Chromatic cohomology of finite general linear groups

Neil Strickland (with Sam Marsh and Sam Hutchinson)

October 28, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2.

Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups *G*.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0 BG$ for any *G*.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

(The case where F has characteristic p is also interesting, but much harder.)

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $\blacktriangleright E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = spf(E^0X)$ (similar to the ordinary scheme $spec(E^0X)$) rather than directly in terms of E^0X .
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div⁺_d(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E^{\vee}_*(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $\blacktriangleright E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = spf(E^0X)$ (similar to the ordinary scheme $spec(E^0X)$) rather than directly in terms of E^0X .
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div⁺_d(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E^{\vee}_*(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.

•
$$E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$$
 with $|u_i| = 0$ and $|u| = -2$.

- $\blacktriangleright E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = spf(E^0X)$ (similar to the ordinary scheme $spec(E^0X)$) rather than directly in terms of E^0X .
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.

•
$$E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$$
 with $|u_i| = 0$ and $|u| = -2$.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = spf(E^0X)$ (similar to the ordinary scheme $spec(E^0X)$) rather than directly in terms of E^0X .
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div⁺_d(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = spf(E^0X)$ (similar to the ordinary scheme $spec(E^0X)$) rather than directly in terms of E^0X .
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \le i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E^{\vee}_*(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \le i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E^{\vee}_*(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \le i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/∑_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E^{\vee}_*(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/Σ_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(\text{point}) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.

•
$$E^*BS^1 = E^*\mathbb{C}P^\infty \simeq E^*\llbracket t \rrbracket$$
 with $|t| = 0$.

- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have BA_E = Hom(A^{*}, G) = Tor(A, G), where A^{*} = Hom(A, S¹) is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \le i < p^{nm}\},\$$

- We also have BU(d)_E = G^d/Σ_d. This can be identified with Div_d⁺(G), the moduli scheme for effective divisors of degree d on G.
- ► There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Let *F* be a finite field of characteristic not equal to *p*.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

Let F be a finite field of characteristic not equal to p.

- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$\mathit{GL}_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x ↦ x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\operatorname{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.

We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$\mathit{GL}_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 ext{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure.

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

- Let F be a finite field of characteristic not equal to p.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let F be an algebraic closure of F. This has a Frobenius automorphism φ: x → x^q, and the Galois group Γ is isomorphic to Z, topologically generated by φ.
- We put H = BGL₁(F)_E, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{ u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1 \},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

Generalised character theory compares G with Θ = (Z/p[∞])ⁿ. We will also compare H with Φ = Tor(F[×], Θ) ≃ Hom(Θ^{*}, F[×]) (so Φ is noncanonically isomorphic to Θ).

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

 $E^{0}(BGL_{1}(\overline{F})^{d}) = E^{0}\llbracket x_{1}, \ldots, x_{d} \rrbracket,$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod *p* cohomology. The claim follows easily from this.

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod *p* cohomology. The claim follows easily from this.

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring W (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the map

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod *p* cohomology. The claim follows easily from this.
The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

 $BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$

induce isomorphisms in mod *p* cohomology. The claim follows easily from this.

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the map

 $BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$

induce isomorphisms in mod *p* cohomology. The claim follows easily from this.

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this.

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d / \Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1,\ldots,x_d
rbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

induce isomorphisms in mod p cohomology. The claim follows easily from this.

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Recall that the group $\Gamma = \text{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ . Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}\llbracket c_{1}, \ldots, c_{d} \rrbracket}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}$$

Equivalently, we have $BGL_d(F)_E = \text{Div}_d^+(\mathbb{H})^{\Gamma}$.

In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(ℝ)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

• Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.

• We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.

▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}^+_d(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.

- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

• Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.

• We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.

- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(ℝ)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\lor}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_* L_x$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F \text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L}\simeq \coprod_d E\Sigma_d imes_{\Sigma_d} BGL_1(F)^d$.

There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_{x} L_{x}$.

► The index of $\Sigma_d \wr GL_1(F)^d$ in $GL_d(F)$ has index coprime to p, so $B\mathcal{L} \to B\mathcal{V}$ gives an epimorphism in *E*-cohomology. Earlier work on symmetric groups gives a good understanding of $E^0 B\mathcal{L}$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F \text{-linear line bundle over } X\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

► The index of $\Sigma_d \wr GL_1(F)^d$ in $GL_d(F)$ has index coprime to p, so $B\mathcal{L} \to B\mathcal{V}$ gives an epimorphism in *E*-cohomology. Earlier work on symmetric groups gives a good understanding of $E^0 B\mathcal{L}$.

