Symmetric Powers of Spheres

Neil Strickland
(with Johann Sigurdsson)

August 9, 2007

Overview of homotopy theory

$\pi_{*}\left(S^{*}\right)$

Overview of homotopy theory

$$
\pi_{*}\left(S^{*}\right) \quad \longrightarrow \quad H_{*}\left(S^{0}\right)
$$

Overview of homotopy theory

$$
\pi_{*}\left(S^{*}\right) \quad \longrightarrow \quad \pi_{*}^{S}\left(S^{0}\right) \quad \longrightarrow \quad M U_{*}\left(S^{0}\right) \quad H_{*}\left(S^{0}\right)
$$

Overview of homotopy theory

Overview of homotopy theory

$$
\pi_{k+1} S^{1} \xrightarrow{E} \pi_{k+2} S^{2} \xrightarrow{E} \pi_{k+3} S^{3} \xrightarrow{E} \pi_{k+4} S^{4} \longrightarrow \pi_{k}\left(Q S^{0}\right)=\pi_{k}^{S}\left(S^{0}\right)
$$

$$
\pi_{*}\left(S^{*}\right) \longrightarrow \quad \pi_{*}^{S}\left(S^{0}\right) \longrightarrow \quad M U_{*}\left(S^{0}\right) \longrightarrow \quad H_{*}\left(S^{0}\right)
$$

Overview of homotopy theory

$$
\begin{array}{ccc}
\pi_{k+1} S^{1} \xrightarrow{E} \pi_{k+2} S^{2} \xrightarrow{E} \pi_{k+3} S^{3} \xrightarrow{E} \pi_{k+4} S^{4} \longrightarrow & \pi_{k}\left(Q S^{0}\right)=\pi_{k}^{S}\left(S^{0}\right) \\
H \downarrow \downarrow \downarrow \downarrow_{k+2} S^{3} & \pi_{k+3} S^{5} & \pi_{k+4} S^{7}
\end{array}
$$

$$
\pi_{*}\left(S^{*}\right) \longrightarrow \quad \pi_{*}^{S}\left(S^{0}\right) \longrightarrow M U_{*}\left(S^{0}\right) \longrightarrow H_{*}\left(S^{0}\right)
$$

Overview of homotopy theory

Overview of homotopy theory

Overview of homotopy theory

$X(n, k)$ from the James filtration on $\Omega(S U(n+1) / S U(n))=\Omega S^{2 n+1}=J S^{2 n}$
$X(n)=X(n, 0) \longrightarrow X(n, 1) \longrightarrow X(n, 2) \longrightarrow X(n, 2) \longrightarrow X(n, \infty)=X(n+1)$
$S^{0}=X(1) \longrightarrow x(2) \longrightarrow x(4) \longrightarrow x(\infty) \longrightarrow M U$

Overview of homotopy theory

Overview of homotopy theory

Overview of homotopy theory

$$
\begin{aligned}
& \left.S^{0}=\mathrm{SP}^{1}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{2}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{3}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{4}\left(S^{0}\right) \longrightarrow S^{0}\right)=H \\
& \\
& \mathrm{SP}^{n}\left(S^{0}\right)=\text { prespectrum with } k^{\prime} \text { th space }\left(S^{k}\right)^{\times n} / \Sigma_{n}
\end{aligned}
$$

Overview of homotopy theory

$$
\left.S^{0}=\mathrm{SP}^{1}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{p}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{2}\left(S^{0}\right) \longrightarrow \mathrm{SP}^{P^{3}}\left(S^{0}\right) \longrightarrow S^{0}\right)=H
$$

$$
\mathrm{SP}^{n}\left(S^{0}\right)=\text { prespectrum with } k^{\prime} \text { th space }\left(S^{k}\right)^{\times n} / \Sigma_{n}
$$

Overview of homotopy theory

Overview of homotopy theory

$\Omega^{\infty} L(*)$ is a DGA up to homotopy, chain equivalent to \mathbb{Z} (Whitehead, Kuhn, Priddy)

