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The problem

Let E be Morava E -theory of height n > 0 at a prime p > 2.
Many things are known about E 0BG for finite groups G .

▶ The full structure is known for abelian groups, symmetric groups and
various other groups.

▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear
description of Q⊗ E 0BG for any G .

▶ This determines the 0th chromatic stratum precisely; there are
approximate descriptions of the other strata in similar terms.

▶ In the common case where E 1BG = 0, the ring E 0BG has a natural inner
product making it a Frobenius algebra.

▶ There is an extensive theory of the relationship between E 0BG and the
λ-ring structure of the representation ring R(G).

Here we take G = GLd(F ), where F is a finite field of characteristic ̸= p.
The ring E 0BGLd(F ) was described by Tanabe, but we are looking for a more
explicit answer. The first interesting case d = p was done in the thesis of Sam
Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)
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Morava E -theory

▶ Morava E -theory is a generalised cohomology theory giving a graded ring
E∗X for every space X .

▶ E∗ = E∗(point) = Zp[[u1, . . . , un−1]][u
±1] with |ui | = 0 and |u| = −2.

▶ E∗BS1 = E∗CP∞ ≃ E∗[[t]] with |t| = 0.

▶ It is often natural to formulate results in terms of the formal scheme
XE = spf(E 0X ) (similar to the ordinary scheme spec(E 0X )) rather than
directly in terms of E 0X .

▶ The formal scheme G = (BS1)E has a natural abelian group structure.

▶ For finite abelian groups A we have BAE = Hom(A∗,G) = Tor(A,G),
where A∗ = Hom(A, S1) is the character group.

▶ More concretely,

E 0BCpm = E 0[[t]]/[pm](t) = E 0{t i | 0 ≤ i < pnm},

where n is the height.

▶ We also have BU(d)E = Gd/Σd . This can be identified with Div+d (G), the
moduli scheme for effective divisors of degree d on G.

▶ There is a dual version E∨
∗ (X ) and quotient theories K∗(X ) and K∗(X )

with K 0(point) = Z/p.
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Finite general linear groups

▶ Let F be a finite field of characteristic not equal to p.

▶ To simplify bookkeeping, we will assume that |F | = q with
vp(q − 1) = r > 0 so q = 1 (mod pr ) but q ̸= 1 (mod pr+1).
This implies that vp(q

m − 1) = vp(m) + r for all m > 0.

▶ Let F be an algebraic closure of F .
This has a Frobenius automorphism ϕ : x 7→ xq, and the Galois group Γ is
isomorphic to Ẑ, topologically generated by ϕ.

▶ We put H = BGL1(F )E , which has a natural group structure.
One can choose an isomorphism

GL1(F ) ≃ {u ∈ S1 | ur = 1 for some r ∈ Z, (r , q) = 1},

and using this we find that H is noncanonically isomorphic to G = (BS1)E ,

and canonically isomorphic to Tor(F
×
,G).

▶ Generalised character theory compares G with Θ = (Z/p∞)n. We will also

compare H with Φ = Tor(F
×
,Θ) ≃ Hom(Θ∗,F

×
) (so Φ is noncanonically

isomorphic to Θ).
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×
,G).
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General linear groups over F

Theorem
The inclusion GL1(F )

d → GLd(F ) induces GLd(F )E ≃ Hd/Σd ≃ Div+d (H).
Equivalently,

E 0(BGL1(F )
d) = E 0[[x1, . . . , xd ]],

and E 0BGLd(F ) is the subring of symmetric functions, generated by elementary
symmetric functions c1, . . . , cd .

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring W
(the Witt ring of F ) with residue field F .
One can then choose an embedding W → C.
Using the fact that |F | is coprime to p, one can check that the maps

BGLd(F )←− BGLd(W ) −→ BGLd(C)

induce isomorphisms in mod p cohomology.
The claim follows easily from this.
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The theorem of Tanabe

Recall that the group Γ = Gal(F/F ) is generated by the Frobenius map ϕ.

Theorem (Tanabe)

The elements

ϕ∗(ck)− ck ∈ E 0BGLd(F ) = E 0[[c1, . . . , cd ]]

form a regular sequence, and

E 0BGLd(F ) =
E 0[[c1, . . . , cd ]]

(ϕ∗(c1)− c1, . . . , ϕ∗(cd)− cd)
= (E 0BGLd(F ))Γ.

Equivalently, we have BGLd(F )E = Div+d (H)Γ.

In many respects this is very satisfactory, but there are many natural questions
that cannot be answered without more detailed algebraic analysis.
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Groupoids

▶ Let V be the groupoid of finite dimensional vector spaces over F , and their
isomorphisms. Then BV ≃

∐
d BGLd(F ).

