Chromatic cohomology of finite general linear groups

Neil Strickland
(with Sam Marsh and Sam Hutchinson)

October 28, 2022

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$.
Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.
(The case where F has characteristic p is also interesting, but much harder.)

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
\Rightarrow There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.
(The case where F has characteristic p is also interesting, but much harder.)

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$.
Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.
(The case where F has characteristic p is also interesting, but much harder.)

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.
(The case where F has characteristic p is also interesting, but much harder.)

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms
- In the common case where $E^{1} B G=0$, the ring $E^{0} R G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$

Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
\rightarrow In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
\rightarrow There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$

Here we take $G=G_{d}(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.

> Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$ The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer.
Marsh. Most of the general case is in the thesis of Sam Hutchinson.

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh.
case is in the thesis of Sam Hutchinson
(The case where F has characteristic p is also interesting, but much harder.)

The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

[^0]
The problem

Let E be Morava E-theory of height $n>0$ at a prime $p>2$. Many things are known about $E^{0} B G$ for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^{0} B G$ for any G.
- This determines the Oth chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- In the common case where $E^{1} B G=0$, the ring $E^{0} B G$ has a natural inner product making it a Frobenius algebra.
- There is an extensive theory of the relationship between $E^{0} B G$ and the λ-ring structure of the representation ring $R(G)$.
Here we take $G=G L_{d}(F)$, where F is a finite field of characteristic $\neq p$.
The ring $E^{0} B G L_{d}(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case $d=p$ was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.
(The case where F has characteristic p is also interesting, but much harder.)

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
$\Rightarrow E^{*}=E^{*}($ point $)=\mathbb{Z}_{p}\left[u_{1}, \ldots, u_{n-1}\right]\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
$-E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
\Rightarrow For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}{ }_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
$\Rightarrow E^{*}=E^{*}$ (point) $=\mathbb{Z}_{\rho}\left[u_{1}, \ldots, u_{n-1}\right]\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
$-E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\},
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}{ }_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}($ point $)=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
$\Rightarrow E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}$ (point) $=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
$>$ It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\left.\operatorname{spec}\left(E^{0} X\right)\right)$ rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\},
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}$ (point) $=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\left.\operatorname{spec}\left(E^{0} X\right)\right)$ rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure
\checkmark For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\},
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}$ (point) $=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
\Rightarrow For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\},
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}{ }_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}($ point $)=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}$ (point) $=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height.
\Rightarrow We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with Div ${ }_{d}^{+}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
\rightarrow There is a dual version $F^{\vee}(X)$ and auotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}($ point $)=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}^{+}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.

Morava E-theory

- Morava E-theory is a generalised cohomology theory giving a graded ring $E^{*} X$ for every space X.
- $E^{*}=E^{*}($ point $)=\mathbb{Z}_{p} \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right]$ with $\left|u_{i}\right|=0$ and $|u|=-2$.
- $E^{*} B S^{1}=E^{*} \mathbb{C} P^{\infty} \simeq E^{*} \llbracket t \rrbracket$ with $|t|=0$.
- It is often natural to formulate results in terms of the formal scheme $X_{E}=\operatorname{spf}\left(E^{0} X\right)$ (similar to the ordinary scheme $\operatorname{spec}\left(E^{0} X\right)$) rather than directly in terms of $E^{0} X$.
- The formal scheme $\mathbb{G}=\left(B S^{1}\right)_{E}$ has a natural abelian group structure.
- For finite abelian groups A we have $B A_{E}=\operatorname{Hom}\left(A^{*}, \mathbb{G}\right)=\operatorname{Tor}(A, \mathbb{G})$, where $A^{*}=\operatorname{Hom}\left(A, S^{1}\right)$ is the character group.
- More concretely,

$$
E^{0} B C_{p^{m}}=E^{0} \llbracket t \rrbracket /\left[p^{m}\right](t)=E^{0}\left\{t^{i} \mid 0 \leq i<p^{n m}\right\}
$$

where n is the height.

- We also have $B U(d)_{E}=\mathbb{G}^{d} / \Sigma_{d}$. This can be identified with $\operatorname{Div}_{d}^{+}(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G}.
- There is a dual version $E_{*}^{\vee}(X)$ and quotient theories $K^{*}(X)$ and $K_{*}(X)$ with $K^{0}($ point $)=\mathbb{Z} / p$.

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$.
This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\},
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right.$) (so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
\Rightarrow Let F be an algebraic closure of F
This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to \mathbb{Z}, topologically generated by ϕ.
- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\} \text {, }
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$ and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$(so Φ is noncanonically isomorphic to Θ).

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$.
- Let F be an algebraic closure of F

This has a Frobenius automorphism $\phi: \times \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\},
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right.$) (so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
\Rightarrow Let F be an algebraic closure of F
This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
> We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F. isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$ and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.
> We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\} \text {, }
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$ and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure.

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$ and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right)$(so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.
\rightarrow Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{x}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{x}\right.$) (so Φ is noncanonically isomorphic to Θ)

Finite general linear groups

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that $|F|=q$ with $v_{p}(q-1)=r>0$ so $q=1\left(\bmod p^{r}\right)$ but $q \neq 1\left(\bmod p^{r+1}\right)$. This implies that $v_{p}\left(q^{m}-1\right)=v_{p}(m)+r$ for all $m>0$.
- Let \bar{F} be an algebraic closure of F.

This has a Frobenius automorphism $\phi: x \mapsto x^{q}$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ.

- We put $\mathbb{H}=B G L_{1}(\bar{F})_{E}$, which has a natural group structure. One can choose an isomorphism

$$
G L_{1}(\bar{F}) \simeq\left\{u \in S^{1} \mid u^{r}=1 \text { for some } r \in \mathbb{Z},(r, q)=1\right\}
$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=\left(B S^{1}\right)_{E}$, and canonically isomorphic to $\operatorname{Tor}\left(\bar{F}^{\times}, \mathbb{G}\right)$.

- Generalised character theory compares \mathbb{G} with $\Theta=\left(\mathbb{Z} / p^{\infty}\right)^{n}$. We will also compare \mathbb{H} with $\Phi=\operatorname{Tor}\left(\bar{F}^{\times}, \Theta\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right.$) (so Φ is noncanonically isomorphic to Θ).