Overview of homotopy theory

Symmetric power filtration

Adams SS

Overview of homotopy theory

Symmetric power filtration

Unstable Adams SS, Lambda algebra, central series for simplicial groups

Overview of homotopy theory

Symmetric power filtration

Overview of homotopy theory

Symmetric power filtration

Overview of homotopy theory

Symmetric power filtration

Overview of homotopy theory

Symmetric power filtration

Unstable Adams SS, Lambda algebra, central series for simplicial groups

Overview of homotopy theory

Symmetric power filtration

Symmetric powers of unstable spheres

Symmetric powers of unstable spheres

$$
\mathrm{SP}^{n}\left(S^{V}\right)=\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
& \mathrm{SP}^{n}\left(S^{V}\right)=\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
& \overline{\mathrm{SP}}^{n}\left(S^{\vee}\right)=\mathrm{SP}^{n}\left(S^{\vee}\right) / \mathrm{SP}^{n-1}\left(S^{\vee}\right)=\left(S^{\vee}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n}
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
\mathrm{SP}^{n}\left(S^{V}\right) & =\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =\mathrm{SP}^{n}\left(S^{V}\right) / \mathrm{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
\mathbb{R}^{n} & =(\text { diagonal copy of } \mathbb{R}) \oplus W_{n}
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
\mathrm{SP}^{n}\left(S^{V}\right) & =\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =\mathrm{SP}^{n}\left(S^{V}\right) / \operatorname{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
\mathbb{R}^{n} & =(\text { diagonal copy of } \mathbb{R}) \oplus W_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =S^{V \oplus\left(W_{n} \otimes V\right)} / \Sigma_{n}=\Sigma^{V}\left(S^{W_{n} \otimes V} / \Sigma_{n}\right)
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
\mathrm{SP}^{n}\left(S^{V}\right) & =\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =\mathrm{SP}^{n}\left(S^{V}\right) / \mathrm{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
\mathbb{R}^{n} & =(\text { diagonal copy of } \mathbb{R}) \oplus W_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =S^{V \oplus\left(W_{n} \otimes V\right)} / \Sigma_{n}=\Sigma^{V}\left(S^{W_{n} \otimes V} / \Sigma_{n}\right) \\
\mathrm{SP}^{n}\left(S^{0}\right) & =\lim _{\longrightarrow V} \Sigma^{-V} \operatorname{SP}^{n}\left(S^{V}\right)
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
\mathrm{SP}^{n}\left(S^{V}\right) & =\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =\mathrm{SP}^{n}\left(S^{V}\right) / \mathrm{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
\mathbb{R}^{n} & =(\operatorname{diagonal} \text { copy of } \mathbb{R}) \oplus W_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right) & =S^{V \oplus\left(W_{n} \otimes V\right)} / \Sigma_{n}=\Sigma^{V}\left(S^{W_{n} \otimes V} / \Sigma_{n}\right) \\
\mathrm{SP}^{n}\left(S^{0}\right) & =\lim _{\longrightarrow V} \Sigma^{-V} \mathrm{SP}^{n}\left(S^{V}\right) \\
\overline{\mathrm{SP}}^{n}\left(S^{0}\right) & =\lim _{\longrightarrow V} S^{W_{n} \otimes V} / \Sigma_{n}=S^{\infty W_{n}} / \Sigma_{n}=\widetilde{\Sigma}\left(S\left(\infty W_{n}\right) / \Sigma_{n}\right) .
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
\mathrm{SP}^{n}\left(S^{V}\right)= & \left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right)= & \mathrm{SP}^{n}\left(S^{V}\right) / \mathrm{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
\mathbb{R}^{n}= & (\text { diagonal copy of } \mathbb{R}) \oplus W_{n} \\
\overline{\mathrm{SP}}^{n}\left(S^{V}\right)= & S^{V \oplus\left(W_{n} \otimes V\right)} / \Sigma_{n}=\Sigma^{V}\left(S^{W_{n} \otimes V} / \Sigma_{n}\right) \\
\mathrm{SP}^{n}\left(S^{0}\right)= & \lim _{\longrightarrow V} \Sigma^{-V} \mathrm{SP}^{n}\left(S^{V}\right) \\
\overline{\mathrm{SP}}^{n}\left(S^{0}\right)= & \lim _{\longrightarrow V} S^{W_{n} \otimes V} / \Sigma_{n}=S^{\infty W_{n}} / \Sigma_{n}=\widetilde{\Sigma}\left(S\left(\infty W_{n}\right) / \Sigma_{n}\right) . \\
& \mathrm{SP}^{n}\left(S^{1}\right)=S^{1} \quad \mathrm{SP}^{n}\left(S^{2}\right)=\mathcal{P}^{n} \\
& \overline{\mathrm{SP}}^{n}\left(S^{1}\right)=0 \quad
\end{aligned}
$$

Symmetric powers of unstable spheres

$$
\begin{aligned}
& \mathrm{SP}^{n}\left(S^{V}\right)=\left(S^{V} \times \ldots \times S^{V}\right) / \Sigma_{n}=\left(S^{V}\right)^{\times n} / \Sigma_{n} \\
& \overline{\mathrm{SP}}^{n}\left(S^{V}\right)= \mathrm{SP}^{n}\left(S^{V}\right) / \mathrm{SP}^{n-1}\left(S^{V}\right)=\left(S^{V}\right)^{(n)} / \Sigma_{n}=S^{n V} / \Sigma_{n}=S^{\mathbb{R}^{n} \otimes V} / \Sigma_{n} \\
& \mathbb{R}^{n}=(\text { diagonal copy of } \mathbb{R}) \oplus W_{n} \\
& \overline{\mathrm{SP}}^{n}\left(S^{V}\right)= S^{V \oplus\left(W_{n} \otimes V\right)} / \Sigma_{n}=\Sigma^{V}\left(S^{W_{n} \otimes V} / \Sigma_{n}\right) \\
& \mathrm{SP}^{n}\left(S^{0}\right)= \lim _{\longrightarrow V} \Sigma^{-V} \mathrm{SP}^{n}\left(S^{V}\right) \\
& \overline{\mathrm{SP}}^{n}\left(S^{0}\right)= \lim _{\longrightarrow V} S^{W_{n} \otimes V} / \Sigma_{n}=S^{\infty W_{n}} / \Sigma_{n}=\widetilde{\Sigma}\left(S\left(\infty W_{n}\right) / \Sigma_{n}\right) \\
& \mathrm{SP}^{n}\left(S^{1}\right)=S^{1} \\
& \overline{\mathrm{SP}}^{n}\left(S^{1}\right)=0 \\
& \mathrm{SP}^{n}\left(S^{2}\right)=\mathcal{P}^{n} \\
& \mathrm{SP}^{2}\left(S^{2}\right)=S^{2 n}
\end{aligned}
$$

There are natural product maps $\mathrm{SP}^{n}\left(S^{V}\right) \times \mathrm{SP}^{m}\left(S^{W}\right) \rightarrow \mathrm{SP}^{n m}\left(S^{V \oplus W}\right)$ and $\overline{\mathrm{SP}}^{n}\left(S^{\vee}\right) \wedge \overline{\mathrm{SP}}^{m}\left(S^{W}\right) \rightarrow \overline{\mathrm{SP}}^{n m}\left(S^{V \oplus W}\right)$.