▶ We write V for the corresponding groupoid for F , so BV ≃
∐

d BGLd(F ).

▶ Now BVE =
∐

d Div
+
d (H) = Div+(H),

and the functor V 7→ F ⊗F V gives BVE = Div+(H)Γ.

▶ The functors ⊕,⊗ : V2 → V make BV a commutative semiring in the
homotopy category of spaces.This in turn makes BVE a commutative
semiring in the category of formal schemes.This matches an obvious
commutative semiring structure on Div+(H)Γ.

▶ Alternatively, E∨
∗ (BV) and K∗(BV) are Hopf rings.

▶ Some other groupoids are also relevant, for example

L = {(X , L) | X is a finite set, and L is an F -linear line bundle over X}.

This has BL ≃
∐

d EΣd ×Σd BGL1(F )
d .

There is a functor π : L → V given by π(X , L) =
⊕

x Lx .

▶ The index of Σd ≀ GL1(F )
d in GLd(F ) has index coprime to p, so

BL → BV gives an epimorphism in E -cohomology. Earlier work on
symmetric groups gives a good understanding of E 0BL.
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Generalised character theory

▶ Put Θ∗ = Zn
p, and regard it as a groupoid with one object.

▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of
Q⊗ E 0 with Galois group Aut(Θ∗).

▶ Let G be a groupoid with finite hom sets.

▶ Write [Θ∗,G] for the set of natural isomorphism classes of functors
Θ∗ → G.

▶ HKR constructed isomorphisms

L⊗E0 E 0BG ≃ Map([Θ∗,G], L) L⊗E0 E
∨
0 BG ≃ L{[Θ∗,G]}.

▶ E∨
0 BG has a natural inner product, which becomes ⟨[α], [β]⟩ = | Iso(α, β)|

on L{[Θ∗,G]}.
▶ We can identify [Θ∗,V] with Rep+(Θ∗;F ), the semiring of isomorphism

classes of F -linear representations of Θ∗.

▶ Additively, this is freely generated by the set Irr(Θ∗;F ) of irreducibles.

▶ It follows that L⊗E0 E
∨
0 BV is a polynomial algebra over L, with one

generator for each irreducible; and then that Q⊗ E∨
0 BV is polynomial.

▶ Theorem: E∨
0 BV is also polynomial.
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The Atiyah-Hirzebruch Spectral Sequence

▶ Theorem: E∨
0 BV is also polynomial.

▶ It is enough to prove that K0BV is polynomial.

▶ We use the Atiyah-Hirzebruch spectral sequence H∗(BV;K∗) =⇒ K∗(BV)
and its dual.

▶ Quillen: H∗(BV;K∗) is generated by BV1 and has countably many
polynomial generators bi and exterior generators ei .

▶ Let F (k) be the extension of F of degree pk , so GLd(F (k)) maps to
GLpkd(F ). The group GL1(F (k)) is cyclic so the AHSS is well understood,
with only one differential. This gives some information about the AHSS
for GLpk (F ).

▶ Tanabe and HKR also tell us that K∗(BV) is concentrated in even
degrees, with known rank.

▶ The ordinary ring structure on K∗(BGLd(F )) also gives some information.

▶ At the E∞ page, all exterior generators have been killed, and bpmi

i survives.
This leaves a polynomial algebra, and it follows that K∗(BV) is also
polynomial.

▶ This is the most complex pattern of AHSS differentials that we have seen.
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More about (co)algebraic structures

▶ The functors ⊕,⊗ : V2 → V give products on E∨
0 BV and on K0BV and on

L⊗E0 E∨
0 BV = L{Rep(Θ∗,F )}.

▶ These are just [U] ∗ [W ] = [U ⊕W ] and [U] ◦ [W ] = [U ⊗W ].

▶ We can grade everything with GLd(F ) in degree d ; then |a ∗ b| = |a|+ |b|.
▶ K0BV embeds in K0BV = K0[K0BGL1(F )], which is polynomial under ∗;

so K0BV has no ∗-nilpotents. If K0BV had a coproduct that interacted
correctly with the product and grading, we could conclude that K0BV and
E∨
0 BV are polynomial under ∗.

▶ The diagonal δ : V → V2 gives a coproduct [V ] 7→ [V ]⊗ [V ]. This is
compatible with the two products, giving a Hopf ring. But it does not
interact correctly with the grading.

▶ There is another coproduct, induced by the transfer associated to
⊕ : V2 → V. This is ψ∗([V ]) =

∑
V=U⊕W [U]⊗ [W ].