General linear groups over \bar{F}

TheoremThe inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.Equivalently,
$E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0}\left[x_{1}, \ldots, x_{d}\right]$,
and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementarysymmetric functions c_{1}, \ldots, c_{d}.
Proof.This is built into the foundations of étale homotopy theory.The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G I_{d}(\bar{F}) \leftarrow B G I_{d}(\bar{W}) \rightarrow B G I_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
(the Witt ring of \bar{F}) with residue field \bar{F}
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W} (the Witt ring of \bar{F}) with residue field \bar{F}.

Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem
The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.
This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W} (the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in mod p cohomology.
The claim follows easily from this.

General linear groups over \bar{F}

Theorem

The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.

This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in $\bmod p$ cohomology.

General linear groups over \bar{F}

Theorem

The inclusion $G L_{1}(\bar{F})^{d} \rightarrow G L_{d}(\bar{F})$ induces $G L_{d}(\bar{F})_{E} \simeq \mathbb{H}^{d} / \Sigma_{d} \simeq \operatorname{Div}_{d}^{+}(\mathbb{H})$.
Equivalently,

$$
E^{0}\left(B G L_{1}(\bar{F})^{d}\right)=E^{0} \llbracket x_{1}, \ldots, x_{d} \rrbracket,
$$

and $E^{0} B G L_{d}(\bar{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_{1}, \ldots, c_{d}.

Proof.

This is built into the foundations of étale homotopy theory.
The main point is that one can build a torsion-free local ring \bar{W}
(the Witt ring of \bar{F}) with residue field \bar{F}.
One can then choose an embedding $\bar{W} \rightarrow \mathbb{C}$.
Using the fact that $|F|$ is coprime to p, one can check that the maps

$$
B G L_{d}(\bar{F}) \leftarrow B G L_{d}(\bar{W}) \rightarrow B G L_{d}(\mathbb{C})
$$

induce isomorphisms in $\bmod p$ cohomology.
The claim follows easily from this.

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{\Gamma}$
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{\ulcorner }$
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{「}$.
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

The theorem of Tanabe

Recall that the group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ is generated by the Frobenius map ϕ.
Theorem (Tanabe)
The elements

$$
\phi^{*}\left(c_{k}\right)-c_{k} \in E^{0} B G L_{d}(\bar{F})=E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket
$$

form a regular sequence, and

$$
E^{0} B G L_{d}(F)=\frac{E^{0} \llbracket c_{1}, \ldots, c_{d} \rrbracket}{\left(\phi^{*}\left(c_{1}\right)-c_{1}, \ldots, \phi^{*}\left(c_{d}\right)-c_{d}\right)}=\left(E^{0} B G L_{d}(\bar{F})\right)_{\Gamma}
$$

Equivalently, we have $B G L_{d}(F)_{E}=\operatorname{Div}_{d}^{+}(\mathbb{H})^{\Gamma}$.
In many respects this is very satisfactory, but there are many natural questions that cannot be answered without more detailed algebraic analysis.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
\Rightarrow We write $\bar{\nu}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
\rightarrow Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(H)^{\Gamma}$
\Rightarrow The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{r}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.

- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
\Rightarrow We write $\bar{\nu}$ for the corresponding groupoid for \bar{F}, so $B \bar{\nu} \simeq \coprod_{d} B G L_{d}(\bar{F})$
- Now $B \mathcal{V}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $\left.B \mathcal{V}_{E}=\operatorname{Div}^{+}(H)\right)^{\prime}$
\Rightarrow The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\top}$
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{X}$

- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \mathcal{V}_{E}=\amalg_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{「}$
\rightarrow The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B V_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
\rightarrow Alternatively, $E_{*}^{\vee}(B V)$ and $K_{*}(B V)$ are Hopf rings.
- Some other groupoids are also relevant, for example $\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$
\rightarrow The index of $\Sigma_{d} l G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so
$B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the
homotopy category of spaces. This in turn makes $B V_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
- Alternatively, $E_{*}^{\vee}(B \nu)$ and $K_{*}(B \nu)$ are Hopf rings.
- Some other groupoids are also relevant, for example
\square
This has $B \mathcal{L} \simeq \amalg_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$
- The index of Σ_{d} $G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so
$B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces.
semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
\square
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$
- The index of $\sum_{d\}} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\oplus_{x} L_{x}$
- The index of $\sum_{d} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B V_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
\Rightarrow Alternatively, $E_{*}^{\vee}(B \nu)$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{C}=\{(X, I) \mid X$ is a finite set, and I is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \simeq \amalg_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$
- The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B V_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$
This has $B \mathcal{L} \sim \mathrm{IT}_{d} E \Sigma_{d} \times_{\Sigma_{d}} B G I_{+1}(F)^{d}$
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$
-

The index of $\left.\Sigma_{d}\right\} G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$.
- The index of $\left.\Sigma_{d}\right\urcorner G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example
$\mathcal{L}=\{(X, L) \mid X$ is a finite set, and L is an F-linear line bundle over $X\}$.
This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times_{\Sigma_{d}} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.

Groupoids

- Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B \mathcal{V} \simeq \coprod_{d} B G L_{d}(F)$.
- We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \bar{F}, so $B \overline{\mathcal{V}} \simeq \coprod_{d} B G L_{d}(\bar{F})$.
- Now $B \overline{\mathcal{V}}_{E}=\coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H})=\operatorname{Div}^{+}(\mathbb{H})$, and the functor $V \mapsto \bar{F} \otimes_{F} V$ gives $B \mathcal{V}_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ make $B \mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B \mathcal{V}_{E}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- Alternatively, $E_{*}^{\vee}(B \mathcal{V})$ and $K_{*}(B \mathcal{V})$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$
\mathcal{L}=\{(X, L) \mid X \text { is a finite set, and } L \text { is an } F \text {-linear line bundle over } X\}
$$

This has $B \mathcal{L} \simeq \coprod_{d} E \Sigma_{d} \times \Sigma_{d} B G L_{1}(F)^{d}$.
There is a functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ given by $\pi(X, L)=\bigoplus_{x} L_{x}$.

- The index of $\left.\Sigma_{d}\right\urcorner G L_{1}(F)^{d}$ in $G L_{d}(F)$ has index coprime to p, so $B \mathcal{L} \rightarrow B \mathcal{V}$ gives an epimorphism in E-cohomology. Earlier work on symmetric groups gives a good understanding of $E^{0} B \mathcal{L}$.