Nontransitive subgroups

$4 \square>4$ 可 >4 三 >4 三

Nontransitive subgroups

Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E \mathcal{F}$ with

$$
E \mathcal{F}^{H}= \begin{cases}\text { contractible } & \text { if } H \in \mathcal{F} \\ \emptyset & \text { if } H \notin \mathcal{F}\end{cases}
$$

Nontransitive subgroups

Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E \mathcal{F}$ with

$$
E \mathcal{F}^{H}= \begin{cases}\text { contractible } & \text { if } H \in \mathcal{F} \\ \emptyset & \text { if } H \notin \mathcal{F}\end{cases}
$$

We put $B \mathcal{F}=E \mathcal{F} / G$.

Nontransitive subgroups

Let \mathcal{F} be a family of subgroups of a finite group G, closed under subconjugacy. Then there is a G-space $E \mathcal{F}$ with

$$
E \mathcal{F}^{H}= \begin{cases}\text { contractible } & \text { if } H \in \mathcal{F} \\ \emptyset & \text { if } H \notin \mathcal{F}\end{cases}
$$

We put $B \mathcal{F}=E \mathcal{F} / G$.
Take $\mathcal{P}_{n}=\left\{\right.$ nontransitive subgroups of $\left.\Sigma_{n}\right\}$; then $E \mathcal{P}_{n}=S\left(\infty W_{n}\right)$ and so $\overline{\mathrm{SP}}^{n}\left(S^{0}\right)=\widetilde{\Sigma} B \mathcal{P}_{n}$.

K－theory of multisets

K-theory of multisets

A multiset is a finite set with multiplicities.

```
3.
1.
1.
2*
```


K-theory of multisets

A multiset is a finite set with multiplicities.

K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

$\mathcal{M}=\{$ multisets $\}$ is symmetric bimonoidal under \amalg and \times, so $K(\mathcal{M})$ is a ring spectrum. In fact $K(\mathcal{M})=H$.

K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

$\mathcal{M}=\{$ multisets $\}$ is symmetric bimonoidal under \amalg and \times, so $K(\mathcal{M})$ is a ring spectrum. In fact $K(\mathcal{M})=H$.
\mathcal{M}_{n} : maximum multiplicity $\leq n ; \quad \mathcal{M}^{k}:$ total multiplicity $k ; \quad \mathcal{M}_{n}^{k}=\mathcal{M}_{n} \cap \mathcal{M}^{k}$

K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

$\mathcal{M}=\{$ multisets $\}$ is symmetric bimonoidal under \amalg and \times, so $K(\mathcal{M})$ is a ring spectrum. In fact $K(\mathcal{M})=H$.
\mathcal{M}_{n} : maximum multiplicity $\leq n ; \quad \mathcal{M}^{k}$: total multiplicity $k ; \quad \mathcal{M}_{n}^{k}=\mathcal{M}_{n} \cap \mathcal{M}^{k}$ Theorem(Lesh): $K\left(\mathcal{M}_{n}\right)=S P^{n}\left(S^{0}\right)$ and $B \mathcal{M}_{n-1}^{n}=B \mathcal{P}_{n}$ and $K\left(\mathcal{M}_{n}\right) / K\left(\mathcal{M}_{n-1}\right)=\overline{\mathrm{SP}}^{n}\left(S^{0}\right)=\widetilde{\Sigma} B \mathcal{M}_{n-1}^{n}$.

K-theory of multisets

A multiset is a finite set with multiplicities. Morphisms are functions, bijective up to multiplicity.

$\mathcal{M}=\{$ multisets $\}$ is symmetric bimonoidal under \amalg and \times, so $K(\mathcal{M})$ is a ring spectrum. In fact $K(\mathcal{M})=H$.
\mathcal{M}_{n} : maximum multiplicity $\leq n ; \quad \mathcal{M}^{k}$: total multiplicity $k ; \quad \mathcal{M}_{n}^{k}=\mathcal{M}_{n} \cap \mathcal{M}^{k}$ Theorem(Lesh): $K\left(\mathcal{M}_{n}\right)=\operatorname{SP}^{n}\left(S^{0}\right)$ and $B \mathcal{M}_{n-1}^{n}=B \mathcal{P}_{n}$ and $K\left(\mathcal{M}_{n}\right) / K\left(\mathcal{M}_{n-1}\right)=\overline{\mathrm{SP}}^{n}\left(S^{0}\right)=\widetilde{\Sigma} B \mathcal{M}_{n-1}^{n}$.

Mod p (co)homology

Mod p (co)homology

The filtration of $H=H \mathbb{Z}$ by the spectra $H(k)=\operatorname{SP}^{p^{k}}\left(S^{0}\right)$ gives rise to a filtration of $\bar{H}=H \mathbb{Z} / p$ by spectra $\bar{H}(k)$.

Mod p(co)homology

The filtration of $H=H \mathbb{Z}$ by the spectra $H(k)=\operatorname{SP}^{p^{k}}\left(S^{0}\right)$ gives rise to a filtration of $\bar{H}=H \mathbb{Z} / p$ by spectra $\bar{H}(k)$.

Theorem (Nakaoka): $\bar{H}^{*} \bar{H}=\mathcal{A}^{*}=$ Steenrod algebra; $\bar{H}^{*} \boldsymbol{H}(k)=\mathcal{A}^{*} /($ admissibles of length $>k)$.

Mod p(co)homology

The filtration of $H=H \mathbb{Z}$ by the spectra $H(k)=\operatorname{SP}^{p^{k}}\left(S^{0}\right)$ gives rise to a filtration of $\bar{H}=H \mathbb{Z} / p$ by spectra $\bar{H}(k)$.