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- ▶ Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- The functors ⊕, ⊗: V² → V make BV a commutative semiring in the homotopy category of spaces. This in turn makes BV_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on Div⁺(⊞)^Γ.
- Alternatively, $E_*^{\vee}(B\mathcal{V})$ and $K_*(B\mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

 $\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F \text{-linear line bundle over } X\}.$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of Q ⊗ E⁰ with Galois group Aut(Θ*).
- Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \operatorname{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.

- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of Q ⊗ E⁰ with Galois group Aut(Θ*).
- Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \operatorname{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |Iso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \operatorname{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |Iso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ*, V] with Rep⁺(Θ*; F), the semiring of isomorphism classes of F-linear representations of Θ*.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \operatorname{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |Iso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \operatorname{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |Iso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$

 $L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.
- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B\mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B\mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ*, V] with Rep⁺(Θ*; F), the semiring of isomorphism classes of F-linear representations of Θ*.

Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.

It follows that L ⊗_{E₀} E_₀[∨] BV is a polynomial algebra over L, with one generator for each irreducible; and then that Q ⊗ E_₀[∨] BV is polynomial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B\mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ^{*}, V] with Rep⁺(Θ^{*}; F), the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B\mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ*, V] with Rep⁺(Θ*; F), the semiring of isomorphism classes of F-linear representations of Θ*.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

- Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring *L* which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group Aut(Θ^*).
- Let G be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

 $L \otimes_{E^0} E^0 B\mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B\mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- E₀[∨]BG has a natural inner product, which becomes ⟨[α], [β]⟩ = |lso(α, β)| on L{[Θ^{*}, G]}.
- We can identify [Θ*, V] with Rep⁺(Θ*; F), the semiring of isomorphism classes of F-linear representations of Θ*.
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- lt is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: $H_*(B\mathcal{V}; K_*)$ is generated by $B\mathcal{V}_1$ and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ▶ At the E_∞ page, all exterior generators have been killed, and b_i^{mⁿ} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: $H_*(B\mathcal{V}; K_*)$ is generated by $B\mathcal{V}_1$ and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{mⁿi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{mⁿi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{mⁿi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{mⁿi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.
The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{mi}} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- ▶ Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^{m_i} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.}
- This is the most complex pattern of AHSS differentials that we have seen.

• Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- It is enough to prove that $K_0 B V$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_*(B\mathcal{V}; K_*) \Longrightarrow K_*(B\mathcal{V})$ and its dual.
- Quillen: H_{*}(BV; K_{*}) is generated by BV₁ and has countably many polynomial generators b_i and exterior generators e_i.
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^k d}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ► At the E_∞ page, all exterior generators have been killed, and b_i^{p^mi} survives. This leaves a polynomial algebra, and it follows that K_{*}(BV) is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ▶ $K_0 BV$ embeds in $K_0 B\overline{V} = K_0[K_0 BGL_1(\overline{F})]$, which is polynomial under *; so $K_0 BV$ has no *-nilpotents. If $K_0 BV$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 BV$ and $E_0^{\vee} BV$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ▶ $K_0 BV$ embeds in $K_0 B\overline{V} = K_0[K_0 BGL_1(\overline{F})]$, which is polynomial under *; so $K_0 BV$ has no *-nilpotents. If $K_0 BV$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 BV$ and $E_0^{\vee} BV$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to \oplus : $\mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V=U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ▶ $K_0 BV$ embeds in $K_0 B\overline{V} = K_0[K_0 BGL_1(\overline{F})]$, which is polynomial under *; so $K_0 BV$ has no *-nilpotents. If $K_0 BV$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 BV$ and $E_0^{\vee} BV$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ► $K_0 B \mathcal{V}$ embeds in $K_0 B \overline{\mathcal{V}} = K_0 [K_0 B G L_1(\overline{F})]$, which is polynomial under *; so $K_0 B \mathcal{V}$ has no *-nilpotents. If $K_0 B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 B \mathcal{V}$ and $E_0^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to \oplus : $\mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V=U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ► $K_0 B \mathcal{V}$ embeds in $K_0 B \overline{\mathcal{V}} = K_0 [K_0 B G L_1(\overline{F})]$, which is polynomial under *; so $K_0 B \mathcal{V}$ has no *-nilpotents. If $K_0 B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 B \mathcal{V}$ and $E_0^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V=U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ► $K_0 B \mathcal{V}$ embeds in $K_0 B \overline{\mathcal{V}} = K_0 [K_0 B G L_1(\overline{F})]$, which is polynomial under *; so $K_0 B \mathcal{V}$ has no *-nilpotents. If $K_0 B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 B \mathcal{V}$ and $E_0^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee} B \mathcal{V}$ and on $K_0 B \mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- We can grade everything with $GL_d(F)$ in degree d; then |a * b| = |a| + |b|.
- ► $K_0 B \mathcal{V}$ embeds in $K_0 B \overline{\mathcal{V}} = K_0 [K_0 B G L_1(\overline{F})]$, which is polynomial under *; so $K_0 B \mathcal{V}$ has no *-nilpotents. If $K_0 B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0 B \mathcal{V}$ and $E_0^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal δ: V → V² gives a coproduct [V] → [V] ⊗ [V]. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- ▶ Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee} BV, *, \psi_*)$ is not a Hopf algebra.