Generalised character theory

$>$ Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.

- Honkins, Kuhn and Ravenel defined a ring I which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, G\right]$ for the set of natural isomornhism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B G \simeq \operatorname{Map}\left(\left[\Theta^{*}, G\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{v} B G \simeq L\left\{\left[\Theta^{*}, G\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\Rightarrow It follows that $L \otimes E_{0} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial.
Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
\Rightarrow Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}
- Additively, this is freely generated by the $\operatorname{set} \operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
$>$ It follows that $L \otimes E_{0} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial.
\rightarrow Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes E_{0} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
$>$ It follows that $L \otimes E_{0} E_{0}^{\vee} B V$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial
\Rightarrow Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
\Rightarrow Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right)
$$

$\rightarrow E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}

- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\rightarrow It follows that $L \otimes E_{0} E_{0}^{V} B V$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial
\rightarrow Theorem: $F_{0}^{V} R \mathcal{V}$ is also nolynomial

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms
$L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes E_{0} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$
- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}
- Additively, this is freely generated by the $\operatorname{set} \operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\Rightarrow It follows that $L \otimes E_{0} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial
- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}
- Additively, this is freely generated by the $\operatorname{set} \operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\Rightarrow It follows that $L \otimes E_{0} E_{0}^{V} B V$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial
- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
\Rightarrow We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\Rightarrow It follows that $L \otimes E_{0} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
- We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}.
\rightarrow Additively, this is freely generated by the $\operatorname{set} \operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\rightarrow It follows that $L \otimes E_{0} E_{0}^{V} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial
\rightarrow Theorem: $E_{0}^{V} B V$ is also polynomial.

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
- We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
\rightarrow It follows that $L \otimes E_{0} E_{0}^{V} B V$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
- We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
- It follows that $L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial.

Generalised character theory

- Put $\Theta^{*}=\mathbb{Z}_{p}^{n}$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^{0}$ with Galois group $\operatorname{Aut}\left(\Theta^{*}\right)$.
- Let \mathcal{G} be a groupoid with finite hom sets.
- Write $\left[\Theta^{*}, \mathcal{G}\right]$ for the set of natural isomorphism classes of functors $\Theta^{*} \rightarrow \mathcal{G}$.
- HKR constructed isomorphisms

$$
L \otimes_{E^{0}} E^{0} B \mathcal{G} \simeq \operatorname{Map}\left(\left[\Theta^{*}, \mathcal{G}\right], L\right) \quad L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{G} \simeq L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}
$$

- $E_{0}^{\vee} B \mathcal{G}$ has a natural inner product, which becomes $\langle[\alpha],[\beta]\rangle=|\operatorname{Iso}(\alpha, \beta)|$ on $L\left\{\left[\Theta^{*}, \mathcal{G}\right]\right\}$.
- We can identify $\left[\Theta^{*}, \mathcal{V}\right]$ with $\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)$, the semiring of isomorphism classes of F-linear representations of Θ^{*}.
- Additively, this is freely generated by the set $\operatorname{lrr}\left(\Theta^{*} ; F\right)$ of irreducibles.
- It follows that $L \otimes_{E_{0}} E_{0}^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_{0}^{\vee} B \mathcal{V}$ is polynomial.
- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.

The Atiyah－Hirzebruch Spectral Sequence

－Theorem：$E_{0}^{\vee} B \mathcal{V}$ is also polynomial．
－It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial．
－We use the Atiyah－Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual．
－Quillen：$H_{*}\left(B \nu^{\prime} ; K_{*}\right)$ is generated by $B \nu_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
－Let $F(k)$ be the extension of F of degree p^{k} ，so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$ ．The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood， with only one differential．This gives some information about the AHSS for $G L_{p^{k}}(F)$ ．
－Tanabe and HKR also tell us that $K_{*}(B \nu)$ is concentrated in even degrees，with known rank．
－The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information．
－At the F_{∞} page，all exterior generators have been killed，and $b_{i}^{p^{m_{i}}}$ survives． This leaves a polynomial algebra，and it follows that $K_{*}(B \mathcal{V})$ is also polynomial．
－This is the most complex pattern of AHSS differentials that we have seen．

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
> We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \nu_{;} K_{*}\right)$ is generated by $B \nu_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
\Rightarrow Quillen: $H_{*}\left(B \mathcal{V}_{;} K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\Rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m i}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B V)$ is concentrated in even degrees, with known rank
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m i l}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial
\rightarrow This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
$>$ The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information
\rightarrow At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial
- This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
\rightarrow At the E_{∞} page, all exterior generators have been killed, and b_{i}^{p+1} survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial
\rightarrow This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
\rightarrow This is the most complex pattern of AHSS differentials that we have seen.

The Atiyah-Hirzebruch Spectral Sequence

- Theorem: $E_{0}^{\vee} B \mathcal{V}$ is also polynomial.
- It is enough to prove that $K_{0} B \mathcal{V}$ is polynomial.
- We use the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B \mathcal{V} ; K_{*}\right) \Longrightarrow K_{*}(B \mathcal{V})$ and its dual.
- Quillen: $H_{*}\left(B \mathcal{V} ; K_{*}\right)$ is generated by $B \mathcal{V}_{1}$ and has countably many polynomial generators b_{i} and exterior generators e_{i}.
- Let $F(k)$ be the extension of F of degree p^{k}, so $G L_{d}(F(k))$ maps to $G L_{p^{k} d}(F)$. The group $G L_{1}(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $G L_{p^{k}}(F)$.
- Tanabe and HKR also tell us that $K_{*}(B \mathcal{V})$ is concentrated in even degrees, with known rank.
- The ordinary ring structure on $K^{*}\left(B G L_{d}(F)\right)$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_{i}^{p^{m_{i}}}$ survives. This leaves a polynomial algebra, and it follows that $K_{*}(B \mathcal{V})$ is also polynomial.
- This is the most complex pattern of AHSS differentials that we have seen.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
\Rightarrow These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under $*$; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under *.
\Rightarrow The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V=U \oplus W}[U] \otimes[W]$.
\triangleright Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and $\left(E_{0}^{\vee} B V, *, \psi_{*}\right)$ is not a Hopf algebra.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
\Rightarrow These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under *; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V=U \oplus W}[U] \otimes[W]$.
\Rightarrow Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and ($E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}$) is not a Hopf algebra.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under *; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $\mathrm{K}_{0} \mathrm{BV}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under *
- The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V-U \oplus W}[U] \otimes[W]$
\rightarrow Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and $\left(E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}\right)$ is not a Hopf algebra

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \mathcal{V}=K_{0}\left[K_{0} B G L_{1}(F)\right]$, which is polynomial under *;
so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\prime \prime} B V$ are polynomial under *
\checkmark The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V=U \oplus W}[U] \otimes[W]$
\rightarrow Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and ($E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}$) is not a Hopf algebra.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under *; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under *.

