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Key Points

= (1) Proposing the “Many-Objective Visual Analytics” framework for complex
engineered systems design.

= (2) Seeking to avoid cognitive myopia (too limited a view of optimality) and
cognitive hysteresis (preconceptions limit discoveries)

= (3) Arrow’s Paradox: optimizing aggregated performance measures does not
optimize individual components in a predictable fashion

= (4) Preferences develop and evolve opportunistically in response to how
changing formulations provide solutions with desirable characteristics (what
is the non-dominated problem?)

= (5) Operational use of MOEAs requires efficiency, effectiveness, reliability,
and controllability—proof must be based on rigorous algorithm diagnostics
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Defining the Problem is THE PROBLEM

= What are complex engineered systems?

Systems where the “...tightly coupled interacting
phenomena yield a collective behavior that cannot be
derived by the simple summation of the behavior of

the parts”.

Bloebaum?®, C. L. and McGowan, A.-M. R., 2010, "Design of Complex
Engineered Systems," ASME Journal of Mechanical Design, 132(12), 120301
(*Bloebaum USNSF Program Manager for Engineering Design)
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Many-Objective Visual Analytics

Many-Objective Search

Negotiated
Design Selection

Formulation, search, and visual
discovery mutually interact

Problem Conception
and Formulation

Interactive
Visualization

= Complex engineered systems

— Emergent behavior
— Challenging design space: constraints, interactions, discontinuities,
nonlinearities

— Validity of a priori preferences? Goals?
= Many-Objective Visual Analytics (MOVA)!
1 Woodruff et al, Structural and

— lterative, not linear Multidisciplinary Optimization (In-

— Mutual feedbacks, constructive learning? Press)
2 Tsoukias, European Journal of

PENNSTATE Operational Research (2008)
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Stakeholder Interviews

Application Program Interfacing (API)

|dentify Design Parameters Itii?sﬁfy existing modeling Design Parameters
Identify Key Objectives 2ot
Identify Constraints ) | Integrate with modeling tools Key Objectives
. | through API
. - Constraints
Variables Requirements - ¢ | Build new models if necessary
Assumptions Goals < o
Constants © ¢ | Expose API to optimization
- - | tools

Explore, Visualize, Communicate Multi-Objective Optimization

1563.90 — ——

Watch de5|g!'1$ evolye EI0e AerOVi | ™ Massively parallel search

:odetntlfy kgy |f\teract|onst using multi-objective
E_We?n esngdn PRIBIINEER, evolutionary algorithms
objectives, and constraints (MOEAs)

"
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Provide an accessible Borg MOEA for many-
visualization roadmap of key objective optimization

tradeoffs to Decision Maker
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LET’S MOTIVATE “MOVA” WITH A
REAL WORLD ILLUSTRATION
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Watching Convergence & Diversity

= Visualize dynamics

Three-objective Test Problem — To understand search

MOEA Search (Red) — To avoid errors or
wasted effort due to
arbitrary termination
choices

— Can meaningfully
compare formulations
or algorithms

= Stakeholders see the full
context of what was

gained

Notice how it not only finds
the solution, but also
Target Solution Set (Gray)distributes itself across the
solution.
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Long-Term Groundwater Monitoring Network Design

Estimation Uncertainty

" How can we Opl‘lma“y 0.014 0033 0052 0071 _ 0.09
sample a minimum subset | -
of wells?

= Tools:

— PCE contaminant plume

— Evaluations based on Quantile
Kriging

= QObjectives: 20

X(meters)

— Sampling Cost
— Mapping Error

. . 1045
Risk (Uncertainty) smetors) 2
— Mass Error * 60 574 518 262

Y(meters)

PENNSTATE
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The Benefits of Many
Objectives

The original low cost solution
26 is now inferior when

° considering the error
objective.

Error17 °

5 15 25 35 4
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The Benefits of Many
Objectives 1

34
. . . \]

: Smgle Objective .1 s

Design Problem... The original low cost solution

. . 26 is now inferior when

" Two ObjECtIVG 08 o® considering the error

Design Problem... ° objective.

:!3 2
)
Error17 :: ':::;:.

5 15 25 35 45

PENNSTATE
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The Benefits of Many
Objectives g —

= Single Objective 1354
Design Problem...
= Two Objective “ s
Design Problem...

= Many-Objective
Design Problem...