▶ Not every splitting of V1 ⊕V2 comes from splittings of V1 and V2; so ψ∗ is
not a homomorphism for ∗, and (E∨

0 BV, ∗, ψ∗) is not a Hopf algebra.
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Harish Chandra induction

▶ A variant: instead of using the transfer for GLi × GLj → GLi+j , use the
parabolic subgroup Pij , the projection Pij → GLi × GLj and the inclusion
Pij → GLi+j . (“Harish Chandra induction”).

▶ This gives another product [U]× [W ] = |HomΘ∗(W ,U)|−1[U ⊕W ] and
coproduct ψ×([V ]) =

∑
U≤V [U]⊗ [V /U]. These still do not give a Hopf

algebra structure.

▶ One can find e ∈ E 0BV with character values e(U) = |EndΘ∗(U)|. This is
1 mod the maximal ideal in E 0BVd , and p > 2, so it has a square root.
This satisfies

(
√

e(U)[U])× (
√

e(W )[W ]) =
√

e(U ⊕W )[U ⊕W ],

so (E∨
0 BV,×) ≃ (E∨

0 BV, ∗).
▶ The failure of the Hopf algebra axiom is measured by u ∈ (E 0BE)× for an

auxiliary groupoid E . This has character values of the form
|HomΘ∗(A,B)| ∈ qN ⊆ 1 + prZ. However, u ̸= 1 in (E/In)

0BE .
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Trellises

▶ [Θ∗,L] is the set of isomorphism classes of pairs (X , L), where X is a
finite Θ∗-set, and L is a Θ∗-equivariant F -linear line bundle over X .

▶ The functor π : L → V induces [X , L] 7→ [
⊕

x Lx ].

▶ Alternatively: a trellis in a Θ∗-representation V is an unordered set T of
one-dimensional subspaces, which are permuted by the action of Θ∗, and
whose direct sum is V .

▶ Then [Θ∗,L] is the category of representations equipped with a trellis.

▶ In this picture, π[V ,T ] = [V ] and π![V ] =
∑

trellises T [V ,T ].

▶ Note that π![U ⊕W ] ̸= π![U]π![W ], so π! is not a ring map.

▶ Can we give a ring map E∨
0 BV → E∨

0 BL which is a section of π?

▶ (It is known that E∨
0 BL is polynomial; a section as above would give

another proof that E∨
0 BV is polynomial.)
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⊕

x Lx ].

▶ Alternatively: a trellis in a Θ∗-representation V is an unordered set T of
one-dimensional subspaces, which are permuted by the action of Θ∗, and
whose direct sum is V .

▶ Then [Θ∗,L] is the category of representations equipped with a trellis.

▶ In this picture, π[V ,T ] = [V ] and π![V ] =
∑
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Irreducibles

▶ Let W be an irreducible F -linear representation of Θ∗.
Then EndF [Θ∗](W ) is a field (by Schur’s Lemma) and a finite extension of

F , so we can choose an embedding in F , unique up to the action of Γ.

▶ Let ω : Θ∗ → F
×

be a continuous homomorphism.
Then the set W = spanF (ω(Θ

∗)) is a finite subfield of F , and we can use
ω to give an action of Θ∗ on W , making it an irreducible representation.

▶ These constructions give a bijection Irr(Θ∗;F ) ≃ Hom(Θ∗,F
×
)/Γ = Φ/Γ.

▶ This in turn gives Rep(Θ∗;F ) = Div+(Φ)Γ, meshing nicely with Tanabe’s
(BV)E = Div+(H)Γ.

▶ For m > 0, the irreducibles of dimension pm correspond to orbits
Γϕ = ϕ+ prZpϕ where ϕ has order precisely pm+r .

▶ Irreducibles of dimension one correspond to singleton orbits {ϕ} with
prϕ = 0. There are no other irreducibles.

▶ Problem: find a closed subscheme of E 0BGLpm (F ) = Div+pm (H)Γ that
corresponds to Irrpm (Θ

∗;F ) in generalised character theory.
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Irreducibles in the line bundle category

▶ Let A be a finite subgroup of Θ ≃ (Z/p∞)n, and let C ⊂ Θ be a coset
with prC ⊆ A.

▶ Now A∗ is a finite set with action of Θ∗, and C gives a character of the
stabiliser group ann(A) ≤ Θ∗ and thus a line bundle over A∗.

▶ The condition prC ⊆ A ensures that this is defined over F , not just F .