\rightarrow Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and $\left(E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}\right)$ is not a Hopf algebra.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under *; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under $*$.
- The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
\rightarrow There is another coproduct, induced by the transfer associated to
\rightarrow Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and ($E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}$) is not a Hopf algebra.

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under *; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under *.
- The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V=U \oplus W}[U] \otimes[W]$.

$$
\text { not a homomorphism for } * \text {, and }\left(E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}\right) \text { is not a Hopf algebra. }
$$

More about (co)algebraic structures

- The functors $\oplus, \otimes: \mathcal{V}^{2} \rightarrow \mathcal{V}$ give products on $E_{0}^{\vee} B \mathcal{V}$ and on $K_{0} B \mathcal{V}$ and on $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}=L\left\{\operatorname{Rep}\left(\Theta^{*}, F\right)\right\}$.
- These are just $[U] *[W]=[U \oplus W]$ and $[U] \circ[W]=[U \otimes W]$.
- We can grade everything with $G L_{d}(F)$ in degree d; then $|a * b|=|a|+|b|$.
- $K_{0} B \mathcal{V}$ embeds in $K_{0} B \overline{\mathcal{V}}=K_{0}\left[K_{0} B G L_{1}(\bar{F})\right]$, which is polynomial under $*$; so $K_{0} B \mathcal{V}$ has no $*$-nilpotents. If $K_{0} B \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_{0} B \mathcal{V}$ and $E_{0}^{\vee} B \mathcal{V}$ are polynomial under $*$.
- The diagonal $\delta: \mathcal{V} \rightarrow \mathcal{V}^{2}$ gives a coproduct $[V] \mapsto[V] \otimes[V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus: \mathcal{V}^{2} \rightarrow \mathcal{V}$. This is $\psi_{*}([V])=\sum_{V=U \oplus W}[U] \otimes[W]$.
- Not every splitting of $V_{1} \oplus V_{2}$ comes from splittings of V_{1} and V_{2}; so ψ_{*} is not a homomorphism for $*$, and $\left(E_{0}^{\vee} B \mathcal{V}, *, \psi_{*}\right)$ is not a Hopf algebra.

Harish Chandra induction

- A variant: instead of using the transfer for $G L_{i} \times G L_{j} \rightarrow G L_{i+j}$, use the parabolic subgroup $P_{i j}$, the projection $P_{i j} \rightarrow G L_{i} \times G L_{j}$ and the inclusion $P_{i j} \rightarrow G L_{i+j}$. ("Harish Chandra induction").
- This gives another product $[U] \times[W]=\left|\operatorname{Hom}_{\ominus^{*}}(W, U)\right|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V])=\sum_{U<V}[U] \otimes[V / U]$. These still do not give a Hopf algebra structure.
- One can find $e \in E^{0} B \mathcal{V}$ with character values $e(U)=\mid$ End $_{\Theta^{*}}(U) \mid$. This is 1 mod the maximal ideal in $E^{0} B \mathcal{V}_{d}$, and $p>2$, so it has a square root. This satisfies

$$
(\sqrt{e(U)}[U]) \times(\sqrt{e(W)}[W])=\sqrt{e(U \oplus W)}[U \oplus W]
$$

so $\left(E_{0}^{\vee} B \mathcal{V}, \times\right) \simeq\left(E_{0}^{\vee} B \mathcal{V}, *\right)$.

- The failure of the Hopf algebra axiom is measured by $u \in\left(E^{0} B \mathcal{E}\right)^{x}$ for an auxiliary groupoid \mathcal{E}. This has character values of the form $\left|\operatorname{Hom}_{\ominus *}(A, B)\right| \in q^{\mathbb{N}} \subseteq 1+p^{r} \mathbb{Z}$. However, $u \neq 1$ in $\left(E / I_{n}\right)^{0} B \mathcal{E}$.

Harish Chandra induction

- A variant: instead of using the transfer for $G L_{i} \times G L_{j} \rightarrow G L_{i+j}$, use the parabolic subgroup $P_{i j}$, the projection $P_{i j} \rightarrow G L_{i} \times G L_{j}$ and the inclusion $P_{i j} \rightarrow G L_{i+j}$. ("Harish Chandra induction").
\Rightarrow This gives another product $[U] \times[W]=\left|\operatorname{Home}_{\ominus *}(W, U)\right|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V])=\sum_{U \leq V}[U] \otimes[V / U]$. These still do not give a Hopf algebra structure.
\Rightarrow One can find $e \in E^{0} B \mathcal{V}$ with character values $e(U)=\mid$ Ende* $_{\Theta^{*}}(U) \mid$. This is 1 mod the maximal ideal in $E^{0} B \mathcal{V}_{d}$, and $p>2$, so it has a square root. This satisfies

$$
(\sqrt{e(U)}[U]) \times(\sqrt{e(W)}[W])=\sqrt{e(U \oplus W)}[U \oplus W],
$$

so $\left(E_{0}^{\vee} B \mathcal{V}, \times\right) \simeq\left(E_{0}^{\vee} B \mathcal{V}, *\right)$.