— More compromise
solutions

Error17

— Considers many
subproblems

= Two and three
objective subsets

= Difficult to specify : 5 15 25 35 45
manually j Cost

PENNSTATE

Many-Objective Visual Analytics




The Benefits of Many

Mass
1 ? 0.0 0.7 1.3 2.0 2.6
Objectives e’ omin O om

= Single Objective
Design Problem...

= Two Objective
Design Problem...

= Many-Objective
Design Problem...

— More compromise
solutions

— Considers many
subproblems

= Two and three
objective subsets

Risk
= Difficult to specify : Cost 37 %

manually ; 47564

PENNSTATE
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The Benefits of Many

Mass
. . . 2.0 2.6
Objectives
= Single Objective »
Design Problem... 30
. . i
= Two Objective ol .
Q 5 @ @
Design Problem... o gy ;f o
& o o
= Many-Obijective 0o 25% 3 SR
, Ermor17|  ceess®s ¥ 5351
Design Problem... R L5
— More compromise i
. 9
solutions
— Considers many
subproblems 0,
= Two and three .
objective subsets | >
= Difficult to specify - Cost
manually :

PENNSTATE
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Software for Visual Analytics

File Edit Tools Plugins Window Help ©

1563.8300 1284.0000 1563.8300

ope e J 1284.0000 1563.8300 ] %5.4f
— Facilitates efficient exploration S

-4,4525 1.6870 [ @ log10 > %.4f

oo Plot Control Buttons & X Variable Settings & X
hge Brushing Limits Reset Plotting Limits LockReset Transform Precision Min/Max
.
u Ae rOVI S 46.0000 7.0000 46.0000 @) 7.0000 46.0000 (@](pone—~) %ot
34.3566 0.1762 34.3566 @ 0.1762 34.3566 [} @ %.4f

s CEEE

— Highly interactive AR e | == e

Snapshot Quality: 95
Mass Resize: 10

-‘ Magnification:
*) Software Screenshot

@ Plotting Window Only

-4.5 29

* Rotate, zoom, pan, pick m

.l_‘
IS

* All with a click of the mouse E—TT—
— Customizable ]
* Plugins for interfacing with S e
external software (e.g., Matlab) 1

") Software Screenshot
@ Plotting Window Only

— Serves a wide user base s 12352 o < e

* Beginners to Power Users -

— “Presentable”

* All visuals and animations in this
presentation were created directly
in the software

5 ok [ cose ][ apoy | 34.386.00

Total Displayed Solutions: 2567

Stack Auto
Data Update

— 100%
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Long-Term Groundwater Monitoring Network Design

Mass

-4.5 2.9 -1.4 0.2 1.7
7.09
Four Objectives Rl |
and 33-Million e
Possibilities 156385 &
_ E 149387
2570 Optimal

Alternatives Nige 142392

3 Compromises L
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Long-Term Groundwater Monitoring Network Design

Four Design
Objectives and ) .

RV Compromise solutions found §
33-Million through efficient exploration i
Possibilities | and interaction with Pareto set
2570 Optimal

Alternatives

3 Compromises

PENNSTATE
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ARROW’S PARADOX: THE HIDDEN
COSTS OF AGGREGATION
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Problem Statement

Y Product family for three General
b Aviation Aircraft (GAA): 2, 4, and

6 seats.

Balancing Commonality vs
Performance

AR, WINGLD

9 decision variables per aircraft

9 performance criteria per
aircraft

3 different formulations:
-1 objective (yellow)

-2 objectives (blue)

-10 objectives (red)

ELODT
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Single Objective Problem Formulation

Goal (G)== Attainment (A)l Shortage (S)T
a T +— - w > a T o+ = w X T T w X X
0L3352223050052223020352223
Z2=Aaxa2x83z=280cz2=2=x83z=2a8z2=2=z8=

S

Response

—
L
>
L
=

Iz

2 Seats 4 Seats 6 Seats
. S S
Non-preemptive goal program': minimize Z:ZE

* Responses normalized to goal level
* Single aggregate “compromise” objective

- -— Ll
' LU : LI, 1 Simpson et al, Proc.