(日)((1))

- A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_{i+j}$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W, U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{ee}B\mathcal{V}, imes)\simeq (E_0^{ee}B\mathcal{V},st).$

The failure of the Hopf algebra axiom is measured by u ∈ (E⁰BE)[×] for an auxiliary groupoid E. This has character values of the form | Hom_{Θ*}(A, B)| ∈ q^N ⊆ 1 + p^rZ. However, u ≠ 1 in (E/I_n)⁰BE.

- A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_{i+j}$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W, U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{ee}B\mathcal{V}, imes)\simeq (E_0^{ee}B\mathcal{V},st).$

The failure of the Hopf algebra axiom is measured by u ∈ (E⁰BE)[×] for an auxiliary groupoid E. This has character values of the form | Hom_{Θ*}(A, B)| ∈ q^N ⊆ 1 + p^rZ. However, u ≠ 1 in (E/I_n)⁰BE.

- A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_{i+j}$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W, U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{\vee}B\mathcal{V}, imes)\simeq (E_0^{\vee}B\mathcal{V},st).$

The failure of the Hopf algebra axiom is measured by u ∈ (E⁰BE)[×] for an auxiliary groupoid E. This has character values of the form | Hom_{Θ*}(A, B)| ∈ q^N ⊆ 1 + p^rZ. However, u ≠ 1 in (E/I_n)⁰BE.

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_{i+i}$. ("Harish Chandra induction").
- This gives another product [U] × [W] = |Hom_{Θ*}(W, U)|⁻¹[U ⊕ W] and coproduct ψ_×([V]) = ∑_{U≤V}[U] ⊗ [V/U]. These still do not give a Hopf algebra structure.
- One can find e ∈ E⁰BV with character values e(U) = |End_{Θ*}(U)|. This is 1 mod the maximal ideal in E⁰BV_d, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{\vee}B\mathcal{V}, \times) \simeq (E_0^{\vee}B\mathcal{V}, *).$

The failure of the Hopf algebra axiom is measured by u ∈ (E⁰BE)[×] for an auxiliary groupoid E. This has character values of the form | Hom_{Θ*}(A, B)| ∈ q^N ⊆ 1 + p^rZ. However, u ≠ 1 in (E/I_n)⁰BE.

- A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_{i+j}$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W, U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{\vee}B\mathcal{V},\times)\simeq (E_0^{\vee}B\mathcal{V},*).$

The failure of the Hopf algebra axiom is measured by u ∈ (E⁰BE)[×] for an auxiliary groupoid E. This has character values of the form | Hom_{Θ*}(A, B)| ∈ q^N ⊆ 1 + p^rZ. However, u ≠ 1 in (E/I_n)⁰BE.

[Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.

• The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.

- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee} B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee} B\mathcal{V}$ is polynomial.)

[Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.

▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.

- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee} B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee} B\mathcal{V}$ is polynomial.)

[Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.

• The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.

- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee} B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee} B\mathcal{V}$ is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that E₀[∨] BL is polynomial; a section as above would give another proof that E₀[∨] BV is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that E₀[∨] BL is polynomial; a section as above would give another proof that E₀[∨] BV is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that E₀[∨] BL is polynomial; a section as above would give another proof that E₀[∨] BV is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that E₀[∨] BL is polynomial; a section as above would give another proof that E₀[∨] BV is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee} B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee} B\mathcal{V}$ is polynomial.)

- [Θ*, L] is the set of isomorphism classes of pairs (X, L), where X is a finite Θ*-set, and L is a Θ*-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- Alternatively: a trellis in a Θ*-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ*, and whose direct sum is V.
- Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U]\pi^{!}[W]$, so $\pi^{!}$ is not a ring map.
- Can we give a ring map $E_0^{\vee} B \mathcal{V} \to E_0^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that E₀[∨] BL is polynomial; a section as above would give another proof that E₀[∨] BV is polynomial.)

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- ▶ Let $\omega: \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives Rep(Θ*; F) = Div⁺(Φ)^Γ, meshing nicely with Tanabe's (BV)_E = Div⁺(ℍ)^Γ.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- Problem: find a closed subscheme of E⁰BGL_p^m(F) = Div⁺_p(𝔄)^Γ that corresponds to Irr_p^m(Θ^{*}; F) in generalised character theory.

• Let W be an irreducible F-linear representation of Θ^* .

Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .

- ▶ Let $\omega: \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- Problem: find a closed subscheme of E⁰BGL_p^m(F) = Div⁺_p(𝔄)^Γ that corresponds to Irr_p^m(Θ^{*}; F) in generalised character theory.

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives Rep(Θ*; F) = Div⁺(Φ)^Γ, meshing nicely with Tanabe's (BV)_E = Div⁺(ℍ)^Γ.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

(日)((1))

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

(日)((1))

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

(日)((1))

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives Rep(Θ^{*}; F) = Div⁺(Φ)^Γ, meshing nicely with Tanabe's (BV)_E = Div⁺(ℍ)^Γ.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- lireducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \text{Div}_{p^m}^+(\mathbb{H})^{\Gamma}$ that corresponds to $\text{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ*. Then End_{F[Θ*]}(W) is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in F, unique up to the action of Γ.
- Let ω: Θ^{*} → F̄[×] be a continuous homomorphism. Then the set W = span_F(ω(Θ^{*})) is a finite subfield of F̄, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^{\Gamma}$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r \phi = 0$. There are no other irreducibles.
- Problem: find a closed subscheme of E⁰BGL_p^m(F) = Div⁺_p(ℍ)^Γ that corresponds to Irr_p^m(Θ^{*}; F) in generalised character theory.
Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{$ all cosets like this $\}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p^rα. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨]BV to E₀[∨]BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^{r}C = 0_{\mathbb{H}/A}\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Irreducibles in the line bundle category

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann(A) ≤ Θ^{*} and thus a line bundle over A^{*}.
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨]BV to E₀[∨]BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p'C = 0_{\mathbb{H}/A}\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- Now A* is a finite set with action of Θ*, and C gives a character of the stabiliser group ann(A) ≤ Θ* and thus a line bundle over A*.
- The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨]BV to E₀[∨]BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^r C = 0_{\mathbb{H}/A} \}.$

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- ▶ Now A^* is a finite set with action of Θ^* , and *C* gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{$ all cosets like this $\}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} BL) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨] BV to E₀[∨] BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^{r}C = 0_{\mathbb{H}/A}\}.$

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- ▶ Now A^* is a finite set with action of Θ^* , and *C* gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} BL) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨] BV to E₀[∨] BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^{r}C = 0_{\mathbb{H}/A}\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- Now A* is a finite set with action of Θ*, and C gives a character of the stabiliser group ann(A) ≤ Θ* and thus a line bundle over A*.
- ▶ The condition $p' C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} BL) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨] BV to E₀[∨] BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^r C = 0_{\mathbb{H}/A} \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- ▶ Now A^* is a finite set with action of Θ^* , and *C* gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} BL) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨]BV to E₀[∨]BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p^{r}C = 0_{\mathbb{H}/A}\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let A be a finite subgroup of Θ ≃ (ℤ/p[∞])ⁿ, and let C ⊂ Θ be a coset with p^rC ⊆ A.
- Now A* is a finite set with action of Θ*, and C gives a character of the stabiliser group ann(A) ≤ Θ* and thus a line bundle over A*.
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{ \text{ all cosets like this } \}$, then we get $Ind(L \otimes_{E^0} E_0^{\vee} BL) = L\{C\}.$
- The generators of L ⊗_{E⁰} E₀[∨] BV correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by p'α. This gives a ring map L ⊗_{E⁰} E₀[∨] BV → L ⊗_{E⁰} E₀[∨] BL splitting π.
- Does this send E₀[∨]BV to E₀[∨]BL? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of Z[X]^G ≠ Z[X^G].
- ► A schematic version: spf(E⁰BL/transfers) is

