimes H_{*} Z$.
- If Z is an H-module, then the coaction is cofree.

The converse holds under mild additional conditions.

- We will show that $H_{*} \Omega J(m)$ is nearly cofree, and $H_{*} \mathcal{E}(m)=u^{-1} H_{*} \Omega J(m)$ is actually cofree.
- All the relevant rings have a polynomial part tensored with an exterior part.
- Ignoring the exterior part, $H_{*} H$ corresponds to the scheme $\operatorname{Aut}_{1}\left(G_{a}\right)$ of series $f(t)=\sum_{i} a_{i} t^{p^{i}}$ with $a_{0}=1$.
- Ignoring the exterior part, $H_{*} \Omega J(1)$ corresponds to the scheme $\operatorname{End}_{0}\left(G_{a}\right)$ of series $g(t)=\sum_{i} b_{i} t^{p^{i}}$ with $b_{0}=0$. The element u maps to b_{1}.
- Aut ${ }_{1}\left(G_{a}\right)$ acts on $\operatorname{End}_{0}\left(G_{a}\right)$ by $f_{\bullet}(g)(t)=g\left(f^{-1}(t)\right)$, and this action is nearly free. It becomes free after inverting $b_{1}=u$.
- $\Omega J(m)$ splits stably as $\bigvee_{q=0}^{\infty} S^{2 m q} \wedge D(q)$, with $D(q)$ independent of m and $u \in \pi_{-2} D(p)$. So $\mathcal{E}(m)$ is actually independent of m.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that - $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=* ;$ so $F(q-1 ; Y) \subseteq F(q ; Y)$. Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\wedge \Sigma_{q} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions.
- Put $D(q)=C(q)_{+} \wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(q ; S^{2 m-1}\right)=S^{2 m q} \wedge D(q)$ and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map $C(p) \times \Sigma_{p}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation ξ : $H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$. Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\Lambda_{\Sigma_{q}} Y^{(q)}$
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions.
\Rightarrow Put $D(q)=C(q)+\wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(q ; S^{2 m-1}\right)=S^{2 m q} \wedge D(q)$ and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)
- This circle of ideas gives a map $C(p) \times \Sigma_{n}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions
\rightarrow Put $D(a)=C(a)_{+} \wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(a: S^{2 m-1}\right)=S^{2 m q} \wedge D(a)$ and $\Omega J(m)=V_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)
- This circle of ideas gives a map $C(p) \times \Sigma_{p}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions
\rightarrow Put $D(a)=C(a)_{+} \wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(a: S^{2 m-1}\right)=S^{2 m q} \wedge D(a)$ and $\Omega J(m)=V_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)
- This circle of ideas gives a map $C(p) \times \Sigma_{p}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$.

Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\wedge_{\Sigma_{q}} \overline{Y^{(q)}}$.

- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions and $\Omega J(m)=V_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)
- This circle of ideas gives a map $C(p)$

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$.

Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\wedge_{\Sigma_{q}} \overline{Y^{(q)}}$.

- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.)
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions. and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$.

Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\wedge_{\Sigma_{q}} \overline{Y^{(q)}}$.

- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.)
Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
\rightarrow Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and
maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions. and $\Omega J(m)=V_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting).

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$.

Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)_{+} \wedge_{\Sigma_{q}} Y^{(q)}$.

- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.)
Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions.
and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting)
- This circle of ideas gives a man $C(n)$

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$. Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)+\wedge_{\Sigma_{q}} Y^{(q)}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions.
- Put $D(q)=C(q)_{+} \wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(q ; S^{2 m-1}\right)=S^{2 m q} \wedge D(q)$ and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map $C(p) \times \Sigma_{p}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- Put $\Delta=\{z \in \mathbb{C}:|z|<1\}$, so $\Delta_{\infty} \simeq S^{2}$, so $\Omega^{2} \Sigma^{2} Y=F\left(\Delta_{\infty}, \Delta_{\infty} \wedge Y\right)$.
- Let $C(q)$ be the space of lists $f=\left(f_{1}, \ldots, f_{q}\right)$, where $f_{i}: \Delta \rightarrow \Delta$ has the form $f_{i}(z)=a_{i}+\epsilon_{i} z\left(\epsilon_{i}>0\right)$, and the images of the f_{i} are disjoint.
- Say $g \in \Omega^{2} \Sigma^{2} Y$ is simple if there is $f \in C(q)$, and $y \in Y^{q}$, such that
- $g\left(f_{i}(z)\right)=z \wedge y_{i}$ for all i and all $z \in \Delta$
- Outside the images of the maps f_{i}, we have $f(w)=$ basepoint.

Let $F(q ; Y)$ be the set of such g.

- We can add an extra f_{i} with $y_{i}=*$; so $F(q-1 ; Y) \subseteq F(q ; Y)$. Put $\bar{F}(q ; Y)=F(q ; Y) / F(q-1 ; Y)=C(q)_{+} \wedge_{\Sigma_{q}} \overline{Y^{(q)}}$.
- It is a theorem of May that the space of simple maps is homotopy equivalent to all of $\Omega^{2} \Sigma^{2} Y$. (Similar to $J Y \simeq \Omega \Sigma Y$.) Taking $Y=S^{2 m-1}$, we get $\Omega^{2} S^{2 m+1}=\Omega J(m)$.
- Note that if $Q \subset \mathbb{C}$ with $|Q|=q$ then $\mathbb{C}[t]_{<q}$ is independent of Q and maps isomorphically to $\operatorname{Map}(Q, \mathbb{C})$. This untwists some Σ_{q}-actions.
- Put $D(q)=C(q)_{+} \wedge_{\Sigma_{q}} S^{-q}$. We find that $\bar{F}\left(q ; S^{2 m-1}\right)=S^{2 m q} \wedge D(q)$ and $\Omega J(m)=\bigvee_{q} S^{2 m q} \wedge D(q)$ (Snaith splitting).
- This circle of ideas gives a map $C(p) \times \Sigma_{p}(\Omega J(m))^{p} \rightarrow \Omega J(m)$, which gives an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put $u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{i-1}}(\Omega J(m))$ and $v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))$.
- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p} .
$$