Theorem (Nakaoka): $\bar{H}^{*} \bar{H}=\mathcal{A}^{*}=$ Steenrod algebra; $\bar{H}^{*} \bar{H}(k)=\mathcal{A}^{*} /($ admissibles of length $>k)$.

Operations of length k are related to $\bar{H}^{*}\left(B \Sigma_{p^{k}}\right)$ and to $\bar{H}^{*}\left(B(\mathbb{Z} / p)^{k}\right)^{G L_{k}(\mathbb{Z} / p)}$ by the extended power construction.

Mod p(co)homology

The filtration of $H=H \mathbb{Z}$ by the spectra $H(k)=\operatorname{SP}^{p^{k}}\left(S^{0}\right)$ gives rise to a filtration of $\bar{H}=H \mathbb{Z} / p$ by spectra $\bar{H}(k)$.

Theorem (Nakaoka): $\bar{H}^{*} \bar{H}=\mathcal{A}^{*}=$ Steenrod algebra;
$\bar{H}^{*} \bar{H}(k)=\mathcal{A}^{*} /($ admissibles of length $>k)$.
Operations of length k are related to $\bar{H}^{*}\left(B \Sigma_{p^{k}}\right)$ and to $\bar{H}^{*}\left(B(\mathbb{Z} / p)^{k}\right)^{G L_{k}(\mathbb{Z} / p)}$ by the extended power construction.

There are still some open questions about how all this fits together, and how it dualises.

Partitions

\square

Partitions

Partitions

Partitions

Partitions

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ;$
$P A=$ geometric realisation of $\mathcal{P A}=|\mathcal{P} A|$.

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ; \quad P A=$ geometric realisation of $\mathcal{P} A=|\mathcal{P} A|$. $\partial P A=$ union of simplices not containing $\{\perp, \top\} ; \quad \widehat{P} A=P A / \partial P A$

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ; \quad P A=$ geometric realisation of $\mathcal{P} A=|\mathcal{P} A|$. $\partial P A=$ union of simplices not containing $\{\perp, \top\} ; \quad \widehat{P} A=P A / \partial P A$

$$
A=\Theta
$$

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ; \quad P A=$ geometric realisation of $\mathcal{P} A=|\mathcal{P} A|$. $\partial P A=$ union of simplices not containing $\{\perp, \top\} ; \quad \widehat{P} A=P A / \partial P A$

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ; \quad P A=$ geometric realisation of $\mathcal{P} A=|\mathcal{P} A|$. $\partial P A=$ union of simplices not containing $\{\perp, \top\} ; \quad \widehat{P} A=P A / \partial P A$

Partitions

$\mathcal{P} A=\{$ partitions of $A\} ; \quad P A=$ geometric realisation of $\mathcal{P} A=|\mathcal{P} A|$. $\partial P A=$ union of simplices not containing $\{\perp, \top\} ; \quad \widehat{P} A=P A / \partial P A$

$\widehat{P}(A) \simeq S^{2} \cup($ equatorial disc $) \simeq S^{2} \vee S^{2}$.

Products of partitions

Products of partitions

$\mathcal{P}(A)$ is a lattice with $\pi \vee \pi^{\prime}=\left\{B \cap B^{\prime} \mid B \in \pi, \quad B^{\prime} \in \pi^{\prime}, \quad B \cap B^{\prime} \neq \emptyset\right\}$.

Products of partitions

$\mathcal{P}(A)$ is a lattice with $\pi \vee \pi^{\prime}=\left\{B \cap B^{\prime} \mid B \in \pi, \quad B^{\prime} \in \pi^{\prime}, \quad B \cap B^{\prime} \neq \emptyset\right\}$.
The map $\vee: \mathcal{P}(A) \times \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ makes $P A$ a (contractible) commutative topological monoid.

Products of partitions

$\mathcal{P}(A)$ is a lattice with $\pi \vee \pi^{\prime}=\left\{B \cap B^{\prime} \mid B \in \pi, \quad B^{\prime} \in \pi^{\prime}, \quad B \cap B^{\prime} \neq \emptyset\right\}$.
The map $\vee: \mathcal{P}(A) \times \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ makes $P A$ a (contractible) commutative topological monoid.

Put $\bar{P}(A)=P(A) /($ simplices not containing $\perp)$. There is an induced map $\mu: \bar{P}(A) \wedge \bar{P}(A) \rightarrow \bar{P}(A)$, making $\Sigma^{\infty} \bar{P}(A)$ a (contractible) ring spectrum.

Products of partitions

$\mathcal{P}(A)$ is a lattice with $\pi \vee \pi^{\prime}=\left\{B \cap B^{\prime} \mid B \in \pi, \quad B^{\prime} \in \pi^{\prime}, \quad B \cap B^{\prime} \neq \emptyset\right\}$.
The map $\vee: \mathcal{P}(A) \times \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ makes $P A$ a (contractible) commutative topological monoid.

Put $\bar{P}(A)=P(A) /($ simplices not containing $\perp)$. There is an induced map $\mu: \bar{P}(A) \wedge \bar{P}(A) \rightarrow \bar{P}(A)$, making $\Sigma^{\infty} \bar{P}(A)$ a (contractible) ring spectrum.

There is a filtration of $\bar{P}(A)$ by ranks of partitions, with associated graded $\bigvee_{\pi} \widehat{P}(\pi)$. The homology of this is thus a DGA, probably chain contractible.

Products of partitions

$\mathcal{P}(A)$ is a lattice with $\pi \vee \pi^{\prime}=\left\{B \cap B^{\prime} \mid B \in \pi, \quad B^{\prime} \in \pi^{\prime}, \quad B \cap B^{\prime} \neq \emptyset\right\}$.
The map $\vee: \mathcal{P}(A) \times \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ makes $P A$ a (contractible) commutative topological monoid.