- The failure of the Hopf algebra axiom is measured by $u \in\left(E^{0} B \mathcal{E}\right)^{x}$ for an auxiliary groupoid \mathcal{E}. This has character values of the form $\operatorname{Hom}_{\ominus *}(A, B) \mid \in q^{\mathbb{N}} \subseteq 1+p^{r} \mathbb{Z}$. However, $u \neq 1$ in $\left(E / I_{n}\right)^{0} B \mathcal{E}$

Harish Chandra induction

- A variant: instead of using the transfer for $G L_{i} \times G L_{j} \rightarrow G L_{i+j}$, use the parabolic subgroup $P_{i j}$, the projection $P_{i j} \rightarrow G L_{i} \times G L_{j}$ and the inclusion $P_{i j} \rightarrow G L_{i+j}$. ("Harish Chandra induction").
- This gives another product $[U] \times[W]=\left|\operatorname{Hom}_{\Theta^{*}}(W, U)\right|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V])=\sum_{U \leq V}[U] \otimes[V / U]$. These still do not give a Hopf algebra structure.
\Rightarrow One can find $e \in E^{0} B \mathcal{V}$ with character values $e(U)=\mid$ Ende* $_{\theta^{*}}(U) \mid$. This is 1 mod the maximal ideal in $E^{0} B \mathcal{V}_{d}$, and $p>2$, so it has a square root. This satisfies

$$
(\sqrt{e(U)}[U]) \times(\sqrt{e(W)}[W])=\sqrt{e(U \oplus W)}[U \oplus W]
$$

so $\left(E_{0}^{\vee} B \mathcal{V}, \times\right) \simeq\left(E_{0}^{\vee} B \mathcal{V}, *\right)$.

- The failure of the Hopf algebra axiom is measured by $u \in\left(E^{0} B \mathcal{E}\right)^{x}$ for an auxiliary groupoid \mathcal{E}. This has character values of the form $\left|\operatorname{Hom}_{\Theta^{*}}(A, B)\right| \in q^{\mathbb{N}} \subseteq 1+p^{r} \mathbb{Z}$. However, $u \neq 1$ in $\left(E / I_{n}\right)^{0} B \mathcal{E}$

Harish Chandra induction

- A variant: instead of using the transfer for $G L_{i} \times G L_{j} \rightarrow G L_{i+j}$, use the parabolic subgroup $P_{i j}$, the projection $P_{i j} \rightarrow G L_{i} \times G L_{j}$ and the inclusion $P_{i j} \rightarrow G L_{i+j}$. ("Harish Chandra induction").
- This gives another product $[U] \times[W]=\left|\operatorname{Hom}_{\Theta^{*}}(W, U)\right|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V])=\sum_{U \leq V}[U] \otimes[V / U]$. These still do not give a Hopf algebra structure.
- One can find $e \in E^{0} B \mathcal{V}$ with character values $e(U)=\left|\operatorname{End}_{\Theta^{*}}(U)\right|$. This is 1 mod the maximal ideal in $E^{0} B \mathcal{V}_{d}$, and $p>2$, so it has a square root. This satisfies

$$
\begin{aligned}
& \quad(\sqrt{e(U)}[U]) \times(\sqrt{e(W)}[W])=\sqrt{e(U \oplus W)}[U \oplus W] \\
& \text { so }\left(E_{0}^{\vee} B \mathcal{V}, \times\right) \simeq\left(E_{0}^{\vee} B \mathcal{V}, *\right)
\end{aligned}
$$

Harish Chandra induction

- A variant: instead of using the transfer for $G L_{i} \times G L_{j} \rightarrow G L_{i+j}$, use the parabolic subgroup $P_{i j}$, the projection $P_{i j} \rightarrow G L_{i} \times G L_{j}$ and the inclusion $P_{i j} \rightarrow G L_{i+j}$. ("Harish Chandra induction").
- This gives another product $[U] \times[W]=\left|\operatorname{Hom}_{\Theta^{*}}(W, U)\right|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V])=\sum_{U \leq V}[U] \otimes[V / U]$. These still do not give a Hopf algebra structure.
- One can find $e \in E^{0} B \mathcal{V}$ with character values $e(U)=\left|\operatorname{End}_{\Theta^{*}}(U)\right|$. This is 1 mod the maximal ideal in $E^{0} B \mathcal{V}_{d}$, and $p>2$, so it has a square root. This satisfies

$$
(\sqrt{e(U)}[U]) \times(\sqrt{e(W)}[W])=\sqrt{e(U \oplus W)}[U \oplus W]
$$

so $\left(E_{0}^{\vee} B \mathcal{V}, \times\right) \simeq\left(E_{0}^{\vee} B \mathcal{V}, *\right)$.

- The failure of the Hopf algebra axiom is measured by $u \in\left(E^{0} B \mathcal{E}\right)^{\times}$for an auxiliary groupoid \mathcal{E}. This has character values of the form $\left|\operatorname{Hom}_{\Theta^{*}}(A, B)\right| \in q^{\mathbb{N}} \subseteq 1+p^{r} \mathbb{Z}$. However, $u \neq 1$ in $\left(E / I_{n}\right)^{0} B \mathcal{E}$.

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
\Rightarrow The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
\Rightarrow Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{!}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map.
\Rightarrow Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{!}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map.
\Rightarrow Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
\rightarrow Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
\rightarrow Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
\rightarrow In this picture, $\pi[V, T]=[V]$ and $\pi^{!}[V]=\sum_{\text {trellises } T}[V, T]$.
\rightarrow Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map.
\rightarrow Can we give a ring map $E_{0}^{\vee} B V \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{\prime}[V]=\sum_{\text {trellises } T}[V, T]$
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map.
\Rightarrow Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
\Rightarrow In this picture, $\pi[\mathrm{V}, \mathrm{T}]=[\mathrm{V}]$ and $\pi^{\prime}[\mathrm{V}]=\sum_{\text {trellises } T}[\mathrm{~V}, \mathrm{~T}]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map.
- Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{\prime}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{!}[U \oplus W] \neq \pi^{!}[U] \pi^{!}[W]$, so $\pi^{!}$is not a ring map
- Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{V^{\prime}} B V$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{\prime}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{\prime}[U \oplus W] \neq \pi^{\prime}[U] \pi^{\prime}[W]$, so π^{\prime} is not a ring map.
- Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{\prime}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{\prime}[U \oplus W] \neq \pi^{!}[U] \pi^{\prime}[W]$, so π^{\prime} is not a ring map.
- Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Trellises

- $\left[\Theta^{*}, \mathcal{L}\right]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^{*}-set, and L is a Θ^{*}-equivariant F-linear line bundle over X.
- The functor $\pi: \mathcal{L} \rightarrow \mathcal{V}$ induces $[X, L] \mapsto\left[\bigoplus_{x} L_{x}\right]$.
- Alternatively: a trellis in a Θ^{*}-representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^{*}, and whose direct sum is V.
- Then $\left[\Theta^{*}, \mathcal{L}\right]$ is the category of representations equipped with a trellis.
- In this picture, $\pi[V, T]=[V]$ and $\pi^{\prime}[V]=\sum_{\text {trellises } T}[V, T]$.
- Note that $\pi^{\prime}[U \oplus W] \neq \pi^{\prime}[U] \pi^{\prime}[W]$, so π^{\prime} is not a ring map.
- Can we give a ring map $E_{0}^{\vee} B \mathcal{V} \rightarrow E_{0}^{\vee} B \mathcal{L}$ which is a section of π ?
- (It is known that $E_{0}^{\vee} B \mathcal{L}$ is polynomial; a section as above would give another proof that $E_{0}^{\vee} B \mathcal{V}$ is polynomial.)