05 07 09111 13 15 1.7 192 AIAA/ISSMO SMO
« performance (z) Conference (1996)

BN LDMAX
”-—>ﬂ
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Two Objective Problem Formulation

First objective: minimizez=) -

Goal (G) == Attainment(A)I Shortage(5)¢
T 0 w = I — w X I w X X
$5S,80802385,50203345,80802¢
cu33%222280u08052228 0508052223
Z2aza3x2x83z2206z22x83228¢z22=x8>

s LDMAX
g VCMAX
s WEMP
s WFUEL

itz Lz inal]
LTI e s | g 0T £ K
2 ;eats 4 ;eats 6 ;eats
2.0+ .
. . o . .
154 st s ", .. ’

—
o
|

®
$
°
.
e
°

«—— performance
|
0~.“ :
52 o
AL
b 9ohas
Vi 2
'o o.o..’.
. .V’O ;o
.......
¢ %

PENNSTATE «— pfpf

Second objective:
minimize PFPF

Design Space

>

Product Family Penalty Function
(PFPF):

* Total distance in design space
from all three aircraft designs (2,
4, 6) to the mean design (p).

* Explore tradeoff between
performance and commonality.

1 Simpson et al, Concurrent
Engineering (2001)
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Ten Objective Problem Formulation

First nine ObjeCl'IVESZ mln—max/ Max-min
58, 053833y 558833s 555834
2282225£235223822£3¢922822=2£3¢

I o
=—= ] |||I
ST = S L .

é é é é u v J \ v J \ v J

S = = %= 2 Seats 4 Seats 6 Seats

5 9 9 S

-
For example, 143
maximize minimum
LDMAX.
ég LDMAX
S mmMmm i ll
I < X
25,855385%
ow 8 c:)) ST <Z.: - ?) 16.3
>=3&a=z==x8>3 2000

1 Shah et al, Multi-objective
Evolutionary Optimisation for Product
Design and Manufacturing (2011)

PENNSTATE
i

7 1 Objective
v 2 Objective

Y 10 Objective
— preference

Many-Objective Visual Analytics

Tenth Objective:

minimize PFPF

| 3

Design Space

80.0

Slide 22




Fewer Objectives Yield Fewer Alternatives

[ o GErImE———_eee 74.0 2000 79.1 2.0 475 44300 2000 14.32 187 2.13
05 07 09111 13 15 17 192 ¥
<« performance (z) ©
[}]
2.0 n
A o~
- . * .. . .
3 d e L% A ‘ °
g 157 logiek .i";:-' w0t
g ] ‘i;s. :. 3 b =:.° ::'.03 ° ¢ -—
g LAY 5,"":' oo 3 1 Objective
S 104 fm, sy Sl n — 2 Objective
| vioor e < — 10 Objective
7 ’ x Constraint
- o Goal
0.50_0 — . . . — Preference

6 Seat

14.3 0
o
73.24 1860 58 1.78 325 41750 2600 16.3 203 0.0
L o (@] I — T L x x L
) = O 0] w @) O] < < o
c T 8 32 g & 2 £ % &
LDMAX < = 8 < o o — >
l All 27 responses, with PFPF

16.3 80.0

7 1 Objective

v 2 Objective

¥ 10 Objective
— preference 1880~~%38.8

PENNSTATE
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Formulation Drives Design Selection

T _om emmm— cee ®  Single-objective
05 07 09111 13 15 17 192

«————— performance (z) — One Optimal solution (A) w.r.t. one ObjeCtive
2.0 .
- R .. '. .

8154 sdleg 24
= _ $ReF 2 $ D2 * %
o .‘?.-. Ao
E L4 & ". ??‘.:::%o
D10 e, ocf e s e
Lo]ove e

055 — , , ,

14.3

LDMA)i
A
o J, Gl Gub G 000

71 Objective
v 2 Objective

| | | | | | | | | | |
¥ 10 Objective

| | |
i 05 07 09111 13 15 17 192

PENNSTATE < performance (z
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Formulation Drives Design Selection

A

|O| T Slngle'ObJeCtlve
05 07 09111 13 15 17 192

«—— performance (z)

— One optimal solution (A) w.r.t. one objective

2.0+ . .
o = Two-objective
) — Soa — One-dimensional Pareto front
8 1.54 .. " oo oD 00e® . .
g ;‘;’é}i‘ﬁi""*: — Choose a compromise solution (B)
N IR S0 (X SR
8ol LTS
] %
0.5 — . | -
2.0+
14.3 —
8 1.5
@
LDMAX g N
l 't
g
l 1.0
S0 800 1 8 A
7 1 Objective @ :
v 2 Objective 0.5 T T 1 T T T
v 10 Objective 0 0.5 1.0 1.5 2.0
— preference 1880~~%38.8
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Formulation Drives Design Selection