Put $\bar{P}(A)=P(A) /($ simplices not containing $\perp)$. There is an induced map $\mu: \bar{P}(A) \wedge \bar{P}(A) \rightarrow \bar{P}(A)$, making $\Sigma^{\infty} \bar{P}(A)$ a (contractible) ring spectrum.

There is a filtration of $\bar{P}(A)$ by ranks of partitions, with associated graded $\bigvee_{\pi} \widehat{P}(\pi)$. The homology of this is thus a DGA, probably chain contractible.

We have not yet understood the structure of this.

Partitions

Partitions

$\mathcal{C}(A)=\{$ nonempty subsets of $A\}$

Partitions

$\mathcal{C}(A)=\{$ nonempty subsets of $A\}$
$|\mathcal{C}(A)|=\{x: A \rightarrow[0,1] \mid \max (x)=1\} \simeq B(W A)$

Partitions

$$
\begin{aligned}
& \mathcal{C}(A)=\{\text { nonempty subsets of } A\} \\
& |\mathcal{C}(A)|=\{x: A \rightarrow[0,1] \mid \max (x)=1\} \simeq B(W A)
\end{aligned}
$$

$s \mathcal{C}(A)=\{$ chains in $\mathcal{C}(A)\} ;|s \mathcal{C}(A)|=|\mathcal{C}(A)|$ by barycentric subdivision.

Partitions

$\mathcal{C}(A)=\{$ nonempty subsets of $A\}$
$|\mathcal{C}(A)|=\{x: A \rightarrow[0,1] \mid \max (x)=1\} \simeq B(W A)$

$s \mathcal{C}(A)=\{$ chains in $\mathcal{C}(A)\} ;|s \mathcal{C}(A)|=|\mathcal{C}(A)|$ by barycentric subdivision.
We can define $\phi: s \mathcal{C}(A) \rightarrow \mathcal{P}(A)$ by
$\phi\left(B_{0} \subset \cdots \subset B_{r}\right)=\left\{B_{0}, B_{1} \backslash B_{0}, \ldots, B_{r} \backslash B_{r-1}, A \backslash B_{r}\right\}$

Partitions

$\mathcal{C}(A)=\{$ nonempty subsets of $A\}$
$|\mathcal{C}(A)|=\{x: A \rightarrow[0,1] \mid \max (x)=1\} \simeq B(W A)$

$s \mathcal{C}(A)=\{$ chains in $\mathcal{C}(A)\} ;|s \mathcal{C}(A)|=|\mathcal{C}(A)|$ by barycentric subdivision.
We can define $\phi: s \mathcal{C}(A) \rightarrow \mathcal{P}(A)$ by
$\phi\left(B_{0} \subset \cdots \subset B_{r}\right)=\left\{B_{0}, B_{1} \backslash B_{0}, \ldots, B_{r} \backslash B_{r-1}, A \backslash B_{r}\right\}$

This gives $B(W A) \rightarrow P(A)$ and $S^{W A}=B(W A) / \partial B(W A) \rightarrow \widehat{P}(A)$.

Partitions

$\mathcal{C}(A)=\{$ nonempty subsets of $A\}$
$|\mathcal{C}(A)|=\{x: A \rightarrow[0,1] \mid \max (x)=1\} \simeq B(W A)$

$s \mathcal{C}(A)=\{$ chains in $\mathcal{C}(A)\} ;|s \mathcal{C}(A)|=|\mathcal{C}(A)|$ by barycentric subdivision.
We can define $\phi: s \mathcal{C}(A) \rightarrow \mathcal{P}(A)$ by
$\phi\left(B_{0} \subset \cdots \subset B_{r}\right)=\left\{B_{0}, B_{1} \backslash B_{0}, \ldots, B_{r} \backslash B_{r-1}, A \backslash B_{r}\right\}$

This gives $B(W A) \rightarrow P(A)$ and $S^{W A}=B(W A) / \partial B(W A) \rightarrow \widehat{P}(A)$.
More generally, we can use the monoid structure on $P A$ to get $B(W A)^{N} \rightarrow P(A)$ and $S^{N W A} \rightarrow \widehat{P}(A)$.

Height functions

Height functions

A height function on A is a map $h: \mathcal{C} A=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

Height functions

A height function on A is a map $h: \mathcal{C A}=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

Height functions

A height function on A is a map $h: \mathcal{C A}=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A)=|\mathcal{P}(A)|$.

Height functions

A height function on A is a map $h: \mathcal{C A}=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A)=|\mathcal{P}(A)|$.
Say that a set U is h-critical if every strict superset V has $h(V)>h(U)$. These sets form a tree. This gives a cell structure on $H(A)=P(A)$ indexed by trees.

Height functions

A height function on A is a map $h: \mathcal{C} A=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A)=|\mathcal{P}(A)|$.
Say that a set U is h-critical if every strict superset V has $h(V)>h(U)$. These sets form a tree. This gives a cell structure on $H(A)=P(A)$ indexed by trees.

Height functions

A height function on A is a map $h: \mathcal{C} A=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A)=|\mathcal{P}(A)|$.
Say that a set U is h-critical if every strict superset V has $h(V)>h(U)$. These sets form a tree. This gives a cell structure on $H(A)=P(A)$ indexed by trees.

By grafting trees, we make the spaces $P(n)=P(\{1, \ldots, n\})$ into an operad. The operad structure maps are nearly embeddings.

Height functions

A height function on A is a map $h: \mathcal{C} A=\{$ nonempty subsets of $A\} \rightarrow[0,1]$ with $h(\{a\})=0$, and $h(U \cup V)=\max (h(U), h(V))$ whenever $U \cap V \neq \emptyset$.

A partition π gives a height function h_{π} with $h_{\pi}(U)=0$ if U is contained in a block of π, and 1 otherwise.