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}.

Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
\checkmark Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.
Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\ulcorner }$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\ulcorner }$.
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
\rightarrow Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p m}^{m}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}.

Then End ${ }_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ

- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism. Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
- These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$
$>$ This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\ulcorner }$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{「}$
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
\Rightarrow Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
$>$ Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism. Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
$>$ These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\ulcorner }$that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of F, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(H)^{\Gamma}$
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\ulcorner }$that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.
$>$ These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$
\Rightarrow This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\ulcorner }$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$

- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\ulcorner }$that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
 $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$
\rightarrow For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
\rightarrow Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{lrr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
\Rightarrow For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{Irr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
\rightarrow Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $F^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{lrr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\ulcorner }$that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles

- Let W be an irreducible F-linear representation of Θ^{*}. Then $\operatorname{End}_{F\left[\Theta^{*}\right]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \bar{F}, unique up to the action of Γ.
- Let $\omega: \Theta^{*} \rightarrow \bar{F}^{\times}$be a continuous homomorphism.

Then the set $W=\operatorname{span}_{F}\left(\omega\left(\Theta^{*}\right)\right)$ is a finite subfield of \bar{F}, and we can use ω to give an action of Θ^{*} on W, making it an irreducible representation.

- These constructions give a bijection $\operatorname{lrr}\left(\Theta^{*} ; F\right) \simeq \operatorname{Hom}\left(\Theta^{*}, \bar{F}^{\times}\right) / \Gamma=\Phi / \Gamma$.
- This in turn gives $\operatorname{Rep}\left(\Theta^{*} ; F\right)=\operatorname{Div}^{+}(\Phi)^{\Gamma}$, meshing nicely with Tanabe's $(B \mathcal{V})_{E}=\operatorname{Div}^{+}(\mathbb{H})^{\Gamma}$.
- For $m>0$, the irreducibles of dimension p^{m} correspond to orbits $\Gamma \phi=\phi+p^{r} \mathbb{Z}_{p} \phi$ where ϕ has order precisely p^{m+r}.
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^{r} \phi=0$. There are no other irreducibles.
- Problem: find a closed subscheme of $E^{0} B G L_{p^{m}}(F)=\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})^{\Gamma}$ that corresponds to $\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right)$ in generalised character theory.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
\Rightarrow Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}
\Rightarrow If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{lnd}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$
- The generators of $L \otimes_{E^{0}} E_{0}^{\vee} B \vee$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring $\operatorname{map} L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
- Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$.
\rightarrow A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is

$$
\left\{(\Lambda, C) \mid \Lambda \text { is a finite subgroup of } \mathbb{H}, C \in \mathbb{H} / A, p^{r} C=0_{\mathbb{H}} / A\right\} \text {. }
$$

This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
\Rightarrow Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just F
\Rightarrow If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{lnd}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$
- The generators of $L \otimes_{F^{0}} E_{0}^{\vee} B \vee$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring map $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
\triangleright Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$.
- A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is
$\left\{(\Lambda, C) \mid \Lambda\right.$ is a finite subgroup of $\left.\mathbb{H}, C \in \mathbb{H} / A, P^{r} C=0 \mathbb{H} / A\right\}$
This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser $\operatorname{group} \operatorname{ann}(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just F.
- If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{Ind}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$
- The generators of $L Q_{E^{0}} E_{0}^{V} B V$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring map $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π
- Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{6} \neq \mathbb{Z}\left[X^{6}\right]$
- A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is
$\left\{(A, C) \mid A\right.$ is a finite subgroup of $\left.\mathbb{H}, C \in \mathbb{H} / A, P^{r} C=0 \mathbb{H} / A\right\}$
This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}.
\Rightarrow If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{lnd}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$
- The generators of $L \otimes_{F_{0}} E_{0}^{\vee} B \vee$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring map $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
- Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$
A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is
$\left\{(A, C) \mid A\right.$ is a finite subgroup of $\left.\mathbb{H}, C \in \mathbb{H} / A, p^{r} C=0_{\mathbb{H} / A}\right\}$
This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}.
- If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{Ind}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$.
\rightarrow The generators of $L \otimes_{E^{0}} E_{0}^{\vee} B V$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring map $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
\rightarrow Does this send $E_{0}^{V} B V$ to $E_{0}^{V} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$
\rightarrow A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is

This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}.
- If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{Ind}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$.
- The generators of $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring map $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
> \Rightarrow Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$ \rightarrow A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}.
- If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{Ind}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$.
- The generators of $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring $\operatorname{map} L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
- Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$.
\rightarrow A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is
$\left\{(A, C) \mid A\right.$ is a finite subgroup of $\left.\mathbb{H}, C \in \mathbb{H} / A, p^{r} C=0_{\mathbb{H} / A}\right\}$
This uses the apparatus of power operations.

Irreducibles in the line bundle category

- Let A be a finite subgroup of $\Theta \simeq\left(\mathbb{Z} / p^{\infty}\right)^{n}$, and let $C \subset \Theta$ be a coset with $p^{r} C \subseteq A$.
- Now A^{*} is a finite set with action of Θ^{*}, and C gives a character of the stabiliser group ann $(A) \leq \Theta^{*}$ and thus a line bundle over A^{*}.
- The condition $p^{r} C \subseteq A$ ensures that this is defined over F, not just \bar{F}.
- If we put $\mathcal{C}=\{$ all cosets like this $\}$, then we get $\operatorname{Ind}\left(L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}\right)=L\{\mathcal{C}\}$.
- The generators of $L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p^{r} \alpha$. This gives a ring $\operatorname{map} L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{V} \rightarrow L \otimes_{E^{0}} E_{0}^{\vee} B \mathcal{L}$ splitting π.
- Does this send $E_{0}^{\vee} B \mathcal{V}$ to $E_{0}^{\vee} B \mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^{G} \neq \mathbb{Z}\left[X^{G}\right]$.
- A schematic version: $\operatorname{spf}\left(E^{0} B \mathcal{L} /\right.$ transfers $)$ is

$$
\left\{(A, C) \mid A \text { is a finite subgroup of } \mathbb{H}, C \in \mathbb{H} / A, p^{r} C=0_{\mathbb{H} / A}\right\}
$$

This uses the apparatus of power operations.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so
$E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\ulcorner }
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right)
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p m}^{+}(\mathrm{HI})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}\left[q^{i}\right](x) \in D_{m}^{\Gamma}
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right) .
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p_{m}^{\prime}}^{+}(\mathbb{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p}\left[q^{i}\right](x) \in D_{m}^{\ulcorner } \text {. }
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right)
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p m}^{\prime}(\mathbb{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\ulcorner }\right)$.