A R . .
IOI [ [ [ [ I [ [ I | I I I I 1 " Slngle-ObJeCtlve
05 07 09111 13 15 17 192 ) ) o
e performance (2) — One optimal solution (A) w.r.t. one objective

207 = Two-objective
21 — One-dimensional Pareto front
g | ] — Choose a compromise solution (B)
g = Ten-objective
l . — Many-dimensional Pareto front

— Brush for low DOC and PURCH (highlighted glyphs)

— Shop for compelling design?

— Select for high LDMAX w3
and VCMAX (C)

— Inexpensive, high-
performance aircraft | pmax

14.3

LDMAX
l — One of many design u
possibilities
%3
12%80 80.0 R0 809

71 Objective
v 2 Objective

vl IR
=Y Vy2 ve
¥ 10 Objective L girefenst

— preference 1880~%g.8 1 BaIIing, Proc. Third © Sefected 1 1889 588

WCSMO (1999 — preference
PENNSTATE (1999)
ﬁ Many-Objective Visual Analytics Slide 26




Formulation Drives Design Selection

N e = Single-objective

O . . . .
LU A S N B L — One optimal solution (A) w.r.t. one objective
05 07 09111 13 15 17 192

«—— performance (z)

Two-objective
— One-dimensional Pareto front

2.04

— Choose a compromise solution (B)
Ten-objective
— Many-dimensional Pareto front
— Brush for low DOC and PURCH (highlighted glyphs)
— Shop for compelling design
— Select for high LDMAX and VCMAX (C)
— Inexpensive, high-performance aircraft

«— performance

14.3

— One of many design possibilities

Comparison
— Fewer objectives, a priori decision about priorities

— More objectives, opportunistic a posteriori selection of

163 80.0 design in context of alternatives.

2000

1 Objective
v 2 Objective
Y Low Cost
QO Selected 1880 "58.8

——=preference,
PENNSTATE
ﬁ Many-Objective Visual Analytics Slide 27




Arrow’s Paradox
“If there are at least three alternatives among which the

members of the society are free to order in any way, then
every social welfare function... must be either imposed or

dictatorial.”
Formally equivalent to
engineering designl 7:1(.0 20x00 7!)3(.1 2}.‘0 475 44300 2000 14.32 187 2.13

— States of society = design
alternatives

Arrow, J. Political Economy (1950)

— Voters = performance criteria TObjective
— 2 Objective
— 10 Objective
, | x Constraint
o Goal

— Preference

4 Seat

— Social welfare function =
aggregate objective function

= Aggregation—cannot predict
controlling criteria and lost
design opportunities

N

VCMAX §
o

PFPF o “~

o
73.24 1860 58 1.78 325 41750 2600 16.3

w r J I W X
w = O W o o0 <
°c § 5 3 2 & z 3
Z§ mia.o:_l

1 Franssen, Research

in Eng. Design (2005
PENNSTATE in Eng. Design ( )

Many-Objective Visual Analytics




MOEA DIAGNOSTICS ON THE GAA
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General Aviation Aircraft Problem

DESIGN PARAMETERS AND THEIR RESPECTIVE RANGES.

u M a n y_o bj e Cti Ve Design Variable Units Min Max

Cruise Speed Mach 0.24 0.48
Aspect Ratio - 7 11
Sweep Angle - 0 6
Propeller Diameter ft 5.5 5.968
. Wing Loading Ib/ft2 19 25
= Severely constrained _
Seat Width inch 14 20
H Tail Length/Diameter Ratio - 3 3.75
— Probability of randomly Taper Rt _ 0 ,

generating feasible point
— 0.000007 14% OBJECTIVES AND € VALUES.