The space $H(A)$ of height functions is homeomorphic to $P(A)=|\mathcal{P}(A)|$.
Say that a set U is h-critical if every strict superset V has $h(V)>h(U)$. These sets form a tree. This gives a cell structure on $H(A)=P(A)$ indexed by trees.

By grafting trees, we make the spaces $P(n)=P(\{1, \ldots, n\})$ into an operad. The operad structure maps are nearly embeddings.

By a Pontrjagin-Thom construction, we make the spaces $\widehat{P}(n)$ into a based cooperad (a theorem of Ching).

Configuration space

Configuration space

$$
\begin{aligned}
& \text { Put } \\
& \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{w_{k} \otimes \mathbb{R}^{n}} .
\end{aligned}
$$

Configuration space

$$
\begin{aligned}
& \text { Put } \\
& \operatorname{Inj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{w_{k} \otimes \mathbb{R}^{n}} .
\end{aligned}
$$

These spaces form an operad up to homotopy, as they are homotopy equivalent to the little n-cubes spaces.

Configuration space

$$
\begin{aligned}
& \text { Put } \\
& \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{w_{k} \otimes \mathbb{R}^{n}} .
\end{aligned}
$$

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

Configuration space

$$
\begin{aligned}
& \text { Put } \\
& \operatorname{Inj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{w_{k} \otimes \mathbb{R}^{n}} .
\end{aligned}
$$

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{Inj}{ }_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

Configuration space

$$
\begin{aligned}
& \text { Put } \\
& \operatorname{Inj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{w_{k} \otimes \mathbb{R}^{n}} .
\end{aligned}
$$

These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{lnj}{ }_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces $S^{W_{k}}$ form a (co)operad whose structure maps are homeomorphisms.

Configuration space

Put
$\operatorname{Inj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{W_{k} \otimes \mathbb{R}^{n}}$.
These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{lnj}{ }_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces $S^{W_{k}}$ form a (co)operad whose structure maps are homeomorphisms.

The spectra $\Sigma^{-n W_{k}} \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}=D\left(S^{n W_{k}} / \operatorname{lnj} j_{0}\left(k, \mathbb{R}^{n}\right)\right)$ form an operad with $H_{0}=$ Lie, and $H_{k}=0$ for $k>0$.

Configuration space

Put
$\operatorname{Inj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{W_{k} \otimes \mathbb{R}^{n}}$.
These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{Inj}{ }_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces $S^{W_{k}}$ form a (co)operad whose structure maps are homeomorphisms.
The spectra $\Sigma^{-n W_{k}} \operatorname{lnj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}=D\left(S^{n W_{k}} / \operatorname{lnj} j_{0}\left(k, \mathbb{R}^{n}\right)\right)$ form an operad with $H_{0}=$ Lie, and $H_{k}=0$ for $k>0$.

There is a natural map $S^{n W_{k}} / \operatorname{Inj}\left(k, \mathbb{R}^{n}\right) \rightarrow \widehat{P}(k)$, and by duality we get a map $Q(k)=F\left(\widehat{P}(k), S^{W_{k}}\right) \rightarrow \Sigma^{-n W_{k}} \ln j_{0}\left(k, \mathbb{R}^{n}\right)_{+}$. This gives $H_{*} Q=$ Lie.

Configuration space

Put
$\operatorname{lnj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{W_{k} \otimes \mathbb{R}^{n}}$.
These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{Inj} j_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces $S^{W_{k}}$ form a (co)operad whose structure maps are homeomorphisms.

The spectra $\Sigma^{-n W_{k}} \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}=D\left(S^{n W_{k}} / \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)\right)$ form an operad with $H_{0}=$ Lie, and $H_{k}=0$ for $k>0$.

There is a natural map $S^{n W_{k}} / \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right) \rightarrow \widehat{P}(k)$, and by duality we get a map $Q(k)=F\left(\widehat{P}(k), S^{W_{k}}\right) \rightarrow \Sigma^{-n W_{k}} \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}$. This gives $H_{*} Q=$ Lie.

Theorem (Arone-Dwyer): $\overline{\mathrm{SP}}^{n}\left(S^{0}\right)=\left(S^{W_{n}} \wedge \widehat{P}(n)\right)_{\bar{h} \Sigma_{n}}$

Configuration space

Put
$\operatorname{lnj}_{0}\left(k, \mathbb{R}^{n}\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k} \mid \sum x_{i}=0, x_{i} \neq x_{j}\right\} \subseteq W_{k} \otimes \mathbb{R}^{n} \subset S^{W_{k} \otimes \mathbb{R}^{n}}$.
These spaces form an operad up to homotopy, as they are homotopy equivalent to the Fulton-MacPherson spaces (cf Singh).

It is well-known that $H_{*} \operatorname{Inj} j_{0}\left(*, \mathbb{R}^{n}\right)$ is the operad for Poisson algebras, which are graded commutative rings with a compatible Lie bracket.

The based spaces $S^{W_{k}}$ form a (co)operad whose structure maps are homeomorphisms.

The spectra $\Sigma^{-n W_{k}} \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}=D\left(S^{n W_{k}} / \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)\right)$ form an operad with $H_{0}=$ Lie, and $H_{k}=0$ for $k>0$.

There is a natural map $S^{n W_{k}} / \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right) \rightarrow \widehat{P}(k)$, and by duality we get a map $Q(k)=F\left(\widehat{P}(k), S^{W_{k}}\right) \rightarrow \Sigma^{-n W_{k}} \operatorname{Inj} j_{0}\left(k, \mathbb{R}^{n}\right)_{+}$. This gives $H_{*} Q=$ Lie.