 $\{(A, C) \mid A \text{ is a finite subgroup of } \mathbb{H}, \ C \in \mathbb{H}/A, \ p'C = 0_{\mathbb{H}/A}\}.$

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0 B U_m \simeq E^0 \llbracket x \rrbracket / [p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$. In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

Using this, we find that the element $c_{p^m} \in E^0 BGL_{p^m}(\overline{F})$ maps to $y \in D_m^{\Gamma}$. It follows that the map $i^* \colon E^0 BGL_{p^m}(F) \to D_m^{\Gamma}$ is surjective, so X_m is a closed subscheme of $\operatorname{Div}_{p^m}^+(\mathbb{H})$.

We also put

$$y = \prod \{ \Gamma - ext{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

Irreducibles in formal group theory

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0 B U_m \simeq E^0 \llbracket x \rrbracket / [p^{m+r}](x)$. Now $[p^{m+r}](x)$ factors as $g_m(x) [p^{m+r-1}](x)$, and we put $D_m = E^0 \llbracket x \rrbracket / g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$. In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{\rho^m - 1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

Irreducibles in formal group theory

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$. Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$. In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{\rho^m - 1} [q^i](x) \in D_m^{\Gamma}$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

We also put

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$. Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$. In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

$$y = \prod \{ \Gamma - ext{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

We also put

$$y = \prod \{ \Gamma - ext{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{P^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$\mathsf{a}\otimes\mathsf{b}\mapsto(\mathsf{a}\mathsf{b},\ \mathsf{a}\,\phi(\mathsf{b}),\ \mathsf{a}\,\phi^2(\mathsf{b}),\ldots,\mathsf{a}\,\phi^{\mathsf{p}^m-1}(\mathsf{b})).$$

Using this, we find that the element $c_{p^m} \in E^0 BGL_{p^m}(\overline{F})$ maps to $y \in D_m^1$. It follows that the map $i^* \colon E^0 BGL_{p^m}(F) \to D_m^\Gamma$ is surjective, so X_m is a closed subscheme of $\operatorname{Div}_{p^m}^+(\mathbb{H})$.

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$\mathsf{a}\otimes\mathsf{b}\mapsto(\mathsf{a}\mathsf{b},\ \mathsf{a}\,\phi(\mathsf{b}),\ \mathsf{a}\,\phi^2(\mathsf{b}),\ldots,\mathsf{a}\,\phi^{\mathsf{p}^m-1}(\mathsf{b})).$$

We also put

$$y = \prod \{ \Gamma - \text{orbit of } x \} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^{Γ} over E^0 , and that D_m^{Γ} is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} . There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$\mathsf{a}\otimes\mathsf{b}\mapsto(\mathsf{a}\mathsf{b},\ \mathsf{a}\,\phi(\mathsf{b}),\ \mathsf{a}\,\phi^2(\mathsf{b}),\ldots,\mathsf{a}\,\phi^{\mathsf{p}^m-1}(\mathsf{b})).$$

The semiring Rep⁺(Θ^*, F) is a set (not a formal scheme), and it splits as Rep⁺($\Theta^*; F$) = Irr($\Theta^*; F$) II Red($\Theta^*; F$) = \prod Irr($\Theta^*; F$)^m/ Σ_m .