Objective Units Min/Max €
Takeoff Noise dB min 0.15
Empty Weight 1b min 30
Direct Operating Cost $/hour min 6
- Ride Roughness - min 0.03
N O n _Se pa ra b | e Fuel Weight Ib min 30
Purchase Price 1970 $ min 3000
L H Flight Range nm max 150
— Decision variables are Vi LiftDra Rato T o
. . . Max Cruise Speed kts max 3
h Ig h Iy I nte ra Ctl Ve Product Family Penalty Function - min 0.3

PENNSTATE

Many-Objective Visual Analytics




The Borg Search Framework

= Favor search operators
based on performance

— At runtime
— Tailor to specific problem

— Adapts to local search
landscape

" Framework vs. algorithm

PENNSTATE

Population

Archive

(k-1) (M
B A uc
"DE+PM - » Recombination [¢-——<UNDX+PM:
R ] ¥
LM l SPX+PM
Evaluate

Many-Objective Visual Analytics




Auto-Adaptive Operators

= Different search operators result in a range of offspring
distributions

Simulated Binary Crossover Differential Evolution Uniform Mutation

Unimodal Normal
Parent-Centric Crossover Distribution Crossover Simplex Crossover

PENNSTATE
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= Two valleys

= |nitialized at
suboptimal valley

PENNSTATE

Example

03> )/

Rotated Multimodal with

Optimum

Generation 1

N // 15
02})/ /] 1
o1l///) ‘
1 05 o
% 62 04 o6 08 Y 00 X
X
Auto-Adaptive Multi-Operator Probabilties
1
08
> 06
=
2
& 04
02
0 1 1 1 1 1 L
10 20 0 0 50 ) 70
Generation
SBX DE PCX SPX UNDX UM
Many-Objective Visual Analytics Slide 33



= Two valleys

= |nitialized at
suboptimal valley

PENNSTATE

Example

Rotated Multimodal with Borg Generation 1

Auto-Adaptive Multi-Operator Probabilities

Population
S';"C‘(‘)'::j Shifts To
08 Second Converged
Valley
Preconverged Valley
Z 0Bf I
E
o
2
o 04F
02
0 1 1 | 1 | 1 1
10 20 30 40 50 60 70
Generation
SBX DE PCX SPX UNDX Um

Many-Objective Visual Analytics




Experimental Design

Approximation Metrics Attainment Control

Parameter Block Sets Threshold Maps

. . id
L4 e Hypn G)x' ABH °

= . N Hyp![ G)u ABVE' 0 /

. .

: . T "o. —r Hypw: G:)!K AEH é o E— o

o . . 2

. . ‘/
. H)‘Dw G)m ABN 0.0
P

= Eliminate parameterization bias

= Rigorous diagnostics

= Analyze parameter control sensitivities

PENNSTATE
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Experimental Design

= 6 MOEAs = Parameter set samples:
— Borg MOEA — 20,000
— €-MOEA = Replications:
— &-NSGA-II — 50
— GDE3 = Total evaluations:
= NSGA-II ~ 176.75 billion
— MOEA/D

Q\ff" National Science Foundation

WHERE DISCOVERIES BEGIN

ICS@PSU mie
Institute for CyberScience

PENNSTATE
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Hypervolume

= How well do we capture

the entire optimal set? ® Reference Set
A ® Algorithm A
= Volume of objective ® w

. _ , \‘b(YP}‘(X)dX o
space dominated by an  #*7-f7 )= [ where

®
apprOXimaﬁon set | if3dzePFsuchthitz <X

y x — ] E
@pF(X) r() otherwise
®

PENNSTATE
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Results - Attainment

= How reliably did the

Hypervolume

MOEA attain high-quality o 1000 100%
solutians T 20l® o B 30%
Dark, tall bars indicate an > P e s g 0
MOEA reached a near-optimal ' B - T
value with high probability 7" 2 60%
— : : ' Y
u BOr Black dots indicate the best A S. - 40%
U3 result produced by the MOEA N = °
[ ] L] [ ] : = - o
high probability 8l 1%0%
a
0,
XL = M50 € 0%
oA O
0 QUEHpUL T
S n wo s
rZz 2 T
PENNSTATE
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Results - Efficiency

= How quickly did the

Hypervolume

MOEA find high-quality o100 10,000
I ti n ? % 90 ......... Lol E e SRR % .
Ssolutions-r > 80| i _& ig 200,000
.B 70 ........................ 8 A
b I < >
© 607 | E Z[§400,000
. L . 3 L o] o O
- B Dark, tall bars indicate an . . o S| | 600.000
x O ’
qL MOEA reached a near-optimal o i
value with fewer NFE " =1 1800000
fewer NFE ; Z 3 ’
R 1,000,000
SUIWIZS
D Q0 EHULT
> n wo s
wZ ZsSca
w

PENNSTATE
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Borg — Operator Probabilities

SBX is the most used operator But PCX clearly dominates on

forreali  MOEAs unable to auto-adapt search operators are stuck
using a priori assumptions!