Theorem (Arone-Dwyer): $\overline{\mathrm{SP}}^{n}\left(S^{0}\right)=\left(S^{W_{n}} \wedge \widehat{P}(n)\right)_{\bar{h} \Sigma_{n}}$
Theorem (Johnson, Arone-Mahowald): $Q(n)$ controls the layers in the Goodwillie tower.

Buildings

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$. Put $\partial T(A)=\bigcup$ (simplices not containing $\{0, A\}$), and $\widehat{T}(A)=T(A) / \partial T(A)$.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.
Put $\partial T(A)=\bigcup$ (simplices not containing $\{0, A\}$), and $\widehat{T}(A)=T(A) / \partial T(A)$.
It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{\left(d^{2}-d\right) / 2}$.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.
Put $\partial T(A)=\bigcup$ (simplices not containing $\{0, A\}$), and $\widehat{T}(A)=T(A) / \partial T(A)$.
It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{\left(d^{2}-d\right) / 2}$.
$\operatorname{St}(A)=H_{d}(\hat{T}(A) ; \mathbb{Z} / p)$ is a projective cyclic module over $(\mathbb{Z} / p)[\operatorname{Aut}(A)]$, called the Steinberg module.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.
Put $\partial T(A)=\bigcup$ (simplices not containing $\{0, A\}$), and $\widehat{T}(A)=T(A) / \partial T(A)$.
It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{\left(d^{2}-d\right) / 2}$.
$\operatorname{St}(A)=H_{d}(\hat{T}(A) ; \mathbb{Z} / p)$ is a projective cyclic module over $(\mathbb{Z} / p)[\operatorname{Aut}(A)]$, called the Steinberg module.
It follows that for any $\operatorname{Aut}(A)$-spectrum X, the spectrum $\left(\Sigma^{-d} \widehat{T}(A) \wedge X\right)_{h \text { Aut }(A)}$ is a retract of X, called Steinberg summand of X.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.
Put $\partial T(A)=\bigcup$ (simplices not containing $\{0, A\}$), and $\widehat{T}(A)=T(A) / \partial T(A)$.
It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{\left(d^{2}-d\right) / 2}$.
$\operatorname{St}(A)=H_{d}(\widehat{T}(A) ; \mathbb{Z} / p)$ is a projective cyclic module over $(\mathbb{Z} / p)[\operatorname{Aut}(A)]$, called the Steinberg module.
It follows that for any $\operatorname{Aut}(A)$-spectrum X, the spectrum $\left(\Sigma^{-d} \widehat{T}(A) \wedge X\right)_{h \text { Aut }(A)}$ is a retract of X, called Steinberg summand of X.

We can map $\widehat{T}(A)$ to $\widehat{P}(A)$ by sending $B \in \mathcal{T}(A)$ to the corresponding coset partition of A. This respects the actions of $\operatorname{Aff}(A)$ on $\widehat{T}(A)$ and Σ_{A} on $\widehat{P}(A)$.

Buildings

Given $A \simeq(\mathbb{Z} / p)^{d}$, put $\mathcal{T}(A)=\{$ subgroups of $A\}$ and $T(A)=|\mathcal{T}(A)|$.
Put $\partial T(A)=\bigcup($ simplices not containing $\{0, A\})$, and $\widehat{T}(A)=T(A) / \partial T(A)$.
It is well-known that this is homotopy equivalent to a wedge of spheres of dimension d, the number of spheres being $p^{\left(d^{2}-d\right) / 2}$.
$\operatorname{St}(A)=H_{d}(\widehat{T}(A) ; \mathbb{Z} / p)$ is a projective cyclic module over $(\mathbb{Z} / p)[\operatorname{Aut}(A)]$, called the Steinberg module.
It follows that for any $\operatorname{Aut}(A)$-spectrum X, the spectrum $\left(\Sigma^{-d} \widehat{T}(A) \wedge X\right)_{h \operatorname{Aut}(A)}$ is a retract of X, called Steinberg summand of X.

We can map $\widehat{T}(A)$ to $\widehat{P}(A)$ by sending $B \in \mathcal{T}(A)$ to the corresponding coset partition of A. This respects the actions of $\operatorname{Aff}(A)$ on $\widehat{T}(A)$ and Σ_{A} on $\widehat{P}(A)$.

Theorem (Arone-Dwyer):
 Steinberg summand in $\left(S^{W A}\right)_{h A}$, which is a Thom spectrum over $B A$.

Mitchell's complexes

Mitchell's complexes

$$
\text { Put } X(A)=\left(\Sigma^{-d} \operatorname{Bases}(\mathbb{C}[A])_{+} \wedge \widehat{T}(A)\right)_{h \operatorname{Aff}(A)}
$$

Mitchell's complexes

Put $X(A)=\left(\Sigma^{-d} \operatorname{Bases}(\mathbb{C}[A])_{+} \wedge \widehat{T}(A)\right)_{h \text { Aff }(A)}$.
This is the Steinberg summand in $\operatorname{Bases}(\mathbb{C}[A]) / A$.

Mitchell's complexes

Put $X(A)=\left(\Sigma^{-d} \operatorname{Bases}(\mathbb{C}[A])_{+} \wedge \widehat{T}(A)\right)_{h \text { Aff }(A)}$.
This is the Steinberg summand in $\operatorname{Bases}(\mathbb{C}[A]) / A$.
Theorem (Mitchell): this has type n, so $K(m)_{*} X(A)$ is nonzero iff $m \geq n$.