This can only work out if the map $A \rightarrow H * \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{j}, and $b_{m}^{(p-1) \rho^{j}} u_{j}$ hits v_{j+1}

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put $u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m))$ and $v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))$.
- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{i}, and $b_{m}^{(p-1) p^{j}} u_{j}$ hits v_{i+1}

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put $u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m))$ and $v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))$.
- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{i}, and $b_{m}^{(p-1) p^{j}} u_{i}$ hits v_{i+1}
$>$ The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put

$$
u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m)) \text { and } v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))
$$

- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible.

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{j}, and $b_{m}^{(p-1) \rho^{j}} u_{j}$ hits v_{j+1}

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put

$$
u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m)) \text { and } v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))
$$

- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{j}, and $b_{m}^{(p-1) \rho^{j}} u_{j}$ hits v_{j+1}

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put

$$
u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m)) \text { and } v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))
$$

- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{j}, and $b_{m}^{(p-1) p^{j}} u_{j}$ hits v_{j+1}.

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Doubly looped spheres

- There is an operation $\xi: H_{2 i-1}(\Omega J(m)) \rightarrow H_{2 p i-1}(\Omega J(m))$.
- There is an easy element $u_{0} \in H_{2 m-1}(\Omega J(m))$, and we put

$$
u_{j}=\xi^{j}\left(u_{0}\right) \in H_{2 m p^{j}-1}(\Omega J(m)) \text { and } v_{j}=\beta\left(u_{j}\right) \in H_{2 m p^{j}-2}(\Omega J(m))
$$

- This gives a map to $H_{*}(\Omega J(m))$ from the ring

$$
A=E\left[u_{0}, u_{1}, u_{2}, \ldots\right] \otimes P\left[v_{1}, v_{2}, \ldots\right]
$$

- There is a fibration $\Omega J(m) \rightarrow P J(m) \rightarrow J(m)$ with $P J(m)$ contractible. This gives a Serre spectral sequence

$$
H_{*} J(m) \otimes H_{*} \Omega J(m)=P\left[b_{m}\right] \otimes H_{*}(\Omega J(m)) \Longrightarrow \mathbb{F}_{p}
$$

This can only work out if the map $A \rightarrow H_{*} \Omega J(m)$ is an isomorphism, and $b_{m}^{p^{j}}$ hits u_{j}, and $b_{m}^{(p-1) p^{j}} u_{j}$ hits v_{j+1}.

- The operation ξ interacts with the Steenrod coaction in a known way, so we can check that the coaction for $\Omega J(m)$ is as on the previous slide, so the coaction on $\mathcal{E}(m)$ is cofree, so $\mathcal{E}(m)$ is an H-module.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$ A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths. From the fibres and the path action we can reconstruct W

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.
- Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a map $\Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths. From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.
- Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\sum_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.
- Now XP($\left.n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{n^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier
- Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom snectra as well as suspension snectra
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier
- Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra
- As $I\left(n, p^{k}\right)=\operatorname{fib}\left(h p^{k}: I(n) \rightarrow I\left(n p^{k}\right)\right)$ we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z.

Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a map $\Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.

- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra - As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\sum_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z. Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$. A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.
- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z. Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$. A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.
- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives
$\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z. Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$. A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.
- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier. Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but
$1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

Why is $\mathcal{E}(n)$ relevant?

- Consider a base space Z. Any fibration $W \rightarrow Z$ gives a system of fibres $\left\{W_{z}\right\}_{z \in Z}$.
A path from $z \rightarrow z^{\prime}$ gives a map $W_{z} \rightarrow W_{z^{\prime}}$. This can be improved to a $\operatorname{map} \Pi\left(z, z^{\prime}\right) \rightarrow \operatorname{Map}\left(W_{z}, W_{z^{\prime}}\right)$, where $\Pi\left(z, z^{\prime}\right)$ is the space of paths.
From the fibres and the path action we can reconstruct W.
- If Z is based and connected we only really need the basepoint fibre W_{*} and the action of $\Pi(*, *)=\Omega Z$.
This makes $\Sigma_{+}^{\infty} W_{*}$ into a module over $\Sigma_{+}^{\infty} \Omega Z$.
- The same works with arbitrary maps $W \rightarrow Z$, and homotopy fibres.
- There is a twisted version with Thom spectra as well as suspension spectra.
- As $J\left(n, p^{k}\right)=\operatorname{fib}\left(h_{p^{k}}: J(n) \rightarrow J\left(n p^{k}\right)\right)$, we see that $X P\left(n, p^{k}\right)$ is a Thom spectrum over the fibre of a map $\Omega U(n+1) \rightarrow J\left(n p^{k}\right)$, and so is a module over $\Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$.
- We have discussed the element $u \in \pi_{*} \Sigma_{+}^{\infty} \Omega J\left(n p^{k}\right)$ whose inversion gives $\mathcal{E}\left(n p^{k}\right)$. Multiplication by u now gives a self-map of $X P\left(n, p^{k}\right)$. One can check that this is the same as the map r discussed earlier.
- Now $X P\left(n, p^{k}\right)\left[r^{-1}\right]$ is a module over $\mathcal{E}\left(n p^{k}\right)$ and thus over H, but $1_{H} \wedge r=0$, and it follows that $X P\left(n, p^{k}\right)\left[r^{-1}\right]=0$.