SBX DE PCX
1.0 10 r 1.0

0.8 0.8

0.6 0.6

04

0.2

Probability of Selecting Operator

10000 20000 30000

40000 50000 10000 20000 30000 40000 50000

10 UNDX 10 . SPX 10 UM

<}

©

8 08 + 0.8

o

{=)]

= |

£ 06t 0.6

<

& i .

5 04 | 0.4

2

e 02 ! I

Q A |

[

Q. s - 00 e d iy d 00 -

10000 20000 30000 40000 50000 ' 10000 20000 30000 40000 50000 : 10000 20000 30000 40000 50000

NFE NFE NFE
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Results — Control Map

Borg e-MOEA e-NSGA-II

N—

,000,000

00 1,000,000

Borg rapidly converges to the
reference set

500,000 1,000,000

500,

w

[N

£

(%]

C

s _ _

)

5 § g

> ~ ~

T S |

LE 100 500 1000 100 500 1000 100 500 1000

5

s GDE3 NSGA-II MOEA/D

S o

= 8

s 8

o S

o - . .

0 og e

£ g Flat gradient means Borg is Other MOEAs are sensitive to

= insensitive to population size | o5rameter settings and require
wn

more NFE

10,000

100 500 1000 100 500 1000 100 500 1000
Population Size

00 01 02 03 04 05 06 07 08 09 10

PENNSTATE Hypervolume (Best Attained = 1.0) ——»
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Quantifying Parameter Sensitivities

= Sobol global variance Y = f(X1, Xa..... Xy)
decomposition F=Ffo+ 3 Fi4 > Fut+ > furteeet funn
i i<j i<j<k

— First-order
— Second-order

— Total-order o _ VIi(X)] _ VIE(Y|X))]
Dy ‘. D'] ‘r D»]

= Strong first order 5, = Y [f‘([\” X))
sensitivities - easy to _ X--"’[E('i][;gi,Xj)] s
control

or _ 1 _ VIEY|X0)]
%
PENNSTATE
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MOEA Controls

e-MOEA Borg
PM PM
SBX Max Distribution  Rate X
Rate Evaluations DE Index Distribution
Crossover Index
Rate BX
o .
Rate
DE .
z: Injection
Rate
UM
Rate * Ma)f
Evaluations
PCX
8X #of Y
. Parents
Distribution . ) Population Initial
Index Size Population
PCX . Sze
#of
Of sring X
Epsilon
PCX ¢
Ba X
. #of
Of spring
. ° PCX
Zeta X
UNDX . #of
P #of UNDX  Parents
M Parents UNDX  ynpx  Zeta
Rate Distribution #of Ba
Index Of spring
53% 1%
L
First-Order Sensitivities

PENNSTATE
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MOEA Controls

e-MOEA Borg
PM M
— Max Distribution  Rate - s|X
Rate Evaluations DE Index Distribution

Crossover Index

Injection
um Max
Rate Bvaluations
PCX
X #of
. Parents
Distribution Popglallon Initial
Index ze Population
PCX Sze
#of
Of sring X
Epsilon
PCX
Ba
Of spring
PCX
Zeta ?:
UNDX 0
P - #of UNDX  Parents
UNDX Zet
Rate Distribution Parents 4 of ugox a
Index Of spring a
53% 1%
‘ 25% 1%
- m —
First-Order Sensitivities Second-Order Sensitivities

PENNSTATE
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MOEA Controls

£-MOEA Strong first-order sensitivities
highlight controlling parameters

i Distribution

S8BX Max . . .
Rete Evaluations Higher-order interactions

among parameters are difficult

to control
Max
Evaluations
BX
Distribution Population Initial
Index Sze pulation
Sze
Epsilon
M iy #of e
Fate Distibution el Strong interactions originate,
cascade from key parameter
53% 1% 259% 19,
12% ’
@ S M —
First-Order Sensitivities Total-Order Sensitivities Second-Order Sensitivities

PENNSTATE
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TALES FROM THE REAL-WORLD
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Control maps show the robustness of search to
parameter choice.

