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The Goal

I Computer checkable proofs as a routine tool in ongoing
mathematical research.

I There are active research areas where reliability is a real
concern.

I Routine formalisation would create other cultural changes.

I What is happening? Textbooks, landmarks, computer science.

I Homotopy type theory.

I Experimentation and semi-formal verification in new
mathematics; but not formal verification.

I New interest creates new opportunities.
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A plug for Freek Wiedijk

http://www.cs.kun.nl/∼freek/

(Catalogs, comparisons, history, overview.)



Which framework?

I I will mostly discuss Coq + standard library.

I Coq + ssreflect: used for Four Colour Theorem, Odd Order
Theorem. Large library. No compiled distribution. Complex
compilation procedure fails. Little documentation.

I Coq + CoRN + MathClasses: Large library. Not well
advertised or documented. No compiled distribution.
Compilation needs extra tools, is very slow, and has some
errors. No user documentation.

I Coq + UniMath: Fairly large library, but not well modularised.
Many theoretical insights; clearly effective for current
investigations in HoTT.

I Compatibility of CoRN and HoTT (for example) is unclear.

I Agda: library is smaller than for Coq, organised more like
CoRN. Interaction style is different, but not a major issue.

I Isabelle etc: mentioned for completeness.
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Exercise: there are infinitely many primes

I More specifically, if n ∈ N then the smallest nontrivial divisor
of n! + 1 is a prime that is larger than n.

I This is first semester, first lecture material.
I Proof assistants will not be used routinely unless this exercise

is straightforward.
I Maple : largerprime := (n) ->

min(numtheory[divisors](n!+1) minus {1});
I LATEX:
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Documentation I would have liked to see

I General survey of the library: here is where you find N, Z and
Q. Here is how to load up the basic definitions about primes.

I Conversion of number types.
I Explanation for mathematicians of propositions as types,

proofs as terms, passing proofs as arguments, (in)equality
defined inductively.

I Practical advice for Prop vs Set vs Type, from user
perspective.

I Examples of common proof patterns: chains of (in)equalities,
cases, cases that cannot arise, contradiction, (structural)
induction.

I The tactics omega and ring, explained early.
I Decidable propositions. P ∨ ¬P vs {P}+ {¬P}

and ∃x Px vs {x | Px}.
I A collection of undergraduate level proofs with detailed, line

by line commentary.
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Documentation I actually read

I Coq d’Art (in French; English version is not online).

I The reference manual.

I Various tutorials. They look quite good for applications in
computer science, but mathematical content is thin.

I Library source code.

I Other background: several large scale software systems in a
wide variety of languages; extensive semi-formal verification in
Maple and Mathematica.

I I proved in Agda and Coq that there are infinitely many
primes. Both were extremely painful.
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Has it been done already?

I There is a Coq proof of the infinitude of primes written in
2006 by Russell O’Connor.

I Google could not find me any other proof.
I O’Connor’s proof appears in the Cocorico wiki, not in the

standard Coq library or the usual collection of user
contributions.

I It was written for Coq 7.3, and no longer works in the current
Coq 8.4 because of changes in syntax rules and changes in the
organisation of the standard library.

I It is largely self-contained, and so includes many basic facts
(like ∀a, b ∈ N (a > b → a 6= 0)) as well as the definition and
basic properties of divisibility and prime numbers.

I The lemmas are just named P1 to P29, so any other script
that referenced them would not be readable.

I The whole proof is 826 lines long. There are no comments.
I As is typical with Coq proof scripts, one cannot easily see how

the proof works without stepping through it in CoqIde.
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find it.
I I could not use it because of Prop vs Set issues.
I From a constructive proof that ∃! n P(n), you can “obviously”
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reading non-obvious parts of the reference manual to
understand why this does not work, and how to reorganise to
avoid the problem.

I I wrote my own proof in a rather different style from
Coq.Arith.Wf nat. It took 76 lines and was painful.

I The main thing that would have reduced the pain:
comparable examples, heavily annotated.

I I have started writing an extractable proof in the style of
Coq.Arith.Wf nat, but have not finished.
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Remaining steps

I Find the smallest element p of {d : d > 1, d |m} or
{d ′ : (d ′ + 2)|m}. Check that it is prime.

I My proof is 102 lines.
I It is written in Agda-like style, with (reasonably efficient) proof

terms, and semi-meaningful names for intermediate terms.
I The output is a record, packaging p with a proof of its

properties.
I An irritatingly large portion deals with exceptional cases 0 and

1.
I The main thing that would have reduced the pain:

comparable examples, heavily annotated.
I Final step: apply the above with m = n! + 1.
I One needs basic facts like k!|n! when 0 ≤ k ≤ n, and k |n!

when 0 < k ≤ n!. I spent 78 lines on these. It was not too
painful, but it would be better if these facts were in
Coq.Arith.Factorial.
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