Mitchell's complexes

Put $X(A)=\left(\Sigma^{-d} \operatorname{Bases}(\mathbb{C}[A])_{+} \wedge \widehat{T}(A)\right)_{h_{\text {Aff }}(A)}$.
This is the Steinberg summand in $\operatorname{Bases}(\mathbb{C}[A]) / A$.
Theorem (Mitchell): this has type n, so $K(m)_{*} X(A)$ is nonzero iff $m \geq n$.
This was the first known example of a family of finite spectra of type n for all n; an important ingredient of the chromatic theory.

The Steinberg algebra

The Steinberg algebra

Put $\bar{T}(A)=T(A) /($ simplices not containing 0$)$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

The Steinberg algebra

Put $\bar{T}(A)=T(A) /($ simplices not containing 0$)$. This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

Put $S t_{*}(A)=\bigoplus_{B \leq A} \operatorname{St}(B)$; this is easily identified with the above DGA.

The Steinberg algebra

Put $\bar{T}(A)=T(A) /($ simplices not containing0). This has a natural product and compatible filtration, making the associated graded homology into a graded-commutative DGA.

Put $S t_{*}(A)=\bigoplus_{B \leq A} \operatorname{St}(B)$; this is easily identified with the above DGA.
One can show that $S t_{*}(A)$ has a generator $x_{L} \in \operatorname{St}_{1}(A)$ for each $L \leq A$ of order p, subject to relations

$$
x_{L} x_{M}+x_{M} x_{N}+x_{N} x_{L}=0
$$

whenever $|L+M+N|<p^{3}$. The differential is given by $d\left(x_{L}\right)=-1$ for all L.

Chromatic homology

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Hopkins-Kuhn-Ravenel introduce the group $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{d}$, and a Galois extension E_{0}^{\prime} of $\mathbb{Q} \otimes E_{0}$, with Galois group $\operatorname{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$
E_{0}^{\prime} \otimes_{E_{0}} E^{0} B H=\operatorname{Map}\left(\operatorname{Hom}\left(\Theta^{*}, H\right) / H, E_{0}^{\prime}\right)
$$

("generalised character theory").

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Hopkins-Kuhn-Ravenel introduce the group $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{d}$, and a Galois extension E_{0}^{\prime} of $\mathbb{Q} \otimes E_{0}$, with Galois group $\operatorname{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$
E_{0}^{\prime} \otimes_{E_{0}} E^{0} B H=\operatorname{Map}\left(\operatorname{Hom}\left(\Theta^{*}, H\right) / H, E_{0}^{\prime}\right)
$$

("generalised character theory").
Put $\Theta[p]=\{\theta \in \Theta \mid p \theta=0\}$.

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Hopkins-Kuhn-Ravenel introduce the group $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{d}$, and a Galois extension E_{0}^{\prime} of $\mathbb{Q} \otimes E_{0}$, with Galois group $\operatorname{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$
E_{0}^{\prime} \otimes_{E_{0}} E^{0} B H=\operatorname{Map}\left(\operatorname{Hom}\left(\Theta^{*}, H\right) / H, E_{0}^{\prime}\right)
$$

("generalised character theory").
Put $\Theta[p]=\{\theta \in \Theta \mid p \theta=0\}$.
Theorem: $E_{0}^{\prime} \otimes_{E_{0}} E_{0}^{\vee} L(*)=E_{0}^{\prime} \otimes_{\mathbb{Z}} \mathrm{St}_{*}(\Theta[p])$.

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Hopkins-Kuhn-Ravenel introduce the group $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{d}$, and a Galois extension E_{0}^{\prime} of $\mathbb{Q} \otimes E_{0}$, with Galois group $\operatorname{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$
E_{0}^{\prime} \otimes_{E_{0}} E^{0} B H=\operatorname{Map}\left(\operatorname{Hom}\left(\Theta^{*}, H\right) / H, E_{0}^{\prime}\right)
$$

("generalised character theory").
Put $\Theta[p]=\{\theta \in \Theta \mid p \theta=0\}$.
Theorem: $E_{0}^{\prime} \otimes_{E_{0}} E_{0}^{\vee} L(*)=E_{0}^{\prime} \otimes_{\mathbb{Z}} \mathrm{St}_{*}(\Theta[p])$.
It is also possible to define $G[p]$ and $\mathrm{St}_{*}(G[p])$, and to show that $E_{0}^{\vee} L(*)=\mathrm{St}_{*}(G[p])$.

Chromatic homology

Theorem (Kuhn): $K(n)_{*} L(*)$ is a finite, contractible DGA over $K(n)_{*}$.
Let E be Morava E-theory (with formal group G) and put $E_{0}^{\vee} L(d)=\pi_{0} L_{K(n)}(E \wedge L(d))$. It works out that $E_{0}^{\vee} L(*)$ is a contractible DGA over E_{0}.

Hopkins-Kuhn-Ravenel introduce the group $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{d}$, and a Galois extension E_{0}^{\prime} of $\mathbb{Q} \otimes E_{0}$, with Galois group $\operatorname{Aut}(\Theta)$. For finite groups H, they give a natural isomorphism

$$
E_{0}^{\prime} \otimes_{E_{0}} E^{0} B H=\operatorname{Map}\left(\operatorname{Hom}\left(\Theta^{*}, H\right) / H, E_{0}^{\prime}\right)
$$

("generalised character theory").
Put $\Theta[p]=\{\theta \in \Theta \mid p \theta=0\}$.
Theorem: $E_{0}^{\prime} \otimes_{E_{0}} E_{0}^{\vee} L(*)=E_{0}^{\prime} \otimes_{\mathbb{Z}} \mathrm{St}_{*}(\Theta[p])$.
It is also possible to define $G[p]$ and $\mathrm{St}_{*}(G[p])$, and to show that $E_{0}^{\vee} L(*)=\mathrm{St}_{*}(G[p])$.

This is closely related to old conjectures of Hopkins, about homological algebra for the ring of E-theory power operations.