LTM
Test Problem
(Equally Difficult)

NFE (Thousands) NFE (Thousands)

NFE (Thousands) NFE (Thousands)

NFE (Thousands)

10 250 500 750 100010 250 500 750 1000
Population Size Population Size

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Hypervolume (Reference Set Hypervolume =1.0) ——>

Many-Objective Visual Analytics




Control maps show the robustness of search to
parameter choice. s
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Earth Science Satellite Constellation
Design Challenges

Launch image reprinted
courtesy of NASA

= Problem Properties:
— Near-term decisions impact future performance

— Adaptive observations to capture periods of time key tradeoff decisions
must be made

— Build-up = reconfiguration = replenishment

Current Constellation Optimized Configuration Optimized Configuration in
in 2012 2018
Time
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Earth Science Satellite Constellation
(Hypothetical Example)
= Design Objectives:

— Minimize mission cost
— Maximize spatial coverage

— Minimize revisit time
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Earth Science Satellite Constellation
(Hypothetical Example)
= Design Objectives:

— Minimize mission cost
— Maximize spatial coverage

— Minimize revisit time
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Earth Science Satellite Constellation
(Hypothetical Example)

= Analyzing key tradeoffs and performance differences
= Efficient exploration of candidate designs

— Click on the red, green, and blue solutions to visualize their designs
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Earth Science Satellite Constellation
(Hypothetical Example)

* Analyzing key tradeoffs and performance differences

= Efficient exploration of candidate designs

— Click on the red, green, and blue solutions to visualize their designs
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From The Aerospace Corporation 2009

Annual Report*

“While most applications to date have been
based on optimizing the performance of
space systems architectures, GRIPS permits
the explicit trade of system-level parameters
in diverse areas, such as orbits, sensor
characteristics, and system costs. The GRIPS
process provides a new tool to help decision
makers understand the impact of system-
level decisions.”

“GRIPS 1s currently being used in support of several National
Reconnaissance Office programs within imagery intelligence and
signal intelligence. As a result of the insights developed through
GRIPS results, system-level specifications are being modified,
and decisions that were made decades ago are being
reconsidered.”

*Source: http://www.aero.org/corporation/Aerospace AR.pdf



Flight Network Scheduling

aviation

Daily Profit Increase ($)
0 100000 200000 300000 400000 500000 600000 700000

= How can we optimally
improve flight network
scheduling?

= QObjectives:

— Minimize Cost of Changes
(SMillions)

— Minimize Schedule
Disruptions (Legs Changed)

Legs Changed 196

98

— Maximize Passenger
Revenue (SMillions)

— Maximize Daily Profit (S)

0
14.7

15.7
\ Reprinted with permission of Apptimation LLC
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Flight Network Scheduling

aviation

Daily Profit Increase ($)
0 100000 200000 300000 400000 500000 600000 700000

The most disruptive schedule changes do
not translate into greater profits for the
airline.

Highest profit is very disruptive
changing 270 out of the possible 391
legs

Legs Changed 196

98

$350,000 daily profit increase but with
only 18 flight legs out of the possible 391
disrupted.

0
14.7

. 15.2
Revenue ($M) 154

15.7

Reprinted with permission of Apptimation LLC
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imation Airline Network Planning

Daily Profit Increase (5) APPtimation Completes Proof of Concept with Malaysia
0 100000 200000 300000 400000 Airlines

Apptimation LLC (Apptimation) announces the successful completion of a proof of
concept with Malaysia Airlines. The proof of concept focused on Apptimation’s
revolutionary new airline network planning and optimization product - NetXellerate.

Denver, Colorado (PRWEB) October 13, 2011 B3 ShareThis [ Email ~ PDF & Print

Apptimation LLC (Apptimation) announces the successful
completion of a proof of concept with Malaysia Airlines.
The proof of concept focused on Apptimation’s
revolutionary new airline network planning and
optimization product - NetXellerate.

Working with Malaysia Airlines, Apptimation has :
successfully proven the applicability and value of its multi- ] | |1a Ion
. 14 r objective evolutionary algorithm approach to one of the
Th IS data re p resents an "' 14 world's most complex problems, that of airline connectivity
4 optimization. “Working with Apptimation introduced us to a

ea rly proof-of-conce pt ’ . whole new way of looking at network planning and in a

v short period of time NetXellerate produced results that

a nd is not associated l;ﬁ.b & would have taken us years to obtain otherwise,” said Dr.

v Amin Khan — Executive Vice President Commercial
Wlth Malaysia Airlines P ”' Strategy at Malaysia Airlines.
w

Lad

o209

Legs Chan

When speaking of the Apptimation proof of concept with
Malaysia Airlines, Dr. Matthew Ferringer, a founder of
Apptimation stated - “Apptimation is extremely proud of the _
success we have had with Malaysia Airlines and how well Introa
NetXellerate integrated with the existing tools Malaysia f
Airlines uses today.”