 $\operatorname{Rep}_{p^m}^+(\Theta^*;F) = \operatorname{Irr}_{p^m}(\Theta^*;F) \amalg \operatorname{Red}_{p^m}(\Theta^*;F) = \operatorname{Mon}(U_m^*,\Theta) \amalg \operatorname{Red}_{p^m}(\Theta^*;F).$

Question: is there an analogous splitting

 $BGL_{p^m}(F)_E = X_m \amalg W_m$ of formal schemes, or $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \prod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$

Question: is there an analogous splitting

 $BGL_{p^m}(F)_E = X_m \amalg W_m$ of formal schemes, or $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \coprod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$

Question: is there an analogous splitting

 $BGL_{p^m}(F)_E = X_m \coprod W_m$ of formal schemes, o $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \prod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

 $BGL_{p^m}(F)_E = X_m \amalg W_m$ of formal schemes, or $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with I = ann(J) and J = ann(I), which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \coprod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

 $BGL_{p^m}(F)_E = X_m \amalg W_m$ of formal schemes, or $E^0 BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \prod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*}; F) = \operatorname{Irr}_{p^{m}}(\Theta^{*}; F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*}; F) = \operatorname{Mon}(U_{m}^{*}, \Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*}; F).$ Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \amalg W_m$$
 of formal schemes, or
 $E^0 BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with I = ann(J) and J = ann(I), which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \prod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \amalg W_m$$
 of formal schemes, or
 $E^0 BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with I = ann(J) and J = ann(I), which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \coprod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \amalg W_m$$
 of formal schemes, or
 $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with I = ann(J) and J = ann(I), which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \coprod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \amalg W_m$$
 of formal schemes, or
 $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\operatorname{Rep}^{+}(\Theta^{*};F) = \operatorname{Irr}(\Theta^{*};F) \amalg \operatorname{Red}(\Theta^{*};F) = \prod_{m} \operatorname{Irr}(\Theta^{*};F)^{m} / \Sigma_{m}.$$

 $\operatorname{Rep}_{p^{m}}^{+}(\Theta^{*};F) = \operatorname{Irr}_{p^{m}}(\Theta^{*};F) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F) = \operatorname{Mon}(U_{m}^{*},\Theta) \amalg \operatorname{Red}_{p^{m}}(\Theta^{*};F).$ Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \amalg W_m$$
 of formal schemes, or
 $E^0BGL_{p^m}(F) = D_m^{\Gamma} \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and ann(J) are both E^0 -module summands in A, and that $ann^2(J) = J$. Moreover, ann(J) is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and ann(J) are both E^0 -module summands in A, and that $ann^2(J) = J$. Moreover, ann(J) is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{p^m-1}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V}) = D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V}) = D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .
Splitting and amalgamation

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and ann(J) are both E^0 -module summands in A, and that $ann^2(J) = J$. Moreover, ann(J) is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V}) = D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Splitting and amalgamation

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and ann(J) are both E^0 -module summands in A, and that $ann^2(J) = J$. Moreover, ann(J) is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V}) = D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Splitting and amalgamation

We have seen that D_m^{Γ} is the quotient of the ring $A = E^0 BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J) = J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^0 B \mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V}) = D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m = 1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m > 1.

Problem: find a finer decomposition of $E^0BGL_d(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^0BGL_d(F)$ over E^0 .

(日)((1))

Consider instead the ideals $I = \ker(E^0BGL_d(F) \to E^0(BGL_{d-1}(F)))$ and $J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{d-1}(F)) \to E^0(BGL_d(F))),$

Both *I* and *J* are E^0 -module summands, and they are annihilators of each other. *I* is generated by the Euler class euler = c_d .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

An easier problem

Consider instead the ideals $I = \ker(E^0BGL_d(F) \to E^0(BGL_{d-1}(F)))$ and $J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{d-1}(F)) \to E^0(BGL_d(F))),$

Both I and J are E^0 -module summands, and they are annihilators of each other.

I is generated by the Euler class euler $= c_d$.

An easier problem

Consider instead the ideals $I = \ker(E^0BGL_d(F) \to E^0(BGL_{d-1}(F)))$ and $J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{d-1}(F)) \to E^0(BGL_d(F))),$

Both *I* and *J* are E^0 -module summands, and they are annihilators of each other. *I* is generated by the Euler class euler = c_d .

An easier problem

Consider instead the ideals $I = \ker(E^0BGL_d(F) \to E^0(BGL_{d-1}(F)))$ and $J = \operatorname{img}(\operatorname{tr}: E^0(BGL_{d-1}(F)) \to E^0(BGL_d(F))),$

Both I and J are E^0 -module summands, and they are annihilators of each other. I is generated by the Euler class euler = c_d .