▶ If we put C = { all cosets like this }, then we get
Ind(L⊗E0 E∨

0 BL) = L{C}.
▶ The generators of L⊗E0 E∨

0 BV correspond to Galois orbits in Θ. The orbit
of α is a coset for the cyclic group generated by prα. This gives a ring
map L⊗E0 E∨

0 BV → L⊗E0 E∨
0 BL splitting π.

▶ Does this send E∨
0 BV to E∨

0 BL? Perhaps. This is related to the explicit
Artin induction formula of Boltje, Snaith and Symonds, but the most
obvious adaptation is not useful because of Z[X ]G ̸= Z[XG ].

▶ A schematic version: spf(E 0BL/transfers) is

{(A,C) | A is a finite subgroup of H, C ∈ H/A, prC = 0H/A}.

This uses the apparatus of power operations.
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Irreducibles in formal group theory

There is a cyclic subgroup Um ≤ GLpm (F ) of order p
m+r , so

E 0BUm ≃ E 0[[x ]]/[pm+r ](x).
Now [pm+r ](x) factors as gm(x) [p

m+r−1](x), and we put Dm = E 0[[x ]]/gm(x).
This still has an action of Γ, and we put Xm = spf(DΓ

m).
In a different language: spf(Dm) = Level(U∗

m,G) and Xm = Level(U∗
m,G)/Γ.

We also put

y =
∏
{Γ− orbit of x} =

pm−1∏
i=0

[qi ](x) ∈ DΓ
m.

One can check that the set {y i | 0 ≤ i < p(m+r−1)n−m(pn − 1)} is a basis for
DΓ

m over E 0, and that DΓ
m is a regular local ring.

We can regard Um as a groupoid with one object, and there is an evident
functor i : Um → V sending the unique object to Fpm .

There is an isomorphism F ⊗F Fpm →
∏pm−1

i=0 F given by

a⊗ b 7→ (ab, aϕ(b), aϕ2(b), . . . , aϕpm−1(b)).

Using this, we find that the element cpm ∈ E 0BGLpm (F ) maps to y ∈ DΓ
m.

It follows that the map i∗ : E 0BGLpm (F )→ DΓ
m is surjective, so Xm is a closed

subscheme of Div+pm (H).
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Splitting and amalgamation

The semiring Rep+(Θ∗,F ) is a set (not a formal scheme), and it splits as

Rep+(Θ∗;F ) = Irr(Θ∗;F )⨿ Red(Θ∗;F ) =
∐
m

Irr(Θ∗;F )m/Σm.

Rep+pm (Θ
∗;F ) = Irrpm (Θ

∗;F )⨿ Redpm (Θ
∗;F ) = Mon(U∗

m,Θ)⨿ Redpm (Θ
∗;F ).

Question: is there an analogous splitting

BGLpm (F )E = Xm ⨿Wm of formal schemes, or

E 0BGLpm (F ) = DΓ
m × Cm of rings?

Answer: no, E 0BGLpm (F ) is a local ring, and does not split as a product.
It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings
A = B × C , we often have B = A/I and C = A/J with I = ann(J) and
J = ann(I ), which makes I a C -module and J a B-module.In the best cases I
will be free of rank one over C and/or J will be free of rank one over B.

Example: A = R[t]/(f (t)g(t)), B = R[t]/f (t), C = R[t]/g(t)
where f (t) and g(t) are monic polynomials.
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will be free of rank one over C and/or J will be free of rank one over B.

Example: A = R[t]/(f (t)g(t)), B = R[t]/f (t), C = R[t]/g(t)
where f (t) and g(t) are monic polynomials.
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J say.Here A and DΓ are both Frobenius algebras over E 0.From this it follows
automatically that J and ann(J) are both E 0-module summands in A, and that
ann2(J) = J.Moreover, ann(J) is a free module of rank one over DΓ
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We know that E∨
0 BV is polynomial, and it follows by self-duality that E 0BV is

polynomial under the transfer product, and we have

J = img(tr : E 0(BGLpm−1(F )
p)→ E 0(BGLpm (F ))),

so Indpm (E
0BV) = DΓ

m.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element cp(ψ
p(Taut)) is the required generator, but the

proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of E 0BGLd(F ) as an amalgamation of
simpler quotient rings, and use it to give a basis for E 0BGLd(F ) over E
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An easier problem

Consider instead the ideals I = ker(E 0BGLd(F )→ E 0(BGLd−1(F )) and

J = img(tr : E 0(BGLd−1(F ))→ E 0(BGLd(F ))),

Both I and J are E 0-module summands, and they are annihilators of each other.

I is generated by the Euler class euler = cd .

There is an element fix ∈ E 0(BGLd(F )) with generalised character values
fix(V ) = |V Φ∗

|. We find that J is generated by fix−1.
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