98

0 Apptimation is releasing NetXellerate to the commercial
14.7 market in the 4th quarter of 2011.

About Apptimation LLC - Apptimation LLC (Apptimation) is a wholly owned travel, transportation, finance, and
logistics optimization firm. Apptimation specializes in the use of multiple objective genetic algorithms to solve
15.2 previously intractable problems in the travel, transportation, finance, and logistics domains; airline network
connectivity optimization being just one example. For a complete overview or additional information about
Revenue ($M) 15.4 Apptimation, please contact an Apptimation Solutions Representative — +1-941-447-7923 —
15 info(at)apptimation(dot)com or visit the Apptimation website at http://www.apptimation.com.
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Key Points

= (1) Proposing the “Many-Objective Visual Analytics” framework for complex
engineered systems design.

= (2) Seeking to avoid cognitive myopia (too limited a view of optimality) and
cognitive hysteresis (preconceptions limit discoveries)

= (3) Arrow’s Paradox: optimizing aggregated performance measures does not
optimize individual components in a predictable fashion

= (4) Preferences develop and evolve opportunistically in response to how
changing formulations provide solutions with desirable characteristics (what
is the non-dominated problem?)

= (5) Operational use of MOEAs requires efficiency, effectiveness, reliability,
and controllability—proof must be based on rigorous algorithm diagnostics

PENNSTATE
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BorgMOEA.org

/borgmoea.org/ & Borg MOEA, ...

File Edit View Favorites Tools Help
x @;Convert v [B Select

x Go g[(’ v "‘ Search ~ Eshare More » SignIn 9 -

Home Get It! Publications

Welcome.

1701

The Borg Multiobjective Evolutionary Algorithm (MOEA)

is a state-of-the-art optimization algorithm developed by

David Hadka and Patrick Reed at the Pennsylvania State n
University. Borg is freely available for academic and non-
commercial use. Use this site to learn more about the

1621

1540

Uncert

Many-Objective
Optimization -
1378

24

Borg MOEA and request access to its source code. Eror 3 s
Mass —
< o 00000r ooor 1 b0
® ® 0 00

PENNSTATE

Many-Objective

Borg efficiently captures the tradeoffs
between many conflicting performance
objectives, providing decision makers
with detailed insight into their problem
characteristics.

Adaptive Search

Borg uses an ensemble of search
operators, auto-adapting their use at
runtime to tailor itself to your
optimization problem.

High-Performance

Written in efficient, high-performance
ANSI C, the Borg MOEA wastes little
time when solving your problem. Runs

on Unix, Linux, Windows, and Mac.
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Many-Objective Visual Analytics

1563.90 — G

m H.igh—c.zlim.ensional AerOvls e

visualization 1493.90.

1423.90

" |nteractive

1353.90 |
7.00

= Efficient design space PENNE‘,,J/:L

exploration W | fom

AeroVis © THE PENNSYLVANIA STATE UNIVERSITY 2010. All rights reserved. D0
Restricted license valid for research and educational purposes only.
This software may not be reproduced, transferred, distributed, sold, modified, decompiled,
or reversed engineered without the prior written consent of the authors.
This software is provided "AS IS". Additional rights may be available under separate license.

http://www.coe.psu.edu/water/index.php/Software

PENNSTATE
= Many-Objective Visual Analytics Slide 60



MOEA Framework

" Free and open source

= Java MOEA Framework

An Open Source Java Framework for Multiobjective Optimization

= Features: T —
~ 24 MOEAs
— Over 80 MOPs
— Extensible
— Run large-scale
experiments
o ]
http://www.moeaframework.org
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©¢ DECISIONVIS

o ©

CHANGE THE WAY YOU THINK

Joshua B. Kollat, Ph.D.

Owner & Founder

Email: jkollat@decisionvis.com

URL: www.decisionvis.com
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Questions?

Many-Objective Search

Negotiated
Design Selection

Problem Conception
and Formulation

Formulation, search, and visual
discovery mutually interact

Interactive
Visualization
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