We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p}\left[q^{i}\right](x) \in D_{m}^{\ulcorner } \text {. }
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right) .
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\mathrm{Div}_{p m}^{\prime}(\mathrm{HI})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$. In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.

We also put

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$. There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\mathrm{Div}_{p^{m}}^{+}(\mathrm{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$.
This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\ulcorner }
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for $D_{m}^{\ulcorner }$over E^{0}, and that $D_{m}^{\ulcorner }$is a regular local ring.
We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$. There is an isomorphism $\bar{F} \otimes_{F} F_{p m} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p_{m}^{+}}^{+}(\mathbb{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$. In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.

We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\ulcorner }
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident
functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\mathrm{Div}_{p^{m}}^{+}(\mathrm{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$. In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.

We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\Gamma}
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p m}^{+}(\mathrm{HI})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\Gamma}
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right)
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$. This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\Gamma}
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right)
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. subscheme of $\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})$.

Irreducibles in formal group theory

There is a cyclic subgroup $U_{m} \leq G L_{p^{m}}(F)$ of order p^{m+r}, so $E^{0} B U_{m} \simeq E^{0} \llbracket x \rrbracket /\left[p^{m+r}\right](x)$.
Now $\left[p^{m+r}\right](x)$ factors as $g_{m}(x)\left[p^{m+r-1}\right](x)$, and we put $D_{m}=E^{0} \llbracket x \rrbracket / g_{m}(x)$.
This still has an action of Γ, and we put $X_{m}=\operatorname{spf}\left(D_{m}^{\Gamma}\right)$.
In a different language: $\operatorname{spf}\left(D_{m}\right)=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right)$ and $X_{m}=\operatorname{Level}\left(U_{m}^{*}, \mathbb{G}\right) / \Gamma$.
We also put

$$
y=\prod\{\Gamma-\text { orbit of } x\}=\prod_{i=0}^{p^{m}-1}\left[q^{i}\right](x) \in D_{m}^{\Gamma}
$$

One can check that the set $\left\{y^{i} \mid 0 \leq i<p^{(m+r-1) n-m}\left(p^{n}-1\right)\right\}$ is a basis for D_{m}^{Γ} over E^{0}, and that D_{m}^{Γ} is a regular local ring.

We can regard U_{m} as a groupoid with one object, and there is an evident functor $i: U_{m} \rightarrow \mathcal{V}$ sending the unique object to $F_{p^{m}}$.
There is an isomorphism $\bar{F} \otimes_{F} F_{p^{m}} \rightarrow \prod_{i=0}^{p^{m}-1} \bar{F}$ given by

$$
a \otimes b \mapsto\left(a b, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)\right)
$$

Using this, we find that the element $c_{p^{m}} \in E^{0} B G L_{p^{m}}(\bar{F})$ maps to $y \in D_{m}^{\Gamma}$. It follows that the map $i^{*}: E^{0} B G L_{p^{m}}(F) \rightarrow D_{m}^{\Gamma}$ is surjective, so X_{m} is a closed subscheme of $\operatorname{Div}_{p^{m}}^{+}(\mathbb{H})$.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set（not a formal scheme），and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)
$$

Question：is there an analogous splitting

$$
\begin{aligned}
& B G I_{p^{m}}(F)_{E}=X_{m} \text { I } N_{m} \text { of formal schemes, or } \\
& E^{0} B G L_{p^{m}}(F)=D_{m}^{r} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer：no，$E^{0} B G L_{p^{m}}(F)$ is a local ring，and does not split as a product． It does split after rationalising，by HKR．

This is a common phenomenon in this kind of algebra．Instead of splittings $A=B \times C$ ，we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$ ，which makes I a C－module and J a B－module．In the best cases $/$ will be free of rank one over C and／or J will be free of rank one over B ．
Example：$A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$ where $f(t)$ and $g(t)$ are monic polynomials．

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{lrr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)$.
Question: is there an analogous splitting

$$
\begin{aligned}
& B G I_{p^{m}}(F)_{E}=X_{m} \text { IIM/ of formal schemes, or } \\
& E^{0} B G L_{p^{m}}(F)=D_{m}^{r} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases $/$ will be free of rank one over C and/or J will be free of rank one over B.

Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$
where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$\operatorname{Rep}_{\rho^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)$.

> Question: is there an analogous splitting
> $B G L_{P^{m}}(F)_{E}=X_{m} \amalg W_{m}$ of formal schemes, or $E^{0} B G L_{p^{m}}(F)=D_{m}^{\Gamma} \times C_{m}$ of rings?

> Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

> This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

> Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$
> where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra. Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.
Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$
where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{\rho^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.
This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(1)$, which makes I a C-module and J a B-modu'e. In the best cases I will be free of rank one over C and/or J will be free of rank one over B. Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$ where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{Irr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{\rho^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

> This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases $/$ will be free of rank one over C and/or J will be free of rank one over B Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$ where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{lrr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra. Instead of splittings
$A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and
$J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$
where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{lrr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{lrr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases I will be free of rank one over C and/or J will be free of rank one over B.
where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

The semiring $\operatorname{Rep}^{+}\left(\Theta^{*}, F\right)$ is a set (not a formal scheme), and it splits as

$$
\operatorname{Rep}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}\left(\Theta^{*} ; F\right)=\coprod_{m} \operatorname{lrr}\left(\Theta^{*} ; F\right)^{m} / \Sigma_{m} .
$$

$$
\operatorname{Rep}_{p^{m}}^{+}\left(\Theta^{*} ; F\right)=\operatorname{Irr}_{p^{m}}\left(\Theta^{*} ; F\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right)=\operatorname{Mon}\left(U_{m}^{*}, \Theta\right) \amalg \operatorname{Red}_{p^{m}}\left(\Theta^{*} ; F\right) .
$$

Question: is there an analogous splitting

$$
\begin{aligned}
B G L_{p^{m}}(F)_{E} & =X_{m} \amalg W_{m} \text { of formal schemes, or } \\
E^{0} B G L_{p^{m}}(F) & =D_{m}^{\Gamma} \times C_{m} \text { of rings? }
\end{aligned}
$$

Answer: no, $E^{0} B G L_{p^{m}}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A=B \times C$, we often have $B=A / I$ and $C=A / J$ with $I=\operatorname{ann}(J)$ and $J=\operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

Example: $A=R[t] /(f(t) g(t)), \quad B=R[t] / f(t), \quad C=R[t] / g(t)$ where $f(t)$ and $g(t)$ are monic polynomials.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$. Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{lnd}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.
Problem: find a finer decomposition of $E^{0} B G I \quad(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.

We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{lnd}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.

Problem: find a finer decomposition of $E^{0} R G I \quad(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that $D_{m}^{\ulcorner }$is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say.Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}.From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$. Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.

We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right),
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for $\operatorname{ann}(J)$.
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$

Problem: find a finer decomposition of $E^{0} B G L_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say.Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
I=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(\Gamma)^{p}\right) \rightarrow \Sigma^{0}\left(B G L_{p}^{m}(F)\right)\right)
$$

so $\operatorname{lnd}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\ulcorner }$.
Problem: find an explicit generator for ann (J)
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.

Problem: find a finer decomposition of $\left.E^{0} B G I d F\right)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say.Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.

We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{D}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\ulcorner }$
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.

Problem: find a finer decomposition of $E^{0} B G I I_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$. Problem: find a finer decomposition of $E^{0} B G L_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $\operatorname{ann}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$. Problem: find a finer decomposition of $E^{0} B G I I_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $a_{n n}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate.

Problem: find a finer decomposition of $E^{0} B G L_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say.Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $a_{n n}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for ann (J).
In the case $m=1$, the element $c_{p}\left(\psi^{p}(\right.$ Taut $\left.)\right)$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.

[^1]
Splitting and amalgamation

We have seen that D_{m}^{Γ} is the quotient of the ring $A=E^{0} B G L_{p^{m}}(F)$ by an ideal J say. Here A and $D^{\ulcorner }$are both Frobenius algebras over E^{0}. From this it follows automatically that J and ann (J) are both E^{0}-module summands in A, and that $a_{n n}^{2}(J)=J$.Moreover, ann (J) is a free module of rank one over D_{m}^{Γ}.
We know that $E_{0}^{\vee} B \mathcal{V}$ is polynomial, and it follows by self-duality that $E^{0} B \mathcal{V}$ is polynomial under the transfer product, and we have

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{p^{m-1}}(F)^{p}\right) \rightarrow E^{0}\left(B G L_{p^{m}}(F)\right)\right)
$$

so $\operatorname{Ind}_{p^{m}}\left(E^{0} B \mathcal{V}\right)=D_{m}^{\Gamma}$.
Problem: find an explicit generator for $\operatorname{ann}(J)$.
In the case $m=1$, the element $c_{p}\left(\psi^{p}\right.$ (Taut)) is the required generator, but the proof is elaborate. We do not know whether a similar formula works for $m>1$.
Problem: find a finer decomposition of $E^{0} B G L_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

An easier problem

Consider instead the ideals $I=\operatorname{ker}\left(E^{0} B G L_{d}(F) \rightarrow E^{0}\left(B G L_{d-1}(F)\right)\right.$ and

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{d-1}(F)\right) \rightarrow E^{0}\left(B G L_{d}(F)\right)\right),
$$

Both I and J are E^{0}-module summands, and they are annihilators of each other.
I is generated by the Euler class euler $=c_{d}$.
There is an element fix $\in E^{0}\left(B G L_{d}(F)\right)$ with generalised character values fix $(V)=\left|V^{\Phi^{*}}\right|$. We find that J is generated by fix -1 .

An easier problem

Consider instead the ideals $I=\operatorname{ker}\left(E^{0} B G L_{d}(F) \rightarrow E^{0}\left(B G L_{d-1}(F)\right)\right.$ and

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{d-1}(F)\right) \rightarrow E^{0}\left(B G L_{d}(F)\right)\right),
$$

Both I and J are E^{0}-module summands, and they are annihilators of each other.
I is generated by the Euler class euler $=c_{d}$.
There is an element fix $\in E^{0}\left(B G L_{d}(F)\right)$ with generalised character values $\mathrm{fix}(V)=\left|V^{\Phi^{*}}\right|$. We find that J is generated by fix -1 .

An easier problem

Consider instead the ideals $I=\operatorname{ker}\left(E^{0} B G L_{d}(F) \rightarrow E^{0}\left(B G L_{d-1}(F)\right)\right.$ and

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{d-1}(F)\right) \rightarrow E^{0}\left(B G L_{d}(F)\right)\right),
$$

Both I and J are E^{0}-module summands, and they are annihilators of each other. I is generated by the Euler class euler $=c_{d}$.

An easier problem

Consider instead the ideals $I=\operatorname{ker}\left(E^{0} B G L_{d}(F) \rightarrow E^{0}\left(B G L_{d-1}(F)\right)\right.$ and

$$
J=\operatorname{img}\left(\operatorname{tr}: E^{0}\left(B G L_{d-1}(F)\right) \rightarrow E^{0}\left(B G L_{d}(F)\right)\right),
$$

Both I and J are E^{0}-module summands, and they are annihilators of each other. I is generated by the Euler class euler $=c_{d}$.

There is an element fix $\in E^{0}\left(B G L_{d}(F)\right)$ with generalised character values fix $(V)=\left|V^{\Phi^{*}}\right|$. We find that J is generated by fix -1 .

[^0]: (The case where F has characteristic p is also interesting, but much harder.)

[^1]: Problem: find a finer decomposition of $E^{0} B G L_{d}(F)$ as an amalgamation of simpler quotient rings, and use it to give a basis for $E^{0} B G L_{d}(F)$ over E^{0}.

